IBM Research

BlueGene/L MPI From A User's Point Of View

Or

A Short Survival Course In How To Annoy Tech Support

George Almasi

Feb. 10, 2005 ©2004 IBM

Corporation

Outline

m This is not a talk about how to invoke mpirun.
» System software folks will have presented that to you
m This is a talk about what does, and what doesn't work in BlueGene/L
MPI.
» Basic things you should avoid doing
+ |deas about obtaining good performance
» point-to-point messaging
= scaling
= mapping application into network
» collective messaging

Summary I will BlueGene like me?

m BlueGene/L MPI is like other implementations of MPI
+ looks like Argonne National Labs' MPICH2
» because that's what it is.

m As an MPI developer you will have relatively few surprises
- BlueGene/L MPI is MPI standard 1.2 compliant
» no one-sided communication
» Nno spawning of processes
» supports thread model MPI_THREAD_ SINGLE
» MPI 1/O is still under development

= packages like HDF5, NETCDF are known to have been ported
but presently display relatively poor performance

« Getting higher performance out of BG/L MPI is inherently harder
» large scale, fun network

Summary Il: Kinds of annoyance you can cause

m Crashing an application: an opportunity to bad-mouth IBM
» somewhat easier than on other platforms, because
» limited memory on nodes, no virtual memory on nodes
= memory leaks are going to make their presence felt
» communication network is in userspace
= good: high performance
= bad: user have opportunity to kill process with wild pointers

m Invoking the Halting Problem: deadlocking the machine
m Violating MPI semantics: laws you didn't know were on the books

m Causing bad performance: malice not required
- “nicely” map the application into the network (hard)
- avoid load imbalance (hard)
- avoid network jams (very hard)

BlueGene/L MPI Software Architecture

Message passing Process management

Abstract Device Interface torus | tree | Gl S
2 (15|5|1&
CH3 | MM bgl 38|58
a8 D o =}
IR %
()]
socket e
“glue” e

Packet
Layer

Write your own communication layer!

m 90% of communication hardware is mapped into user memory
« Write stuff into high memory areas!
« Likely to insert malformed packets into the torus.
» will generate spurious error messages
» will look somewhat like a system failure
» may hang your application, and even bring down your partition.
» Uninitialized pointer dereferences work great.
+ Requires very little effort to hang the machine
» If you know what you are doing.
» We have never seen this happen by accident.
» You cannot accidentally malloc() over network hardware
» You must set your pointer into a narrow address space

Deadlocking the system

m Talk before you listen.

m lllegal MPI code CPU1 code:
<« find it in most MPI books
< tech support will be very MPI_Send (cpu?2);
annoyed

_ _ MPI1_Recv(cpu?2);
m BlueGene/L MPI is designed not

to deadlock easily.

« It will likely survive this code. CPUZ2 code:
m This code will cause MPI to
allocate memory to deal with MPI_Send(cpul);
unexpected messages. If MPI MPI_Recv(cpul):

runs out of memory, it will stop
with an error message

Force MPI to allocate too much memory

m Post receives in one order, CPU1 code:
sends in the opposite order MPI_ISend(cpu2, tag,):

MPI_ISend(cpu2, tag,);
m This is legal MPI code

_ _ MPI_ISend(cpu2, tag,);
m BlueGene/L MPI will choke if the

sum of buffers is greater than
the amount of physical memory | CPUZ2 code:

+ this is an implementation MPI_Recv(cpu1l, tag,);
](cjuetzer(;t that will be fixed in the MPI_Recv(cpu, tagn_1);

MPI_Recv(cpu1, tag,);

Sneaky: violate MPI buffer ownership rules

m write send/receive buffers req = MPI_lsend (buffer);
before completion

buffer[0] = something;
» results in data race on any

MPI_Wait(req);

machine
m touch send buffers before
message completion req = MPI_Isend (buffer);
+ not legal by standard z = buffer[0];

- BG/L MPI will survive it today
< no guarantee about tomorrow

m touch receive buffers before

MPI_Wait (req);

completion req = MPI_Irecv (buffer);
= BG/L MPI will yield wrong z = buffer|[0];
results MPI_Wait (req);

Causing memory overruns: never wait for MPIl_Test

m Have to wait for all requests req = MPI_lIsend(...);
= The standard requires waiting | MPI_Test (req);
«or testing until MPI_Test ... do something else; forget about

returns true req ...

m This code works on many other
architectures

< causes tiny memory leaks
m On BG/L this will run the system
out of memory very fast

+» MPI_Request requires a lot of
memory

» It's a scaling issue

Straddle collectives with point-to-point messages

m On the ragged edge of legality CPU 1 code:
m BlueGene/L MPI works
m Multiple networks issue: req = MPI_Isend (cpu2);

