The Devil and Packet Trace Anonymization

Ruoming Pangf, Mark Allman*, Vern Paxson*¥, Jason Lee"

tPrinceton University, International Computer Science Institute,
TLawrence Berkeley National Laboratory (LBNL)

ABSTRACT

Releasing network measurement data—including packet
traces—to the research community is a virtuous activity that
promotes solid research. However, in practice, releasing
anonymized packet traces for public use entails many more
vexing considerations than just the usual notion of how to
scramble IP addresses to preserve privacy. Publishing traces
requires carefully balancing the security needs of the organi-
zation providing the trace with the research usefulness of the
anonymized trace. In this paper we recount our experiences
in (¢) securing permission from a large site to release packet
header traces of the site’s internal traffic, (iz) implementing
the corresponding anonymization policy, and (ii:) validating
its correctness. We present a general tool, tcpmkpub, for
anonymizing traces, discuss the process used to determine the
particular anonymization policy, and describe the use of meta-
data accompanying the traces to provide insight into features
that have been obfuscated by anonymization.

1. INTRODUCTION

Sharing of network measurement data such as packet traces
has been repeatedly identified as critical for solid networking
research. Sharing datasets allows: (z) verification of previ-
ous results, (i7) direct comparison of competing ideas on the
same data, and (zi7) a broader view than a single investiga-
tor can likely obtain on their own [4, 17]. Various organiza-
tions do in fact release measurement data on a regular basis—
e.g., NLANR’s PMA packet traces [2] and CAIDA’s skitter
[3] measurements. However, when we recently endeavored to
publicly release a set of packet header traces of LBNL’s in-
ternal traffic, we unexpectedly encountered two key problems:
(7) we found no carefully crafted guidance on anonymization
policy for traces meant for public release above and beyond
how to strip out payloads and transform IP addresses, and (i)
after developing an anonymization policy, we could not find
tools we could adapt to transform our traces according to our
particular policy or validate the results.

While there has been solid work devising techniques to
anonymize IP addresses (e.g., [23]), we found these just the
beginning of the work involved in preparing traces for release.
Indeed, “the devil is in the details” regarding how to treat ad-
ditional packet header fields, and, more generally, identifying
and resolving the numerous considerations that arise when de-
signing an anonymization policy. As an example, [12] demon-

strates a technique that leverages TCP timestamps to finger-
print a physical host based on the host’s clock drift. An at-
tacker could use legitimate traffic to the site in question to fin-
gerprint machines and then unmask the obscured IP addresses
in the released traces by comparing the clock drift in their
probes with the clock drift shown by the TCP timestamp op-
tions. (Our method for dealing with TCP timestamps is out-
lined in § 3.4.) While such devil-ish considerations can be
readily dealt with by brusquely scrubbing detail from a trace,
we know from experience that such scrubbing can often thwart
researchers in their investigations due to the lack of key in-
formation in the traces. For example, tcpdpriv [15] removes
TCP options from anonymized traces, thus closing the door to
the physical fingerprinting threat mentioned above. However,
this not only renders the trace useless to a researcher study-
ing a given option, but also reduces the ability for other re-
searchers to solve puzzles found in the traces (such as by using
TCP timestamps to accurately pair up packets with their ac-
knowledgments). Finally, we note that while we leverage pre-
vious work on IP address anonymization, we also contribute
new wrinkles in terms of transforming enterprise addresses
and also addresses probed by scanners (detailed in § 3.3).

In anonymizing our traces we endeavored to define a pol-
icy that balances the security and privacy needs of the or-
ganization providing the trace with the research value that
is inevitably reduced with each transformation of the trace.
After arriving at an anonymization policy we looked for an
appropriate tool with which to implement our transforma-
tions. None of the anonymization tools we found—including
tcpdpriv [15], ipsumdump [10] and tcpurify [6]—were general
enough to allow for the easy implementation of a multifaceted
anonymization policy across protocol layers. Rather than in-
serting messy hacks into existing tools or creating yet another
custom anonymizer to implement our own particular policy,
we opted to develop a tool that provides a general frame-
work for anonymizing traces that can accommodate a wide
range of policy decisions and protocols. We describe our tool,
tcpmkpub, in more detail in § 2 and will be releasing it on
our project web page (along with 11 GB of anonymized packet
traces of LBNL’s enterprise traffic) [1].

While our goal is to preserve as much as possible within
the released traces, inevitably we had to obfuscate or com-
pletely strip out valuable information. In addition, analysis
of packet traces often requires more contextual information
than that found within the trace itself (e.g., the gateway IP ad-
dress associated with a given subnet). Therefore, in addition
to a transformed packet trace we provide meta-data about each

FI ELD (1 P_verhl,
FI ELD (IP_tos,
FI ELD (IP_len,
FI ELD (1P_id,

FI ELD (IP_frag,
FI ELD (rp_ttl,
FI ELD (1 P_proto,
PUTOFF_FI ELD (I P_cksum
FI ELD (I P_src,
FI ELD (1 P_dst,

FI ELD (1 P_options,
Pl CKUP_FI ELD (I P_cksum
FI ELD (1 P_data,

ABANFPEFEPNNNRPRE

5
2

VARLEN, anonymi ze_i p_dat a)

KEEP)

KEEP)

KEEP)

KEEP)

KEEP)

KEEP)

KEEP)

ZERO)

anonym ze_i p_addr)
anonyni ze_i p_addr)

, anonym ze_i p_options)

reconput e_i p_checksunm

Figure 1: Specification for IP header anonymization.

trace to inform further analysis. The meta-data is often crucial
for understanding the traces and chasing down puzzles they
may present.

The problem of trace anonymization is broader than just
preparing traces for public release. Some organizations re-
quire anonymization of any stored traces, even if kept inter-
nal. This can require on-line anonymization, which can intro-
duce complexities. We do not address those complexities in
this work, since for our task, off-line anonymization suffices.
Furthermore, to retain as much research value as possible in
the traces, our policy wound up requiring a multi-pass struc-
ture (for example, to identify rare items and map them to the
same identifier to thwart fingerprinting based on their known
scarcity). While on-line anonymization can leverage some of
the techniques outlined in this paper, we believe that develop-
ing a solid system for on-line anonymization remains an area
for future work.

The rest of this paper progresses as follows. In § 2 we out-
line the anonymization framework and tool we developed. In
& 3 we address our analysis of the anonymization issues that
arose and the policy developed in conjunction with LBNL’s se-
curity staff. § 4 briefly examines the impact of anonymization
on two particular packet header analyses. § 5 outlines the steps
we took to validate that our anonymization process was in fact
accurately transforming the trace without leaking information.
§ 6 discusses additional considerations that are broader than
the contents of the traces. § 7 presents final thoughts.

