United States
Department of
Agriculture

In cooperation with
Minnesota Agricultural Experiment Station

Natural
Resources
Conservation
Service

Soil Survey of Red Lake County, Minnesota

-

NRCS Accessibility Statement

The Natural Resources Conservation Service (NRCS) is committed to making its information accessible to all of its customers and employees. If you are experiencing accessibility issues and need assistance, please contact our Helpdesk by phone at 1-800-457-3642 or by e-mail at helpdesk @ helpdesk.itc.nrcs.usda.gov. For assistance with publications that include maps, graphs, or similar forms of information, you may also wish to contact our State or local office. You can locate the correct office and phone number at http://offices.sc.egov.usda.gov/locator/app.

How To Use This Soil Survey

Soil Maps

The soil maps can be useful in planning the use and management of small areas.
To find information about your area of interest, locate that area on the Index to Map Sheets. Note the number of the map sheet and turn to that sheet.

Locate your area of interest on the map sheet. Note the map unit symbols that are in that area. Turn to the Contents, which lists the map units by symbol and name and shows the page where each map unit is described. The map symbols and map unit names also appear as bookmarks, which link directly to the appropriate page in the publication.

The Contents shows which table has data on a specific land use for each detailed soil map unit. Also see the Contents for sections of this publication that may address your specific needs.

MAP SHEET

This soil survey is a publication of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (formerly the Soil Conservation Service) has leadership for the Federal part of the National Cooperative Soil Survey.

Major fieldwork for this soil survey was completed in 2000. Soil names and descriptions were approved in 2001. Unless otherwise indicated, statements in this publication refer to conditions in the survey area in 2000. This survey was made cooperatively by the Natural Resources Conservation Service and the Minnesota Agricultural Experiment Station. Red Lake County provided partial funding for the survey, and other assistance was provided by the Minnesota Agricultural Extension Service. The survey is part of the technical assistance furnished to the Red Lake County Soil and Water Conservation District.

Soil maps in this survey may be copied without permission. Enlargement of these maps, however, could cause misunderstanding of the detail of mapping. If enlarged, maps do not show the small areas of contrasting soils that could have been shown at a larger scale.

The United States Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact the USDA's TARGET Center at (202) 720-2600 (voice and TDD).

To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Independence Avenue, SW, Washington, D.C. 20250-9410, or call (202) $720-5964$ (voice and TDD). USDA is an equal opportunity provider and employer.

Cover: A farmstead north of Terrebonne in Red Lake County. Soils in this area formed mostly in sandy glacial lake deposits and developed under prairie vegetation.

Additional information about the Nation's natural resources is available online from the Natural Resources Conservation Service at http://www.nrcs.usda.gov.

Contents

How To Use This Soil Survey i
Foreword vii
General Nature of the Survey Area 1
History 1
Industry, Transportation Facilities, and Recreation 2
Physiography, Drainage, and Geology 2
Climate 3
How This Survey Was Made 3
Table 1a.-Temperature and Precipitation 6
Table 1b.-Temperature and Precipitation 7
Table 2.-Freeze Dates in Spring and Fall 8
Table 3.-Growing Season 9
Formation and Classification of the Soils 11
Factors of Soil Formation 11
Parent Material 11
Climate 11
Living Organisms 12
Topography 12
Time 12
Classification of the Soils 13
Table 4.-Classification of the Soils 14
Soil Map Unit Descriptions 17
B109A—Bowstring and Fluvaquents soils, MLRA 88, 0 to 2 percent slopes, frequently flooded 18
B200A-Garnes fine sandy loam, 0 to 3 percent slopes 20
B201A-Chilgren fine sandy loam, 0 to 2 percent slopes 23
B202A-Cathro muck, depressional, MLRA 88, 0 to 1 percent slopes 25
B203A -Northwood muck, depressional, MLRA 88, 0 to 1 percent slopes 28
B204A—Roliss loam, MLRA 88, 0 to 2 percent slopes 30
B205A—Berner muck, depressional, MLRA 88, 0 to 1 percent slopes 33
B206A—Hamre muck, depressional, MLRA 88, 0 to 1 percent slopes 35
11A—Augsburg loam, 0 to 2 percent slopes 38
I2A—Augsburg very fine sandy loam, 0 to 2 percent slopes 41
I3A—Berner muck, 0 to 1 percent slopes 44
14A—Berner, Rosewood, and Strathcona soils, seepy, 0 to 2 percent slopes 46
I5A—Borup loam, 0 to 2 percent slopes 49
16A-Borup very fine sandy loam, 0 to 2 percent slopes 51
I7A—Bowstring-Fluvaquents complex, 0 to 2 percent slopes, frequently flooded 53
I8A -Cathro muck, 0 to 1 percent slopes 55
19A-Clearwater clay, 0 to 2 percent slopes 58
I10A-Clearwater mucky clay loam, depressional, 0 to 1 percent slopes 61
I11A—Deerwood muck, 0 to 1 percent slopes 63
112A—Eckvoll loamy fine sand, 0 to 3 percent slopes 65
113A—Espelie fine sandy loam, 0 to 2 percent slopes 68
I14B—Fairdale silt loam, 1 to 6 percent slopes, occasionally flooded 70
I14D—Fairdale silt loam, 6 to 15 percent slopes, occasionally flooded 72
I15A-Flaming loamy fine sand, 0 to 3 percent slopes 74
I16F-Fluvaquents, frequently flooded-Hapludolls complex, 0 to 30 percent slopes 77
I17A-Foldahl fine sandy loam, 0 to 3 percent slopes 80
I18A-Foldahl loamy fine sand, 0 to 3 percent slopes 83
I19A-Foxhome sandy loam, 0 to 3 percent slopes 86
I20A-Foxlake loam, 0 to 2 percent slopes 89
121A-Fram loam, 1 to 3 percent slopes 92
I22A-Glyndon loam, 0 to 2 percent slopes 94
I23A-Glyndon very fine sandy loam, 0 to 2 percent slopes 96
I24A-Grimstad fine sandy loam, 0 to 3 percent slopes 99
125A-Hamar loamy fine sand, 0 to 2 percent slopes 102
I26A—Hamerly loam, 0 to 2 percent slopes 104
127A-Hamre muck, 0 to 1 percent slopes 107
128A-Hangaard sandy loam, 0 to 2 percent slopes 110
I29A—Hattie clay, 0 to 3 percent slopes 112
I29D-Hattie clay, 6 to 18 percent slopes 114
I30A—Hedman loam, 0 to 2 percent slopes 116
131A-Hedman-Fram complex, 0 to 3 percent slopes 118
I32A—Hilaire fine sandy loam, 0 to 3 percent slopes 120
I33A—Hilaire loamy fine sand, 0 to 3 percent slopes 123
I34A-Huot fine sandy loam, 0 to 3 percent slopes 126
135A-Karlsruhe sandy loam, 0 to 3 percent slopes 129
I36A-Kittson loam, 0 to 3 percent slopes 131
I37A—Kratka and Strathcona soils, depressional, 0 to 1 percent slopes 134
I38A-Kratka fine sandy loam, 0 to 2 percent slopes 136
I39A-Linveldt fine sandy loam, 0 to 3 percent slopes 139
I40B—Maddock loamy fine sand, 1 to 6 percent slopes 142
I40F-Maddock loamy fine sand, 12 to 30 percent slopes 144
141A—Markey muck, 0 to 1 percent slopes 145
I42A-Markey muck, ponded, 0 to 1 percent slopes 148
143A-Mavie fine sandy loam, 0 to 2 percent slopes 150
144A-Newfolden loam, 0 to 3 percent slopes 153
145A-Northwood muck, 0 to 1 percent slopes 155
146A-Pits, gravel and sand 158
147A—Poppleton fine sand, 0 to 2 percent slopes 160
148A—Radium loamy sand, 0 to 3 percent slopes 162
149A—Rauville silty clay loam, 0 to 2 percent slopes 166
150A-Reiner fine sandy loam, 0 to 3 percent slopes 167
151A-Reiner loamy fine sand, 0 to 3 percent slopes 169
152A-Reis-Clearwater complex, 0 to 2 percent slopes 172
I53A-Roliss loam, 0 to 2 percent slopes 175
I54A-Roliss loam, depressional, 0 to 1 percent slopes 177
I55A-Rosewood fine sandy loam, 0 to 2 percent slopes 179
I56A-Rosewood-Venlo complex, 0 to 1 percent slopes 182
I57B-Sandberg-Radium complex, 1 to 6 percent slopes 185
158A-Seelyeville muck, 0 to 1 percent slopes 187
I59A-Smiley loam, 0 to 2 percent slopes 189
I60A-Smiley mucky loam, depressional, 0 to 1 percent slopes 193
161A-Strandquist loam, 0 to 2 percent slopes 194
162A-Syrene sandy loam, 0 to 2 percent slopes 197
I63A-Thiefriver fine sandy loam, 0 to 2 percent slopes 201
I64A—Ulen fine sandy loam, 0 to 3 percent slopes 204
I65A—Ulen loamy fine sand, 0 to 3 percent slopes 207
I66A-Vallers loam, 0 to 2 percent slopes 210
I67A—Wheatville loam, 0 to 3 percent slopes 213
I68A-Wheatville very fine sandy loam, 0 to 3 percent slopes 215
I69A—Wyandotte clay loam, 0 to 2 percent slopes 217
I70A-Strathcona fine sandy loam, 0 to 2 percent slopes 220
M-W-Miscellaneous water 223
W-Water. 223
Table 5.—Acreage and Proportionate Extent of the Soils 224
Use and Management of the Soils 227
Interpretive Ratings 227
Rating Class Terms 227
Numerical Ratings 227
Crops and Pasture 228
Cropland Management Considerations 228
Crop Yield Estimates 230
Land Capability Classification 231
Prime Farmland 232
Windbreaks and Environmental Plantings 233
Hybrid Poplar Ratings 234
Forest Land Management and Productivity 235
Forest Land Harvest Equipment Considerations 235
Forest Haul Road Considerations 236
Forest Log Landing Considerations 236
Forest Land Site Preparation and Planting Considerations 236
Forest Productivity 237
Recreation 237
Wildlife Habitat 239
Engineering 240
Building Site Development 241
Construction Materials 243
Water Management 244
Table 6.-Cropland Management Considerations 246
Table 7.—Land Capability and Yields per Acre of Crops and Pasture 303
Table 8.-Forage Suitability Groups 319
Table 9.—Prime Farmland 338
Table 10.-Windbreaks and Environmental Plantings 339
Table 11.—Hybrid Poplar Management Considerations 407
Table 12.—Forest Land Harvest Equipment Considerations 457
Table 13.—Forest Haul Road Considerations 460
Table 14.—Forest Log Landing Considerations 462
Table 15.—Forest Land Site Preparation and Planting Considerations 464
Table 16.—Forest Productivity 466
Table 17a.-Recreation 469
Table 17b.-Recreation 516
Table 18.—Wildlife Habitat 560
Table 19a.—Building Site Development 589
Table 19b.—Building Site Development 635
Table 20a.-Construction Materials 694
Table 20b.-Construction Materials 732
Table 21.-Water Management 788
Soil Properties 841
Engineering Index Properties 841
Physical and Chemical Properties 842
Water Features 844
Soil Features 846
Table 22.-Engineering Index Properties 847
Table 23.-Physical Properties of the Soils 969
Table 24.-Chemical Properties of the Soils 1026
Table 25.-Soil Moisture, Ponding, and Flooding 1068
Table 26.-Soil Features 1334
References 1353
Glossary 1355

Foreword

This soil survey contains information that affects land use planning in this survey area. It contains predictions of soil behavior for selected land uses. The survey also highlights soil limitations, improvements needed to overcome the limitations, and the impact of selected land uses on the environment.

This soil survey is designed for many different users. Farmers, foresters, and agronomists can use it to evaluate the potential of the soil and the management needed for maximum food and fiber production. Planners, community officials, engineers, developers, builders, and home buyers can use the survey to plan land use, select sites for construction, and identify special practices needed to ensure proper performance. Conservationists, teachers, students, and specialists in recreation, wildlife management, waste disposal, and pollution control can use the survey to help them understand, protect, and enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. The information in this report is intended to identify soil properties that are used in making various land use or land treatment decisions. Statements made in this report are intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are shallow to bedrock. Some are too unstable to be used as a foundation for buildings or roads. A high water table makes a soil poorly suited to basements or underground installations.

These and many other soil properties that affect land use are described in this soil survey. The location of each soil is shown on the soil maps. Each soil in the survey area is described, and information on specific uses is given. Help in using this publication and additional information are available at the local office of the Natural Resources Conservation Service or the Cooperative Extension Service.

William Hunt
State Conservationist
Natural Resources Conservation Service

Where To Get Updated Information

The soil properties and interpretations included in this survey were current as of July 2003. The most current information is available through the Natural Resources

Conservation Service Soil Data Mart Website at|http://soildatamart.nrcs.usda.gov/.
Additional information is available from the Natural Resources Conservation Service Field Office Technical Guide at Red Lake Falls, Minnesota, or online at www.nrcs.usda.gov/technical/efotg. The data in the Field Office Technical Guide are updated periodically.

Additional information about soils and about NRCS is available through the Minnesota NRCS Web page at www.mn.nrcs.usda.gov.

For further information, please contact:
USDA, Natural Resources Conservation Service
Red Lake Falls Field Office
2602 Wheat Drive
Red Lake Falls, MN 56750-9703
Phone: 218-253-2593

Soil Survey of
 Red Lake County, Minnesota

By Richard Bednarek, David Potts, and Patricia Wright-Koll, Natural Resources Conservation Service

Fieldwork by Richard Bednarek, Rodney Heschke, David Potts, Perry Sullivan, and Patricia Wright-Koll, Natural Resources Conservation Service, and Patty Burns, soil survey contractor

United States Department of Agriculture, Natural Resources Conservation Service, in cooperation with the Red Lake Soil and Water Conservation District, the Minnesota Agricultural Experiment Station, and the Minnesota Cooperative Extension Service

Red Lake County is in northwestern Minnesota (fig. 1). It is bordered by Polk County on the west, south, and east and by Pennington County on the north. The total land area in Red Lake County is 277,000 acres, or 432 square miles. The county seat is Red Lake Falls, which is in the center of the county.

General Nature of the Survey Area

This section provides some general information about Red Lake County. It describes history; industry, transportation facilities, and recreation; physiography, drainage, and geology; and climate.

History

Red Lake County was established on December 24, 1896. It was named for the Red Lake River, which flows through the county and meets the Clearwater River at Red Lake Falls. The county includes 13 townships; the incorporated towns of Plummer, Oklee, Brooks, and Red Lake Falls; and the villages of Huot, Dorothy, and Terrebonne.

In 1863, a treaty signed with the Red Lake and Pembina band of the Chippewa opened up 3 million acres of land in the Red River Valley for settlement. The treaty was signed at what was known as the "Old Crossing" of the Red Lake River, which is near the town of Huot. This site is now a State park.

Pierre Bottineau, an explorer and guide in northwestern Minnesota, founded the settlement of Red Lake Falls in 1876. The western part of Red Lake County was settled primarily by French Canadians. The towns of Oklee, Plummer, and Brooks were established along the route of the Soo Line Railroad in the early 1900s. Scandinavian and French families settled in the eastern part of the county. Later, a mix of other nationalities, including German, English, and Native American, inhabited the county (Red Lake County Historical Society, 1976).

Figure 1.-Location of Red Lake County in Minnesota.

Industry, Transportation Facilities, and Recreation

Farming is the main economic enterprise in the survey area. About 79 percent of the county is used as cropland or pasture. In addition to cash crops, dairy and beef cattle operations are important in the county.

Red Lake County was first traversed by oxcarts along the Pembina Trail. This trail follows a gravel ridge on the western edge of the county. The first railroads were built in the 1870s. Three railroads were operating in the county by the early 1900s.
U.S. Highway 59 cuts through the middle of the county and runs north and south. The towns of Plummer and Brooks are along Highway 59. Red Lake Falls is along State Highway 32, which also runs north and south. State Road 92 runs east and west and connects the towns of Oklee and Brooks. It joins Highway 32 south of Red Lake Falls. There are also several paved and unpaved county roads.

Boating, fishing, and snowmobiling are popular recreational activities in the county. Two large rivers, the Red Lake River and the Clearwater River, provide water-related recreational opportunities. Tubing the Red Lake River is a popular summertime activity. In the winter, a network of snowmobile trails is maintained in the county.

Physiography, Drainage, and Geology

All of the soils in the survey area were influenced by Glacial Lake Agassiz and the glaciers that preceded its formation. About 12,000 years ago, Glacial Lake Agassiz was formed when the glacier started to retreat and left behind accumulations of drift (boulders, stones, and earthy materials). These accumulations are called moraines. The moraines blocked drainage outlets, and the lake grew. As the glacier continued to melt in the north, outlet routes were opened and Lake Agassiz eventually dried up. As the lake fell in stages, wave action deposited sand and gravel along the edges of the
lake and formed beach ridges. Some of these beach ridges run through Red Lake County. One obvious one is in the western part of the county in Wylie and Louisville Townships along County Road 3. The wind-driven waves of Lake Agassiz deposited sediments over the clayey and loamy till. Very fine sand and silt particles were deposited in the calmer waters of the interbeach areas. In much of the eastern part of the survey area, glacial lake deposits are thin and the till is at or near the surface (Sims and Morey, 1972; Harris, 1987).

Most of the survey area has an elevation of 1,000 to 1,100 feet above sea level. The highest elevation, 1,185 feet, is in the southeastern part of the county, bordering Polk County. The elevation is as low as 975 feet on the western edge of the county. The greatest areas of relief are along the Red Lake and Clearwater Rivers in the west and central parts of the county. The city of Red Lake Falls is at an elevation of 1,045 feet.

The survey area is drained by two large rivers and several streams. These watercourses flow primarily from east to west. The two main watersheds are the Red Lake and Clearwater Rivers. The Black River, the Little Black River, Brown's Creek, and Cyr Creek make up the Red Lake watershed within Red Lake County. The Lost River, the Poplar River, the Hill River, Badger Creek, Brooks Creek, and Terrebonne Creek are included in the Clearwater River watershed. Rivers move and deposit material and carve out the valleys and steep terraces that make Red Lake County a unique and scenic area in northwestern Minnesota (International Coalition, 1990).

Climate

Tables 1a and 1b give data on temperature and precipitation for the survey area. The data in table 1a were recorded at Oklee during the period from 1961 to 1990. The data in table 1b were recorded at Red Lake Falls during the period from 1971 to 2000. Table 2 shows probable dates of the first freeze in fall and the last freeze in spring. Table 3 provides data on length of the growing season.

In winter, the average temperature is about 6 degrees F and the average daily minimum temperature is about -4 degrees. In summer, the average temperature is about 66 degrees and the average daily maximum temperature is about 78 degrees.

Growing degree days are shown in table 1a. They are equivalent to "heat units." During the month, growing degree days accumulate by the amount that the average temperature each day exceeds a base temperature (40 degrees F). The normal monthly accumulation is used to schedule single or successive plantings of a crop between the last freeze in spring and the first freeze in fall.

The average total precipitation is about 23 inches. Most of the rainfall occurs between April and September. The average total annual snowfall is about 49 inches at Red Lake Falls and about 37 inches at Oklee.

How This Survey Was Made

This survey was made to provide updated information about the soils and miscellaneous areas in the survey area, which is in Major Land Resource Areas 56 (Red River Valley of the North) and 88 (Northern Minnesota Glacial Lake Basins). Major land resource areas (MLRAs) are geographically associated land resource units that share a common land use, elevation and topography, climate, water, soils, and vegetation (USDA, 1981). Red Lake County is a subset of MLRAs 56 and 88. Map unit design and the detailed soil descriptions are based on the occurrence of each soil throughout the MLRA. In some places in this publication, a soil may be referred to that was not mapped in the Red Lake County subset but that is representative of the MLRA.

This survey updates an earlier survey of the Red River Valley Area (Nikiforoff, 1939). The current survey provides more information and has larger maps, which show the soils in greater detail.

The information in this survey includes a brief description of the soils and miscellaneous areas and interpretive tables showing soil properties and the subsequent effects on suitability, limitations, and management for specified uses. During the fieldwork for this survey, soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They dug many holes to study the soil profile, which is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

The soils and miscellaneous areas in the survey area are in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landscape or segment of the landscape. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landscape, soil scientists develop a concept, or model, of how the soils were formed. Thus, during mapping, this model enables the soil scientists to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Individual soils on the landscape commonly merge into one another as their characteristics gradually change. To construct an accurate map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they observed. The maximum depth of observation was about 80 inches (6.7 feet). Soil scientists noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, soil reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Interpretations are modified as necessary to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a zone in which the soil moisture status is wet within certain depths in most years, but they cannot predict that this zone will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

The descriptions, names, and delineations of the soils in this country may not fully agree with those of the soils in adjacent survey areas. Differences are the result of a better knowledge of soils, modifications in series concepts, or variations in the intensity of mapping or in the extent of the soils in the survey areas.
(Recorded in the period 1961-90 at Oklee, Minnesota)

* A growing degree day is a unit of heat available for plant growth. It can be calculated by adding the maximum and minimum daily temperatures, dividing the sum by 2 , and subtracting the temperature below which growth is minimal for the principal crops in the area (40 degrees F).

Table 1b.--Temperature and Precipitation
(Recorded in the period 1971-2000 at Red Lake Falls, Minnesota)

Table 2.--Freeze Dates in Spring and Fall
(Recorded in the period 1961-90 at Oklee and Red Lake Falls, Minnesota)

Table 3.--Growing Season
(Recorded in the period 1961-90 at Oklee and Red Lake Falls, Minnesota)

Formation and Classification of the Soils

This section relates the soils in the survey area to the major factors of soil formation and describes the system of soil classification.

Factors of Soil Formation

Soils formed as a result of the interaction of five major factors-parent material, climate, plants and animals, relief, and time. Climate and plants and animals are the active factors of soil formation Their effects are conditioned by relief and time as they act on the parent material. These factors slowly change the parent material into a natural body that has genetically related horizons. This natural body is known as soil.

Parent Material

The parent material in most of Red Lake County was derived from the calcareous, loamy till deposited during the last glaciation. This till was later modified and reworked by Glacial Lake Agassiz, which covered the county after the glacier receded. Surface geology in Red Lake County is primarily related to the Lake Agassiz shoreline complex. The shoreline area of Glacial Lake Agassiz is made up of flat, crossbedded silt, sand, and gravel and areas of wave-eroded glacial sediment. The beach ridges of Lake Agassiz are included in this shoreline complex.

In western Red Lake County, glacial sediment consists of clay that contains small amounts of gravel. In places, the clayey deposits also contain cobbles and boulders that were deposited around 13,000 years ago by a south-flowing glacier. Most surface exposures of this material are 2 to 15 feet thick, but the thickness ranges to as much as 70 feet. This till is known as the Huot Formation.

There are several surface exposures of silty till deposited about 13,500 years ago by a south-flowing glacier. This till contains more sand and less clay than that of the Huot Formation. Inclusions of sand and gravel are common. This formation consists primarily of glacial sediments but contains some lake and stream deposits. Typically, the thickness of this till ranges from 15 to 30 feet. The thickness of some deposits, however, ranges from 7 to 70 feet. This formation is known as the Red Lake Falls Formation.

Sand, gravelly sand, and gravel were deposited in depressions and river channels about 9,900 to 11,000 years ago. The thickness of this material ranges from 2 to 20 feet. These deposits are called the Poplar River Formation.

Recent alluvium is deposited on the flood plains along rivers and streams. This material ranges from sand to silty clay loam (Harris, 1987; Harris and others, 1974).

Climate

Climate has affected the formation of soils in Red Lake County. The parent material of these soils originated in a climate that produced continental glaciers.

When the climate warmed and the glaciers receded and melted, the area was covered by Glacial Lake Agassiz. Eventually, as the climate stabilized to its present temperatures, the glacial lake drained.

As a soil-forming factor, climate affects the physical, chemical, and biological characteristics of the soil. Red Lake County has a cool, subhumid climate that has wide variations in temperature from summer to winter. During the long winter, when the soil is frozen to a depth of 3 to 5 feet for 6 months of the year, the soil-forming processes are dormant except for the effects of frost action.

The climate affects the type of native vegetation, which in turn affects soil formation.

Living Organisms

The soils of Red Lake County formed in a transitional zone between areas of prairie vegetation and areas of mixed hardwoods. Soils that formed in such a transitional zone exhibit features of soils that formed under both types of vegetation because of past fluctuations of the prairie-forest border (Wright, 1972). Some of the native tall-grass prairie plants are big bluestem, indiangrass, prairie cordgrass, and needleandthread. Reeds, sedges, and cattails are common in marshy areas. Soils that formed under prairie vegetation have a high content of organic matter. The decaying plants created nitrogen for plant growth. Nearly all of the soils in the county have a thick dark surface layer (6 to 12 inches thick) resulting from the influence of prairie vegetation.

The mixed hardwood influence of bur oak and quaking aspen is primarily apparent east of the Red Lake River. Soluble nutrients and clay particles were transported downward in the soil profile by precipitation. As a result, a layer of clay accumulated below the surface layer. Smiley, Reiner, and Linveldt soils are examples of soils that formed under mixed hardwoods.

Thousands of organisms occur in the top few inches of soil. These organisms influence soil formation. The level of living organisms in the soil is one indication of soil quality. Micro-organisms, such as bacteria and fungi, aid in the decomposition of organic material. Protozoa and nematodes increase soil fertility by releasing nutrients in plant-available forms. Arthropods, such as ants, beetles, springtails, centipedes, spiders, and mites, improve soil structure and fertility through the shredding of plant litter and the release of fecal pellets. Earthworms and burrowing animals help to aerate and mix the soil material (USDA, 1999).

Human activity can affect soil formation. Some building and farming practices can accelerate erosion. Applications of fertilizer and manure change the content of organic matter and the levels of nutrients. The soil's granular structure can be altered through compaction by heavy equipment. Artificial drainage modifies the natural water and soil patterns and thus affects the type of plants that can grow.

Topography

The effects of relief on soil formation in the survey area are minimal. Most of the soils are nearly level, except along the rivers and beach ridges. The areas of higher relief are subject to greater erosion. Several areas of sand, very fine sand, and silt deposits along rivers are subject to gully erosion resulting from spring runoff. Glyndon, Fairdale, and Flaming soils are examples of soils in these areas. Soils on prominent sandy ridges, such as Sandberg, Radium, and Poppleton soils, are susceptible to wind erosion.

Time

Geologically, all of the soils in Red Lake County are young. The soil-forming processes have been active for 9,000 to 13,000 years. The parent material was deposited by the most recent glaciers and by subsequent stages of Glacial Lake

Agassiz. Alluvium from rivers and streams is deposited each year. Periodic flooding moves and deposits soil material. The soils that formed in these areas have had very little time to develop.

Classification of the Soils

The system of soil classification used by the National Cooperative Soil Survey has six categories (Soil Survey Staff, 1998 and 1999). Beginning with the broadest, these categories are the order, suborder, great group, subgroup, family, and series. Classification is based on soil properties observed in the field or inferred from those observations or from laboratory measurements. Table 4 shows the classification of the soils in the survey area. The categories are defined in the following paragraphs.

ORDER. Twelve soil orders are recognized. The differences among orders reflect the dominant soil-forming processes and the degree of soil formation. Each order is identified by a word ending in sol. An example is Mollisol. More than half of the soils in Red Lake County are Mollisols.

SUBORDER. Each order is divided into suborders primarily on the basis of properties that influence soil genesis and are important to plant growth or properties that reflect the most important variables within the orders. The last syllable in the name of a suborder indicates the order. An example is Aquoll (Aqu, meaning water, plus oll, from Mollisol).

GREAT GROUP. Each suborder is divided into great groups on the basis of close similarities in kind, arrangement, and degree of development of pedogenic horizons; soil moisture and temperature regimes; and base status. Each great group is identified by the name of a suborder and by a prefix that indicates a property of the soil. An example is Endoaquolls (Endo, meaning within, plus aquoll, the suborder of the Mollisols that has an aquic moisture regime).

SUBGROUP. Each great group has a typic subgroup. Other subgroups are intergrades or extragrades. The typic is the central concept of the great group; it is not necessarily the most extensive. Intergrades are transitions to other orders, suborders, or great groups. Extragrades have some properties that are not representative of the great group but do not indicate transitions to any other known kind of soil. Each subgroup is identified by one or more adjectives preceding the name of the great group. The adjective Typic identifies the subgroup that typifies the great group. An example is Typic Endoaquolls.

FAMILY. Families are established within a subgroup on the basis of physical and chemical properties and other characteristics that affect management. Generally, the properties are those of horizons below plow depth where there is much biological activity. Among the properties and characteristics considered are particle-size class, mineralogy class, cation-exchange activity class, soil temperature regime, soil depth, and reaction class. A family name consists of the name of a subgroup preceded by terms that indicate soil properties. An example is fine-loamy, mixed, superactive, calcareous, frigid Typic Endoaquolls.

SERIES. The series consists of soils that have similar horizons in their profile. The horizons are similar in color, texture, structure, reaction, consistence, mineral and chemical composition, and arrangement in the profile. The texture of the surface layer or of the substratum can differ within a series. The soils of the Roliss series are fineloamy, mixed, superactive, calcareous, frigid Typic Endoaquolls.

The Official Soil Series Descriptions (OSDs) provide the most current information about the series mapped in Red Lake County. These descriptions are available on the Web at http://soils.usda.gov.

Soil name	Family or higher taxonomic class
Augsburg-------	Coarse-silty over clayey, mixed over smectitic, superactive, frigid Typic Calciaquolls
Berner---------	Loamy, mixed, euic, frigid Terric Haplosaprists
Boash----------	Clayey over loamy, smectitic over mixed, superactive, calcareous, frigid Vertic Endoaquolls
Borup----------	Coarse-silty, mixed, superactive, frigid Typic Calciaquolls
Bowstring-	Euic, frigid Fluvaquentic Haplosaprists
Boyerlake------	Fine, smectitic, frigid Vertic Eutrudepts
Cathro---------	Loamy, mixed, euic, frigid Terric Haplosaprists
Chilgren	Fine-loamy, mixed, superactive, frigid Typic Endoaqualfs
Clearwater	Fine, smectitic, frigid Typic Epiaquerts
Deerwood--------	Sandy, mixed, frigid Histic Humaquepts
Dora----------	Clayey, smectitic, euic, frigid Terric Haplosaprists
Eckvoll--------	Loamy, mixed, superactive, frigid Aquic Arenic Hapludalfs
Espelie--------	Sandy over clayey, mixed over smectitic, frigid Typic Epiaquolls
Fairdale-------	Fine-loamy, mixed, superactive, calcareous, frigid Mollic Udifluvents
Flaming	Sandy, mixed, frigid Oxyaquic Hapludolls
Fluvaquents	Fluvaquents
Foldahl---------	Sandy over loamy, mixed, superactive, frigid Oxyaquic Hapludolls
Foxhome--------	Sandy-skeletal over loamy, mixed, superactive, frigid Oxyaquic Hapludolls
Foxlake--------	Fine, smectitic, frigid Vertic Epiaquolls
Fram-----------	Coarse-loamy, mixed, superactive, frigid Aeric Calciaquolls
Garborg	Sandy, mixed, frigid Typic Endoaquolls
Garnes---------	Fine-loamy, mixed, superactive, frigid Aquic Hapludalfs
Glyndon--------	Coarse-silty, mixed, superactive, frigid Aeric Calciaquolls
Grimstad-------	Sandy over loamy, mixed, superactive, frigid Aeric Calciaquolls
Grygla---------	Sandy over loamy, mixed, superactive, nonacid, frigid Mollic Endoaquents
Halverson------	Loamy, mixed, superactive, frigid Arenic Argiudolls
Hamar----------	Sandy, mixed, frigid Typic Endoaquolls
Hamerly-	Fine-loamy, mixed, superactive, frigid Aeric Calciaquolls
Hamre	Fine-loamy, mixed, superactive, nonacid, frigid Histic Humaquepts
Hangaard-------	Sandy, mixed, frigid Typic Endoaquolls
Hapludalfs	Hapludalfs
Hapludolls	Hapludolls
Hattie	Fine, smectitic, frigid Aquic Hapluderts
Haug-----------	Coarse-loamy, mixed, superactive, calcareous, frigid Histic Humaquepts
Hedman	Coarse-loamy, mixed, superactive, frigid Typic Calciaquolls
Hilaire--------	Sandy over clayey, mixed over smectitic, frigid Oxyaquic Hapludolls
Huot------------	Sandy over clayey, mixed over smectitic, frigid Aquic Calciudolls
Karlsruhe	Sandy, mixed, frigid Aeric Calciaquolls
Kittson	Fine-loamy, mixed, superactive, frigid Oxyaquic Hapludolls
Kratka---------	Sandy over loamy, mixed, superactive, frigid Typic Endoaquolls
Lamoure--------	Fine-silty, mixed, superactive, calcareous, frigid Cumulic Endoaquolls
Linveld	Coarse-loamy, mixed, superactive, frigid Oxyaquic Argiudolls
Maddock--------	Sandy, mixed, frigid Entic Hapludolls
Markey	Sandy or sandy-skeletal, mixed, euic, frigid Terric Haplosaprists
Marquette	Loamy-skeletal, mixed, superactive, frigid Inceptic Hapludalfs
Mavie	Sandy-skeletal over loamy, mixed, superactive, frigid Typic Calciaquolls
Newfolden-------	Clayey over loamy, smectitic over mixed, superactive, frigid Oxyaquic Argiudolls
Northwood------	Sandy over loamy, mixed, superactive, nonacid, frigid Histic Humaquepts
Oylen	Coarse-loamy, mixed, superactive, frigid Oxyaquic Argiudolls
Pelan----------	Loamy-skeletal, mixed, superactive, frigid Oxyaquic Hapludalfs
Poppleton------	Mixed, frigid Aquic Udipsamments
Radium--------	Sandy, mixed, frigid Oxyaquic Hapludolls
Rauville	Fine-silty, mixed, superactive, calcareous, frigid Cumulic Endoaquolls
Reiner---------	Fine-loamy, mixed, superactive, frigid Oxyaquic Argiudolls
Reis------------	Fine, smectitic, frigid Typic Calciaquerts
Roliss	Fine-loamy, mixed, superactive, calcareous, frigid Typic Endoaquolls
Rosewood	Sandy, mixed, frigid Typic Calciaquolls
Sandberg	Sandy, mixed, frigid Calcic Hapludolls
Seelyeville	Euic, frigid Typic Haplosaprists
Sio	Sandy-skeletal, mixed, frigid Entic Hapludolls
Smiley	Fine-loamy, mixed, superactive, frigid Typic Argiaquolls
Strandquist	Sandy-skeletal over loamy, mixed, superactive, calcareous, frigid Typic Endoaquolls
Strathcona	Sandy over loamy, mixed, superactive, frigid Typic Calciaquolls

Table 4.--Classification of the Soils--Continued

Soil name	Family or higher taxonomic class
Syrene-	Sandy, mixed, frigid Typic Calciaquolls
Thiefriver------	Sandy over clayey, mixed over smectitic, frigid Typic Calciaquolls
Udipsamments--	Udipsamments
Ulen-	Sandy, mixed, frigid Aeric Calciaquolls
Vallers---------	Fine-loamy, mixed, superactive, frigid Typic Calciaquolls
Venlo----------	Sandy, mixed, frigid Typic Endoaquolls
Wheatville--	\|Coarse-silty over clayey, mixed over smectitic, superactive, frigid Aeric Calciaquolls
Wyandotte-----	Sandy over clayey, mixed over smectitic, frigid Typic Calciaquolls
Zell	Coarse-silty, mixed, superactive, frigid Typic Calciudolls

Soil Map Unit Descriptions

In this section, arranged in numerical order, are the soil map unit descriptions for the soil series mapped in Red Lake County.

