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March 8-10, 2000 NSF sponsored  Workshop on

Dynamic Data Driven Application Systems
"Creating a dynamic and symbiotic coupling of application/simulations with

measurements/experiments"

Preface

    The primary objective of this workshop was to explore research opportunities leading to the
creation and enablement of a new generation of dynamic/adaptive applications.  The novel
capabilities to be created are application simulations1 that can dynamically accept and respond to
"online" field data and measurements and/or can control such measurements. This synergistic
and symbiotic feedback control loop between applications/simulations and measurements is a
novel technical direction that can open new domains in the capabilities of simulations with high
potential payoff, and create applications with new and enhanced capabilities. It has the potential
to transform the way science and engineering are done, and induce a major beneficial impact in
the way many functions in our society are conducted, such as manufacturing, commerce,
transportation, hazard prediction/management, and medicine, to name a few.

    Traditional application simulations are conducted with static data inputs.  In the new dynamic,
data driven application systems envisioned here, field collected data will be used in an "online"
fashion to steer the simulations and vice versa the simulations could be used to control
experiments or other field measurements.  Thus the applications/simulations and the experiments
(or field data) become a symbiotic feedback system rather than the usual static, disjoint and
serialized approaches.   The purpose of the workshop was to examine the technical challenges
and research areas that need to be fostered to enable such capabilities.  What are the
requirements in the applications' level for enabling this kind of dynamic feedback and control
loop?  What are the requirements in the applications' algorithms for the algorithms to be
amenable to perturbations by the dynamic data inputs? What are the challenges and technology
needed in the computer systems areas to support such environments?  The new set of
applications will create a rich set of new challenges and new class of problems for the
applications and systems' researchers to address.

    Such challenges clearly present the need for a synergistic multidisciplinary research between
applications and systems' and algorithms' areas. This research scope has the potential to help
establish stronger and more systematic collaborations between the applications' researchers and
the engineering, math and computer sciences researchers. How can such multidisciplinary
research be programmatically fostered and supported in an effective way? How can this
multidisciplinary research form a clear focus for many of the activities developed in existing
individual programs supported in NSF? Past investments provide a basis to address the more
challenging research required to enable the new paradigm fostered here. How can the research
performed and the technologies developed under existing NSF efforts be poised to provide a
relevant basis upon which the research for symbiotic measurement and simulation systems can
springboard?   How can the research focus for this new paradigm serve as a necessary adjunct
of existing programs?

    Many application areas can be envisioned benefiting or enabled from this new paradigm.
Many are of interest to the research community supported by NSF. Representative examples
were addressed in the workshop to illustrate the potential impact that this kind of research can
have.  The capabilities discussed here, are relevant not only to applications of interest to the NSF
funded research community, but also to applications of interest to other agencies.  Furthermore
such new directions can provide a very positive impact with respect to the educational

                                                                
1 When application  is referenced alone, we mean it to include all related application simulations as well as
all other dynamic applications.
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component, by providing the opportunities for students to work in some novel, exciting, and
multidisciplinary projects.

    The workshop took place at NSFand assembled about 80 scientists, representing relevant
disciplines.  The workshop addressed the problems, needs, possibilities and opportunities for
such multidisciplinary research and education. These issues were discussed in the format of
plenary sessions and breakout groups, along the areas of applications, algorithms, and systems'
software technologies 2.  The present report summarizes the discussions that took place during
the workshop, in order to make them available to the wider community, and to also serve as
guidance for NSF's programmatic considerations.
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2 Slides of the invited presentations and Working Group sumaries are posted on
http://www.cise.nsf.gov/eia/dddas/
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Executive Summary

    At a February 17, 2000 congressional briefing, meteorologists were asked why they missed
predicting the track and magnitude of a major storm in January 24-25, 2000,  that blanketed
major cities from South Carolina to New England.  One of the reasons cited by the scientists is
that computer models (simulations) were not geared to incorporate changing conditions (like
prevalent winds) as the many hours long computer simulations proceeded.

    Even as the present report was in preparation, on May 7, 2000, the national park service
started a controlled burn near Los Alamos National Laboratory.  Within a day, the fire was labeled
a wildfire.  Once again, the existing methodologies were unable to simulate what the behavior of
the fire based upon real-time changing conditions, and the emergency response agencies were
thus unable to take appropriate and effective actions to limit the propagation of the fire.

    These  examples are neither isolated  nor unique.  Typically, applications and simulations we
use today, only allow data inputs that are fixed when the application/simulation is launched.
Traditionally, these processes are disjoint and serialized, not synchronized and co-operative. This
lack of ability to dynamically inject data into simulations and other applications, as these
applications execute, limits the analysis and predictive capabilities of these applications. Needs
for such dynamic applications are already emerging in business, engineering, and scientific
processes, analysis, and design.   A number of examples of such applications are referenced in
the main body of this report.

The New Paradigm:  In the new dynamic data driven application systems framework envisioned
here, the simulations and the experiments (or field data) become a symbiotic feedback control
system.

    The primary objective of the workshop discussions was to identify research opportunities for
the development of applications and system’s software technology enabling this new generation
of dynamic/adaptive applications.  The novel capabilities sought, are simulation applications that
can dynamically accept and respond to field data and measurements, and/or can control such
measurements in a dynamic manner.  This is a new dimension in the capabilities of applications.

    The needs for enabling the new paradigm push for research leading to leap ahead technology
capabilities.  For example, to enable the kinds of application simulations discussed here, progress
is needed in application methods and interfaces,  and in algorithms that are tolerant to
dynamically steering the simulation.  Therefore research in the development of new such
methods and algorithms for the specific application areas will be needed.  Furthermore, the
dynamic application requirements will dictate computing systems’ support that includes systems’
software technologies, such as active middleware services for real-time, dynamic reconfiguration
capabilities, resource discovery, load balancing, security, fault tolerance, quality of service, and
dynamic interfaces with field measurement systems.   Currently the underlying systems’
technology is not geared to support the dynamic requirements of these kinds of applications.

    Therefore research is needed on: applications, for developing the dynamic, data driven
application technologies, algorithms tolerant to perturbations of dynamic data injection and
steering, and systems software for supporting the dynamic environments of concern here.   In
turn, research and development on these technologies forms the need for synergistic
multidisciplinary research between applications areas with systems and algorithms research, and
involving researchers in engineering, basic sciences, math, and computer sciences, in
multidisciplinary teams as well as individual research efforts.
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    The workshop3 included plenary presentations on application case examples where the new
paradigm creates additional capabilities and benefits.  The working groups were organized
around the themes of: applications, algorithms, and (computer) systems. Charges4 were provided
to the participants to drive their discussions.   Specifically the workshop addressed the issues and
possible research directions for areas such as the following:

Data driven components, data assimilation5 and feature extractions, model enhancement for
local resolution, optimization and inverse problems, inverse problems for fine scale
application models, computation/model and measurement system interaction, computation
and computational infrastructure interaction, time dependency and real time aspects, data
streams in addition to data sets, uncertainties in the data, multiple scales and model
resolution, model interactions and software agents, interactive visualization and steering,
combining local and global knowledge, exploiting new generations of sensors, information
services, resource, and systems management under physical systems and real time systems
constraints, application management and dynamic application component assembly, dynamic
programming environments, security, fault tolerance, and economic models for the
computational infrastructure.

A more detailed discussion of these research areas is provided in the main body of the
report.

    In the main body of this report, we also give specific examples of the kinds of applications that
were discussed at the workshop.  Many of the application examples presented here are of
interest to the research community currently supported by NSF.  and they are provided to
elucidate the potential impact that this kind of initiative can have, rather than being an exhaustive
or limiting list. In addition, applications that can benefit from the DDDAS paradigm are not only
the ones addressed by the research community funded by NSF, but also those of other agencies
(e.g., DARPA, DOE, and NASA) who were represented at the workshop.

    Multidisciplinary research projects and multidisciplinary teams will be crucial  for developing, in
an effective manner, the necessary novel methods, frameworks, and tools, that are required to
realize DDDAS. Furthermore, this kind of multidisciplinary research will have a very positive
impact with respect to the educational component, by providing the opportunities for students to
work in some novel, exciting, and multidisciplinary projects.