« Isend handled by torus network| NP Barrier();
< Barrier handled by Gl network MPI_Wait(req);

CPU 2 code:

MPI_Recv (cpu1);
MPI_Barrier();

Send flood

m This is legal MPI code CPU 1 to n-1 code:
» also ... stupid MPI code
» not scalable, even when it MPI Send(cpu0);
works o

m BlueGene/L MPI will run out of
buffer space

~ This is a bug, and will be fixed CPU 0 code:
m We have seen this kind of code
in the wild for (i=1; i<n; i++)
+ Don't write code such as this MPI Recv(cpu[i]);

» Even if you think it should work

BlueGene/L # Linux

m You are likely to run into surprises with what you assume runs on the
compute nodes

» Don't try asynchronous File I/O
« TCP client stuff works:
» socket(), connect()
« TCP server stuff doesn't work:
» bind(), accept()
« BGI/L runs sleep(10000) in 6 seconds!

Virtual Node Mode vs. Coprocessor mode

m Virtual Node Mode: m Coprocessor mode:

» twice the processing power! <« only one CPU available to

+ but not twice the performance execute user code
~ half of memory per CPU “ but have all memory!
~ half of cache per CPU « other CPU helps with
~ half of network per CPU communication
. CPU has to do both « currently, only point-to-point

communication benefits

computation and
communication » that is about to change

Point-to-point performance (l)

m Two kinds of network routing on

BlueGene/L
» deterministic routing:

» each packet goes along

the same path
» maintains packet order

» creates network hotspots

» adaptive routing
» packets overtake

» equalized network load

» harder on CPUs

» MPI matching semantics

are always correct!

m MPI Short protocol:

« very short (<250 bytes)
messages. Deterministically
routed

= MPI Eager protocol:
<« medium size messages
“send without asking”
» deterministically routed
« latency around 3.3 us
= MPI Rendezvous protocol:
- large (> 10KBytes) messages
« adaptively routed
» bandwidth optimized

Point to point performance (lI)

m The rendezvous treshold (10KBytes) can be changed
» environment variable: BLMPI_RZV = ...

m Lower the rendezvous treshold if
- running on a large partition
- many short messages are overloading the network
» eager messages are creating artificial hotspots
» program is not latency sensitive
m Increase the rendezvous treshold if
- most communication is nearest-neighbor
» or at least close in Manhattan distance
» relatively longer messages
» you need better latency on medium size messages

Bandwidth vs. message size

1 =
=& 1 pair
0.9H ~F 2pairs
/ —o— 3 pairs
0sH =&~ 4 pairs
B
% O
>
8]
o 06
()]
6-way send+recv >
@ 05
e
T 04r
z
o
=l
ko]
0.2
Q1=
0 ‘ 1 1 | |
1 16 256 4096 65536 1.04858e+06

message size

Point-to-point performance (lllI): Dos and Don'ts

m Overlapping communication and = Avoid synchronous sends
computation: « increases latency

» requires care on BlueGene/L m Avoid buffered sends
+ keep programs in sync as
much as you can

» alternate computation and
communication phases

m Avoid load imbalance

- memory copies are bad for
your health
m Avoid vector data, non-
contiguous data types
+» BG/L MPI doesn't have a nice

« bad for scaling way to deal with them
m Shorten Manhattan distance m Post receives in advance
messages have to traverse

» unexpected messages
- send to nearest neighbors! damage performance

The all-important torus mapping

m NAS BT
< 2D mesh communication pattern
< Map on 3D mesh/torus?

» Folding and inverting planes in
the 3D mesh

m NAS BT scaling:
<« Computation scales down with n-2
< Communication scales down with n-!

N\

N\

Per-CPU performance (MOps/s/CPU)

100
90+

80
70
60
50
40
30
20
10

NAS BT Scaling (virtual node mode)

-~ naive mapping
=4 optimized mapping

A

T T T T
w N (&) (o2

T T T T
- - N N ~ © ©
N (o] N [e] (e} B N N N B (o]
- © a © - - © [&)] © - -

Number of processors

How to map an application to the torus?

m set up a mapping file

0000
1000
2000
3000

m associate torus coordinates to MPI ranks 0O to n-1.
m Yeah, but why quadruplets?
m Use mapping file as argument in mpirun invocation

MPI Collective performance (I)

m Rule 1: Use collectives whenever you can
» Point-to-point performance has huge overheads

« “l can do a better job with point-to-point than you miserable jocks can do
with collectives”