Characteristics of the soil and the material in which it formed are identified for each soil series. A brief description of the soil profile is provided in the map unit descriptions. For more information about a soil series, the official series description can be viewed or downloaded from the Web. These series descriptions follow standards in the "Soil Survey Manual" (Soil Survey Division Staff, 1993). Many of the technical terms used in the descriptions are defined in "Keys to Soil Taxonomy" (Soil Survey Staff, 1998).

The map units on the soil maps in this survey represent the soils or miscellaneous areas in the survey area. These soils or miscellaneous areas are listed as individual components in the map unit descriptions. The map unit descriptions in this section, along with the maps, can be used to determine the suitability and potential of a unit for specific uses. They also can be used to plan the management needed for those uses. More information about each map unit is provided in the tables (see Contents).

A map unit delineation on the soil maps represents an area on the landscape. It is identified by differences in the properties and taxonomic classification of components and by the percentage of each component in the map unit.

Components that are dissimilar, or contrasting, are identified in the map unit description. Dissimilar components are those that have properties and behavioral characteristics divergent enough from those of the major components to affect use or to require different management. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps.

Components that are similar to the major components (noncontrasting) are not identified individually in the map unit description. Similar components are those that have properties and behavioral characteristics similar enough to those of the major components that they do not affect use or require different management.

The presence of multiple components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into segments that have similar use and management requirements. The delineation of such landscape segments on the map provides sufficient information for the development of resource plans, but if intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol is used for each map unit on the soil maps. This symbol precedes the map unit name in the map unit descriptions. Each description includes general information about the unit. The map unit descriptions include representative values in feet and the months in which wet soil moisture status is highest and lowest in the soil profile and ponding is shallowest and deepest on the soil surface. They also include the classes of flooding and the months in which flooding is least and most likely to occur. Table 26 provides a complete display of this data for every month of the year. The available water capacity given in each map unit description is calculated for all horizons in the soil profile. The organic matter content displayed in each map unit
description is calculated for all horizons in the soil profile, except those that represent the surface duff layer on forested soils. Table 24 provides a complete display of available water capacity and organic matter content by horizon.

The principal hazards and limitations to be considered in planning for specific uses are described in other sections of this survey.

Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer or of the underlying layers, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer or of the underlying layers. They also can differ in slope, stoniness, salinity, wetness, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. The name of a soil phase commonly indicates a feature that affects use or management. For example, Smiley mucky loam, depressional, 0 to 1 percent slopes, is a phase of the Smiley series.

A map unit is named for the component or components that make up a dominant percentage of the map unit. Many map units consist of one dominant component. These map units are consociations. Smiley loam, 0 to 2 percent slopes, is an example.

Some map units are made up of two or more dominant components. These map units are complexes or undifferentiated groups.

A complex consists of two or more components in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. Attempting to delineate the individual components of a complex would result in excessive clutter that could make the map illegible. The pattern and proportion of the components are somewhat similar in all areas. Sandberg-Radium complex, 1 to 6 percent slopes, is an example.

An undifferentiated group is made up of two or more components that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the components in a mapped area are not uniform. An area can be made up of only one of the dominant components, or it can be made up of all of them. Berner, Rosewood, and Strathcona soils, seepy, 0 to 2 percent slopes, is an undifferentiated group in this survey area.

This survey includes miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. The map unit Pits, gravel and sand, is an example.

Table 5 gives the acreage and proportionate extent of each map unit. Other tables (see Contents) give properties of the soils and the limitations, capabilities, and potentials for many uses. The Glossary defines many of the terms used in describing the soils or miscellaneous areas.

B109A—Bowstring and Fluvaquents soils, MLRA 88, 0 to 2 percent slopes, frequently flooded

Component Description

Bowstring and similar soils

Extent: 45 percent of the unit
Geomorphic component: Swales on flood plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material over alluvium
Months in which flooding does not occur: January, February, December

Highest frequency of flooding: Very frequent (April, May)
Shallowest depth to wet zone: At the surface (March, April, May, June)
Deepest depth to wet zone: 2.1 feet (February)
Shallowest ponding: 0.3 foot (January, February, July, August, September, October, November, December)
Deepest ponding: 0.5 foot (March, April, May, June)
Available water capacity to a depth of 60 inches: 21.4 inches
Content of organic matter in the upper 10 inches: 65 percent
Typical profile:
Oa1,Oa2-0 to 38 inches; muck
Cg-38 to 47 inches; stratified sand to fine sandy loam
O'a-47 to 80 inches; muck

Fluvaquents and similar soils

Extent: 40 percent of the unit
Geomorphic component: Flats and swales on flood plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Alluvium
Months in which flooding does not occur: January, February, December
Highest frequency of flooding: Very frequent (April, May)
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 1.6 feet (February, August)
Shallowest ponding: 0.5 foot (January, February, March, June, July, August,
September, October, November, December)
Deepest ponding: 0.7 foot (April, May)
Available water capacity to a depth of 60 inches: 8.1 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
A-0 to 16 inches; fine sandy loam
Cg—16 to 80 inches; stratified loamy sand to silt loam

Hapludalfs

Extent: 5 percent of the unit
Geomorphic component: Hillslopes in drainageways; escarpments in drainageways
Slope range: 3 to 60 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits and till
Months in which flooding does not occur: January, February, December
Highest frequency of flooding: Rare (March, April, May, June, September, October,
November)
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 10.1 inches
Content of organic matter in the upper 10 inches: 1.1 percent
Typical profile:
A-0 to 6 inches; fine sandy loam
E-6 to 8 inches; fine sandy loam
Bt1,Bt2-8 to 25 inches; silty clay loam
C1,C2-25 to 80 inches; silt loam

Seelyeville

Extent: 5 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material
Months in which flooding does not occur: January, February, December
Highest frequency of flooding: Very frequent (April, May)
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 1.6 feet (February, August)
Shallowest ponding: 0.3 foot (January, February, July, August, September, October, November, December)
Deepest ponding: 0.5 foot (March, April, May, June)
Available water capacity to a depth of 60 inches: 25.1 inches
Content of organic matter in the upper 10 inches: 90 percent Typical profile:

Oa1-0 to 10 inches; muck
Oa2-Oa5-10 to 80 inches; muck

Water

Extent: 5 percent of the unit
Major Uses of the Map Unit

- Wetland wildlife habitat

B200A-Garnes fine sandy loam, 0 to 3 percent slopes

Component Description

Garnes and similar soils

Extent: 70 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits and till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 10 inches
Content of organic matter in the upper 10 inches: 1.1 percent
Typical profile:
Ap-0 to 6 inches; fine sandy loam
E-6 to 9 inches; loamy fine sand
Bt-9 to 14 inches; clay loam
Bk1,Bk2-14 to 72 inches; loam
C-72 to 80 inches; loam

Chilgren

Extent: 13 percent of the unit
Geomorphic component: Swales and flats on lake plains

Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 9.9 inches
Content of organic matter in the upper 10 inches: 1.1 percent
Typical profile:
A-0 to 4 inches; fine sandy loam
E-4 to 10 inches; fine sandy loam
Btg-10 to 18 inches; clay loam
Bkg1,Bkg2—18 to 72 inches; loam
Cg-72 to 80 inches; loam
Eckvoll
Extent: 5 percent of the unit Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 8.3 inches
Content of organic matter in the upper 10 inches: 1.9 percent
Typical profile:
Ap-0 to 9 inches; loamy fine sand
E1,E2-9 to 25 inches; fine sand
2Bt-25 to 32 inches; sandy clay loam
2BCk,2C1,2C2—32 to 80 inches; loam

Garnes, very stony

Extent: 5 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 1 to 4 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits and till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 10.1 inches
Content of organic matter in the upper 10 inches: 1.1 percent

Typical profile:
A-0 to 6 inches; loam
E-6 to 9 inches; loamy fine sand
Bt-9 to 14 inches; clay loam
Bk1,Bk2-14 to 72 inches; loam
C-72 to 80 inches; loam
Grygla
Extent: 4 percent of the unit Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits and till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 8.4 inches
Content of organic matter in the upper 10 inches: 1.8 percent
Typical profile:
Ap-0 to 6 inches; loamy fine sand
Bg-6 to 26 inches; fine sand
$2 B k g-2 C g-26$ to 80 inches; loam

Pelan

Extent: 3 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 8.5 inches
Content of organic matter in the upper 10 inches: 1.4 percent
Typical profile:
Ap-0 to 6 inches; sandy loam
E-6 to 9 inches; sand
Bt-9 to 14 inches; very gravelly sandy loam
Bw-14 to 20 inches; very gravelly coarse sand
2Bw-20 to 60 inches; loam

Major Uses of the Map Unit

- Hayland, pasture, woodland

B201A—Chilgren fine sandy loam, 0 to 2 percent slopes

Component Description

Chilgren and similar soils

Extent: 75 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material:Till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 9.9 inches
Content of organic matter in the upper 10 inches: 1.1 percent Typical profile:

A-0 to 4 inches; fine sandy loam
E-4 to 10 inches; fine sandy loam
Btg-10 to 18 inches; clay loam
Bkg1,Bkg2-18 to 72 inches; loam
Cg-72 to 80 inches; loam

Garnes

Extent: 9 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits and till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 10 inches
Content of organic matter in the upper 10 inches: 1.1 percent
Typical profile:
Ap-0 to 6 inches; fine sandy loam
E-6 to 9 inches; loamy fine sand
Bt-9 to 14 inches; clay loam
Bk1,Bk2-14 to 72 inches; loam
C-72 to 80 inches; loam

Grygla

Extent: 5 percent of the unit
Geomorphic component: Flats and swales on lake plains

Slope range: 0 to 2 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits and till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 8.4 inches
Content of organic matter in the upper 10 inches: 1.8 percent
Typical profile:
Ap-0 to 6 inches; loamy fine sand
Bg-6 to 26 inches; fine sand
2Bkg-2Cg-26 to 80 inches; loam

Grygla, depressional

Extent: 5 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Mucky loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Glaciolacustrine deposits and till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 3 feet (February)
Shallowest ponding: 0.2 foot (July, August, September)
Deepest ponding: 0.3 foot (January, February, March, April, May, June, October,
November, December)
Available water capacity to a depth of 60 inches: 8.4 inches
Content of organic matter in the upper 10 inches: 6.3 percent
Typical profile:
Ap-0 to 6 inches; mucky loamy fine sand
$\mathrm{Bg}-6$ to 26 inches; fine sand
$2 \mathrm{Bkg}-2 \mathrm{Cg}-26$ to 80 inches; loam

Hamre

Extent: 5 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 2.5 feet (February)
Shallowest ponding: 0.3 foot (July, August, September)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, October, November, December)
Available water capacity to a depth of 60 inches: 13.3 inches
Content of organic matter in the upper 10 inches: 85 percent

Typical profile:
Oa-0 to 13 inches; muck
A-13 to 18 inches; loam
$\mathrm{Bg}-18$ to 35 inches; loam
BCg-Cg-35 to 80 inches; loam
Pelan
Extent: 1 percent of the unit Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 8.5 inches
Content of organic matter in the upper 10 inches: 1.4 percent
Typical profile:
Ap-0 to 6 inches; sandy loam
E-6 to 9 inches; sand
Bt-9 to 14 inches; very gravelly sandy loam
$\mathrm{Bw}-14$ to 20 inches; very gravelly coarse sand
2Bw-20 to 60 inches; loam

Major Uses of the Map Unit

- Hayland, pasture, woodland

B202A-Cathro muck, depressional, MLRA 88, 0 to 1 percent slopes

Component Description

Cathro and similar soils

Extent: 80 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material over till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May, June)
Deepest depth to wet zone: 2.1 feet (February)
Shallowest ponding: 0.3 foot (January, February, July, August, September, October,
November, December)
Deepest ponding: 0.5 foot (March, April, May, June)
Available water capacity to a depth of 60 inches: 15.9 inches
Content of organic matter in the upper 10 inches: 85 percent Typical profile:

Oa1,Oa2—0 to 11 inches; muck

Oa3-11 to 23 inches; muck
Cg-23 to 60 inches; loam

Hamre

Extent: 8 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 2.5 feet (February)
Shallowest ponding: 0.3 foot (July, August, September)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, October, November, December)
Available water capacity to a depth of 60 inches: 13.3 inches
Content of organic matter in the upper 10 inches: 85 percent Typical profile:

Oa-0 to 13 inches; muck
A-13 to 18 inches; loam
$\mathrm{Bg}-18$ to 35 inches; loam
BCg-Cg-35 to 80 inches; loam

Chilgren

Extent: 3 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 9.9 inches
Content of organic matter in the upper 10 inches: 1.1 percent
Typical profile:
A-0 to 4 inches; fine sandy loam
$\mathrm{E}-4$ to 10 inches; fine sandy loam
Btg-10 to 18 inches; clay loam
Bkg1,Bkg2-18 to 72 inches; loam
Cg-72 to 80 inches; loam

Northwood

Extent: 3 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material over glaciolacustrine deposits and/or till Flooding: None

Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 2.5 feet (February)
Shallowest ponding: 0.3 foot (July, August, September)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, October, November, December)
Available water capacity to a depth of 60 inches: 11.3 inches
Content of organic matter in the upper 10 inches: 78.6 percent
Typical profile:
Oa-0 to 9 inches; muck
A-9 to 14 inches; loamy fine sand
Bg1,Bg2-14 to 24 inches; loamy fine sand
2BCkg-2Cg-24 to 80 inches; loam

Berner

Extent: 2 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material over glaciolacustrine deposits and/or till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May, June)
Deepest depth to wet zone: 2.1 feet (February)
Shallowest ponding: 0.3 foot (January, February, July, August, September, October, November, December)
Deepest ponding: 0.5 foot (March, April, May, June)
Available water capacity to a depth of 60 inches: 15.9 inches
Content of organic matter in the upper 10 inches: 85 percent
Typical profile:
Oa1,Oa2-0 to 28 inches; muck
A-28 to 31 inches; sandy loam
$\mathrm{Bg}-31$ to 44 inches; sand
2CBkg-44 to 80 inches; loam

Grygla

Extent: 2 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits and till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 8.4 inches
Content of organic matter in the upper 10 inches: 1.8 percent
Typical profile:
Ap-0 to 6 inches; loamy fine sand
$\mathrm{Bg}-6$ to 26 inches; fine sand
2Bkg-2Cg-26 to 80 inches; loam

Seelyeville

Extent: 2 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 1.6 feet (February, August)
Shallowest ponding: 0.3 foot (January, February, July, August, September, October, November, December)
Deepest ponding: 0.5 foot (March, April, May, June)
Available water capacity to a depth of 60 inches: 25.1 inches
Content of organic matter in the upper 10 inches: 90 percent
Typical profile:
Oa1-0 to 10 inches; muck
Oa2-Oa5-10 to 80 inches; muck
Major Uses of the Map Unit

- Pasture, wildlife habitat

B203A-Northwood muck, depressional, MLRA 88, 0 to 1 percent slopes

Component Description

Northwood and similar soils

Extent: 75 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material over glaciolacustrine deposits and/or till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 2.5 feet (February)
Shallowest ponding: 0.3 foot (July, August, September)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, October, November, December)
Available water capacity to a depth of 60 inches: 11.3 inches
Content of organic matter in the upper 10 inches: 78.6 percent
Typical profile:
Oa-0 to 9 inches; muck
A-9 to 14 inches; loamy fine sand
$\mathrm{Bg} 1, \mathrm{Bg} 2-14$ to 24 inches; loamy fine sand 2BCkg-2Cg-24 to 80 inches; loam

Hamre

Extent: 10 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent

Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 2.5 feet (February)
Shallowest ponding: 0.3 foot (July, August, September)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, October,
November, December)
Available water capacity to a depth of 60 inches: 13.3 inches
Content of organic matter in the upper 10 inches: 85 percent
Typical profile:
Oa-0 to 13 inches; muck
A-13 to 18 inches; loam
Bg-18 to 35 inches; loam
$B C g-C g-35$ to 80 inches; loam

Grygla

Extent: 7 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits and till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 8.4 inches
Content of organic matter in the upper 10 inches: 1.8 percent
Typical profile:
Ap-0 to 6 inches; loamy fine sand
$\mathrm{Bg}-6$ to 26 inches; fine sand
$2 \mathrm{Bkg}-2 \mathrm{Cg}-26$ to 80 inches; loam

Berner

Extent: 5 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material over glaciolacustrine deposits and/or till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May, June)
Deepest depth to wet zone: 2.1 feet (February)
Shallowest ponding: 0.3 foot (January, February, July, August, September, October, November, December)
Deepest ponding: 0.5 foot (March, April, May, June)
Available water capacity to a depth of 60 inches: 15.9 inches
Content of organic matter in the upper 10 inches: 85 percent

Typical profile:

Oa1,Oa2-0 to 28 inches; muck
A-28 to 31 inches; sandy loam
$\mathrm{Bg}-31$ to 44 inches; sand
2CBkg-44 to 80 inches; loam

Chilgren

Extent: 3 percent of the unit Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 9.9 inches
Content of organic matter in the upper 10 inches: 1.1 percent
Typical profile:
A-0 to 4 inches; fine sandy loam
$\mathrm{E}-4$ to 10 inches; fine sandy loam
Btg-10 to 18 inches; clay loam
Bkg1,Bkg2-18 to 72 inches; loam
Cg-72 to 80 inches; loam

Major Uses of the Map Unit

- Pasture, wildlife habitat

B204A—Roliss loam, MLRA 88, 0 to 2 percent slopes Component Description

Roliss and similar soils

Extent: 75 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August, December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 10.7 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap,A-0 to 14 inches; loam

$\mathrm{Bg}-14$ to 20 inches; loam
Cg1-Cg4-20 to 80 inches; loam

Grygla

Extent: 8 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits and till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 8.4 inches
Content of organic matter in the upper 10 inches: 1.8 percent
Typical profile:
Ap-0 to 6 inches; loamy fine sand
$\mathrm{Bg}-6$ to 26 inches; fine sand
$2 \mathrm{Bkg}-2 \mathrm{Cg}-26$ to 80 inches; loam

Chilgren

Extent: 5 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August, December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 9.9 inches
Content of organic matter in the upper 10 inches: 1.1 percent
Typical profile:
A-0 to 4 inches; fine sandy loam
E-4 to 10 inches; fine sandy loam
Btg-10 to 18 inches; clay loam
Bkg1,Bkg2-18 to 72 inches; loam
Cg-72 to 80 inches; loam

Garnes

Extent: 5 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits and till

Flooding: None

Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 10 inches
Content of organic matter in the upper 10 inches: 1.1 percent
Typical profile:
Ap-0 to 6 inches; fine sandy loam
E-6 to 9 inches; loamy fine sand
Bt-9 to 14 inches; clay loam
Bk1,Bk2-14 to 72 inches; loam
C-72 to 80 inches; loam

Roliss, depressional

Extent: 5 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material:Till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 2.5 feet (February)
Shallowest ponding: 0.3 foot (July, August, September, October)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, November, December)
Available water capacity to a depth of 60 inches: 10.9 inches
Content of organic matter in the upper 10 inches: 10 percent
Typical profile:
Ap,A-0 to 14 inches; loam
$\mathrm{Bg}-14$ to 20 inches; loam
Cg1-Cg4-20 to 80 inches; loam

Hamre

Extent: 2 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 2.5 feet (February)
Shallowest ponding: 0.3 foot (July, August, September)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, October,
November, December)
Available water capacity to a depth of 60 inches: 13.3 inches
Content of organic matter in the upper 10 inches: 85 percent
Typical profile:
Oa-0 to 13 inches; muck
A-13 to 18 inches; loam
$\mathrm{Bg}-18$ to 35 inches; loam
BCg-Cg-35 to 80 inches; loam

Major Uses of the Map Unit

- Cropland, pasture, hayland

B205A—Berner muck, depressional, MLRA 88, 0 to 1 percent slopes

Component Description

Berner and similar soils

Extent: 80 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material over glaciolacustrine deposits and/or till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May, June)
Deepest depth to wet zone: 2.1 feet (February)
Shallowest ponding: 0.3 foot (January, February, July, August, September, October,
November, December)
Deepest ponding: 0.5 foot (March, April, May, June)
Available water capacity to a depth of 60 inches: 15.9 inches
Content of organic matter in the upper 10 inches: 85 percent
Typical profile:
Oa1,Oa2-0 to 28 inches; muck
A-28 to 31 inches; sandy loam
$\mathrm{Bg}-31$ to 44 inches; sand
2CBkg-44 to 80 inches; loam

Northwood

Extent: 7 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material over glaciolacustrine deposits and/or till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 2.5 feet (February)
Shallowest ponding: 0.3 foot (July, August, September)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, October,
November, December)
Available water capacity to a depth of 60 inches: 11.3 inches
Content of organic matter in the upper 10 inches: 78.6 percent
Typical profile:
Oa-0 to 9 inches; muck
A-9 to 14 inches; loamy fine sand
Bg1,Bg2-14 to 24 inches; fine sand
2BCkg-2Cg-24 to 80 inches; loam
Grygla
Extent: 5 percent of the unit

Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits and till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August, September, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 8.4 inches
Content of organic matter in the upper 10 inches: 1.8 percent
Typical profile:
Ap-0 to 6 inches; loamy fine sand
$\mathrm{Bg}-6$ to 26 inches; fine sand
2Bkg-2Cg-26 to 80 inches; loam

Cathro

Extent: 3 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material over till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May, June)
Deepest depth to wet zone: 2.1 feet (February)
Shallowest ponding: 0.3 foot (January, February, July, August, September, October,
November, December)
Deepest ponding: 0.5 foot (March, April, May, June)
Available water capacity to a depth of 60 inches: 15.9 inches
Content of organic matter in the upper 10 inches: 85 percent
Typical profile:
Oa1,Oa2-0 to 11 inches; muck
Оa3-11 to 23 inches; muck
Cg-23 to 60 inches; loam

Hamre

Extent: 3 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 2.5 feet (February)
Shallowest ponding: 0.3 foot (July, August, September)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, October, November, December)
Available water capacity to a depth of 60 inches: 13.3 inches
Content of organic matter in the upper 10 inches: 85 percent

Typical profile:
Oa-0 to 13 inches; muck
A-13 to 18 inches; loam
$\mathrm{Bg}-18$ to 35 inches; loam
BCg-Cg-35 to 80 inches; loam

Seelyeville

Extent: 2 percent of the unit Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 1.6 feet (February, August)
Shallowest ponding: 0.3 foot (January, February, July, August, September, October,
November, December)
Deepest ponding: 0.5 foot (March, April, May, June)
Available water capacity to a depth of 60 inches: 25.1 inches
Content of organic matter in the upper 10 inches: 90 percent
Typical profile:
Oa1-0 to 10 inches; muck
Oa2-Oa5-10 to 80 inches; muck

Major Uses of the Map Unit

- Pasture, wildlife habitat

B206A—Hamre muck, depressional, MLRA 88, 0 to 1 percent slopes

Component Description

Hamre and similar soils

Extent: 80 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 2.5 feet (February)
Shallowest ponding: 0.3 foot (July, August, September)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, October, November, December)
Available water capacity to a depth of 60 inches: 13.3 inches
Content of organic matter in the upper 10 inches: 85 percent
Typical profile:
Oa-0 to 13 inches; muck
A-13 to 18 inches; loam
$\mathrm{Bg}-18$ to 35 inches; loam
BCg-Cg-35 to 80 inches; loam

Chilgren

Extent: 8 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August, December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 9.9 inches
Content of organic matter in the upper 10 inches: 1.1 percent
Typical profile:
A-0 to 4 inches; fine sandy loam
$\mathrm{E}-4$ to 10 inches; fine sandy loam
Btg-10 to 18 inches; clay loam
Bkg1,Bkg2-18 to 72 inches; loam
Cg-72 to 80 inches; loam

Northwood

Extent: 5 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material over glaciolacustrine deposits and/or till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 2.5 feet (February)
Shallowest ponding: 0.3 foot (July, August, September)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, October,
November, December)
Available water capacity to a depth of 60 inches: 11.3 inches
Content of organic matter in the upper 10 inches: 78.6 percent
Typical profile:
Oa-0 to 9 inches; muck
A-9 to 14 inches; loamy fine sand
Bg1,Bg2-14 to 24 inches; loamy fine sand
2BCkg-2Cg-24 to 80 inches; loam

Cathro

Extent: 3 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material over till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May, June)

Deepest depth to wet zone: 2.1 feet (February)
Shallowest ponding: 0.3 foot (January, February, July, August, September, October,
November, December)
Deepest ponding: 0.5 foot (March, April, May, June)
Available water capacity to a depth of 60 inches: 15.9 inches
Content of organic matter in the upper 10 inches: 85 percent
Typical profile:
Oa1,Oa2-0 to 11 inches; muck
Oa3-11 to 23 inches; muck
Cg-23 to 60 inches; loam

Grygla

Extent: 2 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits and till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August, September, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 8.4 inches
Content of organic matter in the upper 10 inches: 1.8 percent
Typical profile:
Ap-0 to 6 inches; loamy fine sand
$\mathrm{Bg}-6$ to 26 inches; fine sand
2Bkg-2Cg-26 to 80 inches; loam
Roliss
Extent: 2 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 10.7 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap,A-0 to 14 inches; loam
Bg-14 to 20 inches; loam
Cg1-Cg4-20 to 80 inches; loam
Major Uses of the Map Unit

- Pasture, wildlife habitat

I1A—Augsburg loam, 0 to 2 percent slopes

Component Description

Augsburg and similar soils

Extent: 75 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August, December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 10 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap,A-0 to 11 inches; loam
Bkg-11 to 18 inches; very fine sandy loam
Bg1-18 to 33 inches; loamy very fine sand
2Bg2-33 to 60 inches; clay

Borup

Extent: 10 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June)
Available water capacity to a depth of 60 inches: 10.7 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap,A-0 to 12 inches; loam
Bkg,Bkyg-12 to 34 inches; silt loam
$\mathrm{Cg}-34$ to 60 inches; very fine sandy loam

Foxlake

Extent: 5 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material:Till
Flooding: None

Shallowest depth to wet zone: At the surface (April)
Deepest depth to wet zone: 3 feet (August)
Months when ponding does not occur: January, February, March, December
Deepest ponding: 0.3 foot (April, May, June, November)
Available water capacity to a depth of 60 inches: 8.9 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap,A-0 to 19 inches; loam
Bg-19 to 38 inches; silty clay
Bkg—38 to 49 inches; clay
Cg-49 to 80 inches; clay

Augsburg, depressional

Extent: 3 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Mucky loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 3 feet (February)
Shallowest ponding: 0.3 foot (July, August, September, October)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, November,
December)
Available water capacity to a depth of 60 inches: 10.3 inches
Content of organic matter in the upper 10 inches: 10 percent
Typical profile:
Ap,A-0 to 11 inches; mucky loam
Bkg-11 to 18 inches; very fine sandy loam
Bg1-18 to 33 inches; very fine sandy loam
2Bg2-33 to 60 inches; clay

Wheatville

Extent: 3 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Very fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 1.3 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 9.4 inches
Content of organic matter in the upper 10 inches: 2.8 percent
Typical profile:
Ap-0 to 9 inches; very fine sandy loam
Bk1,Bk2-9 to 31 inches; very fine sandy loam
2C1-2C4—31 to 80 inches; clay

Glyndon

Extent: 2 percent of the unit
Geomorphic component: Rises on lake plains

Slope range: 0 to 2 percent
Texture of the surface layer: Very fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 1 foot (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 10.4 inches
Content of organic matter in the upper 10 inches: 3 percent
Typical profile:
$A p, A k-0$ to 11 inches; very fine sandy loam
Bk1,Bk2—11 to 28 inches; loam
C,Cg-28 to 60 inches; loamy very fine sand

Espelie

Extent: 1 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June)
Available water capacity to a depth of 60 inches: 7.1 inches
Content of organic matter in the upper 10 inches: 5.6 percent
Typical profile:
Ap-0 to 9 inches; fine sandy loam
Bw1,Bw2-9 to 24 inches; fine sand
$2 \mathrm{Bg}-2 \mathrm{Cg}-24$ to 80 inches; clay

Hattie

Extent: 1 percent of the unit
Geomorphic component: Escarpments on lake plains
Position on the landform: Summits
Slope range: 1 to 3 percent
Texture of the surface layer: Clay
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 2.1 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (February)
Ponding: None
Available water capacity to a depth of 60 inches: 7.7 inches
Content of organic matter in the upper 10 inches: 2.5 percent
Typical profile:
Ap-0 to 8 inches; clay

Bk-8 to 22 inches; silty clay
C-22 to 80 inches; clay

Major Uses of the Map Unit

- Cropland

I2A—Augsburg very fine sandy loam, 0 to 2 percent slopes

Component Description

Augsburg and similar soils

Extent: 75 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Very fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August, December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 10 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap,Ak-0 to 11 inches; very fine sandy loam
Bkg-11 to 18 inches; very fine sandy loam
Bg1-18 to 33 inches; loamy very fine sand 2Bg2-33 to 60 inches; clay

Borup

Extent: 10 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Very fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June)
Available water capacity to a depth of 60 inches: 10.7 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
$A p, A-0$ to 12 inches; very fine sandy loam
Bkg,Bkyg-12 to 34 inches; silt loam
Cg-34 to 60 inches; very fine sandy loam

Foxlake

Extent: 5 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: At the surface (April)
Deepest depth to wet zone: 3 feet (August)
Months when ponding does not occur: January, February, March, December
Deepest ponding: 0.3 foot (April, May, June, November)
Available water capacity to a depth of 60 inches: 8.9 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap,A-0 to 19 inches; loam
Bg-19 to 38 inches; silty clay
Bkg-38 to 49 inches; clay
Cg-49 to 80 inches; clay

Augsburg, depressional

Extent: 3 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Mucky loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 3 feet (February)
Shallowest ponding: 0.3 foot (July, August, September, October)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, November,
December)
Available water capacity to a depth of 60 inches: 10.3 inches
Content of organic matter in the upper 10 inches: 10 percent
Typical profile:
Ap,A-0 to 11 inches; mucky loam
Bkg-11 to 18 inches; very fine sandy loam
Bg1-18 to 33 inches; very fine sandy loam
2Bg2-33 to 60 inches; clay

Wheatville

Extent: 3 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Very fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 1.3 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None

Available water capacity to a depth of 60 inches: 9.4 inches Content of organic matter in the upper 10 inches: 2.8 percent Typical profile:

Ap-0 to 9 inches; very fine sandy loam
Bk1,Bk2-9 to 31 inches; very fine sandy loam
2C1-2C4-31 to 80 inches; clay

Glyndon

Extent: 2 percent of the unit Geomorphic component: Rises on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Very fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 1 foot (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 10.4 inches Content of organic matter in the upper 10 inches: 3 percent Typical profile:

Ap,Ak-0 to 11 inches; very fine sandy loam
Bk1,Bk2-11 to 28 inches; loam
C, $\mathrm{Cg}-28$ to 60 inches; loamy very fine sand

Espelie

Extent: 1 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June)
Available water capacity to a depth of 60 inches: 7.1 inches
Content of organic matter in the upper 10 inches: 5.6 percent
Typical profile:
Ap-0 to 9 inches; fine sandy loam
Bw1,Bw2-9 to 24 inches; fine sand
$2 \mathrm{Bg}-2 \mathrm{Cg}-24$ to 80 inches; clay

Hattie

Extent: 1 percent of the unit
Geomorphic component: Escarpments on lake plains
Position on the landform: Summits
Slope range: 1 to 3 percent
Texture of the surface layer: Clay
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material:Till

```
Flooding: None
Shallowest depth to wet zone: 2.1 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (February)
Ponding: None
Available water capacity to a depth of 60 inches: 7.7 inches
Content of organic matter in the upper 10 inches: 2.5 percent
Typical profile:
    Ap-0 to 8 inches; clay
    Bk-8 to 22 inches; silty clay
    C-22 to 80 inches; clay
```

Major Uses of the Map Unit

- Cropland

I3A-Berner muck, 0 to 1 percent slopes Component Description

Berner and similar soils

Extent: 80 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material over glaciolacustrine deposits and/or till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May, June)
Deepest depth to wet zone: 2.1 feet (February)
Shallowest ponding: 0.3 foot (January, February, July, August, September, October,
November, December)
Deepest ponding: 0.5 foot (March, April, May, June)
Available water capacity to a depth of 60 inches: 15.9 inches
Content of organic matter in the upper 10 inches: 85 percent
Typical profile:
Oa1,Oa2-0 to 28 inches; muck
A-28 to 31 inches; sandy loam
$\mathrm{Bg}-31$ to 44 inches; sand
2CBkg-44 to 80 inches; loam

Northwood

Extent: 7 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material over glaciolacustrine deposits and/or till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 2.5 feet (February)
Shallowest ponding: 0.3 foot (July, August, September)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, October,
November, December)
Available water capacity to a depth of 60 inches: 11.3 inches

Content of organic matter in the upper 10 inches: 78.6 percent
Typical profile:
Oa-0 to 9 inches; muck
A-9 to 14 inches; loamy fine sand
Bg1,Bg2-14 to 24 inches; fine sand
2BCkg-2Cg-24 to 80 inches; loam
Kratka
Extent: 5 percent of the unit Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 9.1 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap,A-0 to 11 inches; fine sandy loam
$\mathrm{Bg} 1, \mathrm{Bg} 2-11$ to 18 inches; loamy fine sand
Cg1-18 to 25 inches; fine sand
2Cg2-2Cg4-25 to 80 inches; loam