2. METHODOLOGY

The precise method for anonymizing a packet trace funda-
mentally depends on policy decisions, which in turn depend on
the purpose of transforming the trace and the concerns of those
whose traffic appears in the trace. For instance, for use within
an organization a policy may be as simple as removing the ap-
plication payload from traces, while for traces released to the
public, overwriting or transforming portions of the headers is
also likely required.

The available anonymization tools we found focus on only
the header fields to be changed, primarily the IP addresses.
However, we wanted to achieve a balance between obscuring
traces enough to provide security and privacy for the moni-
tored network, while at the same time retaining as much in-
formation as possible in an effort to not unduly diminish the
research value of the traces. We therefore needed an approach
that allowed for rich policies that consider each portion of a
packet header. To do so, we built tcpmkpub, an anonymiza-

tion tool that provides a generic framework for transforming
packet traces based on explicit rules for each header field. As
illustrated below, tcpmkpub provides a platform for users to
easily specify, implement, revise, and verify local anonymiza-
tion policies for a large range of protocols.

Figure 1 shows an example specification for anonymizing
an IP header according to a particular policy. The figure il-
lustrates several aspects of our framework. First, note that
the specification shown provides tcpmkpub its sole knowl-
edge of the IP protocol header layout. In other words, all
the fields must be specified with a name and a length (e.g.,
the “IP_tos” field is 1 byte long) because tcpmkpub has
no built-in understanding of IP. Therefore, the length fields are
key to tcpmkpub being able to find its way through a given
packet. tcpmkpub also supports variable length fields, such
as IP or TCP options, which may or may not be included on
a given packet. The actual size of the variable length fields is
determined by the corresponding action functions, which must
understand specifics of the protocol in question. In addition to
providing a protocol-neutral platform for anonymization, the
structure of tcpmkpub also helps guide researchers to pre-
cisely consider each header field, since an action must be as-
signed to each field.

Next, the user specifies an action for each field in the header.
Two built-in actions are provided to retain the field’s origi-
nal value in the anonymized trace (“KEEP”) and to clear the
field’s value in the anonymized trace (“ZERO”). The user can
also specify C++ function names as actions for richer trans-
formations. For instance, the IP anonymization policy in Fig-
ure 1 shows that the “1P_src” and “1P_dst” fields are trans-
formed by calling the anonymize_ip_addr() function. Given
that the specification includes the entire packet, modifications
are straightforward. For instance, studies have shown how
to extract information from the IP ID field [5, 7]; therefore,
while not a part of our particular policy, someone sharing a
trace might want to obscure that field’s value as part of their
anonymization policy. This requires changing the action for
the “IP_id” field from “KEEP” to “ZERO.” Alternatively,
the action could be set to the name of a function to execute
to transform the field (e.g., anonymize_ipid()), coupled with
developing a simple C++ function to randomize or change the
IP ID field in whatever fashion the user deems appropriate.

LOur specification covers only IPv4. An anonymization policy
that also wanted to deal with IPv6 [8] would require an addi-
tional specification of the IPv6 header format, as well as the
anonymization policy for IPv6.

CASE (TCPOPT_eol , 0, 1, KEEP)

CASE (TCPOPT_nop, 1, 1, KEEP)

CASE (TCPOPT_nsSs, 2, 4, KEEP)

CASE (TCPOPT_wsopt, 3, 3, KEEP)

CASE (TCPOPT_sackperm 4, 2, KEEP)

CASE (TCPOPT _sack, 5, VARLEN, KEEP)

CASE (TCPOPT_t sopt, 8, 10, renunber _tcp_ti nmest anp)

CASE (TCPOPT_cc, 11, VARLEN, KEEP)

CASE (TCPOPT_ccnew, 12, VARLEN, KEEP)

DEFAULT_CASE (TCPOPT_ot her, VARLEN, TCPOPT_al ert_and_repl ace_wi t h_NOP)

Figure 2: TCP option anonymization specification.

In addition, tcpmkpub allows the anonymization process
to “go back” to particular header fields. For instance, the
“1P_cksum” field is initially zeroed and then, after all trans-
formations have been applied to the packet, tcpmkpub comes
back and computes a new IP checksum and inserts that check-
sum into the anonymized trace (see § 3.1 for more details about
the checksumming process).

The framework also supports case statements when header
fields can vary. For instance, Figure 2 shows the set of rules
for processing TCP options, which may appear in arbitrary or-
der, or not at all. tcpmkpub treats options much like stan-
dard header fields. In case statements the option name is fol-
lowed by the “type” code for the option. If the option being
processed matches the type code in the anonymization speci-
fication, the option is defined by a given length and processed
using a given action. For instance, TCP option 2 is an MSS
advertisement. The option is 4 bytes long and our policy sim-
ply retains the value in the original trace when placing the
packet into the anonymized trace. As above, the action can
be the name of a C++ function to execute to transform the op-
tion. For instance, the renumber_TCP_timestamp() function is
called to sanitize the TCP timestamp option [9], as discussed
further in § 3.4. Finally, a default case covers the situation
when a particular option found in a trace is not enumerated in
the anonymization policy. The policy employed in the exam-
ple replaces such options with “NOP” options and inserts an
alert into the tcpmkpub log file. These alerts are important
to monitor because, if frequent, they may indicate a change
to the anonymization policy is warranted. For instance, they
could indicate increasing prevalence of some newly defined
TCP option that could be better dealt with than by simply re-
placing the option with NOPs.

Finally, tcpmkpub provides hooks for additional process-
ing. These include static filtering based on BPF filters (e.g., for
excluding a particular host or traffic involving a sensitive port)
and packet-specific policies. For example, one policy we use
contains entries that identify ARP packets with specific times-
tamps and payload contents. These packets contain the bizarre
string “Move to 10mb on D3-packet,” in a portion of
the ARP packet that is normally cleared by our default policy.
However, these packets have been manually vetted and are not
contrary to our anonymization policy; thus, we explicitly pre-
serve the payload of these packets as in the original trace, since
such real-life packet “crud” can be important for capturing the
diversity present in actual network traffic.

3. ANONYMIZATION POLICY

In this section we sketch the anonymization policy we ar-
rived at and the thinking that led to it. We do not advocate this

as the correct policy, but as a possible policy, with the goal be-
ing to discuss items to consider when determining policy. Our
focus is on traces that include only packet headers,? though
in the future our project intends to build on [16] and release
traces with anonymized payloads.

We first consider the site’s “threat model” for releasing such
traces. It is crucial to prevent users of the trace files from de-
termining: (z) identities of specific hosts such that an audit trail
could be formed about particular users, (i7) identities of inter-
nal hosts such that a map could be constructed of which hosts
support which services (which could be used in mounting an
attack), and (4¢4) security practices of the organization that an
attacker would not otherwise know and could leverage during
an attack.