    Why now is the time for developing such capabilities? DDDAS is a powerful and new
paradigm, requiring advances on several technologies.  However over the recent years there has
been progress in a number of technology areas that makes the realization of DDDAS possible
These include advances in applications and algorithms for parallel and distributed platforms,
computational steering and visualization, computing, networking, sensors and data collection, and
systems software technologies.  These are some of the recent advances that can  help enabling
the new paradigm of DDDAS.   It is necessary however to endow these technologies with
advanced and enhanced capabilities to develop the state of the art in DDDAS, which in turn will
enable applications that are more powerful, effective, accurate and robust than what is currently
available today.  Productivity and services will be improved as a direct result of this new synergy
and advances in technology.

                                                                
3 See the workshop agenda in Appendix 1.
4 See the list of charges in Appendix 2.
5  DDDAS is not tautonymous with data assimilation (DA).  In DA data from multiple sources can be fused
and used as inputs into an application. However DA is a static process, in that these sources of the data  are
fixed when the application is launched.  While data assimilation can be exploited in DDDAS environments,
the difference between DA and DDDAS is that in DDDAS the data injection in the application is dynamic
(at runtime).  In addition in the DDDAS paradigm, the applications will be empowered to control the
measurements’ processes
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If this initiative is successful, a revolutionary change can be expected in how applications and
simulations involving time dependent data are designed and what they can accomplish.  We can
expect advances perhaps equivalent to what happened to the manufacturing industry after
computers were introduced in the 1950's.  With the DDDAS capabilities many fields will be
positively affected or revolutionized, including those in the basic sciences, biology, engineering,
and the social sciences.  An initiative in DDDAS will have relevance and will affect all areas of
NSF.

    The multidisciplinary DDDAS initiative will form a clear focus for many of the activities
developed in existing individual programs.  In particular, research performed and technologies
developed under a number of existing initiatives provide the foundation upon which to build the
DDDAS initiative.  One workshop conclusion is an encouragement to NSF to announce a initiative
on DDDAS that will support 15 to 30 multidisciplinary research projects in this topic for a duration
3 to 5 years each. The workshop participants also believe that this should be a sustained effort
and concluded that such a call for proposals should be renewed at least two additional times in a
span of 12 or 18 months apart. The possibility of some kind of joint announcement involving other
agencies (e.g., with DARPA, NIST, or DOE) would create a significantly larger budget that would
result in starting a significant number of projects and should be considered.
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Main Body of Report

Introduction

    Now assume that we are a few years into the future and that dynamically data driven
application systems have become commonplace.  A disaster like the two cited in the Executive
Summary need not be uncontrollable.  For instance6…

    Near Los Angeles, an unknown fault moves violently causing an earthquake of 8.2 on
the Richter scale.  Above the fault a dam disintegrates and billions of liters of water pour
down a canyon towards people and a petrochemical plant.  Due to the earthquake, gas
lines rupture, causing numerous fires including a forest above the dam. Numerous
chemicals’ storage tanks are ruptured and begin to leak toxic chemicals into both the air
and the ground near underground aquifers that supply potable water to populous areas
as well as individuals.  Highways buckle and collapse at numerous points, hindering
response team action.  Nearby airports sustain major damage to their main runways.
The main transportation systems are left in a state of chaos.  Underground fiber
connection severance,  results in local communications disruptions.

    Due to dynamic data driven models incorporated by the water and chemical
companies however, damage and death were minimized.  As soon as the dam began to
fail, sensors in the canyon started feeding data via fast wireless networks into a spatially
distributed network of supercomputers, the majority of which are located away from the
disaster zone.  A computer model predicted where the water from the dam will flow and
the rate of the flow,  continuously updated GIS data that were broadcast on the
emergency broadcast system throughout the Los Angeles region.

    Similarly, the petrochemical plant had previously installed sensors in the plant and the
surrounding subsurface,  to meet EPA monitoring standards.  The sensors are capable of
tracking the contaminants as they spread, which enables a  continuous updating of the
computer generated three-dimensional map of the toxins.  Evacuation plans are
optimized dynamically using streaming data of where the toxins are propagating.
Subsequently the cost of containing and subsequent clean-up of the leaking toxins is
considerably reduced by having continuously running predictions of where the toxins are
migrating over many time scales.  Regional weather models, interacting with global
models, are used to predict where the airborne pollutants will travel.

    Using telemetry from under roads and pattern recognition codes7 for monitoring
highway congestion, a cluster of PC’s is able to help direct emergency vehicles to optimal
routes for their destinations.  Using a tracking system originally designed for school
buses, emergency vehicles are continuously tracked and optimal routes are relayed
directly to the vehicles, using advanced software running on a cluster of PC's.  In
addition, the bus onboard computer monitors local road conditions and obstacles and
helps the driver to navigate through tight spots and obstacles.  Emergency medical and
disaster relief teams interact through wireless video/voice/sensor communications with
regional medical centers and field hospitals to provide time critical medical attention.

     The dynamically data driven application simulation workshop considered how a set of static
applications could change into significantly more useful applications involving unpredictable
                                                                
6 ...The example given here is an amplified and “into-the-future” portrayal of an actual earthquake that
occured in LA in the 1920’s

7  The terms “code” and “program” are used interchangeably in this report.  “Code” is the term used by
applications’ scientists, “program” is the prefered term among computer scientists.



8

dynamic changes.  A number of technical areas have to be addressed in order to transform the
applications from a “static data collection and assimilation phase plus computation” to an
environment where field data is collected or mined dynamically, computation routinely expects the
data to change dynamically, and steering applies to both the data and the computation.

     Not only do algorithms and application methods have to be enhanced, but the system tools
(middleware) have to be designed so that issues like application and algorithm adaptivity,
rescaling, computer resource models, security, and fault tolerance, are routinely and dynamically
available to the applications as needed and such capabilities can be designed into systems from
the outset.

In addition student education and training curricula that embody DDDAS concepts and
technologies will enable students to be trained in these novel technologies and tools, and prepare
them for working in such multidisciplinary application environments.   So the educational aspects
of such an initiative are extremely valuable and exciting.

Applications (General Characteristics, Examples and Related technologies)

An extensive but not exhaustive list of applications that can benefit from the new paradigm is
given in Appendix 3.  In the following sections, some examples of these applications  will be cited
to elucidate the points made.

Characteristics of a Dynamic Data Driven Application System;  General Properties

Pictorially the new paradigm is shown below.  The intent is to show the new and tight (feedback
and control) interaction between the ongoing computations and the measurements (or field-data
collections processes):

      Models
^
||

Humans   <= interact with=>   Computation<= interact with=>Physical/measurement Systems
Systems    ^

3 Hz || 10E-20 to 10E+20 Hz
|| (subatomic to cosmological time scales)
V

Computational Infrastructure

Figure 1:  Diagram of DDDAS Interactions

Figure 1 identifies three primary modes of interaction for a DDDAS environment:
1.Human and Computation Interaction
2. Model or Computation Interaction with Physical System
3.Computation and Computational Infrastructure Interaction

    While the DDDAS paradigm emphasizes the new technologies that need to be developed for
modes 2 and 3, the program will be imbalanced if mode 1 is ignored. In fact by providing much
more accurate information for the human in the loop, DDDAS will result in enhancing mode 1
also.

Physical systems (e.g., prosthetic legs, chemical plants, and active wings of an aircraft)
operate at widely varying rates. Cosmologic and geologic rates are extremely slow relative to the
timescale of  subatomic events that happen very fast. Physical processes can also "produce" and
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"consume" widely varying data volumes.  In many cases, a computation may be able to interact
directly with a physical system via some set of sensors and actuators (e.g., a prosthetic leg that
can sense the terrain and apply the necessary forces to complete a walking motion).  High-
energy physics experiments provide another example.

For the purposes of explanation how this paradigm can affect other than engineering/scientific
applications we provide here the following Supply Chain Management example from the
ebusiness world (commercial/manufacturing and finance sectors):   Businesses have increasingly
become global but, at the same time, have become more specialized in order to concentrate on
core competencies.  As a result, the path from raw material to finished product delivered to a
customer has become highly complex in terms of geographic scope, number of organizations
involved and technological depth.  Organizations have broadly adopted Enterprise Resource
Planning (ERP) and Supply Chain Management (SCM) Systems in an attempt to better control
and manage their dispersed operations.   While these systems typically do well at collecting and
integrating transaction data, and at providing support for planning decisions, they are not effective
at supporting real-time decision making, particularly with respect to unplanned incidents.
Fundamental research is needed into the modeling of the interactions among supply chain
entities and the manner in which major events impact overall supply chain operations.  Research
is also needed into how to interface such models with the currently available data collection
mechanisms.  Under a DDDAS approach, a simulation would receive real-time data from ERP
and SCM systems in order to maintain an accurate current picture of the supply chain.   Decision
makers would employ the simulation to project the impact of decision options.  Of particular
import, would be the analysis of ways to mitigate the impact of major disruptive events, such as
emergency customer orders, plant breakdowns, missed shipments, etc.  This environment has
several distinguishing characteristics, including the wide range and magnitude of data sources,
the fact that a variety of organizations own and/or generate the data and  the dependence of
system behavior on humans (decision makers and customers).

