

Fabrication of a Guarded-Hot-Plate Apparatus for Use over an Extended Temperature Range and in a Controlled Gas Atmosphere

R. R. Zarr, D. R. Flynn, J. W. Hettenhouser, N. J. Brandenburg, W.M. Healy National Institute of Standards and Technology

Presented to: 28th International Thermal Conductivity Conference and 16th International Thermal Expansion Symposium St. Andrews-by-the-Sea, New Brunswick, Canada June 28, 2005

Outline of Talk

- Motivation
- Apparatus Design
- Fabrication of Hot Plate
- Summary
- Future Work

Motivation

- High-temperature thermal insulation reference materials are *unavailable*.
- High-temperature guarded-hot-plate apparatus comparisons:
 - 1988 Hust and Smith: fibrous alumina silica, 60°C to 450°C, ±15%
 - 1988 Hust and Smith: calcium silicate, 60°C to 450°C, ±16%
 - 2001 Salmon and Tye: rockwool fibre, 100°C to 500°C, ±16%
 - 2002 Albers: fibrous alumina silica, 0°C to 1000°C, ±24%
 - (Room temperature guarded-hot-plate comparisons ±2 % or better)
- Limitations for current standard test methods for guarded hot plates (ASTM C177 and ISO 8302)
 - Example no comparison data (or statistics) for:
 - Cryogenic temperatures
 - Vacuum conditions

Apparatus Design

Requirements

- <u>Range of Operation</u>
 - 90 K to 900 K
 - 10⁻⁵ kPa to 105 kPa
 - 13 mm to 100 mm
 - 2-sided mode (specimen pair)
 - Horizontal heat flow
- Desired Uncertainty
 - ±1 % at 300 K
 - ±3 % at 90 K or 900 K
- Heaters
 - Line-heat-source design
 - Rugged
- Integrated cold plates
- Integrated edge guards

Specifications

- <u>Plates</u>
 - Circular geometry
 - 500 mm diameter (ISO 8302)
 - Guard to meter ratio: 2.5
 - Material: nickel 201
 - Metal sheathed heaters, TC, TP
 - Long-stem SPRTs
 - Vacuum-brazed (one piece)
 - High-emittance coating (>0.8)
- <u>Apparatus Arrangement</u>
 - Vertical plates
 - Translate horizontally
 - Enclosed in a vacuum bell jar

g

- Metal cutting ⇒ form components
- Vacuum brazing ⇒ assembly 925 °C
- Grinding ⇒ surface finish
- Ceramic coating ⇒ high emittance 510 °C
- Electrical connections
 70 °C

Metal Cutting – NIST

- Main plate components: base and cover
 - Horizontal-spindle, high-speed milling machine: form and cut grooves (+0.05 mm tolerance)
 - Heater patterns based on FE analyses (Healy and Flynn)
- Guard gap: inner disk and outer ring
 - Electrical discharge machining: cut gap
 - Lathe V-grooves (diamond profile)

Building and Fire Research Laboratory

- Vacuum brazing ⇒ assembly
- Grinding ⇒ surface finish
- Electrical connections

Vacuum Brazing – Vendor

- Braze filler metal
 - Nickel-phosphorous (11 %) eutectic (nominal MT 875 °C)
 - Braze range: 925 °C to 1095 °C
- Assemble components
 - Grit blast surfaces, if necessary, to remove oxidation
 - Methodically "stake" pre-formed metal sheathed components (supplied by another vendor) into mating grooves
 - Apply measured water-based braze alloy (by syringe)
 - Apply water-based ceramic paste (as needed)
- Install in vacuum furnace
 - Assemble components on graphite sheet (weight)
 - Place in furnace and evacuate $\leq 10^{-5}$ torr
 - Heat and hold at 925 °C (~1.5 h) braze alloy capillary action
 - Vacuum cool establish metallurgical bonds
 - At 650 °C quench with room-temperature nitrogen gas

- Metal cutting is form components
- Vacuum brazing ⇒ assembly
- Grinding ⇒ surface finish
- Electrical connections

Grinding – NIST

- Plate thickness oversized 0.5 mm (0.25 mm per face) – based on brazing results of small prototype plates
- Vertical machining center
 - Mount on pads (elevate to compensate for braze alloy puddles)
 - Indicate and establish parallel surface on pads
 - Re-mount and remove surface layers from plate
 - Excessive chatter noted in machining
- Blanchard rotary surface grinder
 - Segmented abrasives aluminum oxide
 - Total removed 0.69 mm (0.027 inch)
 - Flat and parallel to 0.01 mm (to be verified)

Proto-type plates

- Metal cutting is form components
- Vacuum brazing ⇒ assembly
- Grinding ⇒ surface finish
- Ceramic coating ⇒ high emittance
- Electrical connections

Plate Coating - High Emittance Paints

- Part I 14 nickel 201 coupons (650 °C)
 - 6 paints (A, B, C, D, E, and F)
 - Emittance (room temperature): 0.8 to 0.9
 - Poor durability noted for A, B, C, and D
 - Selected E and F for further study
- Part II 24 nickel 201 coupons (650 °C)
 - 2 paints (E and F from Part I)
 - 1 ceramic coating (NiO · Cr₂O₃-SiO₂ spinel bond)
 - Metal coupon surface finish
 - High-speed mill
 - Bead blasted (improve mechanical adhesion)
 - Oxidation treatment (several days at 850 °C in air)
 - Paint F failed (all coupons)
 - Paint E gray discoloration
 - Ceramic coating: durable, emittance ~0.81

Ceramic Coating – Vendor

- Physical properties
 - Metal-ceramic bond (nickel, chromium, silicon oxides)
 - Thickness: 0.05 mm to 0.08 mm
 - Surface roughness: ~ 0.38 μm
- Application process
 - Initial coating
 - Grit blast (fine alumina grit) surfaces to be coated => brush clean
 - Spray apply initial coat (water-based slurry) => air dry
 - Fire in oven at 510 °C (air atmosphere)
 - Densification
 - Apply chromate solution at room temperature
 - Fire in oven at 510 °C (air atmosphere) => repeat 14 applications
 - Hand polish => 2 applications

Initial coating

Cold plate #1Cold plate #2End – Coating ProcessStart – Coating Process

Hand polishing coating during densification process

- Metal cutting is form components
- Vacuum brazing
 assembly
- Grinding ⇒ surface finish
- Electrical connections

Electrical Connections – Vendor

- Preparation
 - Cut sheathed cables to length
 - Remove metal sheath and MgO insulation
 - Expose wires and weld electrical terminations for extension wires
- Pot adapter
 - Slide tube over welds
 - Fill tube with moisture-resistant epoxy
- Check electrical continuity

Summary – Current Status

Front of apparatus

Installation of edge-guard assemblies, cold-plate assemblies, and hot plate

Building and Fire Research Laboratory

Future Work

- Remove and replace existing thermopiles (2) with new Type K thermopliles
- Dimensional metrology
 - Measure meter-plate area and uncertainty
 - Measure surface flatness and parallelism
- Complete data acquisition computer program
- Complete operational checkout
- Comparisons
 - Internal (NIST 1016-meter guarded-hot-plate apparatus)
 - External