We next discuss our anonymization policy, starting with
how to handle checksums across protocol layers; then we fol-
low the protocol stack to examine policies for each protocol
layer. This section provides examples of our anonymization
policy files. See Figure 3 at the end of this paper for a listing
of all the policy specifications used to implement our policy.
The policy files will also be included with the tcpmkpub re-
lease at [1].

3.1 Checksums

One aspect of transforming packet traces that crosses lay-
ers and protocols is calculating various checksum fields. We
re-calculate checksums in the anonymized traces for two rea-
sons: (i) even when application-layer data is removed from
packets the checksum can sometimes give away the contents
of the data (e.g., for small packets) and (iz) since we remove
application payloads and transform various header fields in the
packets the users of the traces will not be able to determine if
the original checksums were valid. As noted in [14], hunting
for checksum failures in packet traces can be important when
analyzing rare events.

Our technique involves replacing the original checksum,
C,, with a checksum C. calculated across only the trans-
formed bytes that are being placed in the anonymized packet
trace. There are two reasons we may not be able to verify
C,: (7) the packet has been corrupted while traversing the net-
work or (iz) the original packet trace did not capture enough
of the packet to allow us to independently compute the check-
sum (e.g., because some of the payload is missing). In the first
case, we insert “1” into the appropriate checksum field to mark
the packet as having a known failed checksum originally (un-
less C.. happens to yield 1 itself, in which case we insert “27).

2The only payloads we include are packet headers encapsu-
lated within ICMP messages and ARP payloads (with renum-
bered addresses).

This guarantees that a researcher verifying the checksums in
the anonymized trace will observe a failure, as in the original
trace. On the other hand, for packets for which we cannot ver-
ify C, due to trace truncation, we assume valid checksums and
include C. in the anonymized trace. We also note corrupted
and truncated packets in the meta-data.

Finally, we need to consider the fact that UDP checksums
are optional. If the checksum is zero in the original trace, we
preserve this in the anonymized trace®,

We note that an alternative method would be one of the ap-
proaches implemented in tcpurify [6], which replaces check-
sums with codes indicating valid original, invalid original, or
not enough of the packet captured to determine. That scheme
has the advantage of not requiring separate meta-data, but re-
quires analysis tools to understand the codes.

3.2 Link Layer

At first blush, the Ethernet header might not seem sensitive.
On their own, Ethernet addresses do not give away much infor-
mation since they are chosen essentially randomly by vendors.
However, because Ethernet addresses are distinct to individ-
ual NICs, retaining them in the traces would allow attackers
to uncover the actions of a given user if they separately ob-
tain the MAC address of the user’s NIC. If they also determine
the associated non-anonymized IP address, they then can spot
instances of the MAC address in the traces and use this infor-
mation to work on unraveling the IP address anonymization
scheme.

We consider three different methods of randomizing Ether-
net addresses to counter these threats: (7) scrambling the entire
6 byte address, (iz) scrambling only the lower 3 bytes of the
address, preserving the “vendor code” in the upper 3 bytes, or
(412) scrambling the vendor code and the lower 3 bytes inde-
pendently. Mapping the entire 6 byte address would remove
the ability of researchers to attribute various oddities (for ex-
ample, replicated packets) to NICs from particular vendors.
We could retain this facet of the trace data by preserving the
vendor ID and scrambling only the lower 3 bytes. While this
approach maintains potentially useful information about the
NIC vendor, it fails to preserve anonymity if some vendors
have only a small number of NICs in the site providing the
trace—if the attacker separately learns about these rarely used
devices, they can locate them in the trace based solely on their
rare vendor ID.

These considerations led us to the third option, remapping
the high- and low-order 3 bytes separately. This allows the
trace user to find all hosts using the same NIC vendor, but not
to identify that NIC or the original full address. Our specific
scheme remaps the high-order 3 bytes and uses that value as
the seed for remapping the low-order 3 bytes. Doing so pro-
duces a consistent mapping across multiple traces. Therefore,
say the low-order 3 bytes X map to X’ for vendor Y. For ven-
dor Z the same X will map to some X" Finally, we include in
the meta-data a rough frequency table of unanonymized ven-
dor IDs found in our traces (e.g., a list of vendor 1Ds with 1-20
hosts, 20-50 hosts, 50-200 hosts, etc.), in an attempt to pre-
serve a profile of the diversity of NICs in use at the site. The
bucket ranges are carefully chosen as to not finger particular
machines by virtue of being the only address in a particular
bucket.

3Per the UDP specification [18], calculated values of zero are
replaced with the equivalent Oxffff.

Ethernet addresses not only appear in Ethernet headers, but
also in the contents of ARP packets, and our framework under-
stands the ARP packet format and consistently remaps these
internal addresses, as well.

There are exceptions to the remapping policy. We preserve
addresses that are all zeros (unknown MAC in ARP packets) or
all ones (broadcast traffic), and also the “multicast bit” in the
high-order 3 bytes.

Our analysis of the other Ethernet header fields concluded
that they do not pose any anonymization issues. At this point,
tcpmkpub inspects the type of header following the Ethernet
header. The policy we use understands IP and ARP packets,
so for these it proceeds to further anonymization. For all other
packet types, it truncates the packet placed in the anonymized
trace after the Ethernet header.

3.3 Network Layer

Obviously, a key aspect to our policy at the network layer
is anonymizing IP addresses. If an attacker can tie traffic to a
known IP address and thereby potentially to a user, they can
attain a detailed accounting of the user’s activities (violating
privacy, and possibly embarrassing the site if the user’s ac-
tivities are inappropriate). In addition, an attacker could use
information about services running on a particular host to de-
velop an attack plan. We therefore seek to obscure the IP ad-
dresses. While IP address anonymization is well trod ground
(e.g., based on [23]), we found that the devil again showed up
and we needed to add a few wrinkles to implement a sound
policy within our environment.

In particular, we remap addresses differently based on the
type of address. The following details our anonymization pol-
icy for various types of addresses and distills the meta-data
we record to retain as much research value as possible. For
the purposes of our discussion, “internal” addresses are those
allocated to LBNL and “external” addresses are non-LBNL
addresses.

External addresses: remapped using the prefix-preserving
address anonymization scheme given in [23]. While this
scheme can be attacked, the site’s view is that the difficulty
of attacking it for external addresses, which have much less
locality than internal addresses, suffices to reduce the threat to
an acceptable level.

Internal addresses: map to a prefix unused by the prefix-
preserving scheme. It is important to note that we do not re-
tain the prefix-preserving relationship between internal and
external addresses. If we did, then because the organization
from which the trace comes is known, the prefix-preserving
property could be used to infer portions of external addresses
adjacent to internal addresses. For instance, one of LBNL’s
address ranges is 128.3.0.0/16. However, since the trace is
known to be from LBNL, even if we transformed “128.3", it
seems safe to assume that it would not be difficult to determine
which traffic is from LBNL. Therefore, by including LBNL’s
addresses in the prefix-preserving address anonymization used
for external addresses, any address whose first octet is 128
would be partially unmasked.