    Humans will be increasingly interacting with physical systems through intervening
computations. Humans can be considered as a multisensory system with a 3 Hz bandwidth,
although  some of its biological subsystems may have bandwidths which are considerably higher
than this. Neurological activity, for example, can run at 2kHz. However, any human activity that
involves cognition, will probably run (on the order of 3 Hz) much slower  than almost any known
computer or embedded system in use today.  Other physical systems, however, may operate on
a scale too broad, too fast, or too slow for direct interaction, as is the case in Cosmology.
Computations must then be incorporated to approximate and interact with a mathematical model
of the target system.  In this case this necessitates  dynamic data assimilation or dynamic data
injection into to the simulation to occur when the simulation finds that it needs more data from
other sources. Similarly in the case where the simulations are used to control an instrument or
other measurement device.

     Computation is the instantiation of abstract notions that are modeled themselves on a
computational infrastructure. We use the term computational infrastructure here in the most
general sense: all machines and their connections,  large and small. The range includes single
machines to arbitrary collections of large, parallel machines and small, embedded systems as
well as systems with high bandwidth and low bandwidth mobile dedicated communication.

Also in the most general sense, computations will also need to exploit dynamically  the
computational infrastructure on which they are running. A computation will also interact with a
physical system via its computational infrastructure.  The diagram above is a simple reference
model pictorializing the environments considered here. In an actual instance, each of the
elements could be multidimensional, e.g., there could be multiple physical systems and models
interacting with multiple, distributed computations that interact among themselves and with
multiple physical devices collecting and streaming data, and with multiple distributed humans.
This representation of DDDAS problems guides us to emphasize and focus on several key
characteristics that need to be addressed.
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 Time Dependency and/or Real Time Aspect

      The dynamic nature of DDDAS problems requires us to address the time dependency or real
time nature of the applications. Certain applications (e.g., short lived physiological processes or
sporadic astronomical phenomena) require real time response to observations from experiments
or field data. The data driven aspect of these problems pertains to the closed loop between
applications, algorithms and data. The incoming data stream can be used for dynamic decision
making and/or for adapting the underlying models of the phenomenon.

     Almost any dynamically data driven application simulation raises the issue of real time results.
This is not always the case, however.   Simulations can run in faster or slower than real time.
This impacts the data rates required so that the new data must be introduced into the simulation
in a timely and appropriate fashion.

     In weather prediction, it is common to run simulations for up to five days as a batch process.
The individual application simulation periods are a few wallclock hours, but do not update the
early time steps with real data as it becomes available.  Modifying weather prediction application
programs to incorporate  new dynamically injected data, is not a small change in the application
program.  It requires rather a fundamental change in the application design, the underlying
solution algorithms,  and the way people think about the accuracy of the predictions.

Data Streams in Addition to Data Sets

      The use of continuous data streams presents an additional challenge for data driven
simulations since the results vary based on the sampling rate and the discretization scheme
used. In other cases dynamic data assimilation or interpolation might be necessary to provide a
feedback to experimental design/control. DDDAS algorithms also need to dynamically assimilate
new data at mid-simulation as the data arrives, necessitating  “warm restart” capabilities.
Relevant semantics, ontologies and structure issues need to be addressed [McRae’s talk].

     Data inputs to the dynamic data driven applications may be in the form of continuous data
streams in addition to discrete data sets.  Incorporating discrete data inputs during execution of
an application itself presents several challenges, such as the ability to warm start the algorithm
when new data arrives or to guide the search using new information. The use of continuous
streaming data requires the algorithms to use appropriate data discretization methods to use the
available information. The issues of optimally discretizing continuous data and providing feedback
to the data generation process, either sensors or computational code, to change the sampling
frequency are inherently interesting research issues. Moreover, data driven applications will not
always receive data from known sources with well defined structure and semantics.  The ability of
handle different data structures and elicit appropriate semantic information is crucial to a robust
DDDAS.

     Consider the example of forest fire control [Coen’s talk], several low cost sensors could be
dropped in the fire prone area to continuously monitor environment variables. The data gathered
from these sensors will be incorporated in the simulation models of the affected region in order to
accurately predict flare ups or unexpected changes in the fire frontier movement. The applications
must incorporate the changes in the environment variables, without a cold restart of the
simulation, in order to accurately predict behavior of the forest fire in time to allow corrective
actions by the fire fighters. The accuracy of the forest fire behavior prediction and the response
time available to the fire fighters is directly correlated to the ability of the dynamic data driven
simulation code to incorporate incoming data at optimal sampling rates.

     Another example where unstructured data may be streamed continuously in a computational
code is from transportation modeling [Powell’s talk]. A computational model for dynamic vehicle
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routing over a highway network can be interfaced with the routing information from individual
vehicles. The decisions made by each driver on the route, start and end locations, and the driving
conditions differ for each vehicle.  In order for the traffic simulation model to incorporate all the
information from each vehicle, it must be able to handle different pieces of information at different
points in time.

     Traffic light control is by itself an interesting DDDAS problem since there are two significant
variants: is the plan to minimize  or maximize the number of red lights encountered8?  Many
communities wrestle with this decision and how to optimize the timing of the lights continuously.
Data is constantly generated from sensors under streets.  The more sophisticated systems
predict vehicle movement based on additional factors such as the weather.  Until recently, a large
set of mainframes operated traffic control systems.  It is becoming much more common now to
see a cluster of PC's running an entire system for cities of up to a few million.

 Combining Local and Global Knowledge

      Combining local knowledge (observations) with global data for system level inferences: This
relates to the earlier issue, where the autonomous subsystems possess local data and this
information needs to be synthesized in order to obtain system level predictions.  Some of these
issues were discussed earlier on in this section.   In addition there are issues of dealing with the
various data models of these multiple data sources, and enabling application interfaces to these
heterogeneous data models.

Tightness of Feedback: If both sensor and actuators exist, there can be a feedback control
loop. The key question is how responsive must the computational architecture be to correctly
interact with the physical system?

Model Interactions and Software Agents

Modeling of transportation systems [Powell’s talk] is once again an ideal example for modeling
interaction between autonomous systems. Each driver makes a route selection based on
personal travel plans. However, the interaction between different vehicles needs to be modeled in
order to estimate congestion on the highway network. A dynamically changing simulation model
of the transportation network needs to be able to accommodate a variety of vehicles and traveler
profiles in order to accurately estimate the congestion and prescribe corrective actions.

      Modeling interaction (data exchange) between autonomous (multi-agent) systems: Several
applications can be modeled as compositions of autonomous systems that interact. In order to
understand the behavior of the overall system the data exchange between the different elements
needs to be specified.

     Interactions between different subcomponents of a complex dynamic data driven system may
not be defined a priori. Several applications can be modeled as compositions of autonomous
systems that interact. This representation of a complex system may be dictated by the application
environment, such as a transportation network where each vehicle represents an autonomous
decision maker, or by the need to decompose the problem into computationally tractable reduced
or decomposed problems.

     In order to understand the behavior of the overall system, the data exchange between the
different elements needs to be captured.  Moreover, the subcomponents must be designed with
the capability of interacting with a wide range of loosely coupled systems. The fundamental
research problems at the heart of this issue are related to allowing codes to have flexibility in

                                                                
8 minimize (i.e., traffic control) or maximize (i.e., they would not be called stop lights if you could
pass one without stopping first)
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interactions with other elements of the system based on the state of the system, decision
processes which allow each subsystem to determine appropriate interactions at each time step,
and the ability to predict the overall system behavior based on the interaction models and the
functions of each subsystem.

Interactive Visualization and Steering

      Visualizing complex high dimensional data in order to support human decision makers:
Visualizing output of a complex model that responds to incoming data is critical when humans are
involved in the loop.