Hamre

Extent: 3 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 2.5 feet (February)
Shallowest ponding: 0.3 foot (July, August, September)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, October,
November, December)
Available water capacity to a depth of 60 inches: 13.3 inches
Content of organic matter in the upper 10 inches: 85 percent
Typical profile:
Oa-0 to 13 inches; muck
A-13 to 18 inches; loam
Bg1,Bg2-18 to 71 inches; loam
Cg-71 to 80 inches; loam

Strathcona

Extent: 3 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)

[^0]Major Uses of the Map Unit

- Pasture, hayland, wildlife habitat

14A-Berner, Rosewood, and Strathcona soils, seepy, 0 to 2 percent slopes

Component Description

Berner and similar soils

Extent: 0 to 90 percent of the unit Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material over glaciolacustrine deposits and/or till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May, June)

Deepest depth to wet zone: 2.1 feet (February)
Shallowest ponding: 0.3 foot (January, February, July, August, September, October, November, December)
Deepest ponding: 0.5 foot (March, April, May, June)
Available water capacity to a depth of 60 inches: 15.9 inches
Content of organic matter in the upper 10 inches: 85 percent
Typical profile:
Oa1,Oa2-0 to 28 inches; muck
A-28 to 31 inches; sandy loam
$\mathrm{Bg}-31$ to 44 inches; sand
2CBkg-44 to 80 inches; loam

Rosewood, depressional, and similar soils

Extent: 0 to 90 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: At the surface (April)
Deepest depth to wet zone: 3 feet (February, August)
Shallowest ponding: 0.3 foot (July, August, September, October)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, November, December)
Available water capacity to a depth of 60 inches: 6.2 inches
Content of organic matter in the upper 10 inches: 8.2 percent
Typical profile:
Ap-0 to 8 inches; fine sandy loam
Bkg1,Bkg2-8 to 18 inches; fine sandy loam
Cg1-Cg3-18 to 80 inches; fine sand

Strathcona, depressional, and similar soils

Extent: 0 to 90 percent of the unit Geomorphic component: Depressions on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Mucky fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 2.5 feet (February, August)
Shallowest ponding: 0.3 foot (July, August, September, October)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, November,
December)
Available water capacity to a depth of 60 inches: 9.9 inches
Content of organic matter in the upper 10 inches: 10 percent
Typical profile:
Ap-0 to 10 inches; mucky fine sandy loam
Bkg-10 to 17 inches; fine sandy loam
Cg1-17 to 28 inches; fine sand
2Cg2,2Cg3-28 to 80 inches; loam

Rosewood

Extent: 0 to 10 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.9 feet (August)
Months when ponding does not occur: January, February, March, July, August, September, November, December
Deepest ponding: 0.3 foot (April, May, June, October)
Available water capacity to a depth of 60 inches: 5.6 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap-0 to 8 inches; fine sandy loam
Bkg1,Bkg2-8 to 18 inches; fine sandy loam
Cg1-Cg3-18 to 80 inches; fine sand

Deerwood

Extent: 0 to 10 percent of the unit Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material over glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 2.5 feet (February)
Shallowest ponding: 0.3 foot (July, August, September)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, October, November, December)
Available water capacity to a depth of 60 inches: 7.1 inches
Content of organic matter in the upper 10 inches: 75 percent
Typical profile:
Oa-0 to 10 inches; muck
A-10 to 12 inches; loamy sand
Cg1,Cg2-12 to 60 inches; sand

Mavie

Extent: 0 to 10 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August, September, November, December

Deepest ponding: 0.3 foot (April, May, June, October)
Available water capacity to a depth of 60 inches: 7.4 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap-0 to 12 inches; fine sandy loam
Bk-12 to 18 inches; sandy loam
2C1,2C2-18 to 39 inches; very gravelly coarse sand
3C3-39 to 80 inches; loam

Strathcona

Extent: 0 to 10 percent of the unit Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 9 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap-0 to 10 inches; fine sandy loam
Bkg-10 to 17 inches; fine sandy loam
Cg1-17 to 28 inches; fine sand
2Cg2,2Cg3-28 to 80 inches; loam
Major Uses of the Map Unit

- Pasture, hayland, wildlife habitat

I5A—Borup loam, 0 to 2 percent slopes
 Component Description

Borup and similar soils

Extent: 75 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June)
Available water capacity to a depth of 60 inches: 10.7 inches
Content of organic matter in the upper 10 inches: 5 percent

Typical profile:
Ap,A-0 to 12 inches; loam
Bkg,Bkyg-12 to 34 inches; silt loam
$\mathrm{Cg}-34$ to 60 inches; very fine sandy loam

Glyndon

Extent: 9 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Very fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 1 foot (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 10.4 inches
Content of organic matter in the upper 10 inches: 3 percent
Typical profile:
Ap,Ak-0 to 11 inches; very fine sandy loam
Bk1,Bk2-11 to 28 inches; loam
C,Cg-28 to 60 inches; loamy very fine sand

Rosewood

Extent: 8 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.9 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, November, December
Deepest ponding: 0.3 foot (April, May, June, October)
Available water capacity to a depth of 60 inches: 5.6 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap-0 to 8 inches; fine sandy loam
Bkg1,Bkg2-8 to 18 inches; fine sandy loam
Cg1-Cg3-18 to 80 inches; fine sand

Augsburg

Extent: 5 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)

Months when ponding does not occur: January, February, March, July, August, December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 10 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap,A-0 to 11 inches; loam
Bkg-11 to 18 inches; very fine sandy loam
Bg1-18 to 33 inches; loamy very fine sand
2Bg2-33 to 60 inches; clay

Augsburg, depressional

Extent: 3 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Mucky loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 3 feet (February)
Shallowest ponding: 0.3 foot (July, August, September, October)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, November, December)
Available water capacity to a depth of 60 inches: 10.3 inches
Content of organic matter in the upper 10 inches: 10 percent
Typical profile:
Ap,A—0 to 11 inches; mucky loam
Bkg-11 to 18 inches; very fine sandy loam
Bg1-18 to 33 inches; very fine sandy loam
2Bg2—33 to 60 inches; clay
Major Uses of the Map Unit

- Cropland

I6A—Borup very fine sandy loam, 0 to 2 percent slopes

Component Description

Borup and similar soils

Extent: 75 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Very fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August, December
Deepest ponding: 0.3 foot (April, May, June)
Available water capacity to a depth of 60 inches: 10.7 inches

Content of organic matter in the upper 10 inches: 5 percent Typical profile:

Ap,A-0 to 12 inches; very fine sandy loam
Bkg,Bkyg-12 to 34 inches; silt loam
$\mathrm{Cg}-34$ to 60 inches; very fine sandy loam

Glyndon

Extent: 9 percent of the unit Geomorphic component: Rises on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Very fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 1 foot (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 10.4 inches
Content of organic matter in the upper 10 inches: 3 percent
Typical profile:
Ap,Ak-0 to 11 inches; very fine sandy loam
Bk1,Bk2-11 to 28 inches; loam
C, $\mathrm{Cg}-28$ to 60 inches; loamy very fine sand

Rosewood

Extent: 8 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.9 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, November, December
Deepest ponding: 0.3 foot (April, May, June, October)
Available water capacity to a depth of 60 inches: 5.6 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap-0 to 8 inches; fine sandy loam
Bkg1,Bkg2-8 to 18 inches; fine sandy loam
Cg1-Cg3-18 to 80 inches; fine sand

Augsburg

Extent: 5 percent of the unit Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)

Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August, December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 10 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap,A-0 to 11 inches; loam
Bkg-11 to 18 inches; very fine sandy loam
Bg1-18 to 33 inches; loamy very fine sand
2Bg2-33 to 60 inches; clay

Augsburg, depressional

Extent: 3 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Mucky loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 3 feet (February)
Shallowest ponding: 0.3 foot (July, August, September, October)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, November, December)
Available water capacity to a depth of 60 inches: 10.3 inches
Content of organic matter in the upper 10 inches: 10 percent
Typical profile:
Ap,A-0 to 11 inches; mucky loam
Bkg-11 to 18 inches; very fine sandy loam
Bg1-18 to 33 inches; very fine sandy loam
2Bg2-33 to 60 inches; clay
Major Uses of the Map Unit

- Cropland

I7A—Bowstring-Fluvaquents complex, 0 to 2 percent slopes, frequently flooded

Component Description

Bowstring and similar soils

Extent: 45 percent of the unit
Geomorphic component: Swales on flood plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material over alluvium
Months in which flooding does not occur: January, February, December
Highest frequency of flooding: Very frequent (April, May)
Shallowest depth to wet zone: At the surface (March, April, May, June)
Deepest depth to wet zone: 2.1 feet (February)

Shallowest ponding: 0.3 foot (January, February, July, August, September, October, November, December)
Deepest ponding: 0.5 foot (March, April, May, June)
Available water capacity to a depth of 60 inches: 21.4 inches
Content of organic matter in the upper 10 inches: 65 percent Typical profile:

Oa1,Oa2-0 to 38 inches; muck
Cg-38 to 47 inches; stratified sand to fine sandy loam
O'a-47 to 80 inches; muck

Fluvaquents and similar soils

Extent: 45 percent of the unit
Geomorphic component: Swales and flats on flood plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Alluvium
Months in which flooding does not occur: January, February, December
Highest frequency of flooding: Very frequent (April, May)
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 1.6 feet (February, August)
Shallowest ponding: 0.5 foot (January, February, March, June, July, August,
September, October, November, December)
Deepest ponding: 0.7 foot (April, May)
Available water capacity to a depth of 60 inches: 8.1 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
A-0 to 16 inches; fine sandy loam
Cg-16 to 80 inches; stratified loamy sand to silt loam

Hapludolls

Extent: 5 percent of the unit
Geomorphic component: Escarpments in drainageways; hillslopes in drainageways
Slope range: 2 to 30 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Well drained
Parent material: Glaciolacustrine deposits and/or till
Months in which flooding does not occur: January, February, December
Highest frequency of flooding: Rare (March, April, May, June, September, October, November)
Shallowest depth to wet zone: 6.7 feet (transitory) (March, April, May, November)
Deepest depth to wet zone: More than 6.7 feet (January, February, June, July, August,
September, October, December)
Ponding: None
Available water capacity to a depth of 60 inches: 10.4 inches
Content of organic matter in the upper 10 inches: 1.9 percent
Typical profile:
A-0 to 9 inches; loam
C-9 to 60 inches; loam

Water

Extent: 5 percent of the unit

Major Uses of the Map Unit

- Wetland wildlife habitat

I8A-Cathro muck, 0 to 1 percent slopes

Component Description

Cathro and similar soils

Extent: 80 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material over till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May, June)
Deepest depth to wet zone: 2.1 feet (February)
Shallowest ponding: 0.3 foot (January, February, July, August, September, October,
November, December)
Deepest ponding: 0.5 foot (March, April, May, June)
Available water capacity to a depth of 60 inches: 15.9 inches
Content of organic matter in the upper 10 inches: 85 percent
Typical profile:
Oa1,Oa2-0 to 11 inches; muck
Oa3-11 to 23 inches; muck
Cg-23 to 60 inches; loam

Hamre

Extent: 8 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 2.5 feet (February)
Shallowest ponding: 0.3 foot (July, August, September)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, October,
November, December)
Available water capacity to a depth of 60 inches: 13.3 inches
Content of organic matter in the upper 10 inches: 85 percent Typical profile:

Oa-0 to 13 inches; muck
A-13 to 18 inches; loam
Bg1,Bg2-18 to 71 inches; loam
Cg-71 to 80 inches; loam

Northwood

Extent: 3 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent

Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material over glaciolacustrine deposits and/or till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 2.5 feet (February)
Shallowest ponding: 0.3 foot (July, August, September)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, October,
November, December)
Available water capacity to a depth of 60 inches: 11.3 inches
Content of organic matter in the upper 10 inches: 78.6 percent
Typical profile:
Oa-0 to 9 inches; muck
A-9 to 14 inches; loamy fine sand
Bg1,Bg2-14 to 24 inches; fine sand
2BCkg-2Cg—24 to 80 inches; loam
Roliss
Extent: 3 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 10.7 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap,A-0 to 14 inches; loam
Bg-14 to 20 inches; loam
Cg1-Cg4-20 to 80 inches; loam

Berner

Extent: 2 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material over glaciolacustrine deposits and/or till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May, June)
Deepest depth to wet zone: 2.1 feet (February)
Shallowest ponding: 0.3 foot (January, February, July, August, September, October, November, December)
Deepest ponding: 0.5 foot (March, April, May, June)

Available water capacity to a depth of 60 inches: 15.9 inches
Content of organic matter in the upper 10 inches: 85 percent
Typical profile:
Oa1,Oa2-0 to 28 inches; muck
A-28 to 31 inches; sandy loam
$\mathrm{Bg}-31$ to 44 inches; sand
2CBkg-44 to 80 inches; loam

Kratka

Extent: 2 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 9.1 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap,A-0 to 11 inches; fine sandy loam
Bg1,Bg2-11 to 18 inches; loamy fine sand
Cg1-18 to 25 inches; fine sand
2Cg2-2Cg4-25 to 80 inches; loam

Seelyeville

Extent: 2 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 1.6 feet (February, August)
Shallowest ponding: 0.3 foot (January, February, July, August, September, October, November, December)
Deepest ponding: 0.5 foot (March, April, May, June)
Available water capacity to a depth of 60 inches: 25.1 inches
Content of organic matter in the upper 10 inches: 90 percent
Typical profile:
Oa1-0 to 10 inches; muck
Oa2-Oa5-10 to 80 inches; muck

Major Uses of the Map Unit

- Pasture, hayland, wildlife habitat

19A-Clearwater clay, 0 to 2 percent slopes

Component Description

Clearwater and similar soils

Extent: 80 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Clay
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material:Till
Flooding: None
Shallowest depth to wet zone: At the surface (April)
Deepest depth to wet zone: 3 feet (August)
Months when ponding does not occur: January, February, March, December
Deepest ponding: 0.3 foot (April, May, June, November)
Available water capacity to a depth of 60 inches: 8.2 inches
Content of organic matter in the upper 10 inches: 4.2 percent
Typical profile:
Ap-0 to 8 inches; clay
Bss1,Bss2-8 to 35 inches; clay
Cg1,Cg2-35 to 80 inches; clay

Clearwater, very cobbly

Extent: 5 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Clay
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material:Till
Flooding: None
Shallowest depth to wet zone: At the surface (April)
Deepest depth to wet zone: 3 feet (August)
Months when ponding does not occur: January, February, March, December
Deepest ponding: 0.3 foot (April, May, June, November)
Available water capacity to a depth of 60 inches: 8.2 inches
Content of organic matter in the upper 10 inches: 4.2 percent
Typical profile:
Ap-0 to 8 inches; clay
Bss1,Bss2-8 to 35 inches; clay
Cg1,Cg2-35 to 80 inches; clay

Reis

Extent: 5 percent of the unit
Geomorphic component: Rises and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Clay
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.6 feet (August)
Ponding: None

Available water capacity to a depth of 60 inches: 8.3 inches Content of organic matter in the upper 10 inches: 4.7 percent Typical profile:

Ap-0 to 9 inches; clay
A/Bk-9 to 17 inches; clay
Bkss1,Bkss2-17 to 33 inches; clay
Bkg- 33 to 42 inches; clay
Cg1,Cg2-42 to 60 inches; clay
C-60 to 80 inches; clay

Clearwater, depressional

Extent: 3 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Mucky clay loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material:Till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 1.6 feet (February, August)
Ponding depth: 0.5 foot (all year)
Available water capacity to a depth of 60 inches: 9 inches
Content of organic matter in the upper 10 inches: 8.4 percent
Typical profile:
Ap-0 to 8 inches; mucky clay loam
Bss1,Bss2-8 to 35 inches; clay
Cg1,Cg2-35 to 80 inches; clay

Espelie

Extent: 3 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June)
Available water capacity to a depth of 60 inches: 7.1 inches
Content of organic matter in the upper 10 inches: 5.6 percent
Typical profile:
Ap-0 to 9 inches; fine sandy loam
Bw1,Bw2-9 to 24 inches; fine sand
$2 \mathrm{Bg}-2 \mathrm{Cg}-24$ to 80 inches; clay

Foxlake

Extent: 2 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)

Drainage class: Poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: At the surface (April)
Deepest depth to wet zone: 3 feet (August)
Months when ponding does not occur: January, February, March, December
Deepest ponding: 0.3 foot (April, May, June, November)
Available water capacity to a depth of 60 inches: 8.9 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap,A-0 to 19 inches; loam
Bg-19 to 38 inches; silty clay
Bkg-38 to 49 inches; clay
Cg-49 to 80 inches; clay

Hattie

Extent: 1 percent of the unit
Geomorphic component: Escarpments on lake plains
Position on the landform: Summits
Slope range: 1 to 3 percent
Texture of the surface layer: Clay
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 2.1 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (February)
Ponding: None
Available water capacity to a depth of 60 inches: 7.7 inches
Content of organic matter in the upper 10 inches: 2.5 percent
Typical profile:
Ap-0 to 8 inches; clay
Bk-8 to 22 inches; silty clay
C-22 to 80 inches; clay

Huot

Extent: 1 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 7.6 inches
Content of organic matter in the upper 10 inches: 3 percent
Typical profile:
Ap,Ak-0 to 14 inches; fine sandy loam
Bk-14 to 26 inches; loamy fine sand
C1-26 to 34 inches; fine sand
2C2,2C3-34 to 80 inches; clay

Major Uses of the Map Unit

- Cropland

I10A-Clearwater mucky clay loam, depressional, 0 to 1 percent slopes

Component Description

Clearwater, depressional, and similar soils

Extent: 85 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Mucky clay loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 1.6 feet (February, August)
Ponding depth: 0.5 foot (all year)
Available water capacity to a depth of 60 inches: 9 inches
Content of organic matter in the upper 10 inches: 8.4 percent
Typical profile:
Ap-0 to 8 inches; mucky clay loam
Bss1,Bss2—8 to 35 inches; clay
Cg1,Cg2—35 to 80 inches; clay

Clearwater

Extent: 9 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Clay
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: At the surface (April)
Deepest depth to wet zone: 3 feet (August)
Months when ponding does not occur: January, February, March, December
Deepest ponding: 0.3 foot (April, May, June, November)
Available water capacity to a depth of 60 inches: 8.2 inches
Content of organic matter in the upper 10 inches: 4.2 percent
Typical profile:
Ap-0 to 8 inches; clay
Bss1,Bss2-8 to 35 inches; clay
Cg1,Cg2—35 to 80 inches; clay
Augsburg, depressional
Extent: 3 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Mucky loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained

Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 3 feet (February)
Shallowest ponding: 0.3 foot (July, August, September, October)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, November, December)
Available water capacity to a depth of 60 inches: 10.3 inches
Content of organic matter in the upper 10 inches: 10 percent
Typical profile:
Ap,A—0 to 11 inches; mucky loam
Bkg-11 to 18 inches; very fine sandy loam
Bg1-18 to 33 inches; very fine sandy loam
2Bg2-33 to 60 inches; clay

Reis

Extent: 2 percent of the unit
Geomorphic component: Flats and rises on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Clay
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.6 feet (August)
Ponding: None
Available water capacity to a depth of 60 inches: 8.3 inches
Content of organic matter in the upper 10 inches: 4.7 percent
Typical profile:
Ap-0 to 9 inches; clay
A/Bk-9 to 17 inches; clay
Bkss1,Bkss2-17 to 33 inches; clay
Bkg-33 to 42 inches; clay
Cg1,Cg2-42 to 60 inches; clay
C-60 to 80 inches; clay

Espelie

Extent: 1 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June)
Available water capacity to a depth of 60 inches: 7.1 inches
Content of organic matter in the upper 10 inches: 5.6 percent
Typical profile:
Ap-0 to 9 inches; fine sandy loam

Bw1,Bw2-9 to 24 inches; fine sand $2 \mathrm{Bg}-2 \mathrm{Cg}-24$ to 80 inches; clay

Major Uses of the Map Unit

- Pasture, hayland, wildlife habitat

I11A—Deerwood muck, 0 to 1 percent slopes

Component Description

Deerwood and similar soils

Extent: 85 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material over glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 2.5 feet (February)
Shallowest ponding: 0.3 foot (July, August, September)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, October, November, December)
Available water capacity to a depth of 60 inches: 7.1 inches
Content of organic matter in the upper 10 inches: 75 percent
Typical profile:
Oa-0 to 10 inches; muck
A-10 to 12 inches; loamy sand
Cg1,Cg2-12 to 60 inches; sand

Rosewood

Extent: 6 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.9 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, November, December
Deepest ponding: 0.3 foot (April, May, June, October)
Available water capacity to a depth of 60 inches: 5.6 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap-0 to 8 inches; fine sandy loam
Bkg1,Bkg2-8 to 18 inches; fine sandy loam
Cg1-Cg3-18 to 80 inches; fine sand

Markey

Extent: 3 percent of the unit
Geomorphic component: Depressions on lake plains

Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material over glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May, June)
Deepest depth to wet zone: 2.1 feet (February)
Shallowest ponding: 0.3 foot (January, February, July, August, September, October, November, December)
Deepest ponding: 0.5 foot (March, April, May, June)
Available water capacity to a depth of 60 inches: 15.1 inches
Content of organic matter in the upper 10 inches: 85 percent
Typical profile:
Oa1-Oa4-0 to 32 inches; muck
$\mathrm{Cg}-32$ to 60 inches; fine sand

Strathcona

Extent: 2 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August, September, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 9 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap-0 to 10 inches; fine sandy loam
Bkg-10 to 17 inches; fine sandy loam
Cg1-17 to 28 inches; fine sand
2Cg2,2Cg3—28 to 80 inches; loam

Syrene

Extent: 2 percent of the unit
Geomorphic component: Swales and flats on beach plains
Slope range: 0 to 2 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Beach deposits
Flooding: None
Shallowest depth to wet zone: 0.3 foot (April)
Deepest depth to wet zone: 3.3 feet (February, August)
Months when ponding does not occur: January, February, March, July, August,
September, October, November, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 3.8 inches
Content of organic matter in the upper 10 inches: 5.6 percent

Typical profile:

Ap-0 to 9 inches; sandy loam
Bkg1-9 to 17 inches; sandy loam
2Bkg2-17 to 27 inches; stratified loamy fine sand to gravelly coarse sand
2Cg-27 to 60 inches; stratified loamy fine sand to gravelly coarse sand

Venlo

Extent: 2 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: At the surface (April)
Deepest depth to wet zone: 3 feet (February, August)
Shallowest ponding: 0.3 foot (July, August, September, October)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, November,
December)
Available water capacity to a depth of 60 inches: 5.4 inches
Content of organic matter in the upper 10 inches: 10 percent
Typical profile:
A- 0 to 13 inches; fine sandy loam
Cg1,Cg2-13 to 60 inches; fine sand

Major Uses of the Map Unit

- Pasture, hayland, wildlife habitat

I12A-Eckvoll loamy fine sand, 0 to 3 percent slopes
 Component Description

Eckvoll and similar soils

Extent: 70 percent of the unit Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 8.3 inches
Content of organic matter in the upper 10 inches: 1.9 percent
Typical profile:
Ap-0 to 9 inches; loamy fine sand
E1,E2-9 to 25 inches; fine sand
2Bt-25 to 32 inches; sandy clay loam
2BCk,2C1,2C2-32 to 80 inches; loam

Kratka

Extent: 8 percent of the unit

Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August, September, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 9.1 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap,A-0 to 11 inches; fine sandy loam
Bg1,Bg2-11 to 18 inches; loamy fine sand
Cg1-18 to 25 inches; fine sand
2Cg2-2Cg4-25 to 80 inches; loam

Smiley

Extent: 7 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material:Till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August, December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 10.8 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap-0 to 12 inches; loam
Btg-12 to 19 inches; clay loam
Bkg1-Bkg3-19 to 42 inches; loam
Cg1,Cg2—42 to 80 inches; loam

Linveldt

Extent: 5 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 8.9 inches

Content of organic matter in the upper 10 inches: 2.8 percent Typical profile:

Ap-0 to 9 inches; fine sandy loam
$\mathrm{Bt}-9$ to 16 inches; loam
2Bw1,2Bw2-16 to 29 inches; sand
$3 B k-29$ to 45 inches; loam
3C1-3C3-45 to 80 inches; loam
Reiner
Extent: 5 percent of the unit Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material:Till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 10.2 inches
Content of organic matter in the upper 10 inches: 2.3 percent
Typical profile:
Ap-0 to 7 inches; fine sandy loam
Bt-7 to 17 inches; clay loam
Bw,Bk1,Bk2-17 to 35 inches; loam
C1-C3-35 to 80 inches; loam

Foldahl

Extent: 2 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 8.3 inches
Content of organic matter in the upper 10 inches: 3 percent
Typical profile:
Ap,A-0 to 12 inches; loamy fine sand
Bw1,Bw2-12 to 30 inches; fine sand
2BCk-2C3-30 to 80 inches; loam
Pelan
Extent: 2 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till
Flooding: None

Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 8.5 inches
Content of organic matter in the upper 10 inches: 1.4 percent
Typical profile:
Ap-0 to 6 inches; sandy loam
E-6 to 9 inches; sand
Bt-9 to 14 inches; very gravelly sandy loam
Bw-14 to 20 inches; very gravelly coarse sand
2Bw-20 to 60 inches; loam

Poppleton

Extent: 1 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Ponding: None
Available water capacity to a depth of 60 inches: 5 inches
Content of organic matter in the upper 10 inches: 1 percent Typical profile:

Ap-0 to 6 inches; fine sand
E-6 to 9 inches; fine sand
Bw1-Bw4-9 to 40 inches; fine sand
C1,C2-40 to 60 inches; fine sand
Major Uses of the Map Unit

- Cropland, pasture, hayland

I13A—Espelie fine sandy loam, 0 to 2 percent slopes

Component Description

Espelie and similar soils

Extent: 75 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June)
Available water capacity to a depth of 60 inches: 7.1 inches
Content of organic matter in the upper 10 inches: 5.6 percent

Typical profile:
Ap-0 to 9 inches; fine sandy loam
Bw1,Bw2-9 to 24 inches; fine sand
$2 \mathrm{Bg}-2 \mathrm{Cg}-24$ to 80 inches; clay

Foxlake

Extent: 8 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: At the surface (April)
Deepest depth to wet zone: 3 feet (August)
Months when ponding does not occur: January, February, March, December
Deepest ponding: 0.3 foot (April, May, June, November)
Available water capacity to a depth of 60 inches: 8.9 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap,A-0 to 19 inches; loam
$\mathrm{Bg}-19$ to 38 inches; silty clay
Bkg-38 to 49 inches; clay
Cg-49 to 80 inches; clay

Hilaire

Extent: 7 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 6.4 inches
Content of organic matter in the upper 10 inches: 3 percent
Typical profile:
Ap,A-0 to 10 inches; fine sandy loam
Bw1-Bw4-10 to 34 inches; fine sand
2BCk-34 to 80 inches; clay

Clearwater, depressional

Extent: 5 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Mucky clay loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 1.6 feet (February, August)

Ponding depth: 0.5 foot (all year)
Available water capacity to a depth of 60 inches: 9 inches
Content of organic matter in the upper 10 inches: 8.4 percent
Typical profile:
Ap-0 to 8 inches; mucky clay loam
Bss1,Bss2-8 to 35 inches; clay
Cg1,Cg2-35 to 80 inches; clay

Thiefriver

Extent: 5 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June)
Available water capacity to a depth of 60 inches: 7.5 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap,A-0 to 12 inches; fine sandy loam
Bkg1-Bkg3-12 to 23 inches; loamy fine sand
Cg1-23 to 32 inches; fine sand
2Cg2,2Cg3-32 to 80 inches; clay
Major Uses of the Map Unit

- Cropland, pasture, hayland

I14B—Fairdale silt loam, 1 to 6 percent slopes, occasionally flooded

Component Description

Fairdale and similar soils

Extent: 85 percent of the unit
Geomorphic component: Rises on flood plains; stream terraces
Slope range: 1 to 6 percent
Texture of the surface layer: Silt loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Alluvium
Months in which flooding does not occur: January, February November, December
Highest frequency of flooding: Occasional (March, April, May, June)
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 12.3 inches
Content of organic matter in the upper 10 inches: 3.4 percent

Typical profile:
Ap-0 to 7 inches; silt loam
C1-C3-7 to 48 inches; stratified very fine sandy loam to silty clay loam
Ab1,Ab2-48 to 67 inches; silty clay loam
C'-67 to 80 inches; stratified very fine sandy loam to silty clay loam

Fluvaquents

Extent: 6 percent of the unit
Geomorphic component: Flats and swales on flood plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Alluvium
Months in which flooding does not occur: January, February, December
Highest frequency of flooding: Very frequent (April, May)
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 1.6 feet (February, August)
Shallowest ponding: 0.5 foot (January, February, March, June, July, August,
September, October, November, December)
Deepest ponding: 0.7 foot (April, May)
Available water capacity to a depth of 60 inches: 8.1 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
A-0 to 16 inches; fine sandy loam
Cg-16 to 80 inches; stratified loamy sand to silt loam

Hapludolls

Extent: 5 percent of the unit
Geomorphic component: Hillslopes in drainageways; escarpments in drainageways
Slope range: 2 to 30 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Well drained
Parent material: Glaciolacustrine deposits and/or till
Months in which flooding does not occur: January, February, December
Highest frequency of flooding: Rare (March, April, May, June, September, October, November)
Shallowest depth to wet zone: 6.7 feet (transitory) (March, April, May, November)
Deepest depth to wet zone: More than 6.7 feet (January, February, June, July, August,
September, October, December)
Ponding: None
Available water capacity to a depth of 60 inches: 10.4 inches
Content of organic matter in the upper 10 inches: 1.9 percent
Typical profile:
A-0 to 9 inches; loam
C-9 to 60 inches; loam

Hapludalfs

Extent: 2 percent of the unit
Geomorphic component: Escarpments in drainageways; hillslopes in drainageways
Slope range: 3 to 60 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained

Parent material: Glaciolacustrine deposits and till
Months in which flooding does not occur: January, February, December
Highest frequency of flooding: Rare (March, April, May, June, September, October, November)
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 10.1 inches
Content of organic matter in the upper 10 inches: 0.9 percent
Typical profile:
A-0 to 6 inches; fine sandy loam
E-6 to 8 inches; fine sandy loam
$\mathrm{Bt} 1, \mathrm{Bt} 2-8$ to 25 inches; silty clay loam
C1,C2-25 to 80 inches; silt loam

Zell

Extent: 2 percent of the unit
Geomorphic component: Escarpments on lake plains
Position on the landform: Backslopes and shoulders
Slope range: 6 to 20 percent
Texture of the surface layer: Silt loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Well drained
Parent material: Glaciolacustrine deposits
Flooding: None
Depth to wet zone: More than 6.7 feet (all year)
Ponding: None
Available water capacity to a depth of 60 inches: 10.1 inches
Content of organic matter in the upper 10 inches: 2 percent
Typical profile:
A-0 to 6 inches; silt loam
Bk-Bky-6 to 26 inches; silt loam
C-26 to 60 inches; very fine sandy loam

Major Uses of the Map Unit

- Cropland, pasture, hayland

I14D-Fairdale silt loam, 6 to 15 percent slopes, occasionally flooded

Component Description

Fairdale and similar soils

Extent: 85 percent of the unit
Geomorphic component: Rises on flood plains; stream terraces
Slope range: 6 to 15 percent
Texture of the surface layer: Silt loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Alluvium
Months in which flooding does not occur: January, February, November, December
Highest frequency of flooding: Occasional (March, April, May, June)
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)

Ponding: None
Available water capacity to a depth of 60 inches: 12.3 inches
Content of organic matter in the upper 10 inches: 3.4 percent
Typical profile:
Ap-0 to 7 inches; silt loam
C1-C3-7 to 48 inches; stratified very fine sandy loam to silty clay loam
Ab1,Ab2-48 to 67 inches; silty clay loam
C'-67 to 80 inches; stratified very fine sandy loam to silty clay loam

Fluvaquents

Extent: 6 percent of the unit
Geomorphic component: Swales and flats on flood plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Alluvium
Months in which flooding does not occur: January, February, December
Highest frequency of flooding: Very frequent (April, May)
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 1.6 feet (February, August)
Shallowest ponding: 0.5 foot (January, February, March, June, July, August,
September, October, November, December)
Deepest ponding: 0.7 foot (April, May)
Available water capacity to a depth of 60 inches: 8.1 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
A-0 to 16 inches; fine sandy loam
Cg-16 to 80 inches; stratified loamy sand to silt loam

Hapludolls

Extent: 4 percent of the unit
Geomorphic component: Escarpments in drainageways; hillslopes in drainageways
Slope range: 2 to 30 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Well drained
Parent material: Glaciolacustrine deposits and/or till
Months in which flooding does not occur: February, December
Highest frequency of flooding: Rare (March, April, May, June, September, October, November)
Shallowest depth to wet zone: 6.7 feet (transitory) (March, April, May, November)
Deepest depth to wet zone: More than 6.7 feet (February, June, July, August,
September, October, December)
Ponding: None
Available water capacity to a depth of 60 inches: 10.4 inches
Content of organic matter in the upper 10 inches: 1.9 percent
Typical profile:
A-0 to 9 inches; loam
C-9 to 60 inches; loam

Zell

Extent: 3 percent of the unit
Geomorphic component: Escarpments on lake plains
Position on the landform: Backslopes and shoulders
Slope range: 6 to 20 percent

Texture of the surface layer: Silt loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Well drained
Parent material: Glaciolacustrine deposits
Flooding: None
Depth to wet zone: More than 6.7 feet (all year)
Ponding: None
Available water capacity to a depth of 60 inches: 10.1 inches
Content of organic matter in the upper 10 inches: 2 percent
Typical profile:
A-0 to 6 inches; silt loam
Bk-Bky-6 to 26 inches; silt loam
C-26 to 60 inches; very fine sandy loam

Hapludalfs

Extent: 2 percent of the unit
Geomorphic component: Escarpments in drainageways; hillslopes in drainageways
Slope range: 3 to 60 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits and till
Months in which flooding does not occur: January, February, December
Highest frequency of flooding: Rare (March, April, May, June, September, October,
November)
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 10.1 inches
Content of organic matter in the upper 10 inches: 0.9 percent
Typical profile:
A-0 to 6 inches; fine sandy loam
$\mathrm{E}-6$ to 8 inches; fine sandy loam
Bt1,Bt2-8 to 25 inches; silty clay loam
C1,C2-25 to 80 inches; silt loam
Major Uses of the Map Unit