Therefore, after the prefix-preserving algorithm has clas-
sified all IP addresses in the trace we map the internal ad-
dresses to an unused part of the address space.* The meta-
data provides a list of internal network prefixes. This aspect

“In practice, we use one of the organization’s standard prefixes
unless that prefix was used for some external address.

of anonymization requires two passes at the original packet
trace, first to construct a collision-free map of IP addresses,
and second to actually anonymize the addresses. We note that
given the multi-pass nature of our technique, this aspect of IP
address anonymization would require a different approach for
on-line anonymization. We also note that mapping internal
addresses separately can lead to inconsistencies across traces.
For instance, consider the case when we take a trace T} today,
anonymizing and releasing it with internal addresses in prefix
Po. Further, assume we anonymize a second trace, T4, at some
point later, using the same key to provide uniformity across the
traces (see § 6 for more on uniform anonymization). While
anonymizing 71, an external address may map onto Py, and
therefore we must use a different internal prefix, P, for inter-
nal addresses. Therefore, while most of the anonymization is
uniform across the two traces, the consistency is marred by the
fact that the internal prefixes differ across the two collections.

We independently remap the subnet and host portions of in-
ternal addresses. Therefore, all hosts appearing in some sub-
net X in the original trace will appear in the subnet X’ in the
anonymized trace. This random mapping does not preserve
the relationship between subnets in the internal network. For
instance, if two subnets share a /26 prefix in the original trace,
they will not necessarily do so in the anonymized trace. The
meta-data contains a list of the (renumbered) internal subnets.
In addition, the meta-data contains the remapped gateway and
broadcast addresses for each internal subnet. We remap the
host portions differently for each subnet.

In remapping host portions within a subnet, we need to com-
pute a pseudo-random permutation among addresses. With the
algorithm described in [13], we are able to compute permuta-
tions without having to store them, and yet keep the mapping
independent of the order in which the addresses appear, anal-
ogous to the properties of the algorithm for prefix-preserving
anonymization [23].

Remapping the subnets also involves computing a pseudo-
random permutation, except that the subnets can have different
prefix lengths. Thus we map bigger subnets (with shorter pre-
fixes) before smaller ones. Unlike host remapping, which we
compute on-the-fly, we pre-compute and keep the subnet map-
ping.

Multicast addresses: preserved in the anonymized trace,
as they do not identify any particular host.

Private addresses: preserved in the anonymized trace be-
cause they do not convey a sense of identity in LBNL'’s envi-
ronment, due to how they are used and allocated. Note that
in other environments, they could very well convey a sense
of identity. For instance, a particular portion of the network
might use a rarely used portion of private address space (e.g.,
10.55.100.0/24) and therefore the private addresses could be
easily linked with users.

Scanners. A particular problem with our anonymization
techniques concerns traffic from scanners that probe a wide
swath of the IP address space. For instance, many organiza-
tions run a scanner to check various properties of the internal
hosts as part of their security operation. These probes tend
to hit addresses in a well established order such as a.b.c.1,
a.b.c.2, a.b.c.3, etc. When we anonymize addresses, the
host portion of the address is randomized. But because these
sorts of scanners are easy to pick out by their rapid (and fre-
quently unsuccessful) connection attempts, by observing the
order hosts are probed by such scanners, an attacker might

approximately derive the original host portion of the IP ad-
dresses, and also possibly the subnet prefix. Also note that
the DNS is a readily accessible database of the live hosts at
an organization, which an attacker may leverage to assist in
unmasking relationships between populated addresses.

In addition to IP-level (or higher) internal or external scan-
ners, we found another subtle scanner in the traces. The enter-
prise’s routers sometimes ARP for an entire subnet in rapid-
fire fashion, which we attribute to initializing the router’s ARP
table, or possibly “host discovery” activity within the subnet.
As discussed above, such probes (and their responses) may be
used to partially unmask IP addresses, given the timing of the
requests. We apprehended this particular threat only late in
the process of anonymizing our traces, which serves to (again)
highlight the careful diligence required to anonymize packet
traces.

Because of the potential threat from scanners, we decided
to map addresses relating to scanner activity using a sepa-
rate namespace than that of non-scanning activity, to break the
structural relationship induced by sequential scanners. To do
so, however, we need to find the scanners. We did so by look-
ing for hosts that visited more than 50 distinct IP addresses,
for which there was a window of 50 IP addresses in which
at least 45 were (in the original trace) strictly in ascending or
descending order. This is merely a heuristic; however, it has
the property that an attacker is unlikely to find and leverage
scanners in the anonymized trace that this heuristic misses.

As mentioned above, we renumber the IP addresses in-
volved in scanning traffic separately. We keep the scanner’s
IP address uniform across the trace, and flag the scanner as
such in the meta-data. However, we use a different mapping
(resulting in a different subnet and host address) for the desti-
nation address of the scans. For instance, consider two hosts
X, and X3 in subnet Y from the original trace file. In traf-
fic not involving the scanner, these addresses will be mapped
to X1 and X3 in subnet Y’. For traffic involving the scan-
ner these addresses will be mapped to X7 and X in subnets
Z1 and Zs, respectively. This unfortunate inconsistency in the
resulting traces means that it becomes impossible to analyze
a host’s entire set of traffic for any internal address that was
scanned. Finally, we note that Ethernet addresses of hosts be-
ing scanned also need renumbering, or an attacker can easily
establish the mapping between IP addresses for scanning and
non-scanning traffic.

Invalid addresses. Our packet traces contain several in-
stances of data transactions involving a host belonging to an
invalid subnet (i.e., the organization does not use the particular
subnet). That is, the IP address is in the organization’s address
space, but that particular portion of the address space is meant
to be dark. These might come from misconfigurations or users
“borrowing” addresses they were not assigned. We anonymize
such addresses as though the subnet existed, but note them in
the meta-data as not belonging to a valid subnet.

In addition, we found packets in our packet traces that
contain IP options that in turn contain IP addresses (e.g.,
the record route option). We remap the IP addresses con-
tained within these options before placing the packets into the
anonymized trace. Likewise, we must remap IP addresses con-
tained within ARP replies.

We note that some of the complications in terms of
anonymizing IP addresses come from the fact that we are san-
itizing edge-network packet traces. Packet traces taken in the

middle of the network would likely not have the same strong
address prefix signature that enterprise traces have and there-
fore may be able to be anonymized without regard to address
“type”.

The last consideration at the network layer is ICMP traffic.
Given ICMP’s use for carrying all sorts of rich network status
information, we must take care when including such packets in
the anonymized traces. ICMP messages often contain the first
bytes of the packet that triggered the ICMP message. There-
fore, we recursively anonymize the included IP packet as we
would any other packet in the original trace.