 While the need for the “human in the loop” may be diminished or eliminated from many
simulations with advanced DDDAS techniques that we envision, there are many applications
where human intervention may be necessary.  In many cases, people are still needed to steer
simulations because the results lead to immediate questions that can only be answered by a
human expert, inspecting many possibilities.  While techniques such as game theory can be
applied to sort out good and bad branches to get optimal results, it is not practical if each branch
of a decision tree takes several wall clock hours, weeks, or months to investigate.  People can
look at a simulation at one of the decision branches and an expert can steer the simulation in the
direction of a  "good'' enough solution.

     Three dimensional (in space) visualization is a common requirement for simulations.  Many
methods are in place now for viewing three dimensions of multiple scalar and vector variables on
a two dimensional screen.  Adding a fourth dimension (time) requires animation  technologies to
be commonplace in the future.  Software will need to be developed and standardized in order to
realize this task and make it easily approachable by newly trained developers and users.  DDAS
can build on existing NSF programs in this area and provide new areas of research in return.

Algorithms

Data Driven Components

     The LA disaster case example in the Introduction is driven by continuously running, coupled
geological, weather prediction, structural, and transportation simulations.  Simultaneously,
societal concerns, time critical dynamic responses, and data intensive simulations are run on a
multiscale basis, and must interface and interact with earthquake models, regional weather
models, and both surface and subsurface flow models.

     We must identify important information from a discrete event or through data mining of sensor
input or simulation output.  This will involve some or all of the following techniques:

• Dynamic injection of data into the application
• Data assimilation and feature extraction
• Visualization with a human in the loop
• Algorithmic tolerance to perturbations by streamed data
• Sensitivity analysis

Dynamic injection of data:
Application interfaces need to be developed that allow ability of streaming of field collected data
into the application at execution time.  Employing techniques like data compression and striding
through data might be needed depending on the application or the data collected.  The ability of
switching between such modes as the application executes might also be necessary, in cases
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that would be dictated by the application (e.g. too many data – needed fast – compress; or too
many data – need results fast – stride and sample over some of the data)

Dynamic Data assimilation and Feature Extraction occurs when there is dynamic or extra data
available to a simulation.  Weather prediction is a good example of these features.  A simulation
predicts the future, using a specific input data set when the simulation is launched.  However field
data can be generated or acquired continuously, even after the simulation starts.   As real data
becomes available, the simulation can incorporate it into the model and recompute the
predictions.  Ideally, a model would exist so that given a prediction, the simulation can be run
backwards in time to see if the initial data is matched [Jones’ talk].

 Visualization with a human in the loop Many simulations require a visual approach with a human
offering feedback to the simulations.  Weather models and flow simulations frequently produce a
computer animation  showing important dynamic features.  A human can steer the simulation to
more fully investigate interesting features that develop.  As part of a dynamic data driven
simulation, the continuously arriving data will enhance, rather than eliminate, the human from the
loop.
NOTE: Also we want to distinguish here the concepts of visualizing the new data and comparison
of simulation output data from the concept of injecting data into the ongoing simulation.

Algorithmic tolerance and sensitivity analysis:  Methods are needed to enable the application
algorithms to be tolerant to the perturbations under streamed data. These items are discussed in
more detail in subsequent sections, and include addressing multiple scales in models, algorithms,
and data, with the realization that the scale of each can change over time.  Enabling such
capabilities will require:

• Model enhancements for local resolution
• Inverse problems for fine scale models
• Local gridding

     Model enhancements for local resolution are common.  In the LA disaster example, once the
toxins have been located, more data can be collected in that specific geographical area so that a
higher resolution picture can be constructed of the rate of accumulation of the toxins in that
region.   Inverse problems for fine scale models frequently have to be constructed and solved.
This allows us to optimize parameters in models that are required before we can continue a
simulation.    Local or variable gridding allows for localized computing where interesting features
are present.  In the disaster example, we can use a coarse grid for most of the earthquake area,
but we need very fine grids will be needed near the fault line.  Similarly, we need a refined grid
along the edge of the toxin  flow region, but not away from there or in the center of the toxins.

     On a higher level, requirements of models and data must be developed to produce the
appropriate scale for interaction.  Interface methods are needed to connect between these two
aspects in order to get just the right scale and data, so that simulations are accurate enough
without consuming too many computational resources.

     Asynchronously collected data must be incorporated into dynamic data driven application
simulations.  In the LA disaster example, data deployment should be done periodically.  Statistical
errors in the data must be assessed and handled.  Dealing with errors that are out of an
acceptable range could be addressed with additional data collection or via tolerance built into the
algorithms, or in some cases human intervention may be initiated.

     For example, in the case of the forest fire, surveillance data can be collected only while the
plane flying over the region [Coen’s talk]. In particular in this example proper placement of
sensors is paramount to useful data driven simulations.  In the case of the disaster example,
sensors can be dropped from an airplane flying above the region of interest.  Small sensors
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currently exist that propagate underground  and are able to provide real-time  measurements of
temperature, wind, location, and the presence of certain chemicals.  These data must be
dynamically assimilated into a simulation.  Algorithms tolerant to such perturbations of the
dynamically injected data are necessary.   For grid oriented applications, a moving, unstructured
grid of data is continuously updated and affects which algorithms are appropriate, and methods
are needed to select these appropriate algorithms dynamically at runtime. Some other methods to
use would be interpolation methods to assimilate the data and filters to denoise it into a form
amenable to the error bound restrictions of the simulations.

     Remediation and response procedures may need to be incorporated into simulations [Ewing’s
talk].  The strategies must be based on the resources available and necessary constraints, such
as the following:

• Multiscale model utilization
• Short time event updates of the objective functional
• Self adaptive, dynamic control
• Uncertainties which drive the dynamics
• Warm restarts of algorithms.

Each of these strategies may need to be employed while optimizing tradeoffs between time
criticality, model fidelity, and resource allocation.  Moreover, the algorithms must be robust and
fault tolerant.

Fault Tolerance

Fault tolerant algorithms become essential in the DDDAS application setting.  Many DDDAS
applications will run under dynamic conditions: the applications requirements are dynamic,
changing in time depending on the dynamic data inputs, and also the underlying computational
infrastructure on which these applications run will in general be dynamically changing.   DDDAS
applications are expected to run long time periods  in varied environments.  The application
programs and algorithms will have to be able to handle seamlessly data streams, handling the
rates at which they are produced, handling situations where they are produced at higher volumes
than consumed by the application, and handling resource availability, like the situations where
processors, memory, I/O, network connectivity and bandwidth, may disappear from the
computational infrastructure (either for a short period of time or even permanently for the duration
of the computation).

    New systems need to be developed to allow continuing the execution of the application with a
smaller number of computational resources.  Today warm restarts provide a means for
addressing this problem, this however is a limiting methodology and more dynamic and adaptive
methods need to be developed and supported by the computational infrastructure, and not just for
space-time grids.

    An interesting research area will develop as security algorithms evolve that will permit
programs to challenge data streams based on their content or their source.  In the case of
telemetry coming in from an oil field [Ewing’s talk], there is a lot of room for deceptive data being
delivered by a competitor who shares the oil field.  Not only situations of terrorism [Powell’s talk]
need be considered as security threats, but over zealous competitors may in fact be a greater
source of harm.  Planning for these conditions is  to some extend addressed in simulations today,
but will be incorporated into DDDAS simulations in a more integrated way.

Optimization and Inverse Problems
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      The evolving or adaptable nature of most DDDAS applications presents challenging
opportunities for solving the  associated optimization or inverse problems.     Most simulations
include some set of parameters that must be estimated in advance.  However such optimal, or
even near optimal selection is rarely possible.  Furthermore, the optimal choice usually changes
during the course of a long simulation.  Inverse problems are designed to help in selecting
appropriately such parameters.  However, many inverse problems are unfortunately ill posed or
extremely difficult to solve.