- Pasture, hayland

I15A—Flaming loamy fine sand, 0 to 3 percent slopes

Component Description

Flaming and similar soils

Extent: 70 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Ponding: None

Available water capacity to a depth of 60 inches: 4.9 inches Content of organic matter in the upper 10 inches: 3 percent Typical profile:

Ap,A-0 to 12 inches; loamy fine sand
BA-12 to 17 inches; fine sand
Bw-17 to 27 inches; fine sand
C1,C2-27 to 60 inches; fine sand

Garborg

Extent: 10 percent of the unit
Geomorphic component: Flats and rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 1.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (August)
Ponding: None
Available water capacity to a depth of 60 inches: 5.2 inches
Content of organic matter in the upper 10 inches: 4 percent
Typical profile:
Ap,A-0 to 12 inches; loamy fine sand Bw1-Bw3-12 to 41 inches; loamy fine sand
BCk-41 to 59 inches; fine sand
C1,C2-59 to 80 inches; fine sand

Hamar

Extent: 5 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.9 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, November, December
Deepest ponding: 0.3 foot (April, May, June, October)
Available water capacity to a depth of 60 inches: 5 inches
Content of organic matter in the upper 10 inches: 6 percent Typical profile:

A1,A2-0 to 12 inches; loamy fine sand
AC-12 to 17 inches; loamy fine sand
C1,C2-17 to 40 inches; fine sand
Ab-40 to 47 inches; loamy fine sand
$\mathrm{Cg}-47$ to 60 inches; fine sand

Ulen

Extent: 5 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam

Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 2 feet (April)
Deepest depth to wet zone: More than 6.7 feet (August)
Ponding: None
Available water capacity to a depth of 60 inches: 5.8 inches
Content of organic matter in the upper 10 inches: 2.8 percent
Typical profile:
Ap-0 to 9 inches; fine sandy loam
Bk1,Bk2-9 to 42 inches; loamy fine sand
C-42 to 60 inches; fine sand

Poppleton

Extent: 3 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Ponding: None
Available water capacity to a depth of 60 inches: 5 inches
Content of organic matter in the upper 10 inches: 1 percent Typical profile:

Ap-0 to 6 inches; fine sand
E-6 to 9 inches; fine sand
Bw1-Bw4-9 to 40 inches; fine sand
C1,C2-40 to 60 inches; fine sand

Sandberg

Extent: 3 percent of the unit
Geomorphic component: Beach ridges
Position on the landform: Shoulders, summits, and backslopes
Slope range: 1 to 6 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Beach deposits
Flooding: None
Depth to wet zone: More than 6.7 feet (all year)
Ponding: None
Available water capacity to a depth of 60 inches: 3.1 inches
Content of organic matter in the upper 10 inches: 2 percent Typical profile:

Ap,A-0 to 12 inches; loamy sand
Bw-12 to 19 inches; gravelly loamy coarse sand
Bk-19 to 29 inches; gravelly coarse sand
C-29 to 80 inches; gravelly coarse sand

Foldahl

Extent: 2 percent of the unit

Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 8.3 inches Content of organic matter in the upper 10 inches: 3 percent Typical profile:

Ap,A-0 to 12 inches; loamy fine sand
Bw1,Bw2-12 to 30 inches; fine sand
2BCk-2C3-30 to 80 inches; loam

Radium

Extent: 2 percent of the unit
Geomorphic component: Beach ridges
Position on the landform: Backslopes
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Beach deposits
Flooding: None
Shallowest depth to wet zone: 3 feet (April)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Ponding: None
Available water capacity to a depth of 60 inches: 3.8 inches
Content of organic matter in the upper 10 inches: 2 percent Typical profile:

Ap-0 to 14 inches; loamy sand
Bw1,Bw2-14 to 33 inches; sand
C1- 33 to 43 inches; very gravelly coarse sand
C2-C4-43 to 80 inches; sand
Major Uses of the Map Unit

- Cropland, pasture, hayland

I16F-Fluvaquents, frequently flooded-Hapludolls complex, 0 to 30 percent slopes

Component Description

Fluvaquents and similar soils

Extent: 55 percent of the unit Geomorphic component: Flats and swales on flood plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Alluvium

Months in which flooding does not occur: January, February, December
Highest frequency of flooding: Very frequent (April, May)
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 1.6 feet (February, August)
Shallowest ponding: 0.5 foot (January, February, March, June, July, August,
September, October, November, December)
Deepest ponding: 0.7 foot (April, May)
Available water capacity to a depth of 60 inches: 8.1 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
A-0 to 16 inches; fine sandy loam
Cg-16 to 80 inches; stratified loamy sand to silt loam

Hapludolls and similar soils

Extent: 25 percent of the unit
Geomorphic component: Escarpments in drainageways; hillslopes in drainageways
Slope range: 2 to 30 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Well drained
Parent material: Glaciolacustrine deposits and/or till
Months in which flooding does not occur: January, February, December
Highest frequency of flooding: Rare (March, April, May, June, September, October, November)
Shallowest depth to wet zone: 6.7 feet (transitory) (March, April, May, November)
Deepest depth to wet zone: More than 6.7 feet (January, February, June, July, August, September, October, December)
Ponding: None
Available water capacity to a depth of 60 inches: 10.4 inches
Content of organic matter in the upper 10 inches: 1.9 percent
Typical profile:
A-0 to 9 inches; loam
C-9 to 60 inches; loam

Hapludalfs

Extent: 7 percent of the unit
Geomorphic component: Hillslopes in drainageways; escarpments in drainageways
Slope range: 3 to 60 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits and till
Months in which flooding does not occur: January, February, December
Highest frequency of flooding: Rare (March, April, May, June, September, October,
November)
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 10.1 inches
Content of organic matter in the upper 10 inches: 0.9 percent
Typical profile:
A-0 to 6 inches; fine sandy loam
E-6 to 8 inches; fine sandy loam
$\mathrm{Bt1}, \mathrm{Bt} 2-8$ to 25 inches; silty clay loam
C1,C2-25 to 80 inches; silt loam

Fairdale

Extent: 5 percent of the unit
Geomorphic component: Rises on flood plains; stream terraces
Slope range: 6 to 15 percent
Texture of the surface layer: Silt loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Alluvium
Months in which flooding does not occur: January, February, November, December
Highest frequency of flooding: Occasional (March, April, May, June)
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 12.3 inches
Content of organic matter in the upper 10 inches: 3.4 percent
Typical profile:
Ap-0 to 7 inches; silt loam
C1-C3-7 to 48 inches; stratified very fine sandy loam to silty clay loam
Ab1,Ab2-48 to 67 inches; silty clay loam
C'-67 to 80 inches; stratified very fine sandy loam to silty clay loam

Water

Extent: 5 percent of the unit

Bowstring

Extent: 2 percent of the unit
Geomorphic component: Swales on flood plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material over alluvium
Months in which flooding does not occur: January, February, December
Highest frequency of flooding: Very frequent (April, May)
Shallowest depth to wet zone: At the surface (March, April, May, June)
Deepest depth to wet zone: 2.1 feet (February)
Shallowest ponding: 0.3 foot (January, February, July, August, September, October, November, December)
Deepest ponding: 0.5 foot (March, April, May, June, November)
Available water capacity to a depth of 60 inches: 21.4 inches
Content of organic matter in the upper 10 inches: 65 percent
Typical profile:
Oa1,Oa2-0 to 38 inches; muck
Cg-38 to 47 inches; stratified sand to fine sandy loam
O'a-47 to 80 inches; muck

Rauville

Extent: 1 percent of the unit Geomorphic component: Oxbows on flood plains
Slope range: 0 to 2 percent
Texture of the surface layer: Silty clay loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Alluvium
Months in which flooding does not occur: January, February, December
Highest frequency of flooding: Very frequent (April, May)

Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 1.6 feet (February, August)
Shallowest ponding: 0.5 foot (January, February, March, June, July, August,
September, October, November, December)
Deepest ponding: 0.7 foot (April, May)
Available water capacity to a depth of 60 inches: 10.9 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
A1,A2-0 to 27 inches; silty clay loam
Cg-27 to 45 inches; silty clay loam
$2 \mathrm{Cg}-45$ to 60 inches; stratified gravelly loamy sand to clay loam

Major Uses of the Map Unit

- Wildlife habitat, recreational development

I17A—Foldahl fine sandy loam, 0 to 3 percent slopes

Component Description

Foldahl and similar soils
Extent: 75 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 8.8 inches
Content of organic matter in the upper 10 inches: 3 percent
Typical profile:
Ap,A-0 to 12 inches; fine sandy loam
Bw1,Bw2-12 to 30 inches; fine sand
2BCk-2C3-30 to 80 inches; loam

Kratka

Extent: 10 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 9.1 inches
Content of organic matter in the upper 10 inches: 6 percent

Typical profile:
Ap,A-0 to 11 inches; fine sandy loam
Bg1,Bg2-11 to 18 inches; loamy fine sand
Cg1-18 to 25 inches; fine sand
2Cg2-2Cg4-25 to 80 inches; loam
Roliss
Extent: 5 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 10.7 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap,A-0 to 14 inches; loam
$\mathrm{Bg}-14$ to 20 inches; loam
Cg1-Cg4-20 to 80 inches; loam

Flaming

Extent: 4 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Ponding: None
Available water capacity to a depth of 60 inches: 4.9 inches
Content of organic matter in the upper 10 inches: 3 percent
Typical profile:
Ap,A-0 to 12 inches; loamy fine sand
BA-12 to 17 inches; fine sand
Bw-17 to 27 inches; fine sand
C1,C2-27 to 60 inches; fine sand

Grimstad

Extent: 2 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None

Shallowest depth to wet zone: 1.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (August)
Ponding: None
Available water capacity to a depth of 60 inches: 9.2 inches
Content of organic matter in the upper 10 inches: 2.8 percent Typical profile:

Ap-0 to 9 inches; fine sandy loam
Bk1,Bk2-9 to 22 inches; loamy fine sand
C1-22 to 28 inches; fine sand
2C2,2C3-28 to 60 inches; loam

Linveldt

Extent: 2 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 8.9 inches
Content of organic matter in the upper 10 inches: 2.8 percent
Typical profile:
Ap-0 to 9 inches; fine sandy loam
Bt-9 to 16 inches; loam
2Bw1,2Bw2-16 to 29 inches; sand
3Bk-29 to 45 inches; loam
3C1-3C3-45 to 80 inches; loam

Eckvoll

Extent: 1 percent of the unit Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 8.3 inches Content of organic matter in the upper 10 inches: 1.9 percent Typical profile:

Ap-0 to 9 inches; loamy fine sand
E1,E2-9 to 25 inches; fine sand
2Bt-25 to 32 inches; sandy clay loam
2BCk-2C1,2C2-32 to 80 inches; loam

Strathcona

Extent: 1 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent

Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 9 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap-0 to 10 inches; fine sandy loam
Bkg-10 to 17 inches; fine sandy loam
Cg1-17 to 28 inches; fine sand
2Cg2,2Cg3-28 to 80 inches; loam
Major Uses of the Map Unit

- Cropland, pasture, hayland

I18A—Foldahl loamy fine sand, 0 to 3 percent slopes

Component Description

Foldahl and similar soils

Extent: 75 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 8.3 inches
Content of organic matter in the upper 10 inches: 3 percent
Typical profile:
Ap,A-0 to 12 inches; loamy fine sand
Bw1,Bw2-12 to 30 inches; fine sand
2BCk-2C3-30 to 80 inches; loam

Kratka

Extent: 10 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)

Months when ponding does not occur: January, February, March, July, August, September, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 9.1 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap,A-0 to 11 inches; fine sandy loam
Bg1,Bg2-11 to 18 inches; loamy fine sand
Cg1-18 to 25 inches; fine sand
2Cg2-2Cg4-25 to 80 inches; loam

Roliss

Extent: 5 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August, December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 10.7 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap,A-0 to 14 inches; loam
$\mathrm{Bg}-14$ to 20 inches; loam
Cg1-Cg4-20 to 80 inches; loam

Flaming

Extent: 4 percent of the unit Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Ponding: None
Available water capacity to a depth of 60 inches: 4.9 inches
Content of organic matter in the upper 10 inches: 3 percent
Typical profile:
Ap,A-0 to 12 inches; loamy fine sand
BA-12 to 17 inches; fine sand
Bw-17 to 27 inches; fine sand
C1,C2-27 to 60 inches; fine sand

Grimstad

Extent: 2 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent

Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 1.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (August)
Ponding: None
Available water capacity to a depth of 60 inches: 9.2 inches
Content of organic matter in the upper 10 inches: 2.8 percent
Typical profile:
Ap-0 to 9 inches; fine sandy loam
Bk1,Bk2—9 to 22 inches; loamy fine sand
C1-22 to 28 inches; fine sand
2C2,2C3-28 to 60 inches; loam

Linveldt

Extent: 2 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 8.9 inches
Content of organic matter in the upper 10 inches: 2.8 percent
Typical profile:
Ap-0 to 9 inches; fine sandy loam
Bt-9 to 16 inches; loam
2Bw1,2Bw2-16 to 29 inches; sand
$3 B k-29$ to 45 inches; loam
3C1-3C3-45 to 80 inches; loam

Eckvoll

Extent: 1 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 8.3 inches
Content of organic matter in the upper 10 inches: 1.9 percent Typical profile:

Ap-0 to 9 inches; loamy fine sand
E1,E2-9 to 25 inches; fine sand

2Bt-25 to 32 inches; sandy clay loam
2BCk-2C1,2C2-32 to 80 inches; loam

Strathcona

Extent: 1 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 9 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap-0 to 10 inches; fine sandy loam
Bkg-10 to 17 inches; fine sandy loam
Cg1-17 to 28 inches; fine sand
2Cg2,2Cg3—28 to 80 inches; loam

Major Uses of the Map Unit

- Cropland, pasture, hayland

I19A-Foxhome sandy loam, 0 to 3 percent slopes Component Description

Foxhome and similar soils
Extent: 65 percent of the unit Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 8.6 inches Content of organic matter in the upper 10 inches: 3 percent Typical profile:

Ap-0 to 10 inches; sandy loam
Bw1-10 to 15 inches; sand
2Bw2—15 to 23 inches; very gravelly coarse sand
3C1-3C3-23 to 80 inches; loam

Kittson

Extent: 10 percent of the unit
Geomorphic component: Rises on lake plains

Slope range: 0 to 3 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 10.5 inches
Content of organic matter in the upper 10 inches: 3 percent
Typical profile:
Ap-0 to 10 inches; loam
Bw-10 to 17 inches; fine sandy loam
2Bk1,2Bk2-17 to 36 inches; loam
2C-36 to 60 inches; loam

Strandquist

Extent: 10 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, November, December
Deepest ponding: 0.3 foot (April, May, June, October)
Available water capacity to a depth of 60 inches: 9.3 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap-0 to 10 inches; loam
$2 \mathrm{Bg} 1-10$ to 20 inches; very gravelly sand
$3 \mathrm{Bg} 2,3 \mathrm{Cg}-20$ to 60 inches; loam

Foldahl

Extent: 5 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 8.8 inches
Content of organic matter in the upper 10 inches: 3 percent
Typical profile:
Ap,A-0 to 12 inches; fine sandy loam

Bw1,Bw2-12 to 30 inches; fine sand 2BCk-2C3-30 to 80 inches; loam

Grimstad

Extent: 5 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 1.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (August)
Ponding: None
Available water capacity to a depth of 60 inches: 9.2 inches
Content of organic matter in the upper 10 inches: 2.8 percent
Typical profile:
Ap-0 to 9 inches; fine sandy loam
Bk1,Bk2-9 to 22 inches; loamy fine sand
C1-22 to 28 inches; fine sand
2C2,2C3-28 to 60 inches; loam

Roliss

Extent: 3 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 10.7 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap,A-0 to 14 inches; loam
$\mathrm{Bg}-14$ to 20 inches; loam
Cg1-Cg4-20 to 80 inches; loam

Mavie

Extent: 2 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)

Months when ponding does not occur: January, February, March, July, August, September, November, December
Deepest ponding: 0.3 foot (April, May, June, October)
Available water capacity to a depth of 60 inches: 7.4 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap-0 to 12 inches; fine sandy loam
BK-12 to 18 inches; sandy loam
2C1,2C2-18 to 39 inches; very gravelly coarse sand 3C3-39 to 80 inches; loam

Major Uses of the Map Unit

- Cropland, pasture, hayland

I20A—Foxlake loam, 0 to 2 percent slopes

Component Description

Foxlake and similar soils

Extent: 75 percent of the unit Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: At the surface (April)
Deepest depth to wet zone: 3 feet (August)
Months when ponding does not occur: January, February, March, December
Deepest ponding: 0.3 foot (April, May, June, November)
Available water capacity to a depth of 60 inches: 8.9 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap,A-0 to 19 inches; loam
Bg-19 to 38 inches; silty clay
Bkg-38 to 49 inches; clay
Cg-49 to 80 inches; clay

Clearwater

Extent: 5 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Clay
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: At the surface (April)
Deepest depth to wet zone: 3 feet (August)
Months when ponding does not occur: January, February, March, December
Deepest ponding: 0.3 foot (April, May, June, November)
Available water capacity to a depth of 60 inches: 8.2 inches
Content of organic matter in the upper 10 inches: 4.2 percent

Typical profile:
Ap-0 to 8 inches; clay
Bss1,Bss2-8 to 35 inches; clay
Cg1,Cg2-35 to 80 inches; clay
Foxlake, very cobbly
Extent: 5 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material:Till
Flooding: None
Shallowest depth to wet zone: At the surface (April)
Deepest depth to wet zone: 3 feet (August)
Months when ponding does not occur: January, February, March, December
Deepest ponding: 0.3 foot (April, May, June, November)
Available water capacity to a depth of 60 inches: 8.9 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap,A-0 to 19 inches; loam
$\mathrm{Bg}-19$ to 38 inches; silty clay
Bkg-38 to 49 inches; clay
Cg-49 to 80 inches; clay

Augsburg

Extent: 3 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 10 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap,A-0 to 11 inches; loam
Bkg-11 to 18 inches; very fine sandy loam
Bg1-18 to 33 inches; loamy very fine sand
2Bg2-33 to 60 inches; clay

Clearwater, depressional

Extent: 3 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Mucky clay loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material:Till

Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 1.6 feet (February, August)
Ponding depth: 0.5 foot (all year)
Available water capacity to a depth of 60 inches: 9 inches
Content of organic matter in the upper 10 inches: 8.4 percent
Typical profile:
Ap-0 to 8 inches; mucky clay loam
Bss1,Bss2-8 to 35 inches; clay
Cg1,Cg2-35 to 80 inches; clay

Espelie

Extent: 3 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June)
Available water capacity to a depth of 60 inches: 7.1 inches
Content of organic matter in the upper 10 inches: 5.6 percent
Typical profile:
Ap-0 to 9 inches; fine sandy loam
Bw1,Bw2-9 to 24 inches; fine sand
$2 \mathrm{Bg}-2 \mathrm{Cg}-24$ to 80 inches; clay
Hilaire
Extent: 2 percent of the unit Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 6.4 inches
Content of organic matter in the upper 10 inches: 3 percent Typical profile:

Ap,A-0 to 10 inches; fine sandy loam
Bw1-Bw4-10 to 34 inches; fine sand
2BCk-34 to 80 inches; clay

Reis

Extent: 2 percent of the unit
Geomorphic component: Flats and rises on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Clay

Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material:Till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.6 feet (August)
Ponding: None
Available water capacity to a depth of 60 inches: 8.3 inches
Content of organic matter in the upper 10 inches: 4.7 percent
Typical profile:
Ap-0 to 9 inches; clay
A/Bk-9 to 17 inches; clay
Bkss1,Bkss2-17 to 33 inches; clay
Bkg-33 to 42 inches; clay
Cg1,Cg2-42 to 60 inches; clay
C-60 to 80 inches; clay

Wheatville

Extent: 2 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Very fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 1.3 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 9.4 inches
Content of organic matter in the upper 10 inches: 2.8 percent Typical profile:

Ap-0 to 9 inches; very fine sandy loam
Bk1,Bk2-9 to 31 inches; very fine sandy loam
2C1-2C4-31 to 80 inches; clay
Major Uses of the Map Unit

- Cropland

I21A—Fram loam, 1 to 3 percent slopes

Component Description

Fram and similar soils

Extent: 85 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 1 to 3 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material:Till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None

Available water capacity to a depth of 60 inches: 10.5 inches
Content of organic matter in the upper 10 inches: 2.3 percent Typical profile:

Ap-0 to 7 inches; loam
Bk, BCk-7 to 38 inches; loam
C-38 to 60 inches; loam
Hedman
Extent: 12 percent of the unit Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material:Till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 10.6 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap,A-0 to 11 inches; loam
Bkg-11 to 20 inches; fine sandy loam
Cg1-Cg4-20 to 80 inches; loam

Strathcona

Extent: 2 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 9 inches
Content of organic matter in the upper 10 inches: 6 percent Typical profile:

Ap-0 to 10 inches; fine sandy loam
Bkg-10 to 17 inches; fine sandy loam
Cg1-17 to 28 inches; fine sand
2Cg2,2Cg3-28 to 80 inches; loam

Foxhome

Extent: 1 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)

Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 8.6 inches
Content of organic matter in the upper 10 inches: 3 percent
Typical profile:
Ap-0 to 10 inches; sandy loam
Bw1-10 to 15 inches; loamy sand
2Bw2-15 to 23 inches; very gravelly coarse sand
3C1-3C3-23 to 80 inches; loam

Major Uses of the Map Unit

- Cropland, pasture, hayland

I22A-Glyndon loam, 0 to 2 percent slopes

Component Description

Glyndon and similar soils

Extent: 75 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 1 foot (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 10.4 inches
Content of organic matter in the upper 10 inches: 3 percent
Typical profile:
Ap,A-0 to 11 inches; loam
Bk1,Bk2-11 to 28 inches; loam
C,Cg-28 to 60 inches; loamy very fine sand

Borup

Extent: 10 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June)
Available water capacity to a depth of 60 inches: 10.7 inches

Content of organic matter in the upper 10 inches: 5 percent Typical profile:

Ap,A-0 to 12 inches; loam
Bkg,Bkyg-12 to 34 inches; silt loam
$\mathrm{Cg}-34$ to 60 inches; very fine sandy loam

Augsburg

Extent: 5 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 10 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap,A-0 to 11 inches; loam
Bkg-11 to 18 inches; very fine sandy loam
Bg1-18 to 33 inches; very fine sandy loam
2Bg2-33 to 60 inches; clay

Ulen

Extent: 5 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 2 feet (April)
Deepest depth to wet zone: More than 6.7 feet (August)
Ponding: None
Available water capacity to a depth of 60 inches: 5.8 inches
Content of organic matter in the upper 10 inches: 2.8 percent
Typical profile:
Ap-0 to 9 inches; fine sandy loam
Bk1,Bk2-9 to 42 inches; loamy fine sand
C-42 to 60 inches; fine sand

Wheatville

Extent: 3 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Very fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None

Shallowest depth to wet zone: 1.3 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 9.4 inches
Content of organic matter in the upper 10 inches: 2.8 percent Typical profile:

Ap-0 to 9 inches; very fine sandy loam
Bk1,Bk2-9 to 31 inches; very fine sandy loam
2C1-2C4-31 to 80 inches; clay

Flaming

Extent: 2 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Ponding: None
Available water capacity to a depth of 60 inches: 4.9 inches
Content of organic matter in the upper 10 inches: 3 percent
Typical profile:
Ap,A-0 to 12 inches; loamy fine sand
BA-12 to 17 inches; fine sand
Bw-17 to 27 inches; fine sand
C1,C2-27 to 60 inches; fine sand
Major Uses of the Map Unit

- Cropland

I23A-Glyndon very fine sandy loam, 0 to 2 percent slopes

Component Description

Glyndon and similar soils

Extent: 75 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Very fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 1 foot (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 10.4 inches
Content of organic matter in the upper 10 inches: 3 percent

Typical profile:
Ap,Ak-0 to 11 inches; very fine sandy loam
Bk1,Bk2-11 to 28 inches; very fine sandy loam
C,Cg-28 to 60 inches; loamy very fine sand

Borup

Extent: 10 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Very fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June)
Available water capacity to a depth of 60 inches: 10.7 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap,A-0 to 12 inches; very fine sandy loam
Bkg,Bkyg-12 to 34 inches; silt loam
$\mathrm{Cg}-34$ to 60 inches; very fine sandy loam

Augsburg

Extent: 5 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August, December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 10 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap,A-0 to 11 inches; loam
Bkg-11 to 18 inches; very fine sandy loam
Bg1-18 to 33 inches; loamy very fine sand
2Bg2-33 to 60 inches; clay

Ulen

Extent: 5 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)

Drainage class: Somewhat poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 2 feet (April)
Deepest depth to wet zone: More than 6.7 feet (August)
Ponding: None
Available water capacity to a depth of 60 inches: 5.4 inches
Content of organic matter in the upper 10 inches: 2.8 percent
Typical profile:
Ap-0 to 9 inches; loamy fine sand
Bk1,Bk2-9 to 42 inches; loamy fine sand
C-42 to 60 inches; fine sand

Wheatville

Extent: 3 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Very fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 1.3 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 9.4 inches Content of organic matter in the upper 10 inches: 2.8 percent Typical profile:

Ap-0 to 9 inches; very fine sandy loam
Bk1,Bk2-9 to 31 inches; very fine sandy loam
2C1-2C4-31 to 80 inches; clay

Flaming

Extent: 2 percent of the unit Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Ponding: None
Available water capacity to a depth of 60 inches: 4.9 inches Content of organic matter in the upper 10 inches: 3 percent Typical profile:

Ap,A-0 to 12 inches; loamy fine sand
BA-12 to 17 inches; fine sand
Bw-17 to 27 inches; fine sand
C1,C2-27 to 60 inches; fine sand
Major Uses of the Map Unit

- Cropland

I24A-Grimstad fine sandy loam, 0 to 3 percent slopes

Component Description

Grimstad and similar soils

Extent: 70 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 1.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (August)
Ponding: None
Available water capacity to a depth of 60 inches: 9.2 inches
Content of organic matter in the upper 10 inches: 2.8 percent
Typical profile:
Ap-0 to 9 inches; fine sandy loam
Bk1,Bk2-9 to 22 inches; loamy fine sand
C1-22 to 28 inches; fine sand
2C2,2C3-28 to 60 inches; loam

Strathcona

Extent: 12 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 9 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap-0 to 10 inches; fine sandy loam
Bkg-10 to 17 inches; fine sandy loam
Cg1-17 to 28 inches; fine sand
2Cg2,2Cg3-28 to 80 inches; loam
Foldahl
Extent: 5 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till

Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 8.8 inches
Content of organic matter in the upper 10 inches: 3 percent Typical profile:
$A p, A-0$ to 12 inches; fine sandy loam
Bw1,Bw2-12 to 30 inches; fine sand
2BCk-2C3-30 to 80 inches; loam

Hamerly

Extent: 5 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 1.3 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 10.5 inches
Content of organic matter in the upper 10 inches: 2.5 percent
Typical profile:
Ap-0 to 8 inches; loam
Bk1,Bk2-8 to 25 inches; loam
C-25 to 60 inches; loam

Foxhome

Extent: 2 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 8.6 inches
Content of organic matter in the upper 10 inches: 3 percent
Typical profile:
Ap-0 to 10 inches; sandy loam
Bw1-10 to 15 inches; sand
2Bw2-15 to 23 inches; very gravelly coarse sand
3C1-3C3-23 to 80 inches; loam

Karlsruhe

Extent: 2 percent of the unit
Geomorphic component: Rises on beach plains
Slope range: 0 to 3 percent
Texture of the surface layer: Sandy loam

Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Beach deposits
Flooding: None
Shallowest depth to wet zone: 2 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 5.2 inches
Content of organic matter in the upper 10 inches: 4 percent
Typical profile:
A,Ak,ABk-0 to 15 inches; sandy loam
$B k, B C k-15$ to 30 inches; loamy sand
C1,C2-30 to 60 inches; coarse sand

Mavie

Extent: 2 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, November, December
Deepest ponding: 0.3 foot (April, May, June, October)
Available water capacity to a depth of 60 inches: 7.4 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap-0 to 12 inches; fine sandy loam
Bk-12 to 18 inches; sandy loam
$2 \mathrm{C} 1,2 \mathrm{C} 2-18$ to 39 inches; very gravelly coarse sand
3C3-39 to 80 inches; loam

Ulen

Extent: 2 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 2 feet (April)
Deepest depth to wet zone: More than 6.7 feet (August)
Ponding: None
Available water capacity to a depth of 60 inches: 5.8 inches
Content of organic matter in the upper 10 inches: 2.8 percent
Typical profile:
Ap-0 to 9 inches; fine sandy loam
Bk1,Bk2-9 to 42 inches; loamy fine sand
C-42 to 60 inches; fine sand

Major Uses of the Map Unit

- Cropland, pasture, hayland

I25A-Hamar loamy fine sand, 0 to 2 percent slopes
 Component Description

Hamar and similar soils

Extent: 75 percent of the unit Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.9 feet (August)
Months when ponding does not occur: January, February, March, July, August, September, November, December
Deepest ponding: 0.3 foot (April, May, June, October)
Available water capacity to a depth of 60 inches: 5 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
A1,A2-0 to 12 inches; loamy fine sand
AC-12 to 17 inches; loamy fine sand
C1,C2-17 to 40 inches; fine sand
Ab-40 to 47 inches; loamy fine sand
$\mathrm{Cg}-47$ to 60 inches; fine sand

Garborg

Extent: 10 percent of the unit
Geomorphic component: Rises and flats on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 1.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (August)
Ponding: None
Available water capacity to a depth of 60 inches: 5.2 inches
Content of organic matter in the upper 10 inches: 4 percent Typical profile:

Ap,A-0 to 12 inches; loamy fine sand
Bw1-Bw3-12 to 41 inches; loamy fine sand
BCk-41 to 59 inches; fine sand
C1,C2-59 to 80 inches; fine sand

Rosewood

Extent: 7 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam

Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.9 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, November, December
Deepest ponding: 0.3 foot (April, May, June, October)
Available water capacity to a depth of 60 inches: 5.6 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap-0 to 8 inches; fine sandy loam
Bkg1,Bkg2-8 to 18 inches; fine sandy loam
Cg1-Cg3-18 to 80 inches; fine sand

Venlo

Extent: 3 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: At the surface (April)
Deepest depth to wet zone: 3 feet (February, August)
Shallowest ponding: 0.3 foot (July, August, September, October)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, November, December)
Available water capacity to a depth of 60 inches: 5.4 inches
Content of organic matter in the upper 10 inches: 10 percent Typical profile:

A- 0 to 13 inches; fine sandy loam
Cg1,Cg2-13 to 60 inches; fine sand

Flaming

Extent: 2 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Ponding: None
Available water capacity to a depth of 60 inches: 4.9 inches
Content of organic matter in the upper 10 inches: 3 percent
Typical profile:
Ap,A-0 to 12 inches; loamy fine sand
BA-12 to 17 inches; fine sand
Bw-17 to 27 inches; fine sand
C1,C2-27 to 60 inches; fine sand

[^1]Major Uses of the Map Unit

- Cropland, pasture, hayland

I26A—Hamerly loam, 0 to 2 percent slopes

Component Description

Hamerly and similar soils

Extent: 75 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 2 percent

Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material:Till
Flooding: None
Shallowest depth to wet zone: 1.3 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 10.5 inches
Content of organic matter in the upper 10 inches: 2.5 percent
Typical profile:
Ap-0 to 8 inches; loam
Bk1,Bk2-8 to 25 inches; loam
C-25 to 60 inches; loam

Vallers

Extent: 12 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 10.6 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
A1,A2-0 to 12 inches; loam
Bkg1,Bkg2-12 to 21 inches; loam
Cg1,Cg2-21 to 60 inches; loam

Foxhome

Extent: 3 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 8.6 inches
Content of organic matter in the upper 10 inches: 3 percent
Typical profile:
Ap-0 to 10 inches; sandy loam
Bw1-10 to 15 inches; sand
2Bw2-15 to 23 inches; very gravelly coarse sand
3C1-3C3-23 to 80 inches; loam

Grimstad

Extent: 3 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 1.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (August)
Ponding: None
Available water capacity to a depth of 60 inches: 9.2 inches
Content of organic matter in the upper 10 inches: 2.8 percent
Typical profile:
Ap-0 to 9 inches; fine sandy loam
Bk1,Bk2-9 to 22 inches; loamy fine sand
C1-22 to 28 inches; fine sand
2C2,2C3-28 to 60 inches; loam

Hamerly, very cobbly

Extent: 3 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 1.3 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 10.5 inches
Content of organic matter in the upper 10 inches: 2.5 percent
Typical profile:
Ap-0 to 8 inches; loam
Bk1,Bk2-8 to 25 inches; loam
C-25 to 60 inches; loam

Strathcona

Extent: 3 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August, September, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 9 inches
Content of organic matter in the upper 10 inches: 6 percent

Typical profile:
Ap-0 to 10 inches; fine sandy loam
Bkg-10 to 17 inches; fine sandy loam
Cg1-17 to 28 inches; fine sand
2Cg2,2Cg3-28 to 80 inches; loam
Roliss, depressional
Extent: 1 percent of the unit Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 2.5 feet (February)
Shallowest ponding: 0.3 foot (July, August, September, October)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, November,
December)
Available water capacity to a depth of 60 inches: 10.9 inches
Content of organic matter in the upper 10 inches: 10 percent
Typical profile:
Ap,A-0 to 14 inches; loam
$\mathrm{Bg}-14$ to 20 inches; loam
Cg1-Cg4-20 to 80 inches; loam

Major Uses of the Map Unit

- Cropland, pasture, hayland

I27A—Hamre muck, 0 to 1 percent slopes

Component Description

Hamre and similar soils

Extent: 80 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 2.5 feet (February)
Shallowest ponding: 0.3 foot (July, August, September)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, October,
November, December)
Available water capacity to a depth of 60 inches: 13.3 inches
Content of organic matter in the upper 10 inches: 85 percent
Typical profile:
Oa-0 to 13 inches; muck
A-13 to 18 inches; loam
Bg1,Bg2-18 to 71 inches; loam
Cg-71 to 80 inches; loam