3.4 Transport Layer

Our anonymization policy deals with TCP [19] and UDP
[18] at the transport layer. We truncate packets using other
transport protocols after the IP header (we did not see signifi-
cant amounts of such traffic). As outlined in § 2, implementing
anonymization frameworks for new transport protocols (e.g.,
SCTP [21] or DCCP [11]) should be straight-forward.

The first consideration for transport protocols is whether to
anonymize the port numbers. Our policy leaves the TCP and
UDP port numbers intact, with the exception that we remove
traffic involving one particular port used for an internal secu-
rity monitoring application. A drawback of preserving port
numbers is that they may be able to be used to identify a par-
ticular machine that runs a particular set of services, if that set
is in some way unique (e.g., due to its make-up of the set, or
the traffic volume).

Another aspect of TCP traffic that potentially leaks infor-
mation is the sequence number. [22] shows that a motivated
attacker can find traffic in an anonymized trace that involves
a particular web site by comparing the length of TCP connec-
tions in the trace with a database of known object lengths on
given web pages. This attack requires heavy resources, and
therefore for our environment it is not perceived to be a signif-
icant threat.

Given that we preserve both port numbers and sequence
numbers, the most significant transformation we perform at
the transport layer is to rewrite TCP timestamp options [9].
Recent work has found that clock drift manifest in timestamp
options can be leveraged to fingerprint a physical machine, en-
abling its unique identification in the future [12]. If a machine
could be fingerprinted using the anonymized traces, then an
attacker who also probes the site’s hosts directly could pair up
the timestamp signatures they obtain from probing with those
in the trace, undermining the anonymization. On the other
hand, timestamp options have significant utility in analyzing
TCP dynamics, as they allow unambiguous matching of data
packets with acknowledgments and can help detect packet du-
plication and reordering.

Therefore, to balance these concerns our policy is to trans-
form the timestamps present in timestamp options into per-
host, monotonically increasing counters with no relationship
to time. We preserve timestamp echoes of zero, which indi-
cate “no timestamp.” Much of the research use of timestamps
involves using them to determine the uniqueness and trans-
mission order of segments. A per-host counter preserves this
use. Of course, any use of the timestamp option for actual
timing information (e.g., investigating TCP’s retransmission
timeout, or the jitter between packets) is lost. We considered
“fuzzing” the timestamps by random amounts, instead of us-
ing a counter, to degrade the artifacts used by the fingerprinting

scheme. However, since it is not clear how this would affect
research relying upon timestamps for timing information, we
decided to simply remove all timing information.

Using our approach, transforming a timestamp option re-
quires two passes over the original packet trace, for two rea-
sons. First, RFC 1323 does not specify the actual format of
timestamps, nor their endianess. Therefore, to infer the or-
dering relationship between timestamps (and thus to correctly
assign counter values when rewriting them), we need to ob-
serve multiple packets to determine endianess. Second, even if
we can determine the order among timestamps, it is still prob-
lematic to renumber without knowing what timestamps may
appear later, so we wait until observing all the timestamps be-
fore renumbering them sequentially. In those cases where we
cannot determine the endianess of the timestamps, we simply
reflect the order of the packets in the original trace. Doing so
can aid a researcher interested in determining the uniqueness
of packets, but the causal ordering becomes potentially mis-
leading, so we note the failure to identify the endianess for the
given host in the meta-data.

4. INFORMATION LOSS

As noted above, every transform applied to a trace can po-
tentially perturb analysis of the transformed trace. Given our
explicit goal to retain as much research value as possible, we
analyzed the original and anonymized traces with two tools
that perform packet header analysis and compared the output
as one way to gauge how effective we were in preserving in-
formation. We stress that these are simply two examples and
their performance may not be indicative of other uses of the
traces.

We first used pOf [24] to do OS fingerprinting on the hosts
in the trace.> We found two relevant differences between
the original and transformed traces: (¢) transforming the TCP
timestamp option into a counter rendered pOf’s “host uptime”
analysis useless, and (i7) one connection showed a different
OS signature in the transformed trace due to a corrupted packet
in the original trace causing our anonymization process to
change an invalid TCP option into a NOP option. Thus, we
conclude that OS fingerprinting is in general still possible with
the transformed traces; this is acceptable to our site.

We also used a custom tool, tcpsum, to crunch each TCP
connection in the trace to find the number of packets and bytes
sent in each direction, as well as a crude history of the con-
nection (“saw SYN”, “saw SYN+ACK?”, etc.). Except for IP
addresses, the output from the original and transformed traces
matched, indicating no value was lost in the transformations
for this particular type of analysis.

We again note that our simple tests are not exhaustive.
Clearly, the transformations we applied to the traces can have
an impact on certain forms of analysis. For instance, any anal-
ysis that involves digging into the contents of packets (e.g., for
use in developing intrusion detection methodologies) would
be rendered useless by our anonymization scheme. However,
we believe that these simple tests show that within the realm
of header analysis we have preserved much useful information
while still protecting the security and privacy of the site and its

5We note that this is an area where some sites may desire that
the information not appear in the anonymized traces, in which
case protocol scrubbing techniques [20] may be beneficial as
part of the anonymization process.

users.

5. VALIDATION

We next turn to a key aspect of implementing an anonymiza-
tion policy: validation. For the set of traces we prepared, we
used several ad hoc methods to validate that the information
we intended to mask was indeed transformed or left out of the
anonymized traces:

e First we inspected the log created by tcpmkpub dur-
ing the anonymization process. tcpmkpub flags all
unexpected aspects of a packet trace it runs across, in-
cluding, for example, incomplete IP headers or IP ad-
dresses (which are possible within ICMP unreachable
messages), indeterminable byte order of TCP times-
tamps for a particular host, or illegal values for fields
with constant or limited-ranged values. Examining ille-
gal field values lead us to the discovery of the bizarre
ARP packets mentioned in § 2 and TCP options with il-
legal length fields (e.g., “SACK permitted” options with
length 253 instead of 2 and window scale options with
length 1 rather than 3).

While using the tool to verify itself is inherently in-
sufficient, this is a prudent first step to ensure that
tcpmkpub didn’t get confused in a way that would lead
to information leakage. We found nothing in our logs
that indicated any problems. We base the remainder of
our validation, however, on use of separate tools.

e \We next used the standard Unix tool strings to look for
sequences of at least six contiguous letters (case insen-
sitive) in the anonymized traces in an attempt to en-
sure that packet payloads had been properly removed.
When run across the original traces we found many
strings that are clearly commands, filenames, etc. (e.g.,
“Documents”, “Settings”, “ConfirmFileOp”). How-
ever, in looking through the output produced from the
anonymized trace we found little that was recognizable
as obvious packet content. We manually checked the
few strings that remotely resemble words (for instance,
“tkirtkis™) and found them to be caused by simple coin-
cidence.

e \We wrote a small tool to pick through packets and look
for 32 bits that looked like IP addresses to ensure that
we removed all the LBNL addresses from the data. We
first looked for “addresses” with LBNL’s prefixes and
appearing in both the original and anonymized pack-
ets (in either byte order). This procedure produced too
many false positives due to a collision between the first
octet of one of LBNL’s prefixes with a common TCP
offset value (which is preserved in anonymization, and
thus identical in original and anonymized packets).