     Optimization techniques for many simulations are not currently possible due to the increased
size of the resulting problems.  Better algorithms need to be designed and analyzed for very large
scale problems that until recently have been too large to experiment on.  With the current
computing environments and platforms, such as for example the two NSF PACI leading edge
sites and their partners, as well as future opportunities on which to leverage on, ample number of
cycles should be available for such experimentation, at a level that has not been possible to date.
In addition  supercomputing management systems, like the Condor (system developed at the
University of Wisconsin),  make available the nearly infinite unused workstation cycles as well.
     Consider trying to model the production processes in a chemical plant.  Many parameters are
necessary.  Typically, a subset tries to maximize a particular set of products while staying within a
set of constraints.  Traditionally, many simulations are run using slightly different input parameters
on static data sets.  After a certain amount of computer time or wall clock time, the best set of
parameters is used to continue simulations and to make decisions concerning the operation of
the plant.  A DDDAS version will determine the parameters using a data stream.  Improvements
in algorithms for inverse problems or for optimization algorithms that scale better than current
ones are essential.   Further, all of the parameters should be optimized, not just a very small
subset as is typical today with data set oriented simulations.

     This research needs to have a synergy among all of its practitioners, including applied
mathematicians who are willing to work with simulation experts.  This is an area where
theoreticians can interact with computational scientists to address a number of challenging
problems with respect to algorithms tolerant to dynamic data injection perturbations, making a
significant impact on applications’ capabilities.

 Uncertainties in the Data

 Uncertainties in DDDAS applications emanate from several sources, namely uncertainty
associated with the model, uncertainties in the input data (streamed), and the environment
variables. Identifying the factors that have the greatest impact on the uncertainty output of the
calculations, is essential in order to control the overall processes within specific limits. Computing
all output distributions to provide error bounds is, for most realistic problems, a computationally
prohibitive task. Hence, using prior observations to guide the output distribution estimations
presents a possible approach to incorporating uncertainty in control decisions.

     Incorporating these statistical errors (estimations or experimental data uncertainties) into
computations, particularly for coupled nonlinear systems, is difficult. This is compounded by the
fact that tolerance may also  change adaptively during a simulation.  Error ranges for uncertainty
in the data must be created and analyzed during simulations.

     Sensitivity analysis must be performed continuously during simulations with options in case of
a statistical anomaly.  Filters must be used, which are based on the sensitivity analysis in order to
massage the data into an acceptable range.  In many cases, the filters will need to be created as
a result of applications or simulations moving from data sets to data streams.  Data assimilation,
Baysesian methods, non-linear multiresolution denoising, and Monte-Carlo methods are all
candidates for sensitivity analysis and data filtering.
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     The common mathematical model in many DDDAS applications may be formulated as solving
a time dependent, nonlinear problem of the form:      F(x+Dx(t)) = 0, by iteratively choosing a new
approximate solution x based on the time dependent perturbation Dx(t).

 In practice, the data streaming in may have errors and therefore may not be completely accurate
or reliable (for example, in reservoir data sets, a 15% error in the data is common).  As a result,
perhaps one does not need to solve the nonlinear equation precisely at each step.  This can
expedite the execution

     At each iterative step, the following three issues may need to be addressed.  Incomplete
solves of a sequence of related models must be understood.  In addition the effects of
perturbations, either in the data and/or the model, need to be resolved and kept within acceptable
limits.  Finally, nontraditional convergence issues have to be understood and resolved.
Consequently,  there will be a high premium on developing quick approximate direction choices,
such as, lower rank updates and continuation methods, and understanding their behavior are
important issues.

 Multiple Scales and Model Reduction

      Multiresolution capabilities (scaling for multiple levels of resolution) are essential for DDDAS
problems.  Not only to negotiate scale between applications and data, but also to design efficient
and adaptive solution methods.  The ability to define different regions with differing granularities
provides the decision makers with the ability to focus resources on critical areas (for example in
the fire-fighting example, into  regions where flare ups are highly probable).

      The physical phenomena governing most of the applications discussed in this report may be
extremely complex, with several parameters required to specify the governing equations.
Incorporating automatic model reduction into solution procedures provides an additional  means
of increasing computational efficiency by lumping parameters, and simplifying basic principles.
Developing high fidelity descriptions of the entire system may be computationally intractable.
Several approximation and problem decomposition approaches may need to be developed and
evaluated for complex dynamic data driven applications in order to select an appropriate method
and model for a given application domain and parameter range.

     Perhaps a straightforward approach would be  a perturbative approximation of the existing
applications and simulations approaches.  However, for DDDAS, making these descriptions
perform effectively in a symbiotic context is crucial.  One goal of a DDDAS application is to have
a number of descriptions available.  Any one of these could be selected at a time in order to
encapsulate the physical phenomena at any given instance.  Having multiple descriptions
available allows for testing to determine under what conditions   a switch to another description is
necessary or desirable.

     One approach is to provide multiple resolution capabilities in the models, which allows both
scaling (finer or coarser resolutions) of feature resolution in the same execution. Modelers can
focus on areas where interesting or critical dynamics are observable,  by using different scaling or
granularity levels for different regions of the applications, as needed by the dynamically injected
data.   Multiresolution methodology provides means to identify scale -dependent features.

     The ability to model systems with different resolutions can also be achieved by model
reduction methods, such as lumped parameter systems.  For example, in a simulation of an
airplane, the model of airflow close to a wing is very complicated.  However, the airflow
sufficiently far away from the vehicle is a simple equation that represents constant airflow.
Reducing the model away from the wing makes good sense and is a method that has been
successfully applied.
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     Many problems are decomposed using similar or identical physical models in different parts of
the domain and then tied together at the interfaces.  Ocean modeling is frequently done by
stacking several shallow water problems and allowing the shape of the layers to shift during the
course of a multiyear simulation. Problem decomposition methods are frequently used to reduce
the computational complexity. However, ensuring data integrity in the decomposed problems,
especially when the algorithms are driven by constantly changing data, is a difficult problem
which requires novel and accurate error tracking methods.

     In the fire fighting example [Coen’s talk], several physical phenomena need to be coupled in
order to predict the behavior of forest fires accurately.  For example, combustion models, heat
transfer and fluid flow models, and structural models for the trees and the terrain need to be
coupled in order to predict flare ups and the direction of the fire zone movement. The fidelity of
models used in this example depends on the types of decisions being made. If fire fighters are
using airborne chemical dispensers, then an approximate determination of the fire zone is
sufficient. However, if several fire fighters are in the fire zone using ground based fire control
methods then the prediction of flare ups needs to be accurate and is crucial in saving lives.
Modeling the entire fire zone using a high fidelity model may not produce results in real time to
take corrective actions. The ability to selectively model regions of the fire zone that have the
highest probability of a flare up at high fidelity is highly desirable in such situations. These regions
can change dynamically based on incoming data from sensors surrounding the fire zone.

 Systems Infrastructure

      Computational systems for DDDAS require a fundamental advances in a number of areas.
Aspects involved  include physical devices, information services, resource, system, and
application management, programming environments, security, fault tolerance, and economic
models for the computational infrastructure.

Physical Devices and a  New Generation of Sensors

     Physical devices will include not only processing and communication hardware, but also
sensors and actuators. Sensors and actuators allow traditional computational devices to interact
with physical systems. These devices are additional "resources" in the computational grid, and as
such, resource discovery and allocation of sensors and actuators becomes an important issue.

In recent years miniaturization of almost all forms of electronics has led to a revolution in sensors.
Global positioning systems, embedded into sensors, provide a new form of information
generation that can be used in countless applications.  We expect sensor technology to play a
major role in measurements and field data collections for DDDAS environments.

     When fighting a fire or trying to locate where a chemical contamination is moving and the
toxicity propagation, inexpensive sensors that can broadcast a limited amount of information
(temperature, location, the presence of a very limited number of chemicals, etc.) now exist that
can be scattered across a region.  When the sensor ceases broadcasting, this is an indication
that either fire or chemicals may have destroyed it.  When a collection of sensors can be used to
form a clear pattern of certain environmental conditions. In the case of the specific example here,
even more verifiable information can be added to the simulation of the disaster propagation, by
including the fact the these sensors ceased indicating the propagation of destructive chemicals or
fire.

     Many sensors today are small and mass produced, easily specialized, and provide data
cheaply.  Small, portable sensors that interact with the GPS system provide a way of delivering
data from most locations with great accuracy.  Some sensors now can broadcast wirelessly for a
short distance providing location, temperature, and a small amount of chemical data.  These
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sensors are ideal for providing data where people cannot or should go, such as into a wildfire or a
major pollution area.    Sensors are also becoming essential in medical procedures, such as brain
surgery and microsurgery.  Being able to place fast computers that provide visualization for
doctors within their grasp is revolutionizing medical procedures.  Further, data driven sensors for
aiming devices for brain surgery are becoming more commonplace, and this research can be
leveraged and applied to fields other  than medicine.  DDDAS will exploit these new advances in
sensor technology, in a very effective way.