» We don't think so.
m Rule 2: Mapping is all-important for good collective performance
» Most collective implementations prefer certain communicator shapes
®m Rule 3: don't do anything crazy, like
- Use different buffer sizes for a broadcast call (illegal)
- Use heterogeneous data types for broadcast (legal, but crazy)
- Use misaligned buffers (legal and not crazy, but we don't like it anyway)

» Run point-to-point messages across the communicator at the same time
that a collective is underway (legal, but not cheap)

Summary of Optimized BG/L MPI Collectives

C on ditio n N etw o r k P erform ance

Barrier COMM_ WORLD GI 1.5us
COMM WORLD Tree Sus
Rectangular communicator Torus 10-15 us
Broadcast COMM_WORLD Tree 350 Mbytes/s

Rectangular communicator Torus 320 Mbytes/s (0.48 Bytes/cycle)

Rectangular communicator Torus TBD: v 1atency
Allreduce COMM_WORLD, fixed point Tree 350 Mbytes/s, low latency
COMM_ WORLD, floating pt Tree 40 Mbytes/s (0.06Bytes/c)

Tree TBD: .- 20w 6/c. 10w tatency
Hamilton Path Torus 120 Mbytes/s
Rectangular communicator ~ Torus 80 Mbytes/s
Rect. comm. + short msg Torus 10-15 us latency
TBD: iner cnapes Torus TBD:igh vanawiam re
Alltoall[v] Any communicator Torus 84-97% of peak
Allgatherv rectangular Torus Same as broadcast

Optimizing collective performance:
Barrier and short-message Allreduce

m Barrier is implemented as an m Allreduce for very short
allgather in each dimension messages is implemented with a
+BGIL torus hardware can send similar multi-phase algorithm

deposit packets on a line
<Low latency broadcast

m Since packets are short, likelihood
of conflicts is low impl. by Yili Zheng

m Latency = O(xsize+ysize+zsize)

-8 6= } y
B | i ' . l’. > CE
. b | N A c E—-"
Phase 1 Phase 2 Phase3 c ELF—" fF fF 6 0

Barrier and short message Allreduce:
Latency and Scaling

Barrier latency vs. machine size Short-message Allreduce latency
VS. message size

60,

=&~ mpich2
—+ torus
- tree

S50

401

second

2
2 301

Q
S 20F

10

1 1 1 1 1 1 1 1 1 1
1 4 7 10 13 16 19 22 25 28
message size (doubles)

MPI_Bcast on a mesh: algorithm details
with John Gunnels, Nils Smeds, Vernon Austel, Yili Zheng, Xavier Martorell

MPI Bcast performance

Broadcast bandwidth
m MPICH2: stable but slow
m Tree broadcast: 350
<only for MPI_COMM_WORLD
300
m Torus broadcast: ~o- 3DMesH /
+any rectangular communicator = 250 —+ mpich?
«Uses deposit bit E
«“menu” system = 200
4x4x4reot111 §
- 3
- -~ E 150
W ke SR 100
1- S = ' 04 T
<l 88
gor S 0+
w‘7 8 ¥
o | o, =Sy s "‘—»\,,T:v /y‘s .
0 S B msg size (bytes)
: \:\-‘:__\;f/ 1

Optimized collectives: Allreduce for long messages

*Allreduce: standard “menu” *Allreduce: Hamiltonian path “menu”
*Similar to broadcast Single line snaking through torus
*Reasonable latency *Very high latency
*Strongly CPU limited *Somewhat better bandwidth

ends ‘ "
N ‘ e ’(o
- 5 P
1 - = 4
o "",\“ l ' i T
od 0- :\\\ s '—"'”3

Impl. by Chris Erway

Optimized collectives: Allreduce bandwidth

—&= mpich2
0.2 = torus
=#= torus/Hamilton

0181

016

0141

0121

0.1

bandwidth (Bytes/cycle)

= |
1 o1 2395 61444 1.5748e+06

message size

Optimized collectives: Alltoall[v]

m Performance measured as —
percentage of peak, which is & ;nplchz o
function of partition “shape” 901 1 1orue p—t—t
m MPICH2 implementation not 80

suitable for torus network

m Optimized implementation: 90%
of peak

= Impl. by Charles Archer

m measured on an 8x8x8 partition
30
20
10

1024 81 92 65536 196608
message size

bandwidth (% of peak)

Conclusion

® You have been warned.

« If you call tech support you will get asked tedious questions about the
things | have outlined in this presentation.

m BG/L MPI is a moving target. Some things are going to improve over
the next few months

» flow control to handle send flood issues

« better optimized collective performance
« MPI1/O

m We would love to hear about your porting experience.