Therefore, we refined our analysis to ignore certain re-
gions of the packets that we preserve (for example, the
TCP sequence numbers), which reduced the number of
occurrences to nearly zero; we manually verified the
remainder as due to coincidence (for example, in one
case the destination address of a packet happened to be
mapped to exactly the source address).

e \We used strings to look for string versions of IP ad-
dresses (i.e., dotted-quads) that matched an LBNL pre-
fix. We found no matches.

e \We next focused on ensuring that tcpmkpub accu-
rately transformed MAC addresses. First, we used tcp-
dump to generate a list of all MAC addresses found
in our original traces. We wrote a small flex program
to pick through the anonymized traces looking for the
14 byte MAC addresses found in the original trace files.
We manually compared the hits from the anonymized
traces with the original traces, which determined all
were coincidence.

o Finally, we used ipsumdump to dump TCP options from
our anonymized traces. From this we picked out the
timestamps, produced sorted lists, and verified that all
hosts started with a timestamp of zero and increased
from that point. Therefore, we conclude that our times-
tamp re-numbering appears accurate.

The ad hoc validation we conducted convinced us that our
anonymized traces are sufficiently safe to release. However,
an area for beneficial future work is to write an independent
tool that vets anonymized traces against a given policy, which
would both improve the quality of the validation and make it
easier to conduct.

6. ADDITIONAL CONSI DERATIONS

Along with the devil-ish details we describe above, there are
several additional issues to consider.

Traffic removal. Some traffic in the traces could simply be
too sensitive or unique to a particular institution to include in
the anonymized traces. For instance, as mentioned above we
removed all traffic on a particular TCP port because the traf-
fic involves a custom application used for security operations
within the site. For some analyses, the missing traffic will
have little impact. However, for other analyses the missing
traffic could lead to an invalid conclusion (e.g., that a network
was not congested when it really was). We suggest that the
characteristics of removed traffic be provided in the meta-data
in high-level terms, so researchers using the data will at least
be aware of the amount of traffic culled from the traces. At a
minimum, the meta-data should contain an absolute count of
the number of packets removed from the traces.

Filenames. The contents of a packet trace are not the only
source of information leaks. While the particular naming used
for the files of the traces seems like a mundane detail, naming
conventions for can potentially leak information to an adver-
sary, e.g., “server-room-trace.dmp”.

Uniform anonymization. We suggest that traces
anonymized in a uniform manner (e.g., the same IP address
mapping) should contain a common tag in the various meta-
data files to enable researchers to correlate information across
the traces. In general, providing consistent anonymization
across multiple traces is a two-edged sword: it preserves
greater research utility, but at the cost of providing attackers
with more data to use in attempting to subvert the anonymiza-
tion process.

Linking traces to meta-data. We suggest a solid linking
between a trace and its meta-data by inserting secure check-
sum digest of the trace in the meta-data, so that researchers

[Section | Meta-Data |

§3.1 Packets found in the original trace with bad checksums are flagged in the meta-data, with a version of the packet
with a bad checksum placed in the anonymized trace.

§3.1 Truncated packets found in the original trace are noted in the meta-data. The packet inserted into the
anonymized trace has a corrected checksum based on the sanitized packet.

§3.2 The meta-data includes a rough frequency table of Ethernet vendor codes.

§3.3 The meta-data contains a list of the anonymized prefix and size of each internal subnet found in the trace, along
with the subnet’s gateway and broadcast addresses.

§3.3 The anonymized IP address of detected scanners is included in the meta-data. The anonymization maps ad-
dresses for the target in traffic involving scanners differently than addresses in non-scanning traffic.

§3.3 The meta-data lists addresses that are part of LBNL’s address space, but not from a valid LBNL subnet.

§3.4 Hosts for which tcpmkpub could not determine the endianness of TCP’s timestamp option are flagged in the
meta-data. The order of the timestamps for these hosts is based on the order in which the packets arrive at the
tracing location, rather than the time at which they were transmitted.

§6 The meta-data gives the number of packets completely removed from the traces due to policy considerations.

86 The meta-data includes a tag indicating the anonymization key used to conduct the transformations. All traces
with the same tag are uniformly anonymized.

§6 The meta-data includes a checksum digest of the anonymized packet trace to ensure that the traces and meta-
data can be properly paired.

Table 1: Meta-data accompanying the anonymized traces.

can verify they are matching specific meta-data to the right
trace.

Detecting leakage. Being able to detect if a trace’s
anonymization has been compromised after release could
prove important. We have devised such methods; however,
they either skew the traffic characteristics in the anonymized
trace or could be trivially circumvented if the defense was
generally known. The design of techniques to robustly detect
anonymization compromise remains an interesting area for fu-
ture work.

Situational considerations. Some of the aspects of packet
trace anonymization discussed in this paper may be more or
less important in certain situations. Different approaches may
prove desirable depending on the traffic being traced, the van-
tage point of the traffic collector, or the portion of the net-
work monitored. For instance, when anonymizing a backbone
packet trace the special handling of scanning traffic discussed
in § 3.3 is likely not required. This (again) underscores the im-
portance of carefully considering all aspects of anonymization
within the context of the local environment.

7. SUMMARY

This paper endeavors to make four contributions: First,
we enumerate and explore many of the devil-ish details in-
volved in preparing packet traces for public release that go
beyond the well-known topic of IP address obfuscation. Sec-
ond, we sketch the use of meta-data to help researchers us-
ing anonymized traces to cope with the information lost dur-
ing the anonymization process. Table 1 gives a summary of
the meta-data generated by our tool. Third, we developed a
tool, tcpmkpub, and a framework for implementing arbi-
trary anonymization policy in a straightforward, comprehen-
sible fashion. Our tools and traces will be made publicly
available via [1]. Additionally, Figure 3 shows the complete
anonymization specification for the policy we employ. Finally,
we have introduced new wrinkles to address anonymization,
such as mapping scanner traffic differently from non-scanner
traffic, mapping internal addresses differently from external

addresses, and mapping the two halves of Ethernet addresses
separately.

Acknowledgments

This work was supported as part of the DHS PREDICT project
under grant HSHQPA4X03322. Our thanks to the many
LBNL staff members who made this work possible; in par-
ticular, Mike Bennett, Jim Mellander, Sandy Merola, Dwayne
Ramsey and Brian Tierney. We thank Ethan Blanton for nu-
merous discussions on the topics covered in this paper. Our
thanks to Martin Casado and the anonymous IMC 2005 re-
viewers for providing useful comments on earlier versions of
this paper.