 Information Services

Added to the challenge of developing DDDAS is the realization that these more complex
applications will have to function in a complex and perhaps evolutionary hardware and software
environment.  Present and future computing platforms, systems’ software and applications’
software will span a multi-part "globally distributed" computing environments environment
{referred to as Computational Grids} that encompass the concepts of the meta-computing,
heterogeneous hardware and software, networked and adaptive platforms, and will be manifest in
a configuration ranging from assemblies of networked workstations, to networked
supercomputing clusters. For example one of the novel and promising, as well as challenging,
aspects of DDDAS,  is employing an heterogeneous platform environments that include, but
limited to, embedded sensors for data-collection, distributed high-performance simulations
environments and special-purpose platforms for pre- and post processing of data, e.g. data
assimilation and visualization.

For these kinds of platforms the underlying computing and communications resources available
to the applications may vary even as the application executes.  At the same time the dynamic
data-driven applications will also have varying requirements as the computation proceeds, and
therefore the resource requirements of the applications also vary.  So with such variation in the
underlying platforms and in the applications requirements themselves, as well as considerations
of optimized performance and fault-tolerance, it may be required that the mapping of the
applications on these platforms to change as the computation proceeds. Mapping the kinds of
applications of concern here on these platforms requires dynamic and enhanced
(dynamic/adaptive/active) systems services, which will need to be developed to allow DDDAS to
effectively operate in the complex and heterogeneous computational environments that are
emerging and will exist in the future. Fault tolerance and Quality of Service (QoS) will pose
additional challenges for the applications software needed and/or the middle-ware services.  The
kinds of environments we consider will most likely include internet connected resources, and
therefore addressing issues of scalability will become crucial challenges for the development and
distributed execution environments envisioned here.

     Computations must be able to be cognizant of and able to exploit the computational
infrastructure on which they are running. Hence, information services must be available, such that
an application can discover not only other compute resources, but also models for all manner of
data and services that are available in the computational infrastructure. Such data models can
include concepts such as uncertainty or any quality of the data.

     Different application domains may need to catalog and identify alike resources in entirely
different manners. Hence, different naming schemas or ontologies, information services, or
information views may be necessary to properly support different application domains. These
information services need to be distributed such that information locality is maintained in much
the same way as data locality. This is necessary to ensure good performance and low latency
access to fresh resource data or information. This also helps in achieving a high level of
integration and responsiveness between computational and physical systems. The distributed
nature of information services is also essential, and it will be necessary to ensure scalability of the
computational infrastructure.
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Application, System, and Resource Management

     An application may need to move code or data depending on runtime conditions. A typical
tradeoff can occur if it is cheaper to process a large data set locally rather than paying the
network overhead to move the data to a faster host. Remote visualization of large data sets is an
example application for these tradeoffs. Making this decision involves being able to evaluate a
complexity model for processing versus the data transfer time. Applications may need to
reorganize data on the fly using network caches. Applications may also have to reconfigure to
cope with resource failures or to make better use of available resources.

Just as the hardware needs to be monitored, so does the basic system software and middleware.
Fault tolerant applications provide a challenge to middleware.  Which systems should be used so
that if a processor drops out of a computation, the computation does not hang and have to be run
again.  The more fault tolerant a system is, the higher the overhead usually is.  There has to be a
level of risk that an application or simulation takes that produces results quickly most of the time.
However, once there is a fault, the level must be reducible  (and later increasable) in order to get
the right risk scale.     New system management tools that allow discovery and advice on how
often data is polled, or backed up to another system (which may be another processor or storage
device), and how processors allocated or utilized will be imperative to DDDAS research.

     Together with managing the underlying computing and communication platforms resources,
sensors, actuators represent the additional resources that need to be managed in the
computational infrastructure for dynamic data driven applications. In order to efficiently allocate
these resources dynamically in the execution of a computational scenario the performance of
these resources must be monitored. Sensor data can also be treated as performance monitoring
data Performance and sensor monitoring must be multiscale, and it must be capable of handling
different scales and granularity of data available depending on the "proximity" to the sensor and
information needs.  The use of sensors and actuators can be planned and scheduled through
resource brokers or via negotiations between applications. The resource management schemes
need to incorporate concepts of advance (in time) and immediate (capacity) reservations (QoS).

Economic Models for the Computational Infrastructure: Ultimately, comprehensive economic models
will be developed for use of the computational infrastructure [Frank’s talk]. This would not only
include simple accounting, but also the cost and contracting for advance and capacity
reservations. Economic models must permit explicit modeling of resource contention between
different requirements in dynamic data driven computations. Further, any economic model should
be available through the information services.

Programming Environments, Security, and Fault Tolerance

    Programming environments must be able to support all of the capabilities discussed above to
make them easy to use. This requires libraries with well defined APIs, programming tools, and
middleware. Examples of middleware include model resolvers that can enable translations and
reorganizations of data streamed between computations based on the output and input data
models. Tools must dynamically compose other services and tools. Besides making code
development easier, this enables the development of visual programming environments.

     Security should be designed as part of any system at all levels. Encryption, authentication,
and authorization must be provided where needed. Secure mechanisms are needed for
application access of the required computing infrastructure, with dynamic group security domains
to support collaborative environments.  System status monitoring should be available to notify
applications of resource failures. Exact notions of fault detection, fault containment, and fault
recovery should be application specific.
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 Why Now?

     Many application simulations today work in the batch world: an event is simulated based on a
static set of data.  If newer data becomes available, the simulation is simply rerun.  Very few
applications use real time data streams even if the capability to do so is available.  Great efforts
have been devoted in fields like weather prediction to run simulations faster than real time based
on static data sets.  Ensembles are produced to get an average guess as to the weather based
on a number of parallel runs with small variations in the parameters.  This is highly inefficient and
leads to multiple weather predictions that are mutually conflicting when major events are
predicted (e.g., compare Accuweather, CNN, and the Weather Channel for examples of snow
predictions in the northeast).

     The fastest computers today, including terascale ones, provide a level of service that has been
dreamed of for decades in numerous scientific fields such as weather, climate, and whole
industrial plant simulation.  Presently, each of these fields can produce data streams using
sensors that have been developed over many years.  We are now poised to do real time, data
driven simulations with feedback, warm restarts, and continuous updates.

     Clusters of inexpensive, fast PC's are providing cost effective and scalable computing
platforms that may well be the future of supercomputers.  Clusters can range from a few
processors up to thousands depending on the budget and floor space allowances.  Once again,
with enough processors, PC clusters can compete with the traditional supercomputers.  However,
issues like how to update a few thousand PC's at once need to be resolved before clusters will be
truly competitive for DDDAS applications. These clusters can also be used for visualization and
running data collectors.  This is particularly important in medical applications [Johnson’s talk].
New algorithms are being developed (or have been) using fast, new networks and the fact that
there are cycles available on the nation's supercomputers that enable new ways of attacking old
problems

 A numbers of NSF programs today support batch style application simulations).  DDDAS offers a
plan for moving many of these simulations areas into the future where continuously fed data
streams are the normal input instead of static data sets.   Further, it moves the older style of data
set analysis ahead by motivating people to keep a much larger data set with information from a
wider set of times in libraries for debugging codes and developing new algorithms.  This is similar
to what has happened with single processor algorithms for fields where parallel computer
algorithms are now standard: the older, easier to use serial computers have new algorithms that
would not have been developed without the common usage of parallel computers.