Northwood

Extent: 5 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material over glaciolacustrine deposits and/or till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 2.5 feet (February)
Shallowest ponding: 0.3 foot (July, August, September)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, October, November, December)
Available water capacity to a depth of 60 inches: 11.3 inches
Content of organic matter in the upper 10 inches: 78.6 percent
Typical profile:
Oa-0 to 9 inches; muck
A-9 to 14 inches; loamy fine sand
Bg1,Bg2-14 to 24 inches; fine sand
2BCkg-2Cg—24 to 80 inches; loam

Roliss

Extent: 5 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 10.7 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap,A-0 to 14 inches; loam
Bg-14 to 20 inches; loam
Cg1-Cg4-20 to 80 inches; loam

Smiley

Extent: 5 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)

Months when ponding does not occur: January, February, March, July, August, December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 10.8 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap-0 to 12 inches; loam
Btg-12 to 19 inches; clay loam
Bkg1-Bkg3-19 to 42 inches; loam
Cg1,Cg2-42 to 80 inches; loam

Cathro

Extent: 3 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material over till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May, June)
Deepest depth to wet zone: 2.1 feet (February)
Shallowest ponding: 0.3 foot (January, February, July, August, September, October, November, December)
Deepest ponding: 0.5 foot (March, April, May, June)
Available water capacity to a depth of 60 inches: 15.9 inches
Content of organic matter in the upper 10 inches: 85 percent
Typical profile:
Oa1,Oa2-0 to 11 inches; muck
Oa3-11 to 23 inches; muck
Cg-23 to 60 inches; loam

Kratka

Extent: 2 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 9.1 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
$A p, A-0$ to 11 inches; fine sandy loam
Bg1,Bg2—11 to 18 inches; loamy fine sand
Cg1-18 to 25 inches; fine sand
2Cg2-2Cg4-25 to 80 inches; loam

Major Uses of the Map Unit

- Pasture, hayland, wildlife habitat

I28A—Hangaard sandy loam, 0 to 2 percent slopes

Component Description

Hangaard and similar soils

Extent: 75 percent of the unit
Geomorphic component: Flats and swales on beach plains
Slope range: 0 to 2 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Beach deposits
Flooding: None
Shallowest depth to wet zone: 0.3 foot (April)
Deepest depth to wet zone: 3.3 feet (February, August)
Months when ponding does not occur: January, February, March, July, August,
September, October, November, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 3 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap-0 to 10 inches; sandy loam
A-10 to 15 inches; loamy sand
Cg1-Cg5-15 to 80 inches; coarse sand

Hamar

Extent: 7 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.9 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, November, December
Deepest ponding: 0.3 foot (April, May, June, October)
Available water capacity to a depth of 60 inches: 5 inches
Content of organic matter in the upper 10 inches: 6 percent Typical profile:

A1,A2-0 to 12 inches; loamy fine sand
AC-12 to 17 inches; loamy fine sand
C1,C2-17 to 40 inches; fine sand
Ab-40 to 47 inches; loamy fine sand
Cg-47 to 60 inches; fine sand

Syrene

Extent: 7 percent of the unit
Geomorphic component: Swales and flats on beach plains
Slope range: 0 to 2 percent

Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Beach deposits
Flooding: None
Shallowest depth to wet zone: 0.3 foot (April)
Deepest depth to wet zone: 3.3 feet (February, August)
Months when ponding does not occur: January, February, March, July, August,
September, October, November, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 3.8 inches
Content of organic matter in the upper 10 inches: 5.6 percent
Typical profile:
Ap-0 to 9 inches; sandy loam
Bkg1-9 to 17 inches; sandy loam
2Bkg2-17 to 27 inches; stratified loamy fine sand to gravelly coarse sand
$2 \mathrm{Cg}-27$ to 60 inches; stratified loamy fine sand to gravelly coarse sand

Karlsruhe

Extent: 3 percent of the unit
Geomorphic component: Rises on beach plains
Slope range: 0 to 3 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Beach deposits
Flooding: None
Shallowest depth to wet zone: 2 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 5.2 inches
Content of organic matter in the upper 10 inches: 4 percent Typical profile:
$A, A k, A B k-0$ to 15 inches; sandy loam
Bk,BCk-15 to 30 inches; loamy sand
C1,C2-30 to 60 inches; coarse sand

Rosewood

Extent: 3 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.9 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, November, December
Deepest ponding: 0.3 foot (April, May, June, October)
Available water capacity to a depth of 60 inches: 5.6 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap-0 to 8 inches; fine sandy loam

Bkg1,Bkg2-8 to 18 inches; fine sandy loam
Cg1-Cg3-18 to 80 inches; fine sand

Strandquist

Extent: 3 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, November, December
Deepest ponding: 0.3 foot (April, May, June, October)
Available water capacity to a depth of 60 inches: 9.3 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap-0 to 10 inches; loam
2Bg1-10 to 20 inches; very gravelly sand
$3 B g 2,3 C g-20$ to 60 inches; loam

Deerwood

Extent: 2 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material over glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 2.5 feet (February)
Shallowest ponding: 0.3 foot (July, August, September)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, October,
November, December)
Available water capacity to a depth of 60 inches: 7.1 inches
Content of organic matter in the upper 10 inches: 75 percent
Typical profile:
Oa-0 to 10 inches; muck
A-10 to 12 inches; loamy sand
Cg1,Cg2-12 to 60 inches; sand
Major Uses of the Map Unit

- Cropland, pasture, hayland

I29A—Hattie clay, 0 to 3 percent slopes
 Component Description

Hattie and similar soils
Extent: 75 percent of the unit
Geomorphic component: Escarpments on lake plains

Position on the landform: Summits
Slope range: 1 to 3 percent
Texture of the surface layer: Clay
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 2.1 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (February)
Ponding: None
Available water capacity to a depth of 60 inches: 7.7 inches
Content of organic matter in the upper 10 inches: 2.5 percent
Typical profile:
Ap-0 to 8 inches; clay
Bk-8 to 22 inches; silty clay
C-22 to 80 inches; clay

Clearwater

Extent: 12 percent of the unit Geomorphic component: Flats and swales on lake plains Slope range: 0 to 1 percent
Texture of the surface layer: Clay
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material:Till
Flooding: None
Shallowest depth to wet zone: At the surface (April)
Deepest depth to wet zone: 3 feet (August)
Months when ponding does not occur: January, February, March, December
Deepest ponding: 0.3 foot (April, May, June, November)
Available water capacity to a depth of 60 inches: 8.2 inches
Content of organic matter in the upper 10 inches: 4.2 percent Typical profile:

Ap-0 to 8 inches; clay
Bss1,Bss2-8 to 35 inches; clay
Cg1,Cg2-35 to 80 inches; clay

Reis

Extent: 6 percent of the unit
Geomorphic component: Flats and rises on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Clay
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.6 feet (August)
Ponding: None
Available water capacity to a depth of 60 inches: 8.3 inches
Content of organic matter in the upper 10 inches: 4.7 percent
Typical profile:
Ap-0 to 9 inches; clay
A/Bk-9 to 17 inches; clay
Bkss1,Bkss2-17 to 33 inches; clay

> Bkg- 33 to 42 inches; clay
> Cg1,Cg2- 42 to 60 inches; clay
> C- 60 to 80 inches; clay

Hattie, very cobbly

Extent: 5 percent of the unit
Geomorphic component: Escarpments on lake plains
Position on the landform: Summits
Slope range: 1 to 3 percent
Texture of the surface layer: Clay
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 2.1 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (February)
Ponding: None
Available water capacity to a depth of 60 inches: 7.7 inches
Content of organic matter in the upper 10 inches: 2.5 percent
Typical profile:
Ap-0 to 8 inches; clay
Bk-8 to 22 inches; silty clay
C-22 to 80 inches; clay

Hilaire

Extent: 2 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 6.9 inches
Content of organic matter in the upper 10 inches: 3 percent
Typical profile:
Ap,A-0 to 10 inches; fine sandy loam
Bw1-Bw4-10 to 34 inches; fine sand
2BCk-34 to 80 inches; clay
Major Uses of the Map Unit

- Cropland, pasture, hayland

I29D—Hattie clay, 6 to 18 percent slopes

Component Description

Hattie and similar soils
Extent: 85 percent of the unit
Geomorphic component: Escarpments on lake plains
Position on the landform: Shoulders and backslopes
Slope range: 6 to 18 percent

Texture of the surface layer: Clay
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 2.1 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (February)
Ponding: None
Available water capacity to a depth of 60 inches: 7.7 inches
Content of organic matter in the upper 10 inches: 2.5 percent
Typical profile:
Ap-0 to 8 inches; clay
Bk-8 to 22 inches; silty clay
C-22 to 80 inches; clay

Clearwater

Extent: 6 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Clay
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: At the surface (April)
Deepest depth to wet zone: 3 feet (August)
Months when ponding does not occur: January, February, March, December
Deepest ponding: 0.3 foot (April, May, June, November)
Available water capacity to a depth of 60 inches: 8.2 inches
Content of organic matter in the upper 10 inches: 4.2 percent
Typical profile:
Ap-0 to 8 inches; clay
Bss1,Bss2-8 to 35 inches; clay
Cg1,Cg2-35 to 80 inches; clay

Hattie, level

Extent: 5 percent of the unit
Geomorphic component: Escarpments on lake plains
Position on the landform: Summits
Slope range: 1 to 3 percent
Texture of the surface layer: Clay
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 2.1 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (February)
Ponding: None
Available water capacity to a depth of 60 inches: 7.7 inches
Content of organic matter in the upper 10 inches: 2.5 percent
Typical profile:
Ap-0 to 8 inches; clay
Bk-8 to 22 inches; silty clay
C-22 to 80 inches; clay

Boyerlake

Extent: 4 percent of the unit
Geomorphic component: Escarpments on lake plains
Position on the landform: Backslopes and shoulders
Slope range: 3 to 6 percent
Texture of the surface layer: Silty clay
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 2.1 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (February)
Ponding: None
Available water capacity to a depth of 60 inches: 7.8 inches
Content of organic matter in the upper 10 inches: 1.6 percent
Typical profile:
Ap-0 to 7 inches; silty clay
Bk1,Bk2—7 to 37 inches; silty clay
C-37 to 80 inches; clay

Major Uses of the Map Unit

- Pasture, hayland, wildlife habitat

I30A—Hedman loam, 0 to 2 percent slopes

Component Description

Hedman and similar soils
Extent: 85 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 10.6 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap,A-0 to 11 inches; loam
Bkg-11 to 20 inches; fine sandy loam
Cg1-Cg4-20 to 80 inches; loam
\section*{Fram}
Extent: 5 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 1 to 3 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)

Drainage class: Somewhat poorly drained
Parent material:Till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 10.5 inches
Content of organic matter in the upper 10 inches: 2.3 percent
Typical profile:
Ap-0 to 7 inches; loam
$\mathrm{Bk}, \mathrm{BCk}-7$ to 38 inches; loam
C-38 to 60 inches; loam

Strathcona

Extent: 5 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August, September, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 9 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap-0 to 10 inches; fine sandy loam
Bkg-10 to 17 inches; fine sandy loam
Cg1-17 to 28 inches; fine sand
2Cg2,2Cg3-28 to 80 inches; loam

Haug

Extent: 3 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material over till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 2.5 feet (February)
Shallowest ponding: 0.3 foot (July, August, September)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, October,
November, December)
Available water capacity to a depth of 60 inches: 12.7 inches
Content of organic matter in the upper 10 inches: 70 percent
Typical profile:
Oa-0 to 10 inches; muck
A-10 to 14 inches; mucky sandy loam
Bg1,Bg2-14 to 60 inches; loam

Strandquist

Extent: 2 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August, September, November, December
Deepest ponding: 0.3 foot (April, May, June, October)
Available water capacity to a depth of 60 inches: 9.3 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap-0 to 10 inches; loam
2Bg1-10 to 20 inches; very gravelly sand
$3 \mathrm{Bg} 2,3 \mathrm{Cg}-20$ to 60 inches; loam

Major Uses of the Map Unit

- Cropland, pasture, hayland

I31A—Hedman-Fram complex, 0 to 3 percent slopes

Component Description

Hedman and similar soils
Extent: 50 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 10.6 inches
Content of organic matter in the upper 10 inches: 5 percent Typical profile:
Ap,A-0 to 11 inches; loam
Bkg-11 to 20 inches; fine sandy loam
Cg1-Cg4-20 to 80 inches; loam

Fram and similar soils

Extent: 40 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 1 to 3 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)

Drainage class: Somewhat poorly drained
Parent material:Till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 10.5 inches
Content of organic matter in the upper 10 inches: 2.3 percent
Typical profile:
Ap-0 to 7 inches; loam
$\mathrm{Bk}, \mathrm{BCk}-7$ to 38 inches; loam
C-38 to 60 inches; loam

Strathcona

Extent: 5 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August, September, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 9 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap-0 to 10 inches; fine sandy loam
Bkg-10 to 17 inches; fine sandy loam
Cg1-17 to 28 inches; fine sand
2Cg2,2Cg3-28 to 80 inches; loam

Haug

Extent: 3 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material over till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 2.5 feet (February)
Shallowest ponding: 0.3 foot (July, August, September)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, October,
November, December)
Available water capacity to a depth of 60 inches: 12.7 inches
Content of organic matter in the upper 10 inches: 70 percent
Typical profile:
Oa-0 to 10 inches; muck
A-10 to 14 inches; mucky sandy loam
Bg1,Bg2-14 to 60 inches; loam

Strandquist

Extent: 2 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August, September, November, December
Deepest ponding: 0.3 foot (April, May, June, October)
Available water capacity to a depth of 60 inches: 9.3 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap-0 to 10 inches; loam
2Bg1-10 to 20 inches; very gravelly sand
3Bg2,3Cg-20 to 60 inches; loam

Major Uses of the Map Unit

- Cropland, pasture, hayland

I32A-Hilaire fine sandy loam, 0 to 3 percent slopes

Component Description

Hilaire and similar soils

Extent: 75 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 6.9 inches
Content of organic matter in the upper 10 inches: 3 percent
Typical profile:
Ap,A-0 to 10 inches; fine sandy loam
Bw1-Bw4-10 to 34 inches; fine sand
2BCk-34 to 80 inches; clay

Espelie

Extent: 12 percent of the unit Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till

Flooding: None

Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June)
Available water capacity to a depth of 60 inches: 7.1 inches
Content of organic matter in the upper 10 inches: 5.6 percent
Typical profile:
Ap-0 to 9 inches; fine sandy loam
Bw1,Bw2-9 to 24 inches; fine sand
$2 \mathrm{Bg}-2 \mathrm{Cg}-24$ to 80 inches; clay

Huot

Extent: 5 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 7.6 inches
Content of organic matter in the upper 10 inches: 3 percent
Typical profile:
Ap,Ak-0 to 14 inches; fine sandy loam
Bk-14 to 26 inches; loamy fine sand
C1-26 to 34 inches; fine sand
2C2,2C3-34 to 80 inches; clay

Flaming

Extent: 2 percent of the unit Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Ponding: None
Available water capacity to a depth of 60 inches: 4.9 inches
Content of organic matter in the upper 10 inches: 3 percent
Typical profile:
Ap,A-0 to 12 inches; loamy fine sand
BA-12 to 17 inches; fine sand
Bw-17 to 27 inches; fine sand
C1,C2-27 to 60 inches; fine sand

Foxlake

Extent: 2 percent of the unit
Geomorphic component: Flats and swales on lake plains

Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material:Till
Flooding: None
Shallowest depth to wet zone: At the surface (April)
Deepest depth to wet zone: 3 feet (August)
Months when ponding does not occur: January, February, March, December
Deepest ponding: 0.3 foot (April, May, June, November)
Available water capacity to a depth of 60 inches: 8.9 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap,A-0 to 19 inches; loam
$\mathrm{Bg}-19$ to 38 inches; silty clay
Bkg-38 to 49 inches; clay
Cg-49 to 80 inches; clay

Wheatville

Extent: 2 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Very fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 1.3 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 9.4 inches
Content of organic matter in the upper 10 inches: 2.8 percent
Typical profile:
Ap-0 to 9 inches; very fine sandy loam
Bk1,Bk2-9 to 31 inches; very fine sandy loam
2C1-2C4-31 to 80 inches; clay

Thiefriver

Extent: 1 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August, December
Deepest ponding: 0.3 foot (April, May, June)
Available water capacity to a depth of 60 inches: 7.5 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap,A-0 to 12 inches; fine sandy loam

Bkg1-Bkg3-12 to 23 inches; loamy fine sand
Cg1-23 to 32 inches; fine sand
2Cg2,2Cg3-32 to 80 inches; clay

Wyandotte

Extent: 1 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Clay loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, November, December
Deepest ponding: 0.3 foot (April, May, June)
Available water capacity to a depth of 60 inches: 6.5 inches
Content of organic matter in the upper 10 inches: 4.1 percent
Typical profile:
Ap-0 to 8 inches; clay loam
Bk-8 to 15 inches; sandy clay loam
2C1-2C3-15 to 34 inches; very gravelly loamy coarse sand
$3 \mathrm{Cg}-34$ to 60 inches; clay
Major Uses of the Map Unit

- Cropland, pasture, hayland

I33A-Hilaire loamy fine sand, 0 to 3 percent slopes
 Component Description

Hilaire and similar soils

Extent: 75 percent of the unit Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 6.5 inches
Content of organic matter in the upper 10 inches: 3 percent
Typical profile:
Ap,A-0 to 10 inches; loamy fine sand
Bw1-Bw4-10 to 34 inches; fine sand
2BCk-34 to 80 inches; clay

Espelie

Extent: 12 percent of the unit
Geomorphic component: Swales and flats on lake plains

Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June)
Available water capacity to a depth of 60 inches: 7.1 inches
Content of organic matter in the upper 10 inches: 5.6 percent
Typical profile:
Ap-0 to 9 inches; fine sandy loam
Bw1,Bw2-9 to 24 inches; fine sand
$2 \mathrm{Bg}-2 \mathrm{Cg}-24$ to 80 inches; clay

Huot

Extent: 5 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 7.6 inches
Content of organic matter in the upper 10 inches: 3 percent
Typical profile:
Ap,Ak-0 to 14 inches; fine sandy loam
Bk-14 to 26 inches; loamy fine sand
C1-26 to 34 inches; fine sand
2C2,2C3-34 to 80 inches; clay

Flaming

Extent: 2 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Ponding: None
Available water capacity to a depth of 60 inches: 4.9 inches
Content of organic matter in the upper 10 inches: 3 percent
Typical profile:
Ap,A-0 to 12 inches; loamy fine sand
BA-12 to 17 inches; fine sand

Bw-17 to 27 inches; fine sand
C1,C2-27 to 60 inches; fine sand

Foxlake

Extent: 2 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: At the surface (April)
Deepest depth to wet zone: 3 feet (August)
Months when ponding does not occur: January, February, March, December
Deepest ponding: 0.3 foot (April, May, June, November)
Available water capacity to a depth of 60 inches: 8.9 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap,A-0 to 19 inches; loam
$\mathrm{Bg}-19$ to 38 inches; silty clay
Bkg-38 to 49 inches; clay
Cg-49 to 80 inches; clay

Wheatville

Extent: 2 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Very fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 1.3 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 9.4 inches
Content of organic matter in the upper 10 inches: 2.8 percent
Typical profile:
Ap-0 to 9 inches; very fine sandy loam
Bk1,Bk2-9 to 31 inches; very fine sandy loam
2C1-2C4-31 to 80 inches; clay

Thiefriver

Extent: 1 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December

Deepest ponding: 0.3 foot (April, May, June)
Available water capacity to a depth of 60 inches: 7.5 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap,A-0 to 12 inches; fine sandy loam
Bkg1-Bkg3-12 to 23 inches; loamy fine sand
Cg1-23 to 32 inches; fine sand
2Cg2,2Cg3-32 to 80 inches; clay

Wyandotte

Extent: 1 percent of the unit Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Clay loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, November, December
Deepest ponding: 0.3 foot (April, May, June)
Available water capacity to a depth of 60 inches: 6.5 inches
Content of organic matter in the upper 10 inches: 4.1 percent
Typical profile:
Ap-0 to 8 inches; clay loam
Bk-8 to 15 inches; sandy clay loam
2C1-2C3-15 to 34 inches; very gravelly loamy coarse sand
$3 \mathrm{Cg}-34$ to 60 inches; clay
Major Uses of the Map Unit

- Cropland, pasture, hayland

I34A—Huot fine sandy loam, 0 to 3 percent slopes Component Description

Huot and similar soils

Extent: 75 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 7.6 inches
Content of organic matter in the upper 10 inches: 3 percent
Typical profile:
Ap,Ak-0 to 14 inches; fine sandy loam

Bk-14 to 26 inches; loamy fine sand
C1-26 to 34 inches; fine sand
2C2,2C3-34 to 80 inches; clay

Thiefriver

Extent: 12 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June)
Available water capacity to a depth of 60 inches: 7.5 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap,A-0 to 12 inches; fine sandy loam
Bkg1-Bkg3-12 to 23 inches; loamy fine sand
Cg1-23 to 32 inches; fine sand
2Cg2,2Cg3-32 to 80 inches; clay

Hilaire

Extent: 5 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 6.9 inches
Content of organic matter in the upper 10 inches: 3 percent
Typical profile:
Ap,A-0 to 10 inches; fine sandy loam
Bw1-Bw4-10 to 34 inches; fine sand
2BCk-34 to 80 inches; clay

Flaming

Extent: 3 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)

Deepest depth to wet zone: More than 6.7 feet (July, August)
Ponding: None
Available water capacity to a depth of 60 inches: 4.9 inches
Content of organic matter in the upper 10 inches: 3 percent
Typical profile:
Ap,A-0 to 12 inches; loamy fine sand
BA-12 to 17 inches; fine sand
Bw-17 to 27 inches; fine sand
C1,C2-27 to 60 inches; fine sand

Foxlake

Extent: 3 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material:Till
Flooding: None
Shallowest depth to wet zone: At the surface (April)
Deepest depth to wet zone: 3 feet (August)
Months when ponding does not occur: January, February, March, December
Deepest ponding: 0.3 foot (April, May, June, November)
Available water capacity to a depth of 60 inches: 8.9 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap,A-0 to 19 inches; loam
$\mathrm{Bg}-19$ to 38 inches; silty clay
Bkg-38 to 49 inches; clay
Cg-49 to 80 inches; clay

Ulen

Extent: 2 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 2 feet (April)
Deepest depth to wet zone: More than 6.7 feet (August)
Ponding: None
Available water capacity to a depth of 60 inches: 5.8 inches
Content of organic matter in the upper 10 inches: 2.8 percent Typical profile:

Ap,Ak-0 to 9 inches; fine sandy loam
Bk1,Bk2-9 to 42 inches; loamy fine sand
C-42 to 60 inches; fine sand

Major Uses of the Map Unit

- Cropland, pasture, hayland

I35A—Karlsruhe sandy loam, 0 to 3 percent slopes

Component Description

Karlsruhe and similar soils

Extent: 70 percent of the unit
Geomorphic component: Rises on beach plains
Slope range: 0 to 3 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Beach deposits
Flooding: None
Shallowest depth to wet zone: 2 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 5.2 inches
Content of organic matter in the upper 10 inches: 4 percent Typical profile:
$A, A k, A B k-0$ to 15 inches; sandy loam
Bk,BCk-15 to 30 inches; loamy sand
C1,C2-30 to 60 inches; coarse sand

Syrene

Extent: 10 percent of the unit
Geomorphic component: Swales and flats on beach plains
Slope range: 0 to 2 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Beach deposits
Flooding: None
Shallowest depth to wet zone: 0.3 foot (April)
Deepest depth to wet zone: 3.3 feet (February, August)
Months when ponding does not occur: January, February, March, July, August,
September, October, November, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 3.8 inches
Content of organic matter in the upper 10 inches: 5.6 percent
Typical profile:
Ap-0 to 9 inches; sandy loam
Bkg1-9 to 17 inches; sandy loam
2Bkg2-17 to 27 inches; stratified loamy fine sand to gravelly coarse sand
2Cg-27 to 60 inches; stratified loamy fine sand to gravelly coarse sand

Ulen

Extent: 10 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Glaciolacustrine deposits

Flooding: None
Shallowest depth to wet zone: 2 feet (April)
Deepest depth to wet zone: More than 6.7 feet (August)
Ponding: None
Available water capacity to a depth of 60 inches: 5.4 inches
Content of organic matter in the upper 10 inches: 2.8 percent
Typical profile:
Ap-0 to 9 inches; loamy fine sand
Bk1,Bk2-9 to 42 inches; loamy fine sand
C-42 to 60 inches; fine sand

Radium

Extent: 5 percent of the unit
Geomorphic component: Beach ridges
Position on the landform: Backslopes
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Beach deposits
Flooding: None
Shallowest depth to wet zone: 3 feet (April)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Ponding: None
Available water capacity to a depth of 60 inches: 3.8 inches
Content of organic matter in the upper 10 inches: 2 percent
Typical profile:
Ap-0 to 14 inches; loamy sand
Bw1,Bw2-14 to 33 inches; sand
C1-33 to 43 inches; very gravelly coarse sand
C2-C4-43 to 80 inches; sand

Rosewood

Extent: 3 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.9 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, November, December
Deepest ponding: 0.3 foot (April, May, June, October)
Available water capacity to a depth of 60 inches: 5.6 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap-0 to 8 inches; fine sandy loam
Bkg1,Bkg2—8 to 18 inches; fine sandy loam
Cg1-Cg3-18 to 80 inches; fine sand

Sandberg

Extent: 2 percent of the unit
Geomorphic component: Beach ridges

Position on the landform: Shoulders, summits, and backslopes Slope range: 1 to 6 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Beach deposits
Flooding: None
Depth to wet zone: More than 6.7 feet (all year)
Ponding: None
Available water capacity to a depth of 60 inches: 3.1 inches Content of organic matter in the upper 10 inches: 2 percent Typical profile:

Ap,A-0 to 12 inches; loamy sand
Bw-12 to 19 inches; gravelly loamy coarse sand
Bk-19 to 29 inches; gravelly coarse sand
C-29 to 80 inches; gravelly coarse sand
Major Uses of the Map Unit

- Cropland, pasture, hayland

I36A—Kittson loam, 0 to 3 percent slopes Component Description

Kittson and similar soils

Extent: 70 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 10.5 inches
Content of organic matter in the upper 10 inches: 3 percent
Typical profile:
Ap-0 to 10 inches; loam
Bw-10 to 17 inches; fine sandy loam
2Bk1,2Bk2-17 to 36 inches; loam
2C-36 to 60 inches; loam

Roliss

Extent: 12 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material:Till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)

Months when ponding does not occur: January, February, March, July, August, December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 10.7 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap,A-0 to 14 inches; loam
Bg-14 to 20 inches; loam
Cg1-Cg4-20 to 80 inches; loam

Hamerly

Extent: 5 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 1.3 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 10.5 inches
Content of organic matter in the upper 10 inches: 2.5 percent
Typical profile:
Ap-0 to 8 inches; loam
Bk1,Bk2-8 to 25 inches; loam
C-25 to 60 inches; loam

Kratka

Extent: 5 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 9.1 inches
Content of organic matter in the upper 10 inches: 6 percent Typical profile:
$A p, A-0$ to 11 inches; fine sandy loam
Bg1,Bg2-11 to 18 inches; loamy fine sand
Cg1-18 to 25 inches; fine sand
2Cg2-2Cg4-25 to 80 inches; loam

Grimstad

Extent: 3 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam

Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 1.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (August)
Ponding: None
Available water capacity to a depth of 60 inches: 9.2 inches
Content of organic matter in the upper 10 inches: 2.8 percent
Typical profile:
Ap-0 to 9 inches; fine sandy loam
Bk1,Bk2-9 to 22 inches; loamy fine sand
C1-22 to 28 inches; fine sand
2C2,2C3-28 to 60 inches; loam

Strandquist

Extent: 3 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, November, December
Deepest ponding: 0.3 foot (April, May, June, October)
Available water capacity to a depth of 60 inches: 9.3 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap-0 to 10 inches; loam
2Bg1-10 to 20 inches; very gravelly sand
$3 \mathrm{Bg} 2,3 \mathrm{Cg}-20$ to 60 inches; loam

Foxhome

Extent: 2 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 8.6 inches
Content of organic matter in the upper 10 inches: 3 percent
Typical profile:
Ap-0 to 10 inches; sandy loam
Bw1-10 to 15 inches; sand
2Bw2-15 to 23 inches; very gravelly coarse sand
3C1-3C3-23 to 80 inches; loam

Major Uses of the Map Unit

- Cropland

I37A—Kratka and Strathcona soils, depressional, 0 to 1 percent slopes

Component Description

Kratka, depressional, and similar soils
Extent: 0 to 90 percent of the unit Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Mucky fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 2.5 feet (February, August)
Shallowest ponding: 0.3 foot (July, August, September, October)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, November, December)
Available water capacity to a depth of 60 inches: 10 inches
Content of organic matter in the upper 10 inches: 10 percent
Typical profile:
Ap,A-0 to 11 inches; mucky fine sandy loam
Bg1,Bg2-11 to 18 inches; loamy fine sand
Cg1-18 to 25 inches; fine sand
2Cg2-2Cg4-25 to 80 inches; loam

Strathcona, depressional, and similar soils

Extent: 0 to 90 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Mucky fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 2.5 feet (February, August)
Shallowest ponding: 0.3 foot (July, August, September, October)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, November,
December)
Available water capacity to a depth of 60 inches: 9.9 inches
Content of organic matter in the upper 10 inches: 10 percent
Typical profile:
Ap-0 to 10 inches; mucky fine sandy loam
Bkg-10 to 17 inches; loamy fine sand
Cg1-17 to 28 inches; fine sand
2Cg2,2Cg3-28 to 80 inches; loam
Northwood
Extent: 0 to 10 percent of the unit

Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material over glaciolacustrine deposits and/or till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 2.5 feet (February)
Shallowest ponding: 0.3 foot (July, August, September)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, October, November, December)
Available water capacity to a depth of 60 inches: 11.3 inches
Content of organic matter in the upper 10 inches: 78.6 percent
Typical profile:
Oa-0 to 9 inches; muck
A-9 to 14 inches; loamy fine sand
$\mathrm{Bg} 1, \mathrm{Bg} 2-14$ to 24 inches; fine sand
2BCkg-2Cg-24 to 80 inches; loam
Kratka
Extent: 0 to 10 percent of the unit Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August, September, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 9.1 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap,A-0 to 11 inches; fine sandy loam
Bg1,Bg2-11 to 18 inches; loamy fine sand
Cg1-18 to 25 inches; fine sand
2Cg2-2Cg4-25 to 80 inches; loam

Strathcona

Extent: 0 to 10 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August, September, December

Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 9 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap-0 to 10 inches; fine sandy loam
Bkg-10 to 17 inches; fine sandy loam
Cg1-17 to 28 inches; fine sand
2Cg2,2Cg3—28 to 80 inches; loam

Roliss

Extent: 0 to 10 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 10.7 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap,A-0 to 14 inches; loam
Bg-14 to 20 inches; loam
Cg1-Cg4-20 to 80 inches; Ioam
Major Uses of the Map Unit

- Pasture, hayland, wildlife habitat

I38A—Kratka fine sandy loam, 0 to 2 percent slopes

Component Description

Kratka and similar soils

Extent: 70 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 9.1 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap,A-0 to 11 inches; fine sandy loam

Bg1,Bg2-11 to 18 inches; loamy fine sand Cg1-18 to 25 inches; fine sand 2Cg2-2Cg4-25 to 80 inches; loam

Smiley

Extent: 7 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 10.8 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap-0 to 12 inches; loam
Btg-12 to 19 inches; clay loam
Bkg1-Bkg3-19 to 42 inches; loam
Cg1,Cg2-42 to 80 inches; loam

Foldahl

Extent: 5 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 8.8 inches
Content of organic matter in the upper 10 inches: 3 percent
Typical profile:
Ap,A-0 to 12 inches; fine sandy loam
Bw1,Bw2-12 to 30 inches; fine sand
2BCk-2C3-30 to 80 inches; loam

Kratka, very cobbly

Extent: 5 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)

Months when ponding does not occur: January, February, March, July, August, September, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 9.1 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap,A-0 to 11 inches; fine sandy loam
Bg1,Bg2-11 to 18 inches; loamy fine sand
Cg1-18 to 25 inches; fine sand
2Cg2-2Cg4-25 to 80 inches; loam

Strathcona

Extent: 5 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August, September, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 9 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap-0 to 10 inches; fine sandy loam
Bkg-10 to 17 inches; fine sandy loam
Cg1-17 to 28 inches; fine sand
2Cg2,2Cg3-28 to 80 inches; loam

Kratka, depressional

Extent: 3 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Mucky fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 2.5 feet (February, August)
Shallowest ponding: 0.3 foot (July, August, September, October)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, November,
December)
Available water capacity to a depth of 60 inches: 10 inches
Content of organic matter in the upper 10 inches: 10 percent
Typical profile:
Ap,A-0 to 11 inches; mucky fine sandy loam
Bg1,Bg2-11 to 18 inches; loamy fine sand
Cg1-18 to 25 inches; fine sand
2Cg2-2Cg4-25 to 80 inches; loam

Strandquist

Extent: 3 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August, September, November, December
Deepest ponding: 0.3 foot (April, May, June, October)
Available water capacity to a depth of 60 inches: 9.3 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap-0 to 10 inches; loam
2Bg1-10 to 20 inches; very gravelly sand
3Bg2,3Cg-20 to 60 inches; loam

Linveldt

Extent: 2 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 8.9 inches
Content of organic matter in the upper 10 inches: 2.8 percent
Typical profile:
Ap-0 to 9 inches; fine sandy loam
Bt-9 to 16 inches; loam
2Bw1,2Bw2-16 to 29 inches; sand
3Bk-29 to 45 inches; loam
3C1-3C3-45 to 80 inches; loam

Major Uses of the Map Unit

- Cropland, pasture, hayland

I39A—Linveldt fine sandy loam, 0 to 3 percent slopes Component Description

Linveldt and similar soils

Extent: 65 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam

Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 8.9 inches
Content of organic matter in the upper 10 inches: 2.8 percent
Typical profile:
Ap-0 to 9 inches; fine sandy loam
Bt-9 to 16 inches; loam
2Bw1,2Bw2—16 to 29 inches; sand
3Bk-29 to 45 inches; loam
3C1-3C3-45 to 80 inches; loam