8. REFERENCES
[1] Enterprise tracing

enterprise-tracing/.

[2] The Passive Measurement and Analysis Project.
http://pma.nlanr.net/.

[3] The Skitter Project.
measurement/skitter/.

[4] Mark Allman, Ethan Blanton, and Wesley Eddy. A Scal-
able System for Sharing Internet Measurements. In Pas-
sive and Active Measurement Workshop, March 2002.

[5] Steven Bellovin. A Technique for Counting NATted
Hosts. In Proceedings of the Internet Measurement
Workshop, November 2002.

[6] Ethan Blanton. tepurify, May 2004.
http://irg.cs.ohiou.edu/~eblanton/tcpurify/.

[7] W. Chen, Y. Huang, B. Ribeiro, K. Suh, H. Zhang,
E. de Souza e Silva, J. Kurose, and D. Towsley. Exploit-
ing the IPID Field to Infer Network Path and End-System
Characteristics. In Proceedings of the Passive and Active
Measurement Workshop, March 2005.

[8] Steve Deering and Robert Hinden. Internet Protocol, Ver-
sion 6 (IPv6) Specification, January 1996. RFC 1883.

[9] Van Jacobson, Robert Braden, and David Borman. TCP
Extensions for High Performance, May 1992. RFC 1323.

project. http://www.icir.org/

http://www.caida.org/tools/

[10] Eddie Kohler. ipsumdump. http://www.cs.ucla.edu/
“kohler/ipsumdump/.

[11] Eddie Kohler, Mark Handley, and Sally Floyd. Datagram
Control Protocol (DCCP), March 2005. Internet-Draft
draft-ietf-dccp-spec-11.txt (work in progress).

[12] Tadayoshi Kohno, Andre Broido, and kc claffy. Remote
Physical Device Fingerprinting. In Proceedings of the
IEEE Symposium on Security and Privacy, May 2005.

[13] M. Luby and C. Rackoff. Pseudo-random permutation
generators and cryptographic composition. In STOC ’86:
Proceedings of the eighteenth annual ACM symposium
on Theory of computing, pages 356-363, New York, NY,
USA, 1986. ACM Press.

[14] A. Medina, M. Allman, and S. Floyd. Measuring the
Evolution of Transport Protocols in the Internet. ACM
Computer Communication Review, 35(2), April 2005.

[15] Greg Minshall. tcpdpriv, August 1997.
http://ita.ee.lbl.gov/html/contrib/tcpdpriv.html.

[16] Ruoming Pangand Vern Paxson. A High-Level Program-
ming Environment for Packet Trace Anonymization and
Transformation. In ACM SIGCOMM, August 2003.

[17] Vern Paxson. Strategies for Sound Internet Measure-
ment. In ACM SIGCOMM lInternet Measurement Con-
ference, October 2004.

[18] Jon Postel. User Datagram Protocol, August 1980. RFC
768.

[19] Jon Postel. Transmission Control Protocol, September
1981. RFC 793.

[20] Matthew Smart, G. Robert Malan, and Farnam Jahanian.
Defeating TCP/IP Stack Fingerprinting. In 9th USENIX
Security Symposium, pages 229-240, 2000.

[21] Randall Stewart, Qiaobing Xie, Ken Morneault, Chip
Sharp, Hanns Juergen Schwarzbauer, Tom Taylor, lan
Rytina, Malleswar Kalla, Lixia Zhang, and \ern Paxson.
Stream Control Transmission Protocol, October 2000.
RFC 2960.

[22] Q. Sun, D. R. Simon, Y. Wang, W. Russell, V. N. Pad-
manabhan, and L. Qiu. Statistical Identification of En-
crypted Web Browsing Traffic. In IEEE Symposium on
Security and Privacy, May 2002.

[23] Jun Xu, Jinliang Fan, Mostafa Ammar, and Sue Moon.
On the Design and Performance of Prefix-Preserving IP
Traffic Trace Anonymization. In Proceedings of the In-
ternet Measurement Workshop, November 2001.

[24] Michal Zalewski. pOf: Passive OS Fingerprinting tool.
http://lcamtuf.coredump.cx/pOf.shtml.

€ ainbi4

jod uoneziwAuoue |jn4

‘Kal

/'l ether.anon

FI ELD (ETHER_dst addr,
FI ELD (ETHER _sr caddr,
FI ELD (ETHER_| ent ype,
FI ELD (ETHER dat a,

/'l ether-data.anon

CASE (ETHERDATA_i p,
CASE (ETHERDATA_ar p,

DEFAULT_CASE (ETHERDATA ot her

/] arp.anon

FI ELD (ARP_hrd,

FI ELD (ARP_pro,

FI ELD (ARP_hI n,

FI ELD (ARP_pl n,

FI ELD (ARP_op,

FI ELD (ARP_sha,

FI ELD (ARP_spa,

FI ELD (ARP_t ha,

FI ELD (ARP_t pa,

/'l ip.anon

FI ELD (1P_verhl,
FI ELD (1P_tos,

FI ELD (1P_len,

FI ELD (1P_id,

FI ELD (1P frag,
FIELD (1P_ttl,

FI ELD (I P_proto,
PUTOFF_FI ELD (1 P_cksum
Fl ELD (1 P_srcaddr,
FI ELD (1 P_dstaddr,
Fl ELD (1 P_options,
PI CKUP_FI ELD (1 P_cksum
FI ELD (IP_data,

Il ip-frag.anon

FI ELD (1 PFRAG dat a,
/1 ip-option.anon

CASE (1 POPT_eol ,
CASE (1 POPT_nop,
CASE (1POPT_rr,
CASE (I POPT_ra,

DEFAULT_CASE (1| POPT ot her ,

/1 ip-data.anon

CASE (ToP,
CASE (UDP,
CASE (1aw,

DEFAULT_CASE (I P_ot her,

/1 icnp.anon

FI ELD (1 CVP_type,
FI ELD (I CwP_code,
PUTOFF_FI ELD (I CMP_chksum
FIELD (1 CVP_dat a,

Pl CKUP_FI ELD (1 CMP_chksum

/1 icnp-data.anon

CASE (1 CvP_echoreply,
CASE (I CWP_unr each,
CASE (I CWP_sour cequench,
CASE (I OWP_redirect,
CASE (1 GwP_echo,

CASE (ICwWP_routersolicit,
CASE (1 CVP_ti nxceed,
CASE (| CVWP_par anpr ob,
CASE (1 CVP_t st anp,