There has been progress in a number of technology areas.  These include advances in
computing, networking, sensors and data collection, software, algorithms, and application
technologies.  Combining all of these technologies will lead to a higher level of application
simulations that are both more accurate and able to provide analysis and prediction better than
what is currently available in most fields today.  Ultimately the effects of such applications can
have impact on productivity that will be increased as a direct result of this new synergy of
technology.  DDDAS paradigm will reduce the time needed to adapt to new conditions and to
decide how to allocate resources to respond to the unexpected, data dependent changes in
simulations.  This is particularly important in the following areas:

• Experiments on short lived processes (e.g., high energy physics and physiology)
• Capture of sporadic events (astronomy)
• Active control of environmental or safety controls in structures during an event

(e.g., earthquakes or hurricanes)
• Disturbance in a chemical plant
• Early warning systems (e.g., weather, seismic, fire, pollution, tornado)
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• Financial Systems
• Business, Enterprise and Manufacturing operations
• Medical applications

 Educational/Training Benefits

A research initiative in DDDAS will have tremendous benefit in the education and training of
students, both at the graduate and the undergraduate level.  The exciting new research areas,
enhanced and even novel applications, novel algorithms, and new capabilities in systems
software technologies, will provide fertile work grounds for students in the many applications
disciplines, students in applied and theoretical mathematics for research to address the
challenges of new algorithms and new methods to deal with the multiscale models and data
dynamic data uncertainties.  The work needed spans from the theoretical underpinnings for such
systems to applied research on algorithms development and implementations.  In terms of the
computer science advances needed for developing the kinds of systems software capabilities that
have been discussed here, a research initiative in this area will provide a wealth of exciting
research projects opportunities for students to be involved and acquire the background on, a
critical and valuable expertise in working on state-of-the-art technologies.

Summary

    The workshop addressed the motivations, challenges, and opportunities in supporting research
that pushes towards new frontiers and creates a new paradigm for application and simulation
systems.  In this case, the simulations’ input can be altered dynamically by real time field data
and have such input dynamically steering the simulations.  Additionally, the new paradigm seeks
to establish capabilities where the simulations can be used to steer the experiments
(measurements) or the field data collection or mining process.  Such a synergistic feedback
control loop between simulations and measurements is a novel technical direction with high
potential pay off in terms of creating applications with new and greatly enhanced capabilities.

    The DDDAS initiative will define new classes of simulation applications that are envisioned to
have greatly enhanced capabilities than the present ones.  From a research perspective, the
initiative will define a new set of problems to be addressed and will create a strong feedback loop
between the applications’ research and the engineering and computer sciences research needed
to support these enhanced capabilities. The DDDAS initiative will provide a fruitful ground for
scientists to ask new questions that have not been addressed or even asked before.   In fact, this
initiative will help establish stronger relations between the applications’ researchers and the
engineering and computer sciences researchers.

    The dynamic nature of DDDAS problems requires us to address the time dependency or real
time nature of the applications. Certain applications, such as short lived physiological processes
or sporadic astronomical phenomenon, require real time response to observations from
experiments or field data. The data driven aspect of these problems pertains to the closed loop
between applications, algorithms and data. The incoming data stream can be used for dynamic
decision making and for adapting the underlying models of the phenomenon.

    This initiative will provide an avenue for research that is not addressed by the current ITR
initiative , but can easily be used to augment and incorporate possible ITR advances.  There was
a preponderant view of workshop participants, that DDDAS is sufficiently distinct in its vision from
the broad goals of ITR to warrant a separate, more focused  initiative.
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 Appendix 1 / Agenda for the Workshop on Dynamic Data Driven Application Systems

National Science Foundation, Arlington, VA

March 8-10, 2000

The workshop will take place at NSF.  All plenary presentations will be in Room 110.

Specific room assignments for Working Group meetings will be provided at the meeting

Wednesday, March 8, 2000
 

8:00a.m.-8:30a.m. Registration and Coffee/Donuts

8:15a.m.-8:45a.m.
Welcoming Remarks by the Organizers, Co-Chairs and NSF Officials: 
Dr. Bordogna, NSF Deputy Director; Dr. Bajcsy, CISE AD; Dr.
Eisenstein, MPS AD; Dr. Leinen, GEO AD; Dr. Wong, ENG AD

8:45a.m.-12:15p.m. Plenary Presentations

8:45a.m.-
9:15a.m.

Greg McRae, Professor, MIT: New Directions on
Model-Based Data Assimilation

9:15a.m.-
9:45a.m.

Janice Coen, Scientist, NCAR: Coupled atmosphere-
wildfire modeling

9:45a.m.-
10:00a.m.  

Break

10:00a.m.-
10:30a.m.

Howard Frank, Dean, Business School, UMD:
Data/Analysis Challenges in the Electronic Commerce
Environment

10:30a.m.-
11:00a.m.

Klaus Schulten, Professor, UIUC, Beckman Institute:
Steered computing - A powerful new tool for molecular
biology

11:00a.m.-
11:30a.m.

Dick Ewing, Professor, Texas A&M University:
Interactive Control of Large-Scale Simulations

11:30a.m.-
12:00p.m.

Chris Johnson, Professor, Univesity of Utah: Interactive
Simulation and Visualization in Medicine: Applications
to Cardiology, Neuroscience, and Medical Imaging

12:00p.m.-12:15p.m. Charges to the Working Groups

12:00p.m.-1:15p.m. Lunch

1:15p.m.-5:30p.m.
Break-out Groups (G1: Applications; G2: Algorithms; G3: Computing
Systems)
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Thursday, March 9, 2000
 

7:45a.m.-8:30a.m. Coffee/Donuts

8:30a.m.-10:00a.m. Break-out Groups (G1: Applications; G2: Algorithms; G3: Computing Systems)
10:00a.m-10:30a.m. Break
10:30a.m.-12:00p.m. Break-out Groups (G1: Applications; G2: Algorithms; G3: Computing Systems)

12:00p.m.-1:15p.m. Lunch
1:15p.m.-3:00p.m. Plenary / Interim Presentations of Break-out Groups' discussions
3:15p.m.-3:30p.m. Break

3:30p.m.-5:30p.m. Break-out Groups (G1: Applications; G2: Algorithms; G3: Computing Systems)

Friday, March 10, 2000
 

7:45a.m.-8:30a.m. Coffee/Donuts

8:30a.m.-9:00a.m.
Anita Jones, Professor, UVA: Injecting Simulation into Real Life Processes (Plenary
Presentation)

9:00a.m.-10:00a.m. Break-out Groups (G1: Applications; G2: Algorithms; G3: Computing Systems)
10:00a.m.-
10:30a.m. Break

10:30a.m.-
12:00p.m. Break-out Groups (G1: Applications; G2: Algorithms; G3: Computing Systems)

12:00p.m.-1:15p.m. Lunch

1:15p.m.-2:15p.m. Plenary / Final Presentations of Break-out Groups' discussions
2:15p.m.-3:30p.m. Discussions on Presentations and process for completing the report
3:30p.m.  Meeting Adjourns
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Appendix 2 / Working Group Charges

Dynamic Data Driven Application Systems’ Workshop Report

• We have to write a report that summarizes the discussions of the working groups and plenary
talks.
• The report should provide a compelling argument to senior management that research in
dynamic data driven application systems should be supported now.
• The report will be online in the next 10 days.  Suggestions for improvements will be welcome.
Contributions will be even more welcome.

Issues for ALL Workgroups to Address

• Why is now the right time to do this type of research?
• What ongoing research will provide a foundation for new research?
• What programs are necessary to enable the multidisciplinary type of research of this program?
• What initiatives exist that are related?
• What programming aspects should be emphasized?
• What exciting new opportunities will be created?
   – For postdocs?
   – For graduate education?
• How will it help industry?
• Technology transfer?

Working Group on Applications

• Provide application examples that will benefit from
   – a new paradigm.
   – existing and new potential applications.
• Describe challenges in developing applications.
• What will be the composition of these applications?
• Describe data management and interfaces to experiments or field data.
• What are the computation, I/O, and memory requirements?
• What system support is needed in a dynamic application environment?
• What system resources must be allocated in order to assure a high quality of service?

Working Group on Application Algorithms

• Describe the challenges in application algorithms to enable dynamic data driven application
systems.
• What algorithmic enhancements are needed to allow perturbations in the data input?
• How do you factor statistical errors into algorithms?
• How do you change algorithms as data changes during a simulation?
• What knowledge based systems, interfaces, or application assists can be created to help with
changing algorithms dynamically?
• What systems support is necessary?

Working Group on Computing Systems Support

• What are the software challenges for programming environments for the development and
runtime support when the underlying resources and application requirements can change
suddenly?
• What capabilities are needed by the underlying systems that the applications will execute so
that quality of service is high?
• What are the issues with respect to data management, models, and structures?
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•What are the issues with respect to interfaces between simulations and measurements (and
data issues)?
•What addition capabilities are needed for application support and systems management
services?
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Appendix 3 / Application Examples

This section is under construction and will be updated shortly.