Kratka

Extent: 14 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 9.1 inches
Content of organic matter in the upper 10 inches: 6 percent Typical profile:
$A p, A-0$ to 11 inches; fine sandy loam
Bg1,Bg2-11 to 18 inches; loamy fine sand
Cg1-18 to 25 inches; fine sand
2Cg2-2Cg4—25 to 80 inches; loam

Reiner

Extent: 10 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 10.2 inches
Content of organic matter in the upper 10 inches: 2.3 percent
Typical profile:
Ap-0 to 7 inches; fine sandy loam
Bt—7 to 17 inches; clay loam

Bw,Bk1,Bk2-17 to 35 inches; loam
C1-C3-35 to 80 inches; loam

Smiley

Extent: 5 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August, December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 10.8 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap-0 to 12 inches; loam
Btg-12 to 19 inches; clay loam
Bkg1-Bkg3-19 to 42 inches; loam
Cg1,Cg2-42 to 80 inches; loam

Eckvoll

Extent: 3 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 8.3 inches
Content of organic matter in the upper 10 inches: 1.9 percent
Typical profile:
Ap-0 to 9 inches; loamy fine sand
E1,E2-9 to 25 inches; fine sand
2Bt-25 to 32 inches; sandy clay loam
2BCk-2C1,2C2-32 to 80 inches; loam

Foldahl

Extent: 2 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)

Ponding: None
Available water capacity to a depth of 60 inches: 8.8 inches Content of organic matter in the upper 10 inches: 3 percent Typical profile:

Ap,A-0 to 12 inches; fine sandy loam
Bw1,Bw2-12 to 30 inches; fine sand
2BCk-2C3-30 to 80 inches; loam

Pelan

Extent: 1 percent of the unit Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 8.5 inches
Content of organic matter in the upper 10 inches: 1.4 percent
Typical profile:
Ap-0 to 6 inches; sandy loam
E-6 to 9 inches; sand
Bt-9 to 14 inches; very gravelly sandy loam
Bw-14 to 20 inches; very gravelly coarse sand
2Bw-20 to 60 inches; loam

Major Uses of the Map Unit

- Cropland, pasture, hayland

I40B—Maddock loamy fine sand, 1 to 6 percent slopes

Component Description

Maddock and similar soils

Extent: 85 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 1 to 6 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Well drained
Parent material: Glaciolacustrine deposits
Flooding: None
Depth to wet zone: More than 6.7 feet (all year)
Ponding: None
Available water capacity to a depth of 60 inches: 4.7 inches
Content of organic matter in the upper 10 inches: 1.5 percent
Typical profile:
A-0 to 10 inches; loamy fine sand
Bw-10 to 14 inches; fine sand
C1-C3-14 to 60 inches; fine sand

Flaming

Extent: 5 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Ponding: None
Available water capacity to a depth of 60 inches: 4.9 inches
Content of organic matter in the upper 10 inches: 3 percent
Typical profile:
Ap,A-0 to 12 inches; loamy fine sand
BA-12 to 17 inches; fine sand
Bw-17 to 27 inches; fine sand
C1,C2-27 to 60 inches; fine sand

Sandberg

Extent: 5 percent of the unit
Geomorphic component: Beach ridges
Position on the landform: Shoulders, summits, and backslopes
Slope range: 1 to 6 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Beach deposits
Flooding: None
Depth to wet zone: More than 6.7 feet (all year)
Ponding: None
Available water capacity to a depth of 60 inches: 3.1 inches
Content of organic matter in the upper 10 inches: 2 percent
Typical profile:
Ap,A-0 to 12 inches; loamy sand
Bw-12 to 19 inches; gravelly loamy coarse sand
Bk-19 to 29 inches; gravelly coarse sand
C-29 to 80 inches; gravelly coarse sand

Halverson

Extent: 3 percent of the unit
Geomorphic component: Ridges on till plains
Position on the landform: Summits, shoulders, and backslopes
Slope range: 1 to 6 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Well drained
Parent material: Glacial outwash over till or eolian deposits
Flooding: None
Depth to wet zone: More than 6.7 feet (all year)
Ponding: None
Available water capacity to a depth of 60 inches: 8.5 inches Content of organic matter in the upper 10 inches: 1.5 percent

Typical profile:
Ap-0 to 10 inches; loamy fine sand
E-10 to 23 inches; loamy fine sand
2Bt-23 to 35 inches; loam
2Bk1,2Bk2- 35 to 55 inches; fine sandy loam
$2 C-55$ to 80 inches; fine sandy loam
Hamar
Extent: 2 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.9 feet (August)
Months when ponding does not occur: January, February, March, July, August, September, November, December
Deepest ponding: 0.3 foot (April, May, June, October)
Available water capacity to a depth of 60 inches: 5 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
A1,A2-0 to 12 inches; loamy fine sand
AC-12 to 17 inches; loamy fine sand
C1,C2-17 to 40 inches; fine sand
Ab-40 to 47 inches; loamy fine sand
$\mathrm{Cg}-47$ to 60 inches; fine sand
Major Uses of the Map Unit

- Cropland, pasture, hayland

I40F—Maddock loamy fine sand, 12 to 30 percent slopes Component Description

Maddock and similar soils

Extent: 90 percent of the unit
Geomorphic component: Ridges on lake plains
Position on the landform: Backslopes, shoulders, and summits
Slope range: 12 to 30 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class:Well drained
Parent material: Glaciolacustrine deposits
Flooding: None
Depth to wet zone: More than 6.7 feet (all year)
Ponding: None
Available water capacity to a depth of 60 inches: 4.7 inches
Content of organic matter in the upper 10 inches: 1.5 percent
Typical profile:
A-0 to 10 inches; loamy fine sand
Bw-10 to 14 inches; fine sand
C1-C3-14 to 60 inches; fine sand

Flaming

Extent: 5 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Ponding: None
Available water capacity to a depth of 60 inches: 4.9 inches
Content of organic matter in the upper 10 inches: 3 percent Typical profile:

Ap,A-0 to 12 inches; loamy fine sand
BA-12 to 17 inches; fine sand
Bw-17 to 27 inches; fine sand
C1,C2-27 to 60 inches; fine sand

Sandberg

Extent: 5 percent of the unit
Geomorphic component: Beach ridges
Position on the landform: Shoulders, summits, and backslopes
Slope range: 1 to 6 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Beach deposits
Flooding: None
Depth to wet zone: More than 6.7 feet (all year)
Ponding: None
Available water capacity to a depth of 60 inches: 3.1 inches
Content of organic matter in the upper 10 inches: 2 percent
Typical profile:
Ap,A-0 to 12 inches; loamy sand
Bw-12 to 19 inches; gravelly loamy coarse sand
Bk-19 to 29 inches; gravelly coarse sand
C-29 to 80 inches; gravelly coarse sand
Major Uses of the Map Unit

- Pasture, hayland

I41A—Markey muck, 0 to 1 percent slopes

Component Description

Markey and similar soils

Extent: 80 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material over glaciolacustrine deposits

Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May, June)
Deepest depth to wet zone: 2.1 feet (February)
Shallowest ponding: 0.3 foot (January, February, July, August, September, October,
November, December)
Deepest ponding: 0.5 foot (March, April, May, June)
Available water capacity to a depth of 60 inches: 15.1 inches
Content of organic matter in the upper 10 inches: 85 percent
Typical profile:
Oa1-Oa4-0 to 32 inches; muck
$\mathrm{Cg}-32$ to 60 inches; fine sand

Deerwood

Extent: 12 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material over glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 2.5 feet (February)
Shallowest ponding: 0.3 foot (July, August, September)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, October,
November, December)
Available water capacity to a depth of 60 inches: 7.1 inches
Content of organic matter in the upper 10 inches: 75 percent
Typical profile:
Oa-0 to 10 inches; muck
A-10 to 12 inches; loamy sand
Cg1,Cg2-12 to 60 inches; sand

Berner

Extent: 2 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material over glaciolacustrine deposits and/or till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May, June)
Deepest depth to wet zone: 2.1 feet (February)
Shallowest ponding: 0.3 foot (January, February, July, August, September, October,
November, December)
Deepest ponding: 0.5 foot (March, April, May, June)
Available water capacity to a depth of 60 inches: 15.9 inches
Content of organic matter in the upper 10 inches: 85 percent
Typical profile:
Oa1,Oa2-0 to 28 inches; muck
A-28 to 31 inches; sandy loam
Bg-31 to 44 inches; sand
2CBkg-44 to 80 inches; loam

Hamar

Extent: 2 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.9 feet (August)
Months when ponding does not occur: January, February, March, July, August, September, November, December
Deepest ponding: 0.3 foot (April, May, June, October)
Available water capacity to a depth of 60 inches: 5 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
A1,A2-0 to 12 inches; loamy fine sand
AC-12 to 17 inches; loamy fine sand
C1,C2-17 to 40 inches; fine sand
Ab-40 to 47 inches; loamy fine sand
Cg-47 to 60 inches; fine sand

Seelyeville

Extent: 2 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 1.6 feet (February, August)
Shallowest ponding: 0.3 foot (January, February, July, August, September, October,
November, December)
Deepest ponding: 0.5 foot (March, April, May, June)
Available water capacity to a depth of 60 inches: 25.1 inches
Content of organic matter in the upper 10 inches: 90 percent
Typical profile:
Oa1-0 to 10 inches; muck
Oa2-Oa5-10 to 80 inches; muck

Syrene

Extent: 2 percent of the unit
Geomorphic component: Swales and flats on beach plains
Slope range: 0 to 2 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Beach deposits
Flooding: None
Shallowest depth to wet zone: 0.3 foot (April)
Deepest depth to wet zone: 3.3 feet (February, August)

Months when ponding does not occur: January, February, March, July, August, September, October, November, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 3.8 inches
Content of organic matter in the upper 10 inches: 5.6 percent
Typical profile:
Ap-0 to 9 inches; sandy loam
Bkg1-9 to 17 inches; sandy loam
2Bkg2-17 to 27 inches; stratified loamy fine sand to gravelly coarse sand $2 \mathrm{Cg}-27$ to 60 inches; stratified loamy fine sand to gravelly coarse sand

Major Uses of the Map Unit

- Pasture, hayland, wildlife habitat

142A—Markey muck, ponded, 0 to 1 percent slopes

Component Description

Markey, ponded, and similar soils

Extent: 85 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material over glaciolacustrine deposits
Flooding: None
Depth to wet zone: At the surface (all year)
Ponding depth: 1 foot (all year)
Available water capacity to a depth of 60 inches: 15.1 inches
Content of organic matter in the upper 10 inches: 85 percent
Typical profile:
Oa1-Oa4-0 to 32 inches; muck
$\mathrm{Cg}-32$ to 60 inches; fine sand

Markey

Extent: 5 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material over glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May, June)
Deepest depth to wet zone: 2.1 feet (February)
Shallowest ponding: 0.3 foot (January, February, July, August, September, October,
November, December)
Deepest ponding: 0.5 foot (March, April, May, June)
Available water capacity to a depth of 60 inches: 15.1 inches
Content of organic matter in the upper 10 inches: 85 percent Typical profile:

Oa1-Oa4-0 to 32 inches; muck
$\mathrm{Cg}-32$ to 60 inches; fine sand

Deerwood

Extent: 4 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material over glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 2.5 feet (February)
Shallowest ponding: 0.3 foot (July, August, September)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, October, November, December)
Available water capacity to a depth of 60 inches: 7.1 inches
Content of organic matter in the upper 10 inches: 75 percent
Typical profile:
Oa-0 to 10 inches; muck
A-10 to 12 inches; loamy sand
Cg1,Cg2-12 to 60 inches; sand

Seelyeville, ponded

Extent: 4 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic materials
Flooding: None
Depth to wet zone: At the surface (all year)
Ponding depth: 1 foot (all year)
Available water capacity to a depth of 60 inches: 25.1 inches
Content of organic matter in the upper 10 inches: 90 percent
Typical profile:
Oa1-0 to 10 inches; muck
Oa2-Oa5-10 to 80 inches; muck

Hamar

Extent: 1 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.9 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, November, December
Deepest ponding: 0.3 foot (April, May, June, October)
Available water capacity to a depth of 60 inches: 5 inches
Content of organic matter in the upper 10 inches: 6 percent

Typical profile:
A1,A2-0 to 12 inches; loamy fine sand
AC-12 to 17 inches; loamy fine sand
C1,C2-17 to 40 inches; fine sand
Ab-40 to 47 inches; loamy fine sand
$\mathrm{Cg}-47$ to 60 inches; fine sand

Hangaard

Extent: 1 percent of the unit Geomorphic component: Swales and flats on beach plains
Slope range: 0 to 2 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Beach deposits
Flooding: None
Shallowest depth to wet zone: 0.3 foot (April)
Deepest depth to wet zone: 3.3 feet (February, August)
Months when ponding does not occur: January, February, March, July, August,
September, October, November, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 3 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap-0 to 10 inches; sandy loam
A-10 to 15 inches; loamy sand
Cg1-Cg5-15 to 80 inches; gravelly coarse sand

Major Uses of the Map Unit

- Wetland wildlife habitat

I43A—Mavie fine sandy loam, 0 to 2 percent slopes

Component Description

Mavie and similar soils

Extent: 70 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, November, December
Deepest ponding: 0.3 foot (April, May, June, October)
Available water capacity to a depth of 60 inches: 7.4 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap-0 to 12 inches; fine sandy loam
Bk-12 to 18 inches; sandy loam

2C1,2C2-18 to 39 inches; very gravelly coarse sand 3C3-39 to 80 inches; loam

Vallers

Extent: 10 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August, December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 10.6 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
A1,A2-0 to 12 inches; loam
Bkg1,Bkg2-12 to 21 inches; loam
Cg1,Cg2-21 to 60 inches; loam

Strandquist

Extent: 7 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August, September, November, December
Deepest ponding: 0.3 foot (April, May, June, October)
Available water capacity to a depth of 60 inches: 9.3 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap-0 to 10 inches; loam
2Bg1-10 to 20 inches; very gravelly sand
$3 \mathrm{Bg} 2,3 \mathrm{Cg}-20$ to 60 inches; loam

Strathcona

Extent: 5 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)

Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 9 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap-0 to 10 inches; fine sandy loam
Bkg-10 to 17 inches; fine sandy loam
Cg1-17 to 28 inches; fine sand
2Cg2,2Cg3—28 to 80 inches; loam

Strathcona, depressional

Extent: 3 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Mucky fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 2.5 feet (February, August)
Shallowest ponding: 0.3 foot (July, August, September, October)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, November,
December)
Available water capacity to a depth of 60 inches: 9.9 inches
Content of organic matter in the upper 10 inches: 10 percent
Typical profile:
Ap-0 to 10 inches; mucky fine sandy loam
Bkg-10 to 17 inches; loamy fine sand
Cg1-17 to 28 inches; fine sand
2Cg2,2Cg3-28 to 80 inches; loam

Foxhome

Extent: 2 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 8.6 inches
Content of organic matter in the upper 10 inches: 3 percent
Typical profile:
Ap-0 to 10 inches; sandy loam
Bw1-10 to 15 inches; loamy sand
2Bw2-15 to 23 inches; very gravelly coarse sand
3C1-3C3-23 to 80 inches; loam

Karlsruhe

Extent: 2 percent of the unit

Geomorphic component: Rises on beach plains
Slope range: 0 to 3 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Beach deposits
Flooding: None
Shallowest depth to wet zone: 2 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 5.2 inches
Content of organic matter in the upper 10 inches: 4 percent
Typical profile:
A,Ak,ABk-0 to 15 inches; sandy loam
$B k, B C k-15$ to 30 inches; loamy sand
C1,C2-30 to 60 inches; coarse sand

Grimstad

Extent: 1 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 1.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (August)
Ponding: None
Available water capacity to a depth of 60 inches: 9.2 inches
Content of organic matter in the upper 10 inches: 2.8 percent Typical profile:

Ap-0 to 9 inches; fine sandy loam
Bk1,Bk2-9 to 22 inches; loamy fine sand
C1-22 to 28 inches; fine sand
2C2,2C3-28 to 60 inches; loam
Major Uses of the Map Unit

- Cropland, pasture, hayland

I44A—Newfolden loam, 0 to 3 percent slopes

Component Description

Newfolden and similar soils

Extent: 75 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material:Till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)

Ponding: None

Available water capacity to a depth of 60 inches: 10.4 inches
Content of organic matter in the upper 10 inches: 2.3 percent
Typical profile:
Ap-0 to 7 inches; loam
Bt-7 to 16 inches; clay
2Bk1,2Bk2-16 to 36 inches; clay loam
2CBk-36 to 80 inches; loam

Smiley

Extent: 12 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material:Till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 10.8 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap-0 to 12 inches; loam
Btg-12 to 19 inches; clay loam
Bkg1-Bkg3-19 to 42 inches; loam
Cg1,Cg2-42 to 80 inches; loam

Boash

Extent: 8 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Clay loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material:Till
Flooding: None
Shallowest depth to wet zone: At the surface (April)
Deepest depth to wet zone: 3 feet (August)
Months when ponding does not occur: January, February, March, December
Deepest ponding: 0.3 foot (April, May, June, November)
Available water capacity to a depth of 60 inches: 9.9 inches
Content of organic matter in the upper 10 inches: 4.7 percent
Typical profile:
Ap-0 to 9 inches; clay loam
Bg1,Bg2-9 to 29 inches; clay
2Cg1-2Cg3-29 to 80 inches; loam

Linveldt

Extent: 4 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam

Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 8.9 inches
Content of organic matter in the upper 10 inches: 2.8 percent
Typical profile:
Ap-0 to 9 inches; fine sandy loam
Bt-9 to 16 inches; loam
2Bw1,2Bw2-16 to 29 inches; sand
$3 B k$-29 to 45 inches; loam
3C1-3C3-45 to 80 inches; loam

Hapludolls

Extent: 1 percent of the unit
Geomorphic component: Hillslopes in drainageways; escarpments in drainageways
Slope range: 2 to 30 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Well drained
Parent material: Glaciolacustrine deposits and/or till
Months in which flooding does not occur: February, December
Highest frequency of flooding: Rare (March, April, May, June, September, October, November)
Shallowest depth to wet zone: 6.7 feet (transitory) (March, April, May, November)
Deepest depth to wet zone: More than 6.7 feet (February, June, July, August,
September, October, December)
Ponding: None
Available water capacity to a depth of 60 inches: 10.4 inches
Content of organic matter in the upper 10 inches: 1.9 percent
Typical profile:
A-0 to 9 inches; loam
C-9 to 60 inches; loam
Major Uses of the Map Unit

- Cropland, pasture, hayland

145A—Northwood muck, 0 to 1 percent slopes

Component Description

Northwood and similar soils

Extent: 75 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material over glaciolacustrine deposits and/or till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 2.5 feet (February)

Shallowest ponding: 0.3 foot (July, August, September)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, October, November, December)
Available water capacity to a depth of 60 inches: 11.3 inches
Content of organic matter in the upper 10 inches: 78.6 percent
Typical profile:
Oa-0 to 9 inches; muck
A-9 to 14 inches; loamy fine sand
Bg1,Bg2-14 to 24 inches; fine sand
2BCkg-2Cg-24 to 80 inches; loam

Hamre

Extent: 10 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 2.5 feet (February)
Shallowest ponding: 0.3 foot (July, August, September)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, October,
November, December)
Available water capacity to a depth of 60 inches: 13.3 inches
Content of organic matter in the upper 10 inches: 85 percent
Typical profile:
Oa-0 to 13 inches; muck
A-13 to 18 inches; loam
Bg1,Bg2-18 to 71 inches; loam
Cg-71 to 80 inches; loam

Berner

Extent: 5 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material over glaciolacustrine deposits and/or till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May, June)
Deepest depth to wet zone: 2.1 feet (February)
Shallowest ponding: 0.3 foot (January, February, July, August, September, October,
November, December)
Deepest ponding: 0.5 foot (March, April, May, June)
Available water capacity to a depth of 60 inches: 15.9 inches
Content of organic matter in the upper 10 inches: 85 percent
Typical profile:
Oa1,Oa2-0 to 28 inches; muck
A-28 to 31 inches; sandy loam
Bg-31 to 44 inches; sand
2CBkg—44 to 80 inches; loam

Kratka

Extent: 5 percent of the unit

Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August, September, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 9.1 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap,A-0 to 11 inches; fine sandy loam
Bg1,Bg2-11 to 18 inches; loamy fine sand
Cg1-18 to 25 inches; fine sand
2Cg2-2Cg4-25 to 80 inches; loam

Strandquist

Extent: 3 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August, September, November, December
Deepest ponding: 0.3 foot (April, May, June, October)
Available water capacity to a depth of 60 inches: 9.3 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap-0 to 10 inches; loam
2Bg1-10 to 20 inches; very gravelly sand
$3 \mathrm{Bg} 2,3 \mathrm{Cg}-20$ to 60 inches; loam

Roliss

Extent: 2 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August, December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)

Available water capacity to a depth of 60 inches: 10.7 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap,A-0 to 14 inches; loam
$\mathrm{Bg}-14$ to 20 inches; loam
Cg1-Cg4-20 to 80 inches; loam

Major Uses of the Map Unit

- Pasture, hayland, wildlife habitat

I46A—Pits, gravel and sand

Component Description

Pits

Extent: 85 percent of the unit
Geomorphic component: Beach plains, lake plains, and beach ridges
General definition: Pits are areas that have been mined for gravel or sand. Specific areas are actively being mined or are abandoned pits. Because of the variability of this component, interpretations for various uses are not available. Onsite investigation is needed.

Udipsamments

Extent: 10 percent of the unit
Geomorphic component: Lake plains, beach plains, and beach ridges
Slope range: 1 to 50 percent
Texture of the surface layer: Sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Beach sand and/or glaciolacustrine deposits
Flooding: None
Depth to wet zone: More than 6.7 feet (all year)
Ponding: None
Available water capacity to a depth of 60 inches: 4.3 inches
Content of organic matter in the upper 10 inches: 0.2 percent
Typical profile:
A-0 to 14 inches; sand
C1-14 to 60 inches; sand
C2-60 to 80 inches; coarse sand

Radium

Extent: 2 percent of the unit
Geomorphic component: Beach ridges
Position on the landform: Backslopes
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Beach deposits
Flooding: None
Shallowest depth to wet zone: 3 feet (April)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Ponding: None
Available water capacity to a depth of 60 inches: 3.8 inches
Content of organic matter in the upper 10 inches: 2 percent

Typical profile:
Ap-0 to 14 inches; loamy sand
Bw1,Bw2-14 to 33 inches; sand
C1-33 to 43 inches; very gravelly coarse sand
C2-C4-43 to 80 inches; sand

Maddock

Extent: 1 percent of the unit Geomorphic component: Rises on lake plains
Slope range: 1 to 6 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Well drained
Parent material: Glaciolacustrine deposits
Flooding: None
Depth to wet zone: More than 6.7 feet (all year)
Ponding: None
Available water capacity to a depth of 60 inches: 4.7 inches
Content of organic matter in the upper 10 inches: 1.5 percent
Typical profile:
A-0 to 10 inches; loamy fine sand
Bw-10 to 14 inches; fine sand
C1-C3-14 to 60 inches; fine sand

Marquette

Extent: 1 percent of the unit
Geomorphic component: Beach ridges
Position on the landform: Shoulders and summits
Slope range: 1 to 8 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Beach deposits
Flooding: None
Depth to wet zone: More than 6.7 feet (all year)
Ponding: None
Available water capacity to a depth of 60 inches: 3.1 inches
Content of organic matter in the upper 10 inches: 1.5 percent
Typical profile:
A-0 to 6 inches; loamy sand
E-6 to 9 inches; gravelly loamy fine sand
Bt1,Bt2-9 to 14 inches; very gravelly fine sandy loam
C1-C3-14 to 60 inches; stratified extremely gravelly coarse sand to fine sand

Sandberg

Extent: 1 percent of the unit
Geomorphic component: Beach ridges
Position on the landform: Shoulders, summits, and backslopes
Slope range: 1 to 6 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Beach deposits
Flooding: None
Depth to wet zone: More than 6.7 feet (all year)
Ponding: None

Available water capacity to a depth of 60 inches: 3.1 inches Content of organic matter in the upper 10 inches: 2 percent Typical profile:

Ap,A-0 to 12 inches; loamy sand
Bw-12 to 19 inches; gravelly loamy coarse sand
Bk-19 to 29 inches; gravelly coarse sand
C-29 to 80 inches; gravelly coarse sand

Major Uses of the Map Unit

- Wildlife habitat

147A—Poppleton fine sand, 0 to 2 percent slopes

Component Description

Poppleton and similar soils

Extent: 75 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Ponding: None
Available water capacity to a depth of 60 inches: 5 inches
Content of organic matter in the upper 10 inches: 1 percent
Typical profile:
Ap-0 to 6 inches; fine sand
E-6 to 9 inches; fine sand
Bw1-Bw4-9 to 40 inches; fine sand
C1,C2-40 to 60 inches; fine sand

Flaming

Extent: 12 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Ponding: None
Available water capacity to a depth of 60 inches: 4.9 inches
Content of organic matter in the upper 10 inches: 3 percent
Typical profile:
Ap,A-0 to 12 inches; loamy fine sand
BA-12 to 17 inches; fine sand
Bw-17 to 27 inches; fine sand
C1,C2-27 to 60 inches; fine sand

Garborg

Extent: 5 percent of the unit
Geomorphic component: Flats and rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 1.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (August)
Ponding: None
Available water capacity to a depth of 60 inches: 5.2 inches
Content of organic matter in the upper 10 inches: 4 percent
Typical profile:
Ap,A-0 to 12 inches; loamy fine sand
Bw1-Bw3-12 to 41 inches; loamy fine sand
BCk-41 to 59 inches; fine sand
C1,C2-59 to 80 inches; fine sand
Hamar
Extent: 3 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.9 feet (August)
Months when ponding does not occur: January, February, March, July, August, September, November, December
Deepest ponding: 0.3 foot (April, May, June, October)
Available water capacity to a depth of 60 inches: 5 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
A1,A2-0 to 12 inches; loamy fine sand
AC-12 to 17 inches; loamy fine sand
C1,C2-17 to 40 inches; fine sand
Ab-40 to 47 inches; loamy fine sand
$\mathrm{Cg}-47$ to 60 inches; fine sand

Radium

Extent: 2 percent of the unit
Geomorphic component: Beach ridges
Position on the landform: Backslopes
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Beach deposits
Flooding: None
Shallowest depth to wet zone: 3 feet (April)
Deepest depth to wet zone: More than 6.7 feet (July, August)

Ponding: None
Available water capacity to a depth of 60 inches: 3.8 inches
Content of organic matter in the upper 10 inches: 2 percent
Typical profile:
Ap-0 to 14 inches; loamy sand
Bw1,Bw2-14 to 33 inches; sand
C1-33 to 43 inches; very gravelly coarse sand
C2-C4-43 to 80 inches; sand

Ulen

Extent: 2 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 2 feet (April)
Deepest depth to wet zone: More than 6.7 feet (August)
Ponding: None
Available water capacity to a depth of 60 inches: 5.4 inches
Content of organic matter in the upper 10 inches: 2.8 percent
Typical profile:
Ap-0 to 9 inches; loamy fine sand
Bk1,Bk2-9 to 42 inches; loamy fine sand
C-42 to 60 inches; fine sand

Maddock

Extent: 1 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 1 to 6 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Well drained
Parent material: Glaciolacustrine deposits
Flooding: None
Depth to wet zone: More than 6.7 feet (all year)
Ponding: None
Available water capacity to a depth of 60 inches: 4.7 inches
Content of organic matter in the upper 10 inches: 1.5 percent
Typical profile:
A-0 to 10 inches; loamy fine sand
Bw-10 to 14 inches; fine sand
C1-C3-14 to 60 inches; fine sand
Major Uses of the Map Unit

- Pasture, hayland

I48A—Radium loamy sand, 0 to 3 percent slopes

Component Description

Radium and similar soils
Extent: 75 percent of the unit

Geomorphic component: Beach ridges
Position on the landform: Backslopes
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Beach deposits
Flooding: None
Shallowest depth to wet zone: 3 feet (April)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Ponding: None
Available water capacity to a depth of 60 inches: 3.8 inches
Content of organic matter in the upper 10 inches: 2 percent
Typical profile:
Ap-0 to 14 inches; loamy sand
Bw1,Bw2-14 to 33 inches; sand
C1-33 to 43 inches; very gravelly coarse sand
C2-C4-43 to 80 inches; sand

Sandberg

Extent: 7 percent of the unit
Geomorphic component: Beach ridges
Position on the landform: Shoulders, summits, and backslopes
Slope range: 1 to 6 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Beach deposits
Flooding: None
Depth to wet zone: More than 6.7 feet (all year)
Ponding: None
Available water capacity to a depth of 60 inches: 3.1 inches
Content of organic matter in the upper 10 inches: 2 percent
Typical profile:
Ap,A-0 to 12 inches; loamy sand
Bw-12 to 19 inches; gravelly loamy coarse sand
Bk-19 to 29 inches; gravelly coarse sand
C-29 to 80 inches; gravelly coarse sand

Oylen

Extent: 5 percent of the unit
Geomorphic component: Beach ridges
Position on the landform: Backslopes
Slope range: 0 to 3 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Beach deposits
Flooding: None
Shallowest depth to wet zone: 3 feet (April)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Ponding: None
Available water capacity to a depth of 60 inches: 4.9 inches Content of organic matter in the upper 10 inches: 3 percent

Typical profile:
Ap-0 to 10 inches; sandy loam
Bt-10 to 18 inches; sandy loam
2Bw-18 to 38 inches; sand
$2 \mathrm{C}-38$ to 80 inches; gravelly coarse sand

Flaming

Extent: 4 percent of the unit Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Ponding: None
Available water capacity to a depth of 60 inches: 4.9 inches
Content of organic matter in the upper 10 inches: 3 percent
Typical profile:
Ap,A-0 to 12 inches; loamy fine sand
BA-12 to 17 inches; fine sand
Bw-17 to 27 inches; fine sand
C1,C2-27 to 60 inches; fine sand

Garborg

Extent: 3 percent of the unit
Geomorphic component: Rises and flats on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 1.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (August)
Ponding: None
Available water capacity to a depth of 60 inches: 5.2 inches Content of organic matter in the upper 10 inches: 4 percent Typical profile:

Ap,A-0 to 12 inches; loamy fine sand
Bw1-Bw3-12 to 41 inches; loamy fine sand
BCk-41 to 59 inches; fine sand
C1,C2-59 to 80 inches; fine sand

Hangaard

Extent: 3 percent of the unit Geomorphic component: Flats and swales on beach plains
Slope range: 0 to 2 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Beach deposits
Flooding: None

Shallowest depth to wet zone: 0.3 foot (April)
Deepest depth to wet zone: 3.3 feet (February, August)
Months when ponding does not occur: January, February, March, July, August,
September, October, November, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 3 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap-0 to 10 inches; sandy loam
A-10 to 15 inches; loamy sand
Cg1-Cg5-15 to 80 inches; gravelly coarse sand

Hamar

Extent: 2 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.9 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, November, December
Deepest ponding: 0.3 foot (April, May, June, October)
Available water capacity to a depth of 60 inches: 5 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
A1,A2-0 to 12 inches; loamy fine sand
AC-12 to 17 inches; loamy fine sand
C1,C2-17 to 40 inches; fine sand
Ab-40 to 47 inches; loamy fine sand
$\mathrm{Cg}-47$ to 60 inches; fine sand

Poppleton

Extent: 1 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Ponding: None
Available water capacity to a depth of 60 inches: 5 inches
Content of organic matter in the upper 10 inches: 1 percent
Typical profile:
Ap-0 to 6 inches; fine sand
E-6 to 9 inches; fine sand
Bw1-Bw4-9 to 40 inches; fine sand
C1,C2-40 to 60 inches; fine sand

Major Uses of the Map Unit

- Cropland, pasture, hayland

I49A—Rauville silty clay loam, 0 to 2 percent slopes
 Component Description

Rauville and similar soils

Extent: 80 percent of the unit Geomorphic component: Oxbows on flood plains
Slope range: 0 to 2 percent
Texture of the surface layer: Silty clay loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Alluvium
Months in which flooding does not occur: January, February, December
Highest frequency of flooding: Very frequent (April, May)
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 1.6 feet (February, August)
Shallowest ponding: 0.5 foot (January, February, March, June, July, August,
September, October, November, December)
Deepest ponding: 0.7 foot (April, May)
Available water capacity to a depth of 60 inches: 10.9 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
A1,A2-0 to 27 inches; silty clay loam
Cg-27 to 45 inches; silty clay loam
2Cg-45 to 60 inches; stratified gravelly loamy sand to clay loam

Fluvaquents

Extent: 12 percent of the unit
Geomorphic component: Flats and swales on flood plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Alluvium
Months in which flooding does not occur: January, February, December
Highest frequency of flooding: Very frequent (April, May)
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 1.6 feet (February, August)
Shallowest ponding: 0.5 foot (January, February, March, June, July, August,
September, October, November, December)
Deepest ponding: 0.7 foot (April, May)
Available water capacity to a depth of 60 inches: 8.1 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
A- 0 to 16 inches; fine sandy loam
Cg -16 to 80 inches; stratified loamy sand to silt loam

Water

Extent: 5 percent of the unit

Lamoure

Extent: 3 percent of the unit

Geomorphic component: Flats on flood plains
Slope range: 0 to 1 percent
Texture of the surface layer: Silty clay loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Alluvium
Months in which flooding does not occur: January, February, November, December
Highest frequency of flooding: Frequent (March, April, May, June, July, August, September, October)
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August, December
Deepest ponding: 0.3 foot (April, May, June)
Available water capacity to a depth of 60 inches: 11.4 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
A1,A2-0 to 27 inches; silty clay loam
Cg1,Cg2-27 to 43 inches; silt loam
Ab-43 to 52 inches; loam
C'g-52 to 60 inches; stratified loamy sand to silt loam

Major Uses of the Map Unit

- Wetland wildlife habitat

I50A—Reiner fine sandy loam, 0 to 3 percent slopes

Component Description

Reiner and similar soils

Extent: 70 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material:Till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 10.2 inches
Content of organic matter in the upper 10 inches: 2.3 percent
Typical profile:
Ap-0 to 7 inches; fine sandy loam
Bt-7 to 17 inches; clay loam
Bw,Bk1,Bk2-17 to 35 inches; loam
C1-C3-35 to 80 inches; loam

Smiley

Extent: 12 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)