CASE (I OvP_tstanpreply,
CASE (I CWP_ireq,

CASE (ICwP_ireqgreply,
CASE (1 OVWP_naskr eq,
CASE (I CvP_maskrepl y,

DEFAULT_CASE (| CWP_ot her,

0x0800,
0x0806,

| POPT_ECL,
| PCPT_NCP,
| PCPT_RR,
| POPT_RA,

| PPROTO_TCP,
| PPROTO_UDP,
| PPROTO_I QVP,

| CMP_ECHOREPLY,
| CMP_UNREACH,

| CMP_SOURCEQUENCH,

| OVP_REDI RECT,
| OVP_ECHO,

| CVP_ROUTERSOLI CI T,

| CVP_TI MXCEED,
| CVP_PARAVPROB,
| CVP_TSTAMP,

| CMP_TSTANPREPLY,

| CWP_I REQ
| CMP_I REQREPLY,
| CMP_MASKREQ,

| OVP_MASKREPLY,

6,
2,
VARLEN,

VARLEN,
VARLEN,
VARLEN,

RESTLEN,

1,
1,
VARLEN,
4,
VARLEN,

VARLEN,
VARLEN,
VARLEN,
RESTLEN,

anonyni ze_et her net _addr)
anonyni ze_et her net _addr)
KEEP)

anonynmi ze_et her net _dat a)

anonymi ze_i p_pkt)
anonymi ze_ar p_pkt)
other_ethertnet _pkt_al ert_and_ski p)

const _nl16 (0x0001, BREAK))
const _nl16 (0x0800, BREAK))
const_n8 (6, BREAK))

const _n8 (4, BREAK))
range_nl6 (1, 2))

anonymi ze_et her net _addr)
anonymi ze_i p_addr)

anonyni ze_et her net _addr)
anonyni ze_i p_addr)

KEEP)
KEEP)

KEEP)

KEEP)

KEEP)

KEEP)

KEEP)

ZERO)

anonyni ze_i p_addr)
anonymi ze_i p_addr)
anonyni ze_i p_opti ons)
reconput e_i p_checksum)
anonyni ze_i p_dat a)

SKI P)

KEEP)

KEEP)

| POPT_anonyni ze_r ecor d_r out e)
const _n32 (0x94040000UL, CORRECT))
| POPT_al ert _and_r epl ace_wi t h_NOP)

anonyni ze_t cp_pkt)
anonyni ze_udp_pkt)
anonyni ze_i cnp_pkt)
SKI P)

KEEP)

KEEP)

ZERO)

anonyni ze_i cnp_dat a)
reconput e_i cnp_checksumn)

anonynmi ze_i cnp_echo)
anonyni ze_i cnp_cont ext)
anonyni ze_i cnp_cont ext)
anonyni ze_i cnp_redirect)
anonynmi ze_i cnp_echo)
anonyni ze_i cnp_routersolicit)
anonyni ze_i cnp_cont ext)
anonyni ze_i cnp_par anpr ob)
anonyni ze_i cnp_t st anp)
anonymi ze_i cnp_t st anp)
anonyni ze_i cnp_i req)
anonyni ze_i cnp_i req)
anonyni ze_i cnp_maskr eq)
anonyni ze_i cnp_maskr eq)

| CVMP_al ert _and_ski p)

/1 icnp-echo. anon

FI ELD (1CVP_echo_i d,

FI ELD (1 CwP_echo_seq,

FI ELD (1 CVP_echo_pyl d,

/1 icnp-context.anon

FI ELD (1 CWP_cont ext _unused,
FI ELD (1 CMP_cont ext,

/1 icnp-redirect.anon

FI ELD (1 CVMP_r edi rect _gat eway,
FI ELD (1 CMP_redirect_cont ext,
/1 icnp-routersolicit.anon

FI ELD (1 CMP_rs_reserved,
/1 icnp-paranprob. anon

FIELD (1 CMP_pp_poi nter,

FI ELD (1 CMP_pp_unused,

FI ELD (1 CMP_pp_cont ext ,
/1 icnp-tstanp.anon

FI ELD (1CVWP_ts_id,

FI ELD (1 CVMP_t s_seq,

FI ELD (ICVMP_ts_orig_ts,
FI ELD (ICWP_ts_recv_ts,
FI ELD (ICMP_ts_trsmts,
/1 icnp-ireq.anon

FI ELD (1CVP_ireq_id,

FI ELD (I CMP_ireq_seq,

/1 icnp-maskreq. anon

FI ELD (1 cvP_maskreq_id,
FI ELD (1 CMP_naskreq_seq,
FIELD (1 CMP_maskr eq_mask,
/1 udp. anon

FI ELD (UDP_srcport,

FI ELD (UDP_dst port,

FI ELD (UDP_l en,

PUTOFF_FI ELD (UDP_chksum

FI ELD (UDP_dat a,

PI CKUP_FI ELD (UDP_chksum

/1 tcp.anon

FI ELD (TCP_srcport,
FI ELD (TCP_dst port,
FI ELD (TCP_seq,

FI ELD (TCP_ack,
FIELD (TCP_of f,

FI ELD (TCP_f 1 ags,

FI ELD (TCP_wi ndow,
PUTOFF_FI ELD (TCP_chksum
FI ELD (TCP_urgptr,
FIELD (TCP_opti ons,
PI CKUP_FI ELD (TCP_chksum
FI ELD (TCP_dat a,

/1 tcp-option.anon

CASE (TCPOPT_eol ,
CASE (TCPOPT_nop,
CASE (TCPOPT_nss,
CASE (TCPOPT_wsopt ,
CASE (TCPOPT_sackper m
CASE (TCPOPT_sack,
CASE (TCPOPT_t sopt ,
CASE (TCPOPT_cc,
CASE (TCPOPT_ccnew,

DEFAULT_CASE (TCPOPT_ot her,

2,

2,
RESTLEN,
4,
RESTLEN,

4,
RESTLEN,
4,

1,

3,
RESTLEN,

ENFNFNINEN)

NNNRPRABRNN

o
s
#
m

z

RESTLEN,

NWh PP

VARLEN,

VARLEN,
VARLEN,
VARLEN,

KEEP)
KEEP)
SKI P)

ZERO)

anonymi ze_i p_pkt)

anonyni ze_i p_addr)
anonymi ze_i p_pkt)

const_n32 (0, CORRECT))

KEEP)
ZERO)

anonymi ze_i p_pkt)

KEEP)
KEEP)
KEEP)
KEEP)
KEEP)

KEEP)
KEEP)

KEEP)
KEEP)
KEEP)

KEEP)
KEEP)
KEEP)
ZERO)
SKI P)
reconput e_udp_checksum)

KEEP)

KEEP)

KEEP)

KEEP)

KEEP)

KEEP)

KEEP)

ZERO)

KEEP)

anonyni ze_t cp_opti ons)
reconput e_t cp_checksum)
SKI P)

KEEP)
KEEP)

KEEP)

KEEP)

KEEP)

KEEP)

renunber _t cp_ti nestanp)

KEEP)

KEEP)

TCPOPT_al ert _and_r epl ace_wi t h_NOP)