Adaptive structures (car suspensions, earthquake proof buildings, space structures)

 Operational Systems

      Transportation and logistics, reconfigurable manufacturing, supply chains,
autonomous (embedded?) systems,  disruptions and disturbances in manufacturing
processes.
A case example is provided by considering a typical chemical plant, where the
fundamental chemical processes are governed by the underlying chemistry of the
ingredients. However, in addition to the chemical rate equations, the reactor design and
the operating conditions also affect the functioning and the yield rates of the process. In
order to efficiently control a chemical reactor, we need to solve the coupled chemical
kinetics, fluid flow/heat transfer and economic equations in  the presence of uncertainty
(discussed earlier). The use of incoming experimental data to guide the controller in
chemical plant represents a perfect DDDAS application domain.
Air Traffic Management:  The very significant growth in air travel within the US, coupled
with the much slower growth in the implementation of new air traffic management and
control systems, has led to substantial increases in air travel delays.  Major delays on any
given day are typically associated with particular events that have altered normal
airspace capacity or demand patterns.  Within the US, most delays are associated with
disruptive weather events.  A traffic flow management system must have the capability to
predict capacity-demand imbalances and to support the generation of actions that
mitigate the impact of these predicted imbalances.  Examples of such actions include
delaying flights on the ground, rerouting flights, canceling flights and restricting the flow in
certain portions of the airspace.  The DDDAS paradigm provides an ideal approach for
creating a next generation air traffic management system that gives much more reliable
predictions and also gives high quality support for traffic control and planning.  Under a
DDDAS approach a stochastic simulation of the National Airspace System would operate
continuously and would be fed by a real-time stream of traffic status updates.  The
simulation would require models of both the en-route airspace, the airports, weather and
airline responses to unfavorable events.  This overall system would provide airspace
status information and predictions to both the Federal Aviation Administration (FAA)
traffic flow managers and to the airline operational control centers.  Both of these parties
would have access to models that estimate the impact of traffic flow manager control
actions and airline flight-plan modification decisions.  Such a system must react to data
from sources that are both geographically and organizationally distributed (the airlines
and the FAA).  Furthermore, it must support similarly distributed decision making.
Success in this problem area would have a significant positive impact on nearly all
Americans.
Supply Chain Management:   Businesses have increasingly become global but, at the
same time, have become more specialized in order to concentrate on core competencies.
As a result, the path from raw material to finished product delivered to a customer has
become highly complex in terms of geographic scope, number of organizations involved
and technological depth.  Organizations have broadly adopted Enterprise Resource
Planning (ERP) and Supply Chain Management (SCM) Systems in an attempt to better
control and manage their dispersed operations.   While these systems typically do well at
collecting and integrating transaction data, and at providing support for planning
decisions, they are not effective at supporting real-time decision making, particularly with
respect to unplanned incidents.  Fundamental research is needed into the modeling of
the interactions among supply chain entities and the manner in which major events
impact overall supply chain operations.  Research is also needed into how to interface
such models with the currently available data collection mechanisms.  Under a DDDAS
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approach, a simulation would receive real-time data from ERP and SCM systems in order
to maintain an accurate current picture of the supply chain.   Decision makers would
employ the simulation to project the impact of decision options.  Of particular import,
would be the analysis of ways to mitigate the impact of major disruptive events, such as
emergency customer orders, plant breakdowns, missed shipments, etc.  This
environment has several distinguishing characteristics, including the wide range and
magnitude of data sources,  the fact that a variety of organizations own and/or generate
the data and  the dependence of system behavior on humans (decision makers and
customers).

Oil Exploration:   Sophisticated oil exploraton methods involve both measurements
(seismic, sonic, and radiation propagation) in the subterranian regions of interest and
extensive modeling and simulations of the measurement processes.  Correlation of
measurements with simulation analysis is used to pin point the regions of interest.  Ability
to inject dynamically measurement data to ongoing simulations can result in refining the
ability of the simulation to pinpoint the thin petroliferous layers.   Reversly when the
simulation finds evidence of a potential petroliferous layer, the simulation can seek and
use additional datapoints from data already collected or can control the measuring
processes to collect additional field data as needed, thus making more targeted and
efficient the measuring processes.  This control loop between simulations and
measurements will result in better analysis and prediciton processes, and in reducing the
cost of exploration, by expediting the measuments processes.

 Natural Systems

Forest fires propagation and containment, weather prediction (extreme geospace
conditions - space weather);  hurricane (or other desaster) evacuation.  Such examples
have been discussed in the main body of the report and were the subject of some of the
presentations at the workshop.
 Radio astronomy needs a close connection between 90+ radio-telescopes to conduct a
full sky survey. Data collected at one site needs to be analyzed (fed to a simulation?) in
order to guide other telescopes to search in the appropriate orientation; Gravity wave
detector and CERN particle detector (Eisenstein examples).

 Social Systems

Policing and drug prevention measures, traffic control, terrorist attacks... (expand on the
traffic control and terrorist attack examples).. monitoring of epidemic spread
Transportation systems and traffic control: Managing flow of traffic on a network, either
on land or air, presents challenges similar to most social systems. Each individual entity
(vehicle) decides on routes based on its origin and destination points. From a  system
level perspective, the excessive flow of vehicles on a specific segment represents a
bottleneck situation. In       order to model this application, the individual vehicle behavior
needs to be considered along with the environmental       conditions. Such a model could
also be used to give specific early warning instructions to the vehicles in order to
avoid congestion.

Human/Mechanical Systems

Medical Device Design:  Closed loop engineering design

Sudden cardiac death kills approximately 250,000 people in the UnitedStates each year.
The danger strikes when the heart alters its normal,steady beat and slips into a condition
called fibrillation.  Fibrillationdescribes a state in which the electrical activity throughout
the heart isscrambled, resulting in the inefficient pumping of blood.  Unless thefibrillation
is reversed using an applied electrical shock, the conditionleads to death.This shock is
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administered from a device known as a defibrillator,typically administered by a highly
trained health care professional, suchas a paramedic or an emergency room doctor.
These external defibrillatorshave been in use for some time, yet researchers have
recently designed``implantable'' defibrillation units that automatically detect and
regulatean arrythmic heart beat.  Implanted within the patient's chest withelectrodes
placed near the heart, these devices first detect in itsearliest manifestations the abnormal
electrical activity that is thehallmark of fibrillation and then apply defibrillation pulses.  As
theheart begins to beat irregularly, the defibrillator applies a small jolt ofelectricity that
returns the heart to its normal beat, typically before thepatient even loses consciousness.

However, the design of such a device is very difficult.  The device shoulddeliver the
proper electric shock to the heart, yet should not damage otherinternal organs.  To
complicate matters, many overweight individuals havean insulating layer of fat over their
heart, rendering much of theelectrical shock useless.  There are many questions to be
answered for thedesign of such a device: Where should the electrodes be placed?  How
manyshould there be?  If I design one for Joe, will it also work for Mary?  Tohelp design
such devices, researchers have used computer models of thethorax to simulate various
configurations of electrodes and stimulationpulses and visualize the results using the
SCIRun problem solvingenvironment (see www.sci.utah.edu <http://www.sci.utah.edu>
for details).With SCIRun, engineers are able to imagine improvements to a device,
andplace them directly into the computer model.  They will be able to test thenew devices
using the computer prior to animal and/or human trials, thusincreasing the safety of the
device.  The use of interactive scientificvisualization and simulation has been pervasive
throughout this project andis opening up new ways of perceiving and investigating the
complexities ofphysiologic systems.  In addition, engineers can monitor
patients(perspective candidates of such devices) and dynamically inject patientmonitoring
data into the simulation to further optimize and customize thedesign.  When implanted
into the patient the device uses monitoring dataand to calculate and adjust the voltage,
the frequency and the shape of theelectric shock, depending on the instantaneous
response of the patient.

 Artificial limbs
Robot assisted surgery, medical imaging. A haptic device translates the surgeons actions
to motions inside a remote patients body or in a simulated surgery. This capability can be
potentially used to train surgeons in complex procedures, remotely perform surgical
procedures and be used in microsurgery. This application requires integration of data
from the sensors on the robotic device with the physiological model of the patients body
in real time. The ability to  visualize the effects of the surgeons actions in a simulated
environment is extremely important in order to reduce in-process errors.

 Link expensive data acquisition devices (e.g., high resolution microscopes); compare
real data with simulation data and database  information