Drainage class: Poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August, December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 10.8 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap-0 to 12 inches; loam
Btg-12 to 19 inches; clay loam
Bkg1-Bkg3-19 to 42 inches; loam
Cg1,Cg2-42 to 80 inches; loam

Reiner, very cobbly

Extent: 7 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 10.2 inches
Content of organic matter in the upper 10 inches: 2.3 percent
Typical profile:
Ap-0 to 7 inches; fine sandy loam
$\mathrm{Bt}-7$ to 17 inches; clay loam
Bw,Bk1,Bk2-17 to 35 inches; loam
C1-C3-35 to 80 inches; loam

Linveldt

Extent: 5 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 8.9 inches
Content of organic matter in the upper 10 inches: 2.8 percent
Typical profile:
Ap-0 to 9 inches; fine sandy loam
Bt-9 to 16 inches; loam
2Bw1,2Bw2-16 to 29 inches; sand

3Bk-29 to 45 inches; loam
3C1-3C3-45 to 80 inches; loam

Eckvoll

Extent: 3 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 8.3 inches
Content of organic matter in the upper 10 inches: 1.9 percent
Typical profile:
Ap-0 to 9 inches; loamy fine sand
E1,E2-9 to 25 inches; fine sand
$2 \mathrm{Bt}-25$ to 32 inches; sandy clay loam
2BCk-2C1,2C2-32 to 80 inches; loam

Kratka

Extent: 3 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 9.1 inches
Content of organic matter in the upper 10 inches: 6 percent Typical profile:

Ap,A-0 to 11 inches; fine sandy loam
Bg1,Bg2-11 to 18 inches; loamy fine sand
Cg1-18 to 25 inches; fine sand
2Cg2-2Cg4-25 to 80 inches; loam
Major Uses of the Map Unit

- Cropland, pasture, hayland

I51A—Reiner loamy fine sand, 0 to 3 percent slopes
 Component Description

Reiner and similar soils
Extent: 65 percent of the unit
Geomorphic component: Rises on lake plains

Slope range: 0 to 3 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material:Till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 9.7 inches
Content of organic matter in the upper 10 inches: 1.6 percent
Typical profile:
Ap-0 to 7 inches; loamy fine sand
Bt-7 to 17 inches; clay loam
Bw,Bk1,Bk2-17 to 35 inches; loam
C1-C3-35 to 80 inches; loam

Smiley

Extent: 9 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material:Till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August, December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 10.8 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap-0 to 12 inches; loam
Btg-12 to 19 inches; clay loam
Bkg1-Bkg3-19 to 42 inches; loam
Cg1,Cg2-42 to 80 inches; loam

Reiner fine sandy loam

Extent: 8 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material:Till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 10.2 inches
Content of organic matter in the upper 10 inches: 2.3 percent
Typical profile:
Ap-0 to 7 inches; fine sandy loam

Bt-7 to 17 inches; clay loam
Bw,Bk1,Bk2-17 to 35 inches; loam
C1-C3-35 to 80 inches; loam

Linveldt

Extent: 7 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 8.9 inches
Content of organic matter in the upper 10 inches: 2.8 percent
Typical profile:
Ap-0 to 9 inches; fine sandy loam
Bt—9 to 16 inches; loam
2Bw1,2Bw2-16 to 29 inches; sand
$3 B k-29$ to 45 inches; loam
3C1-3C3-45 to 80 inches; loam

Kratka

Extent: 5 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 9.1 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap,A-0 to 11 inches; fine sandy loam
Bg1,Bg2-11 to 18 inches; loamy fine sand
Cg1-18 to 25 inches; fine sand
2Cg2-2Cg4-25 to 80 inches; loam
Eckvoll
Extent: 3 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till
Flooding: None

Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 8.3 inches
Content of organic matter in the upper 10 inches: 1.9 percent Typical profile:

Ap-0 to 9 inches; loamy fine sand
E1,E2-9 to 25 inches; fine sand
2Bt-25 to 32 inches; sandy clay loam
2BCk-2C1,2C2—32 to 80 inches; loam
Reiner, very cobbly
Extent: 3 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 10.2 inches
Content of organic matter in the upper 10 inches: 2.3 percent
Typical profile:
Ap-0 to 7 inches; fine sandy loam
Bt-7 to 17 inches; clay loam
Bw,Bk1,Bk2-17 to 35 inches; loam
C1-C3-35 to 80 inches; loam

Major Uses of the Map Unit

- Cropland, pasture, hayland

152A—Reis-Clearwater complex, 0 to 2 percent slopes Component Description

Reis and similar soils

Extent: 55 percent of the unit
Geomorphic component: Rises and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Clay
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.6 feet (August)
Ponding: None
Available water capacity to a depth of 60 inches: 8.3 inches
Content of organic matter in the upper 10 inches: 4.7 percent
Typical profile:
Ap-0 to 9 inches; clay
A/Bk-9 to 17 inches; clay

Bkss1,Bkss2-17 to 33 inches; clay
Bkg-33 to 42 inches; clay
Cg1,Cg2-42 to 60 inches; clay
C-60 to 80 inches; clay

Clearwater and similar soils

Extent: 30 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Clay
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: At the surface (April)
Deepest depth to wet zone: 3 feet (August)
Months when ponding does not occur: January, February, March, December
Deepest ponding: 0.3 foot (April, May, June, November)
Available water capacity to a depth of 60 inches: 8.2 inches
Content of organic matter in the upper 10 inches: 4.2 percent
Typical profile:
Ap-0 to 8 inches; clay
Bss1,Bss2-8 to 35 inches; clay
Cg1,Cg2- 35 to 80 inches; clay

Clearwater, very cobbly

Extent: 5 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Clay
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: At the surface (April)
Deepest depth to wet zone: 3 feet (August)
Months when ponding does not occur: January, February, March, December
Deepest ponding: 0.3 foot (April, May, June, November)
Available water capacity to a depth of 60 inches: 8.2 inches
Content of organic matter in the upper 10 inches: 4.2 percent
Typical profile:
Ap-0 to 8 inches; clay
Bss1,Bss2-8 to 35 inches; clay
Cg1,Cg2-35 to 80 inches; clay

Clearwater, depressional

Extent: 3 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Mucky clay loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 1.6 feet (February, August)

Ponding depth: 0.5 foot (all year)
Available water capacity to a depth of 60 inches: 9 inches
Content of organic matter in the upper 10 inches: 8.4 percent
Typical profile:
Ap-0 to 8 inches; mucky clay loam
Bss1,Bss2-8 to 35 inches; clay
Cg1,Cg2-35 to 80 inches; clay

Espelie

Extent: 3 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June)
Available water capacity to a depth of 60 inches: 7.1 inches
Content of organic matter in the upper 10 inches: 5.6 percent
Typical profile:
Ap-0 to 9 inches; fine sandy loam
Bw1,Bw2-9 to 24 inches; fine sand
2Bg-2Cg-24 to 80 inches; clay

Hattie

Extent: 3 percent of the unit
Geomorphic component: Escarpments on lake plains
Position on the landform: Summits
Slope range: 1 to 3 percent
Texture of the surface layer: Clay
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 2.1 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (February)
Ponding: None
Available water capacity to a depth of 60 inches: 7.7 inches
Content of organic matter in the upper 10 inches: 2.5 percent
Typical profile:
Ap-0 to 8 inches; clay
Bk—8 to 22 inches; silty clay
C-22 to 80 inches; clay

Wyandotte

Extent: 1 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Clay loam
Depth to restrictive feature: Very deep (more than 60 inches)

Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August, September, November, December
Deepest ponding: 0.3 foot (April, May, June)
Available water capacity to a depth of 60 inches: 6.5 inches
Content of organic matter in the upper 10 inches: 4.1 percent
Typical profile:
Ap-0 to 8 inches; clay loam
Bk-8 to 15 inches; sandy clay loam
2C1-2C3-15 to 34 inches; very gravelly loamy coarse sand
$3 \mathrm{Cg}-34$ to 60 inches; clay
Major Uses of the Map Unit

- Cropland

I53A—Roliss loam, 0 to 2 percent slopes Component Description

Roliss and similar soils

Extent: 75 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August, December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 10.7 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap,A-0 to 14 inches; loam
$\mathrm{Bg}-14$ to 20 inches; loam
Cg1-Cg4-20 to 80 inches; loam

Kratka

Extent: 8 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)

Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August, September, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 9.1 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap,A-0 to 11 inches; fine sandy loam
$\mathrm{Bg} 1, \mathrm{Bg} 2-11$ to 18 inches; loamy fine sand
Cg1-18 to 25 inches; fine sand
2Cg2-2Cg4-25 to 80 inches; loam
Roliss, very cobbly
Extent: 7 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 10.7 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap,A-0 to 14 inches; loam
$\mathrm{Bg}-14$ to 20 inches; loam
Cg1-Cg4-20 to 80 inches; loam

Kittson

Extent: 5 percent of the unit Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 10.5 inches
Content of organic matter in the upper 10 inches: 3 percent
Typical profile:
Ap-0 to 10 inches; loam
Bw-10 to 17 inches; fine sandy loam
2Bk1,2Bk2-17 to 36 inches; loam
2C-36 to 60 inches; loam
Roliss, depressional
Extent: 3 percent of the unit
Geomorphic component: Depressions on lake plains

Slope range: 0 to 1 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material:Till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 2.5 feet (February)
Shallowest ponding: 0.3 foot (July, August, September, October)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, November, December)
Available water capacity to a depth of 60 inches: 10.9 inches
Content of organic matter in the upper 10 inches: 10 percent
Typical profile:
Ap,A-0 to 14 inches; loam
$\mathrm{Bg}-14$ to 20 inches; loam
Cg1-Cg4-20 to 80 inches; loam

Smiley

Extent: 2 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material:Till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 10.8 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap-0 to 12 inches; loam
Btg-12 to 19 inches; clay loam
Bkg1-Bkg3-19 to 42 inches; loam
Cg1,Cg2-42 to 80 inches; loam

Major Uses of the Map Unit

- Cropland, pasture, hayland

I54A—Roliss loam, depressional, 0 to 1 percent slopes
 Component Description

Roliss, depressional, and similar soils

Extent: 80 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material:Till

Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 2.5 feet (February)
Shallowest ponding: 0.3 foot (July, August, September, October)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, November, December)
Available water capacity to a depth of 60 inches: 10.9 inches
Content of organic matter in the upper 10 inches: 10 percent
Typical profile:
Ap,A-0 to 14 inches; loam
$\mathrm{Bg}-14$ to 20 inches; loam
Cg1-Cg4-20 to 80 inches; loam

Roliss

Extent: 12 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 10.7 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap,A-0 to 14 inches; loam
$\mathrm{Bg}-14$ to 20 inches; loam
Cg1-Cg4-20 to 80 inches; loam

Hamre

Extent: 5 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 2.5 feet (February)
Shallowest ponding: 0.3 foot (July, August, September)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, October,
November, December)
Available water capacity to a depth of 60 inches: 13.3 inches
Content of organic matter in the upper 10 inches: 85 percent
Typical profile:
Oa-0 to 13 inches; muck
A-13 to 18 inches; loam
Bg1,Bg2-18 to 71 inches; loam
Cg-71 to 80 inches; loam

Kratka

Extent: 3 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 9.1 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap,A-0 to 11 inches; fine sandy loam
Bg1,Bg2-11 to 18 inches; loamy fine sand
Cg1-18 to 25 inches; fine sand
2Cg2-2Cg4-25 to 80 inches; loam

Major Uses of the Map Unit

- Pasture, hayland, wildlife habitat

I55A—Rosewood fine sandy loam, 0 to 2 percent slopes

Component Description

Rosewood and similar soils

Extent: 75 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.9 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, November, December
Deepest ponding: 0.3 foot (April, May, June, October)
Available water capacity to a depth of 60 inches: 5.6 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap-0 to 8 inches; fine sandy loam
Bkg1,Bkg2-8 to 18 inches; fine sandy loam
Cg1-Cg3-18 to 80 inches; fine sand

Ulen

Extent: 10 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent

Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 2 feet (April)
Deepest depth to wet zone: More than 6.7 feet (August)
Ponding: None
Available water capacity to a depth of 60 inches: 5.8 inches
Content of organic matter in the upper 10 inches: 2.8 percent
Typical profile:
Ap-0 to 9 inches; fine sandy loam
Bk1,Bk2-9 to 42 inches; loamy fine sand
C-42 to 60 inches; fine sand

Hamar

Extent: 6 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.9 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, November, December
Deepest ponding: 0.3 foot (April, May, June, October)
Available water capacity to a depth of 60 inches: 5 inches
Content of organic matter in the upper 10 inches: 6 percent Typical profile:

A1,A2-0 to 12 inches; loamy fine sand
AC-12 to 17 inches; loamy fine sand
C1,C2-17 to 40 inches; fine sand
Ab-40 to 47 inches; loamy fine sand
$\mathrm{Cg}-47$ to 60 inches; fine sand

Rosewood, depressional

Extent: 3 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: At the surface (April)
Deepest depth to wet zone: 3 feet (February, August)
Shallowest ponding: 0.3 foot (July, August, September, October)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, November, December)
Available water capacity to a depth of 60 inches: 6.2 inches
Content of organic matter in the upper 10 inches: 8.2 percent

Typical profile:
Ap-0 to 8 inches; fine sandy loam
Bkg1,Bkg2-8 to 18 inches; fine sandy loam
Cg1-Cg3-18 to 80 inches; fine sand

Syrene

Extent: 3 percent of the unit
Geomorphic component: Swales and flats on beach plains
Slope range: 0 to 2 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Beach deposits
Flooding: None
Shallowest depth to wet zone: 0.3 foot (April)
Deepest depth to wet zone: 3.3 feet (February, August)
Months when ponding does not occur: January, February, March, July, August,
September, October, November, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 3.8 inches
Content of organic matter in the upper 10 inches: 5.6 percent
Typical profile:
Ap-0 to 9 inches; sandy loam
Bkg1-9 to 17 inches; sandy loam
2Bkg2-17 to 27 inches; stratified loamy fine sand to gravelly coarse sand
$2 \mathrm{Cg}-27$ to 60 inches; stratified loamy fine sand to gravelly coarse sand

Karlsruhe

Extent: 1 percent of the unit
Geomorphic component: Rises on beach plains
Slope range: 0 to 3 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Beach deposits
Flooding: None
Shallowest depth to wet zone: 2 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 5.2 inches
Content of organic matter in the upper 10 inches: 4 percent
Typical profile:
A,Ak,ABk-0 to 15 inches; sandy loam
$B k, B C k-15$ to 30 inches; loamy sand
C1,C2-30 to 60 inches; coarse sand

Strathcona

Extent: 1 percent of the unit Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None

Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 9 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap-0 to 10 inches; fine sandy loam
Bkg-10 to 17 inches; fine sandy loam, loamy fine sand
Cg1-17 to 28 inches; fine sand
2Cg2,2Cg3—28 to 80 inches; loam

Thiefriver

Extent: 1 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June)
Available water capacity to a depth of 60 inches: 7.5 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap,A-0 to 12 inches; fine sandy loam
Bkg1-Bkg3-12 to 23 inches; loamy fine sand
Cg1-23 to 32 inches; fine sand
2Cg2,2Cg3-32 to 80 inches; clay

Major Uses of the Map Unit

- Cropland, pasture, hayland

I56A—Rosewood-Venlo complex, 0 to 1 percent slopes

Component Description

Rosewood and similar soils

Extent: 50 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.9 feet (August)
Months when ponding does not occur: January, February, March, July, August, September, November, December

Deepest ponding: 0.3 foot (April, May, June, October)
Available water capacity to a depth of 60 inches: 5.6 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap-0 to 8 inches; fine sandy loam
Bkg1,Bkg2-8 to 18 inches; fine sandy loam
Cg1-Cg3-18 to 80 inches; fine sand

Venlo and similar soils

Extent: 40 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: At the surface (April)
Deepest depth to wet zone: 3 feet (February, August)
Shallowest ponding: 0.3 foot (July, August, September, October)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, November, December)
Available water capacity to a depth of 60 inches: 5.4 inches
Content of organic matter in the upper 10 inches: 10 percent
Typical profile:
A-0 to 13 inches; fine sandy loam
Cg1,Cg2-13 to 60 inches; fine sand

Deerwood

Extent: 3 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material over glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 2.5 feet (February)
Shallowest ponding: 0.3 foot (July, August, September)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, October,
November, December)
Available water capacity to a depth of 60 inches: 7.1 inches
Content of organic matter in the upper 10 inches: 75 percent Typical profile:

Oa-0 to 10 inches; muck
A-10 to 12 inches; loamy sand
Cg1,Cg2-12 to 60 inches; sand

Syrene

Extent: 3 percent of the unit
Geomorphic component: Swales and flats on beach plains
Slope range: 0 to 2 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained

Parent material: Beach deposits
Flooding: None
Shallowest depth to wet zone: 0.3 foot (April)
Deepest depth to wet zone: 3.3 feet (February, August)
Months when ponding does not occur: January, February, March, July, August,
September, October, November, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 3.8 inches
Content of organic matter in the upper 10 inches: 5.6 percent
Typical profile:
Ap-0 to 9 inches; sandy loam
Bkg1-9 to 17 inches; sandy loam
2Bkg2-17 to 27 inches; stratified loamy fine sand to gravelly coarse sand
$2 \mathrm{Cg}-27$ to 60 inches; stratified loamy fine sand to gravelly coarse sand

Ulen

Extent: 2 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 2 feet (April)
Deepest depth to wet zone: More than 6.7 feet (August)
Ponding: None
Available water capacity to a depth of 60 inches: 5.4 inches
Content of organic matter in the upper 10 inches: 2.8 percent
Typical profile:
Ap-0 to 9 inches; loamy fine sand
Bk1,Bk2—9 to 42 inches; loamy fine sand
C-42 to 60 inches; fine sand

Strathcona

Extent: 1 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August, September, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 9 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap-0 to 10 inches; fine sandy loam
Bkg-10 to 17 inches; fine sandy loam
Cg1-17 to 28 inches; fine sand
2Cg2,2Cg3—28 to 80 inches; loam

Thiefriver

Extent: 1 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June)
Available water capacity to a depth of 60 inches: 7.5 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap,A-0 to 12 inches; fine sandy loam
Bkg1-Bkg3-12 to 23 inches; loamy fine sand
Cg1-23 to 32 inches; fine sand
2Cg2,2Cg3-32 to 80 inches; clay

Major Uses of the Map Unit

- Pasture, hayland, wildlife habitat

I57B—Sandberg-Radium complex, 1 to 6 percent slopes

Component Description

Sandberg and similar soils

Extent: 50 percent of the unit
Geomorphic component: Beach ridges
Position on the landform: Backslopes, summits, and shoulders
Slope range: 1 to 6 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Beach deposits
Flooding: None
Depth to wet zone: More than 6.7 feet (all year)
Ponding: None
Available water capacity to a depth of 60 inches: 3.1 inches
Content of organic matter in the upper 10 inches: 2 percent
Typical profile:
Ap,A-0 to 12 inches; loamy sand
Bw-12 to 19 inches; gravelly loamy coarse sand
Bk-19 to 29 inches; gravelly coarse sand
C-29 to 80 inches; gravelly coarse sand

Radium and similar soils

Extent: 25 percent of the unit
Geomorphic component: Beach ridges
Position on the landform: Backslopes
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy sand

Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Beach deposits
Flooding: None
Shallowest depth to wet zone: 3 feet (April)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Ponding: None
Available water capacity to a depth of 60 inches: 3.8 inches
Content of organic matter in the upper 10 inches: 2 percent
Typical profile:
Ap-0 to 14 inches; loamy sand
Bw1,Bw2-14 to 33 inches; sand
C1-33 to 43 inches; very gravelly coarse sand
C2-C4-43 to 80 inches; sand

Sioux

Extent: 8 percent of the unit
Geomorphic component: Beach ridges
Position on the landform: Shoulders and summits
Slope range: 0 to 2 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Excessively drained
Parent material: Beach deposits
Flooding: None
Depth to wet zone: More than 6.7 feet (all year)
Ponding: None
Available water capacity to a depth of 60 inches: 3.6 inches
Content of organic matter in the upper 10 inches: 1.4 percent
Typical profile:
A-0 to 5 inches; sandy loam
AC-5 to 8 inches; gravelly sandy loam
C-8 to 60 inches; very gravelly sand

Oylen

Extent: 7 percent of the unit
Geomorphic component: Beach ridges
Position on the landform: Backslopes
Slope range: 0 to 3 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Beach deposits
Flooding: None
Shallowest depth to wet zone: 3 feet (April)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Ponding: None
Available water capacity to a depth of 60 inches: 4.9 inches Content of organic matter in the upper 10 inches: 3 percent Typical profile:

Ap-0 to 10 inches; sandy loam
Bt-10 to 18 inches; sandy loam
2Bw-18 to 38 inches; sand
2C-38 to 80 inches; gravelly coarse sand

Flaming

Extent: 5 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Ponding: None
Available water capacity to a depth of 60 inches: 4.9 inches Content of organic matter in the upper 10 inches: 3 percent Typical profile:

Ap,A-0 to 12 inches; loamy fine sand
BA-12 to 17 inches; fine sand
Bw-17 to 27 inches; fine sand
C1,C2-27 to 60 inches; fine sand

Garborg

Extent: 5 percent of the unit Geomorphic component: Flats and rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 1.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (August)
Ponding: None
Available water capacity to a depth of 60 inches: 5.2 inches Content of organic matter in the upper 10 inches: 4 percent Typical profile:

Ap,A-0 to 12 inches; loamy fine sand Bw1-Bw3-12 to 41 inches; loamy fine sand
BCk-41 to 59 inches; fine sand
C1,C2-59 to 80 inches; fine sand
Major Uses of the Map Unit

- Pasture, hayland

I58A-Seelyeville muck, 0 to 1 percent slopes

Component Description

Seelyeville and similar soils

Extent: 90 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained

Parent material: Organic material
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 1.6 feet (February, August)
Shallowest ponding: 0.3 foot (January, February, July, August, September, October,
November, December)
Deepest ponding: 0.5 foot (March, April, May, June)
Available water capacity to a depth of 60 inches: 25.1 inches
Content of organic matter in the upper 10 inches: 90 percent
Typical profile:
Oa1-0 to 10 inches; muck
Oa2-Oa5-10 to 80 inches; muck

Cathro

Extent: 0 to 10 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material over till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May, June)
Deepest depth to wet zone: 2.1 feet (February)
Shallowest ponding: 0.3 foot (January, February, July, August, September, October, November, December)
Deepest ponding: 0.5 foot (March, April, May, June)
Available water capacity to a depth of 60 inches: 15.9 inches
Content of organic matter in the upper 10 inches: 85 percent
Typical profile:
Oa1,Oa2-0 to 11 inches; muck
Oa3-11 to 23 inches; muck
Cg-23 to 60 inches; loam
Dora
Extent: 0 to 10 percent of the unit Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Mucky peat
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material over glaciolacustrine deposits or till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May, June)
Deepest depth to wet zone: 2.1 feet (February)
Shallowest ponding: 0.3 foot (January, February, July, August, September, October,
November, December)
Deepest ponding: 0.5 foot (March, April, May, June)
Available water capacity to a depth of 60 inches: 19.1 inches
Content of organic matter in the upper 10 inches: 90 percent
Typical profile:
Oe-0 to 12 inches; mucky peat
Oa1,Oa2-12 to 32 inches; muck
A-32 to 36 inches; mucky silty clay loam
Cg1-Cg3-36 to 60 inches; silty clay

Markey

Extent: 0 to 10 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material over glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May, June)
Deepest depth to wet zone: 2.1 feet (February)
Shallowest ponding: 0.3 foot (January, February, July, August, September, October, November, December)
Deepest ponding: 0.5 foot (March, April, May, June)
Available water capacity to a depth of 60 inches: 15.1 inches
Content of organic matter in the upper 10 inches: 85 percent
Typical profile:
Oa1-Oa4-0 to 32 inches; muck
$\mathrm{Cg}-32$ to 60 inches; fine sand

Berner

Extent: 0 to 10 percent of the unit Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material over glaciolacustrine deposits and/or till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May, June)
Deepest depth to wet zone: 2.1 feet (February)
Shallowest ponding: 0.3 foot (January, February, July, August, September, October,
November, December)
Deepest ponding: 0.5 foot (March, April, May, June)
Available water capacity to a depth of 60 inches: 15.9 inches
Content of organic matter in the upper 10 inches: 85 percent
Typical profile:
Oa1,Oa2-0 to 28 inches; muck
A-28 to 31 inches; sandy loam
Bg-31 to 44 inches; sand
2CBkg-44 to 80 inches; loam

Major Uses of the Map Unit

- Pasture, hayland, wildlife habitat

I59A—Smiley loam, 0 to 2 percent slopes
 Component Description

Smiley and similar soils
Extent: 65 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)

Drainage class: Poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 10.8 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap-0 to 12 inches; loam
Btg-12 to 19 inches; clay loam
Bkg1-Bkg3-19 to 42 inches; loam
Cg1,Cg2-42 to 80 inches; loam

Smiley, very cobbly

Extent: 10 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 10.8 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap-0 to 12 inches; loam
Btg-12 to 19 inches; clay loam
Bkg1-Bkg3-19 to 42 inches; loam
Cg1,Cg2—42 to 80 inches; loam

Kratka

Extent: 9 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 9.1 inches
Content of organic matter in the upper 10 inches: 6 percent

Typical profile:
Ap,A-0 to 11 inches; fine sandy loam
Bg1,Bg2-11 to 18 inches; loamy fine sand
Cg1-18 to 25 inches; fine sand
2Cg2-2Cg4-25 to 80 inches; loam
Roliss
Extent: 5 percent of the unit Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material:Till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 10.7 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap,A-0 to 14 inches; loam
$\mathrm{Bg}-14$ to 20 inches; loam
Cg1-Cg4-20 to 80 inches; loam

Reiner

Extent: 4 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material:Till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 10.2 inches
Content of organic matter in the upper 10 inches: 2.3 percent
Typical profile:
Ap-0 to 7 inches; fine sandy loam
$\mathrm{Bt}-7$ to 17 inches; clay loam
Bw,Bk1,Bk2-17 to 35 inches; loam
C1-C3-35 to 80 inches; loam

Linveldt

Extent: 3 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till

Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 8.9 inches
Content of organic matter in the upper 10 inches: 2.8 percent
Typical profile:
Ap-0 to 9 inches; fine sandy loam
$\mathrm{Bt}-9$ to 16 inches; loam
2Bw1,2Bw2-16 to 29 inches; sand
$3 B k-29$ to 45 inches; loam
3C1-3C3-45 to 80 inches; loam

Smiley, depressional

Extent: 3 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Mucky loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 2.5 feet (February)
Shallowest ponding: 0.3 foot (July, August, September, October)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, November, December)
Available water capacity to a depth of 60 inches: 11.1 inches
Content of organic matter in the upper 10 inches: 10 percent
Typical profile:
Ap-0 to 12 inches; mucky loam
Btg-12 to 19 inches; clay loam
Bkg1,Bkg2—19 to 42 inches; loam
Cg-42 to 80 inches; loam

Strandquist

Extent: 1 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, November, December
Deepest ponding: 0.3 foot (April, May, June, October)
Available water capacity to a depth of 60 inches: 9.3 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap-0 to 10 inches; loam
2Bg1-10 to 20 inches; very gravelly sand
3Bg2,3Cg-20 to 60 inches; loam

Major Uses of the Map Unit

- Cropland, pasture, hayland

I60A-Smiley mucky loam, depressional, 0 to 1 percent slopes

Component Description

Smiley, depressional, and similar soils

Extent: 80 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Mucky loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 2.5 feet (February)
Shallowest ponding: 0.3 foot (July, August, September, October)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, November, December)
Available water capacity to a depth of 60 inches: 11.1 inches
Content of organic matter in the upper 10 inches: 10 percent
Typical profile:
Ap-0 to 12 inches; mucky loam
Btg-12 to 19 inches; clay loam
Bkg1-Bkg3-19 to 42 inches; loam
Cg1,Cg2-42 to 80 inches; loam

Smiley

Extent: 10 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 10.8 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap-0 to 12 inches; loam
Btg-12 to 19 inches; clay loam
Bkg1-Bkg3-19 to 42 inches; loam
Cg1,Cg2—42 to 80 inches; loam

Hamre

Extent: 5 percent of the unit

Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 2.5 feet (February)
Shallowest ponding: 0.3 foot (July, August, September)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, October,
November, December)
Available water capacity to a depth of 60 inches: 13.3 inches
Content of organic matter in the upper 10 inches: 85 percent
Typical profile:
Oa-0 to 13 inches; muck
A-13 to 18 inches; loam
Bg1,Bg2-18 to 71 inches; loam
Cg-71 to 80 inches; loam

Kratka

Extent: 5 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 9.1 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
$A p, A-0$ to 11 inches; fine sandy loam
Bg1,Bg2-11 to 18 inches; loamy fine sand
Cg1-18 to 25 inches; fine sand
2Cg2-2Cg4—25 to 80 inches; loam

Major Uses of the Map Unit

- Pasture, hayland, wildlife habitat

I61A-Strandquist loam, 0 to 2 percent slopes

Component Description

Strandquist and similar soils

Extent: 70 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)

Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August, September, November, December
Deepest ponding: 0.3 foot (April, May, June, October)
Available water capacity to a depth of 60 inches: 9.3 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap-0 to 10 inches; loam
2Bg1-10 to 20 inches; very gravelly sand
$3 \mathrm{Bg} 2,3 \mathrm{Cg}-20$ to 60 inches; loam

Mavie

Extent: 8 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, November, December
Deepest ponding: 0.3 foot (April, May, June, October)
Available water capacity to a depth of 60 inches: 7.4 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap-0 to 12 inches; fine sandy loam
BK-12 to 18 inches; sandy loam
2C1,2C2-18 to 39 inches; very gravelly coarse sand
3C3-39 to 80 inches; loam

Roliss

Extent: 7 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material:Till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August, December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 10.7 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap,A-0 to 14 inches; loam
$\mathrm{Bg}-14$ to 20 inches; loam
Cg1-Cg4-20 to 80 inches; loam

Kratka

Extent: 5 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 9.1 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap,A-0 to 11 inches; fine sandy loam
Bg1,Bg2-11 to 18 inches; loamy fine sand
Cg1-18 to 25 inches; fine sand
2Cg2-2Cg4-25 to 80 inches; loam

Foxhome

Extent: 4 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 8.6 inches
Content of organic matter in the upper 10 inches: 3 percent
Typical profile:
Ap-0 to 10 inches; sandy loam
Bw1-10 to 15 inches; loamy sand
2Bw2-15 to 23 inches; very gravelly coarse sand
3C1-3C3-23 to 80 inches; loam

Hangaard

Extent: 3 percent of the unit
Geomorphic component: Swales and flats on beach plains
Slope range: 0 to 2 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Beach deposits
Flooding: None
Shallowest depth to wet zone: 0.3 foot (April)
Deepest depth to wet zone: 3.3 feet (February, August)

Months when ponding does not occur: January, February, March, July, August, September, October, November, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 3 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap-0 to 10 inches; sandy loam
A-10 to 15 inches; loamy sand
Cg1-Cg5-15 to 80 inches; gravelly coarse sand

Northwood

Extent: 3 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material over glaciolacustrine deposits and/or till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 2.5 feet (February)
Shallowest ponding: 0.3 foot (July, August, September)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, October, November, December)
Available water capacity to a depth of 60 inches: 11.3 inches
Content of organic matter in the upper 10 inches: 78.6 percent
Typical profile:
Oa-0 to 9 inches; muck
A-9 to 14 inches; loamy fine sand
Bg1,Bg2-14 to 24 inches; fine sand
2BCkg-2Cg-24 to 80 inches; loam
Major Uses of the Map Unit

- Cropland, pasture, hayland

I62A-Syrene sandy loam, 0 to 2 percent slopes Component Description

Syrene and similar soils

Extent: 70 percent of the unit
Geomorphic component: Flats and swales on beach plains
Slope range: 0 to 2 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Beach deposits
Flooding: None
Shallowest depth to wet zone: 0.3 foot (April)
Deepest depth to wet zone: 3.3 feet (February, August)
Months when ponding does not occur: January, February, March, July, August,
September, October, November, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 3.8 inches
Content of organic matter in the upper 10 inches: 5.6 percent

Typical profile:
Ap-0 to 9 inches; sandy loam
Bkg1-9 to 17 inches; sandy loam
2Bkg2-17 to 27 inches; stratified loamy fine sand to gravelly coarse sand
2Cg-27 to 60 inches; stratified loamy fine sand to gravelly coarse sand

Rosewood

Extent: 11 percent of the unit Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.9 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, November, December
Deepest ponding: 0.3 foot (April, May, June, October)
Available water capacity to a depth of 60 inches: 5.6 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap-0 to 8 inches; fine sandy loam
Bkg1,Bkg2-8 to 18 inches; fine sandy loam
Cg1-Cg3-18 to 80 inches; fine sand

Hangaard

Extent: 5 percent of the unit
Geomorphic component: Swales and flats on beach plains
Slope range: 0 to 2 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Beach deposits
Flooding: None
Shallowest depth to wet zone: 0.3 foot (April)
Deepest depth to wet zone: 3.3 feet (February, August)
Months when ponding does not occur: January, February, March, July, August,
September, October, November, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 3 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap-0 to 10 inches; sandy loam
A-10 to 15 inches; loamy sand
Cg1-Cg5-15 to 80 inches; gravelly coarse sand

Karlsruhe

Extent: 4 percent of the unit
Geomorphic component: Rises on beach plains
Slope range: 0 to 3 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained

Parent material: Beach deposits
Flooding: None
Shallowest depth to wet zone: 2 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 5.2 inches
Content of organic matter in the upper 10 inches: 4 percent
Typical profile:
$A, A k, A B k-0$ to 15 inches; sandy loam
$B k, B C k-15$ to 30 inches; loamy sand
C1,C2-30 to 60 inches; coarse sand

Deerwood

Extent: 3 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Muck
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Organic material over glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 2.5 feet (February)
Shallowest ponding: 0.3 foot (July, August, September)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, October,
November, December)
Available water capacity to a depth of 60 inches: 7.1 inches
Content of organic matter in the upper 10 inches: 75 percent
Typical profile:
Oa-0 to 10 inches; muck
A-10 to 12 inches; loamy sand
Cg1,Cg2-12 to 60 inches; sand

Hamar

Extent: 3 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.9 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, November, December
Deepest ponding: 0.3 foot (April, May, June, October)
Available water capacity to a depth of 60 inches: 5 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
A1,A2-0 to 12 inches; loamy fine sand
AC-12 to 17 inches; loamy fine sand
C1,C2-17 to 40 inches; fine sand
Ab-40 to 47 inches; loamy fine sand
$\mathrm{Cg}-47$ to 60 inches; fine sand

Strandquist

Extent: 2 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August, September, November, December
Deepest ponding: 0.3 foot (April, May, June, October)
Available water capacity to a depth of 60 inches: 9.3 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap-0 to 10 inches; loam
2Bg1-10 to 20 inches; very gravelly sand
3Bg2,3Cg-20 to 60 inches; loam

Radium

Extent: 1 percent of the unit
Geomorphic component: Beach ridges
Position on the landform: Backslopes
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Beach deposits
Flooding: None
Shallowest depth to wet zone: 3 feet (April)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Ponding: None
Available water capacity to a depth of 60 inches: 3.8 inches
Content of organic matter in the upper 10 inches: 2 percent
Typical profile:
Ap-0 to 14 inches; loamy sand
Bw1,Bw2-14 to 33 inches; sand
C1- 33 to 43 inches; very gravelly coarse sand
C2-C4-43 to 80 inches; sand

Wyandotte

Extent: 1 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Clay loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August, September, November, December

Deepest ponding: 0.3 foot (April, May, June)
Available water capacity to a depth of 60 inches: 6.5 inches
Content of organic matter in the upper 10 inches: 4.1 percent
Typical profile:
Ap-0 to 8 inches; clay loam
Bk-8 to 15 inches; sandy clay loam
2C1-2C3-15 to 34 inches; very gravelly loamy coarse sand
$3 C g-34$ to 60 inches; clay

Major Uses of the Map Unit

- Cropland, pasture, hayland

I63A-Thiefriver fine sandy loam, 0 to 2 percent slopes

Component Description

Thiefriver and similar soils
Extent: 70 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June)
Available water capacity to a depth of 60 inches: 7.5 inches
Content of organic matter in the upper 10 inches: 6 percent Typical profile:

Ap,A-0 to 12 inches; fine sandy loam
Bkg1-Bkg3-12 to 23 inches; loamy fine sand
Cg1-23 to 32 inches; fine sand
2Cg2,2Cg3-32 to 80 inches; clay

Espelie

Extent: 10 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June)
Available water capacity to a depth of 60 inches: 7.1 inches
Content of organic matter in the upper 10 inches: 5.6 percent

Typical profile:
Ap-0 to 9 inches; fine sandy loam
Bw1,Bw2-9 to 24 inches; fine sand
2Bg-2Cg-24 to 80 inches; clay

Foxlake

Extent: 7 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material:Till
Flooding: None
Shallowest depth to wet zone: At the surface (April)
Deepest depth to wet zone: 3 feet (August)
Months when ponding does not occur: January, February, March, December
Deepest ponding: 0.3 foot (April, May, June, November)
Available water capacity to a depth of 60 inches: 8.9 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap,A-0 to 19 inches; loam
$\mathrm{Bg}-19$ to 38 inches; silty clay
Bkg- 38 to 49 inches; clay
Cg-49 to 80 inches; clay

Huot

Extent: 5 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 7.6 inches
Content of organic matter in the upper 10 inches: 3 percent
Typical profile:
Ap,Ak-0 to 14 inches; fine sandy loam
Bk-14 to 26 inches; loamy fine sand
C1-26 to 34 inches; fine sand
2C2,2C3-34 to 80 inches; clay

Clearwater, depressional

Extent: 3 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Mucky clay loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material:Till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)

Deepest depth to wet zone: 1.6 feet (February, August)
Ponding depth: 0.5 foot (all year)
Available water capacity to a depth of 60 inches: 9 inches
Content of organic matter in the upper 10 inches: 8.4 percent
Typical profile:
Ap-0 to 8 inches; mucky clay loam
Bss1,Bss2-8 to 35 inches; clay
Cg1,Cg2—35 to 80 inches; clay

Rosewood

Extent: 3 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.9 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, November, December
Deepest ponding: 0.3 foot (April, May, June, October)
Available water capacity to a depth of 60 inches: 5.6 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap-0 to 8 inches; fine sandy loam
Bkg1,Bkg2-8 to 18 inches; fine sandy loam
Cg1-Cg3-18 to 80 inches; fine sand

Ulen

Extent: 1 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 2 feet (April)
Deepest depth to wet zone: More than 6.7 feet (August)
Ponding: None
Available water capacity to a depth of 60 inches: 5.8 inches
Content of organic matter in the upper 10 inches: 2.8 percent
Typical profile:
Ap-0 to 9 inches; fine sandy loam
Bk1,Bk2-9 to 42 inches; loamy fine sand
C-42 to 60 inches; fine sand

Wyandotte

Extent: 1 percent of the unit Geomorphic component: Flats and swales on lake plains Slope range: 0 to 2 percent Texture of the surface layer: Clay loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained

Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, November, December
Deepest ponding: 0.3 foot (April, May, June)
Available water capacity to a depth of 60 inches: 6.5 inches
Content of organic matter in the upper 10 inches: 4.1 percent
Typical profile:
Ap-0 to 8 inches; clay loam
Bk-8 to 15 inches; sandy clay loam
2C1-2C3-15 to 34 inches; very gravelly loamy coarse sand
$3 \mathrm{Cg}-34$ to 60 inches; clay
Major Uses of the Map Unit

- Cropland, pasture, hayland

164A-Ulen fine sandy loam, 0 to 3 percent slopes

Component Description

Ulen and similar soils

Extent: 70 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 2 feet (April)
Deepest depth to wet zone: More than 6.7 feet (August)
Ponding: None
Available water capacity to a depth of 60 inches: 5.8 inches
Content of organic matter in the upper 10 inches: 2.8 percent
Typical profile:
Ap-0 to 9 inches; fine sandy loam
Bk1,Bk2-9 to 42 inches; loamy fine sand
C-42 to 60 inches; fine sand

Rosewood

Extent: 10 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.9 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, November, December
Deepest ponding: 0.3 foot (April, May, June, October)

Available water capacity to a depth of 60 inches: 5.6 inches Content of organic matter in the upper 10 inches: 5 percent Typical profile:

Ap-0 to 8 inches; fine sandy loam
Bkg1,Bkg2-8 to 18 inches; fine sandy loam
Cg1-Cg3-18 to 80 inches; fine sand

Flaming

Extent: 8 percent of the unit Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Ponding: None
Available water capacity to a depth of 60 inches: 4.9 inches Content of organic matter in the upper 10 inches: 3 percent Typical profile:

Ap,A-0 to 12 inches; loamy fine sand
BA-12 to 17 inches; fine sand
Bw-17 to 27 inches; fine sand
C1,C2-27 to 60 inches; fine sand

Karlsruhe

Extent: 5 percent of the unit
Geomorphic component: Rises on beach plains
Slope range: 0 to 3 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Beach deposits
Flooding: None
Shallowest depth to wet zone: 2 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 5.2 inches Content of organic matter in the upper 10 inches: 4 percent Typical profile:

A,Ak,ABk-0 to 15 inches; sandy loam
$B k, B C k-15$ to 30 inches; loamy sand
C1,C2-30 to 60 inches; coarse sand
Radium
Extent: 3 percent of the unit Geomorphic component: Beach ridges
Position on the landform: Backslopes
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Beach deposits
Flooding: None

Shallowest depth to wet zone: 3 feet (April)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Ponding: None
Available water capacity to a depth of 60 inches: 3.8 inches
Content of organic matter in the upper 10 inches: 2 percent
Typical profile:
Ap-0 to 14 inches; loamy sand
Bw1,Bw2-14 to 33 inches; sand
C1- 33 to 43 inches; very gravelly coarse sand
C2-C4-43 to 80 inches; sand

Strathcona

Extent: 2 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 9 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap-0 to 10 inches; fine sandy loam
Bkg-10 to 17 inches; fine sandy loam
Cg1-17 to 28 inches; fine sand
2Cg2,2Cg3-28 to 80 inches; loam
Thiefriver
Extent: 2 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June)
Available water capacity to a depth of 60 inches: 7.5 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap,A-0 to 12 inches; fine sandy loam
Bkg1-Bkg3-12 to 23 inches; loamy fine sand
Cg1-23 to 32 inches; fine sand
2Cg2,2Cg3-32 to 80 inches; clay

Major Uses of the Map Unit

- Cropland, pasture, hayland

I65A—Ulen loamy fine sand, 0 to 3 percent slopes

Component Description

Ulen and similar soils

Extent: 70 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 2 feet (April)
Deepest depth to wet zone: More than 6.7 feet (August)
Ponding: None
Available water capacity to a depth of 60 inches: 5.4 inches
Content of organic matter in the upper 10 inches: 2.8 percent
Typical profile:
Ap-0 to 9 inches; loamy fine sand
Bk1,Bk2-9 to 42 inches; loamy fine sand
C-42 to 60 inches; fine sand

Rosewood

Extent: 10 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.9 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, November, December
Deepest ponding: 0.3 foot (April, May, June, October)
Available water capacity to a depth of 60 inches: 5.6 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap-0 to 8 inches; fine sandy loam
Bkg1,Bkg2-8 to 18 inches; fine sandy loam
Cg1-Cg3-18 to 80 inches; fine sand

Flaming

Extent: 6 percent of the unit Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained

Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Ponding: None
Available water capacity to a depth of 60 inches: 4.9 inches
Content of organic matter in the upper 10 inches: 3 percent
Typical profile:
$A p, A-0$ to 12 inches; loamy fine sand
BA-12 to 17 inches; fine sand
Bw-17 to 27 inches; fine sand
C1,C2-27 to 60 inches; fine sand

Poppleton

Extent: 4 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Ponding: None
Available water capacity to a depth of 60 inches: 5 inches
Content of organic matter in the upper 10 inches: 1 percent Typical profile:

Ap-0 to 6 inches; fine sand
E-6 to 9 inches; fine sand
Bw1-Bw4-9 to 40 inches; fine sand
C1,C2-40 to 60 inches; fine sand

Karlsruhe

Extent: 3 percent of the unit Geomorphic component: Rises on beach plains
Slope range: 0 to 3 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Beach deposits
Flooding: None
Shallowest depth to wet zone: 2 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 5.2 inches
Content of organic matter in the upper 10 inches: 4 percent Typical profile:
$A, A k, A B k-0$ to 15 inches; sandy loam
Bk,BCk-15 to 30 inches; loamy sand
C1,C2-30 to 60 inches; coarse sand

Radium

Extent: 3 percent of the unit
Geomorphic component: Beach ridges
Position on the landform: Backslopes

Slope range: 0 to 3 percent
Texture of the surface layer: Loamy sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Beach deposits
Flooding: None
Shallowest depth to wet zone: 3 feet (April)
Deepest depth to wet zone: More than 6.7 feet (July, August)
Ponding: None
Available water capacity to a depth of 60 inches: 3.8 inches
Content of organic matter in the upper 10 inches: 2 percent
Typical profile:
Ap-0 to 14 inches; loamy sand
Bw1,Bw2-14 to 33 inches; sand
C1-33 to 43 inches; very gravelly coarse sand
C2-C4-43 to 80 inches; sand

Strathcona

Extent: 2 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 9 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap-0 to 10 inches; fine sandy loam
Bkg-10 to 17 inches; fine sandy loam
Cg1-17 to 28 inches; fine sand
2Cg2,2Cg3—28 to 80 inches; loam

Thiefriver

Extent: 2 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August, December
Deepest ponding: 0.3 foot (April, May, June)
Available water capacity to a depth of 60 inches: 7.5 inches
Content of organic matter in the upper 10 inches: 6 percent

Typical profile:
Ap,A-0 to 12 inches; fine sandy loam
Bkg1-Bkg3-12 to 23 inches; loamy fine sand
Cg1-23 to 32 inches; fine sand
2Cg2,2Cg3-32 to 80 inches; clay
Major Uses of the Map Unit

- Cropland, pasture, hayland

I66A-Vallers loam, 0 to 2 percent slopes Component Description

Vallers and similar soils

Extent: 75 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material:Till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 10.6 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
A1,A2-0 to 12 inches; loam
Bkg1,Bkg2-12 to 21 inches; loam
Cg1,Cg2-21 to 60 inches; loam
Vallers, very cobbly
Extent: 7 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material:Till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 10.6 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
A1,A2-0 to 12 inches; loam
Bkg1,Bkg2-12 to 21 inches; loam
Cg1,Cg2-21 to 60 inches; loam

Hamerly

Extent: 6 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 1.3 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 10.5 inches
Content of organic matter in the upper 10 inches: 2.5 percent
Typical profile:
Ap-0 to 8 inches; loam
Bk1,Bk2-8 to 25 inches; loam
C-25 to 60 inches; loam

Grimstad

Extent: 3 percent of the unit Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 1.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (August)
Ponding: None
Available water capacity to a depth of 60 inches: 9.2 inches
Content of organic matter in the upper 10 inches: 2.8 percent
Typical profile:
Ap-0 to 9 inches; fine sandy loam
Bk1,Bk2-9 to 22 inches; loamy fine sand
C1-22 to 28 inches; fine sand
2C2,2C3-28 to 60 inches; loam

Mavie

Extent: 3 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, November, December
Deepest ponding: 0.3 foot (April, May, June, October)
Available water capacity to a depth of 60 inches: 7.4 inches

Content of organic matter in the upper 10 inches: 6 percent Typical profile:

Ap-0 to 12 inches; fine sandy loam
Bk-12 to 18 inches; sandy loam
2C1,2C2-18 to 39 inches; very gravelly coarse sand
3C3-39 to 80 inches; loam
Roliss, depressional
Extent: 3 percent of the unit Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material:Till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 2.5 feet (February)
Shallowest ponding: 0.3 foot (July, August, September, October)
Deepest ponding: 0.5 foot (January, February, March, April, May, June, November,
December)
Available water capacity to a depth of 60 inches: 10.9 inches
Content of organic matter in the upper 10 inches: 10 percent
Typical profile:
Ap,A-0 to 14 inches; loam
$\mathrm{Bg}-14$ to 20 inches; loam
Cg1-Cg4-20 to 80 inches; loam

Strathcona

Extent: 3 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 9 inches
Content of organic matter in the upper 10 inches: 6 percent Typical profile:

Ap-0 to 10 inches; fine sandy loam
Bkg-10 to 17 inches; fine sandy loam
Cg1-17 to 28 inches; fine sand
2Cg2,2Cg3-28 to 80 inches; loam
Major Uses of the Map Unit

- Cropland

I67A—Wheatville loam, 0 to 3 percent slopes

Component Description

Wheatville and similar soils

Extent: 70 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 1.3 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 9.6 inches
Content of organic matter in the upper 10 inches: 2.8 percent
Typical profile:
Ap-0 to 9 inches; loam
Bk1,Bk2-9 to 31 inches; very fine sandy loam
2C1-2C4-31 to 80 inches; clay

Augsburg

Extent: 13 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 10 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap,A-0 to 11 inches; loam
Bkg-11 to 18 inches; very fine sandy loam
Bg1-18 to 33 inches; loamy very fine sand
2Bg2-33 to 60 inches; clay

Glyndon

Extent: 8 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Very fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Glaciolacustrine deposits

Flooding: None

Shallowest depth to wet zone: 1 foot (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 10.4 inches
Content of organic matter in the upper 10 inches: 3 percent
Typical profile:
$A p, A k-0$ to 11 inches; very fine sandy loam
Bk1,Bk2-11 to 28 inches; very fine sandy loam
C,Cg-28 to 60 inches; loamy very fine sand

Foxlake

Extent: 5 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: At the surface (April)
Deepest depth to wet zone: 3 feet (August)
Months when ponding does not occur: January, February, March, December
Deepest ponding: 0.3 foot (April, May, June, November)
Available water capacity to a depth of 60 inches: 8.9 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap,A-0 to 19 inches; loam
Bg-19 to 38 inches; silty clay
Bkg-38 to 49 inches; clay
Cg-49 to 80 inches; clay

Hilaire

Extent: 2 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 6.5 inches
Content of organic matter in the upper 10 inches: 3 percent
Typical profile:
$A p, A-0$ to 10 inches; loamy fine sand
Bw1-Bw4-10 to 34 inches; fine sand
2BCk-34 to 80 inches; clay

Ulen

Extent: 2 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy fine sand

Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 2 feet (April)
Deepest depth to wet zone: More than 6.7 feet (August)
Ponding: None
Available water capacity to a depth of 60 inches: 5.4 inches
Content of organic matter in the upper 10 inches: 2.8 percent
Typical profile:
Ap-0 to 9 inches; loamy fine sand
Bk1,Bk2—9 to 42 inches; loamy fine sand
C-42 to 60 inches; fine sand
Major Uses of the Map Unit

- Cropland

I68A-Wheatville very fine sandy loam, 0 to 3 percent slopes

Component Description

Wheatville and similar soils

Extent: 70 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Very fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 1.3 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 9.4 inches
Content of organic matter in the upper 10 inches: 2.8 percent
Typical profile:
Ap-0 to 9 inches; very fine sandy loam
Bk1,Bk2-9 to 31 inches; very fine sandy loam
2C1-2C4-31 to 80 inches; clay

Augsburg

Extent: 13 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August, December

Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 10 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap,A-0 to 11 inches; loam
Bkg-11 to 18 inches; very fine sandy loam
Bg1-18 to 33 inches; loamy very fine sand
2Bg2-33 to 60 inches; clay

Glyndon

Extent: 8 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Very fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 1 foot (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 10.4 inches
Content of organic matter in the upper 10 inches: 3 percent
Typical profile:
Ap,Ak—0 to 11 inches; very fine sandy loam
Bk1,Bk2-11 to 28 inches; very fine sandy loam
C,Cg-28 to 60 inches; loamy very fine sand

Foxlake

Extent: 5 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: At the surface (April)
Deepest depth to wet zone: 3 feet (August)
Months when ponding does not occur: January, February, March, December
Deepest ponding: 0.3 foot (April, May, June, November)
Available water capacity to a depth of 60 inches: 8.9 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap,A-0 to 19 inches; loam
Bg-19 to 38 inches; silty clay
Bkg-38 to 49 inches; clay
Cg-49 to 80 inches; clay

Hilaire

Extent: 2 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)

Drainage class: Moderately well drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 2.5 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 6.5 inches
Content of organic matter in the upper 10 inches: 3 percent
Typical profile:
Ap,A-0 to 10 inches; loamy fine sand
Bw1-Bw4-10 to 34 inches; fine sand
2BCk-34 to 80 inches; clay

Ulen

Extent: 2 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Loamy fine sand
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 2 feet (April)
Deepest depth to wet zone: More than 6.7 feet (August)
Ponding: None
Available water capacity to a depth of 60 inches: 5.4 inches Content of organic matter in the upper 10 inches: 2.8 percent Typical profile:

Ap-0 to 9 inches; loamy fine sand
Bk1,Bk2-9 to 42 inches; loamy fine sand
C-42 to 60 inches; fine sand
Major Uses of the Map Unit

- Cropland

I69A—Wyandotte clay loam, 0 to 2 percent slopes Component Description

Wyandotte and similar soils
Extent: 65 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Clay loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, November, December
Deepest ponding: 0.3 foot (April, May, June)
Available water capacity to a depth of 60 inches: 6.5 inches

Content of organic matter in the upper 10 inches: 4.1 percent Typical profile:

Ap-0 to 8 inches; clay loam
Bk-8 to 15 inches; sandy clay loam
2C1-2C3-15 to 34 inches; very gravelly loamy coarse sand
$3 \mathrm{Cg}-34$ to 60 inches; clay

Foxlake

Extent: 10 percent of the unit Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material:Till
Flooding: None
Shallowest depth to wet zone: At the surface (April)
Deepest depth to wet zone: 3 feet (August)
Months when ponding does not occur: January, February, March, December
Deepest ponding: 0.3 foot (April, May, June, November)
Available water capacity to a depth of 60 inches: 8.9 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap,A-0 to 19 inches; loam
$\mathrm{Bg}-19$ to 38 inches; silty clay
Bkg-38 to 49 inches; clay
Cg-49 to 80 inches; clay

Espelie

Extent: 8 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June)
Available water capacity to a depth of 60 inches: 7.1 inches
Content of organic matter in the upper 10 inches: 5.6 percent
Typical profile:
Ap-0 to 9 inches; fine sandy loam
Bw1,Bw2-9 to 24 inches; fine sand
$2 \mathrm{Bg}-2 \mathrm{Cg}-24$ to 80 inches; clay

Clearwater, depressional

Extent: 5 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Mucky clay loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained

Parent material: Till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 1.6 feet (February, August)
Ponding depth: 0.5 foot (all year)
Available water capacity to a depth of 60 inches: 9 inches
Content of organic matter in the upper 10 inches: 8.4 percent
Typical profile:
Ap-0 to 8 inches; mucky clay loam
Bss1,Bss2-8 to 35 inches; clay
Cg1,Cg2-35 to 80 inches; clay

Thiefriver

Extent: 5 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August,
December
Deepest ponding: 0.3 foot (April, May, June)
Available water capacity to a depth of 60 inches: 7.5 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap,A-0 to 12 inches; fine sandy loam
Bkg1-Bkg3-12 to 23 inches; loamy fine sand
Cg1-23 to 32 inches; fine sand
2Cg2,2Cg3-32 to 80 inches; clay

Karlsruhe

Extent: 4 percent of the unit
Geomorphic component: Rises on beach plains
Slope range: 0 to 3 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Beach deposits
Flooding: None
Shallowest depth to wet zone: 2 feet (April)
Deepest depth to wet zone: 6.7 feet (transitory) (August)
Ponding: None
Available water capacity to a depth of 60 inches: 5.2 inches
Content of organic matter in the upper 10 inches: 4 percent
Typical profile:
A,Ak,ABk-0 to 15 inches; sandy loam
$B k, B C k-15$ to 30 inches; loamy sand
C1,C2-30 to 60 inches; coarse sand

Syrene

Extent: 3 percent of the unit
Geomorphic component: Flats and swales on beach plains

Slope range: 0 to 2 percent
Texture of the surface layer: Sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Beach deposits
Flooding: None
Shallowest depth to wet zone: 0.3 foot (April)
Deepest depth to wet zone: 3.3 feet (February, August)
Months when ponding does not occur: January, February, March, July, August,
September, October, November, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 3.8 inches
Content of organic matter in the upper 10 inches: 5.6 percent
Typical profile:
Ap-0 to 9 inches; sandy loam
Bkg1-9 to 17 inches; sandy loam
2Bkg2-17 to 27 inches; stratified loamy fine sand to gravelly coarse sand
2Cg-27 to 60 inches; stratified loamy fine sand to gravelly coarse sand
Major Uses of the Map Unit

- Cropland, pasture, hayland

I70A-Strathcona fine sandy loam, 0 to 2 percent slopes

Component Description

Strathcona and similar soils

Extent: 70 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 9 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap-0 to 10 inches; fine sandy loam
Bkg-10 to 17 inches; fine sandy loam
Cg1-17 to 28 inches; fine sand
2Cg2,2Cg3—28 to 80 inches; loam

Kratka

Extent: 10 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained

Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, December
Deepest ponding: 0.3 foot (April, May)
Available water capacity to a depth of 60 inches: 9.1 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap,A-0 to 11 inches; fine sandy loam
Bg1,Bg2—11 to 18 inches; loamy fine sand
Cg1-18 to 25 inches; fine sand
2Cg2-2Cg4-25 to 80 inches; loam

Roliss

Extent: 6 percent of the unit
Geomorphic component: Swales and flats on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 3.8 feet (August)
Months when ponding does not occur: January, February, March, July, August, December
Deepest ponding: 0.3 foot (April, May, June, September, October, November)
Available water capacity to a depth of 60 inches: 10.7 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap,A-0 to 14 inches; loam
$\mathrm{Bg}-14$ to 20 inches; loam
Cg1-Cg4-20 to 80 inches; loam

Grimstad

Extent: 5 percent of the unit
Geomorphic component: Rises on lake plains
Slope range: 0 to 3 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Somewhat poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 1.5 feet (April)
Deepest depth to wet zone: More than 6.7 feet (August)
Ponding: None
Available water capacity to a depth of 60 inches: 9.2 inches
Content of organic matter in the upper 10 inches: 2.8 percent
Typical profile:
Ap-0 to 9 inches; fine sandy loam
Bk1,Bk2—9 to 22 inches; loamy fine sand
C1-22 to 28 inches; fine sand
2C2,2C3-28 to 60 inches; loam

Mavie

Extent: 3 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.1 feet (August)
Months when ponding does not occur: January, February, March, July, August, September, November, December
Deepest ponding: 0.3 foot (April, May, June, October)
Available water capacity to a depth of 60 inches: 7.4 inches
Content of organic matter in the upper 10 inches: 6 percent
Typical profile:
Ap-0 to 12 inches; fine sandy loam
Bk-12 to 18 inches; sandy loam
2C1,2C2-18 to 39 inches; very gravelly coarse sand
3C3-39 to 80 inches; loam

Rosewood

Extent: 3 percent of the unit
Geomorphic component: Flats and swales on lake plains
Slope range: 0 to 2 percent
Texture of the surface layer: Fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Poorly drained
Parent material: Glaciolacustrine deposits
Flooding: None
Shallowest depth to wet zone: 0.5 foot (April)
Deepest depth to wet zone: 4.9 feet (August)
Months when ponding does not occur: January, February, March, July, August,
September, November, December
Deepest ponding: 0.3 foot (April, May, June, October)
Available water capacity to a depth of 60 inches: 5.6 inches
Content of organic matter in the upper 10 inches: 5 percent
Typical profile:
Ap-0 to 8 inches; fine sandy loam
Bkg1,Bkg2—8 to 18 inches; fine sandy loam
Cg1-Cg3-18 to 80 inches; fine sand

Strathcona, depressional

Extent: 3 percent of the unit
Geomorphic component: Depressions on lake plains
Slope range: 0 to 1 percent
Texture of the surface layer: Mucky fine sandy loam
Depth to restrictive feature: Very deep (more than 60 inches)
Drainage class: Very poorly drained
Parent material: Glaciolacustrine deposits over till
Flooding: None
Shallowest depth to wet zone: At the surface (March, April, May)
Deepest depth to wet zone: 2.5 feet (February, August)
Shallowest ponding: 0.3 foot (July, August, September, October)

Deepest ponding: 0.5 foot (January, February, March, April, May, June, November, December)
Available water capacity to a depth of 60 inches: 9.9 inches
Content of organic matter in the upper 10 inches: 10 percent
Typical profile:
Ap-0 to 10 inches; mucky fine sandy loam
Bkg-10 to 17 inches; loamy fine sand
Cg1-17 to 28 inches; fine sand
2Cg2,2Cg3-28 to 80 inches; loam

Major Uses of the Map Unit

- Cropland, pasture, hayland

M-W—Miscellaneous water

General Description

- This map unit consists of bodies of water that have been constructed, including sewage lagoons, storm-water sediment basins with a permanent pool of water, and aquaculture ponds.

W-Water

General Description

- This map unit consists of naturally occurring bodies of water or bodies of water that have been impounded by structures in natural waterways.

Table 5.--Acreage and Proportionate Extent of the Soils

$\begin{aligned} & \text { Map } \\ & \text { symbol } \end{aligned}$	Soil name	Acres	Percent	
B109A	\|Bowstring and Fluvaquents soils, MLRA 88, 0 to 2 percent slopes,			
	frequently flooded-	183	*	
B200A	\|Garnes fine sandy loam, 0 to 3 percent slopes---------------------------		35	*
B201A	\|Chilgren fine sandy loam, 0 to 2 percent slopes--------------------------		116	*
B202A	\|Cathro muck, depressional, MLRA 88, 0 to 1 percent slopes----------------		979	0.4
B203A	\| Northwood muck, depressional, MLRA 88, 0 to 1 percent slopes-------------		164	*
B204A	\|Roliss loam, MLRA 88, 0 to 2 percent slopes	50	*	
B205A	\|Berner muck, depressional, MLRA 88, 0 to 1 percent slopes----------------		242	*
B206A	\|Hamre muck, depressional, MLRA 88, 0 to 1 percent slopes-----------------		328	0.1
I1A	\|Augsburg loam, 0 to 2 percent slopes--------------------------------------1	471	0.2	
I2A	\|Augsburg very fine sandy loam, 0 to 2 percent slopes--------------------		595	0.2
I3A	\|Berner muck, 0 to 1 percent slopes---------------------------------------	499	0.2	
I4A	\|Berner, Rosewood, and Strathcona soils, seepy, 0 to 2 percent slopes-----		197	*
I5A	\|Borup loam, 0 to 2 percent slopes---------------------------------------		498	0.2
16A	\|Borup very fine sandy loam, 0 to 2 percent slopes-----------------------		1,410	0.5
17A	\|Bowstring-Fluvaquents complex, 0 to 2 percent slopes, frequently flooded	3,017	1.1	
18A	\|Cathro muck, 0 to 1 percent slopes---------------------------------------	576	0.2	
I9A	\|Clearwater clay, 0 to 2 percent slopes-------------------------------------	7,686	2.8	
I10A	\|Clearwater mucky clay loam, depressional, 0 to 1 percent slopes---------		171	*
I11A	\|Deerwood muck, 0 to 1 percent slopes--------------------------------------	1,740	0.6	
I12A	\|Eckvoll loamy fine sand, 0 to 3 percent slopes---------------------------	3,154	1.1	
I13A	\|Espelie fine sandy loam, 0 to 2 percent slopes---------------------------		1,002	0.4
I14B	\|Fairdale silt loam, 1 to 6 percent slopes, occasionally flooded----------		4,575	1.7
I14D	\|Fairdale silt loam, 6 to 15 percent slopes, occasionally flooded---------		229	*
I15A	\|Flaming loamy fine sand, 0 to 3 percent slopes---------------------------	9,575	3.5	
I16F	\|Fluvaquents, frequently flooded-Hapludolls complex, 0 to 30 percent slopes	7,706	2.8	
I17A	\|Foldahl fine sandy loam, 0 to 3 percent slopes---------------------------		9,337	3.4
I18A	\|Foldahl loamy fine sand, 0 to 3 percent slopes---------------------------		900	0.3
I19A	\|Foxhome sandy loam, 0 to 3 percent slopes--------------------------------		607	0.2
I20A	\|Foxlake loam, 0 to 2 percent slopes---------------------------------------	7,567	2.7	
I21A	\|Fram loam, 1 to 3 percent slopes---	173	*	
I22A	\|Glyndon loam, 0 to 2 percent slopes--	2,111	0.8	
I23A	\|Glyndon very fine sandy loam, 0 to 2 percent slopes----------------------		3,647	1.3
I24A	\|Grimstad fine sandy loam, 0 to 3 percent slopes-------------------------1	8,004	2.9	
I25A	\| Hamar loamy fine sand, 0 to 2 percent slopes-----------------------------	2,571	0.9	
I26A	\| Hamerly loam, 0 to 2 percent slopes---	1,185	0.4	
I27A	\| Hamre muck, 0 to 1 percent slopes--	1,722	0.6	
I28A	\|Hangaard sandy loam, 0 to 2 percent slopes---------------------------------	387	0.1	
I29A	\|Hattie clay, 0 to 3 percent slopes---------------------------------------1	5,018	1.8	
I29D	\|Hattie clay, 6 to 18 percent slopes--	1,957	0.7	
I30A	\| Hedman loam, 0 to 2 percent slopes---	177	*	
I31A	\|Hedman-Fram complex, 0 to 3 percent slopes-------------------------------	42	*	
I32A	\|Hilaire fine sandy loam, 0 to 3 percent slopes---------------------------		1,370	0.5
I33A	\|Hilaire loamy fine sand, 0 to 3 percent slopes---------------------------	201	*	
I34A	\|Huot fine sandy loam, 0 to 3 percent slopes-------------------------------	2,388	0.9	
I35A	\| Karlsruhe sandy loam, 0 to 3 percent slopes-------------------------------	1,072	0.4	
I36A	\|Kittson loam, 0 to 3 percent slopes--------------------------------------	1,815	0.7	
137A	\|Kratka and Strathcona soils, depressional, 0 to 1 percent slopes--------		2,748	1.0
I38A	\|Kratka fine sandy loam, 0 to 2 percent slopes----------------------------	22,800	8.2	
I39A	\|Linveldt fine sandy loam, 0 to 3 percent slopes--------------------------		4,595	1.7
I40B	\|Maddock loamy fine sand, 1 to 6 percent slopes---------------------------		9	*
I40F	\|Maddock loamy fine sand, 12 to 30 percent slopes-------------------------		23	*
I41A	\| Markey muck, 0 to 1 percent slopes---1	44	*	
I42A	\| Markey muck, ponded, 0 to 1 percent slopes--------------------------------	349	0.1	
I43A	\|Mavie fine sandy loam, 0 to 2 percent slopes-----------------------------	1,382	0.5	
I44A	\|Newfolden loam, 0 to 3 percent slopes--------------------------------------	1,256	0.5	
I45A	\| Northwood muck, 0 to 1 percent slopes--------------------------------------	3,373	1.2	
I46A	\|Pits, gravel and sand---1	782	0.3	
I47A	\| Poppleton fine sand, 0 to 2 percent slopes--------------------------------	2,739	1.0	

See footnote at end of table.

Table 5.--Acreage and Proportionate Extent of the Soils--Continued

Map symbol	Soil name	Acres		
I48A	\|Radium loamy sand, 0 to 3 percent slopes-------------------------------- ${ }^{\text {- }}$	5,358	1.9	
I49A	\|Rauville silty clay loam, 0 to 2 percent slopes--------------------------	300	0.1	
I50A	\|Reiner fine sandy loam, 0 to 3 percent slopes----------------------------		12,526	4.5
I51A	\mid Reiner loamy fine sand, 0 to 3 percent slopes---------------------------\|	175	*	
I52A	\|Reis-Clearwater complex, 0 to 2 percent slopes---------------------------		7,575	2.7
I53A	\|Roliss loam, 0 to 2 percent slopes---------------------------------------	4,342	1.6	
I54A	\|Roliss loam, depressional, 0 to 1 percent slopes-------------------------		800	0.3
I55A	\|Rosewood fine sandy loam, 0 to 2 percent slopes--------------------------		6,856	2.5
I56A	\|Rosewood-Venlo complex, 0 to 1 percent slopes----------------------------		192	*
I57B	\|Sandberg-Radium complex, 1 to 6 percent slopes---------------------------		1,684	0.6
I58A	\|Seelyeville muck, 0 to 1 percent slopes----------------------------------		37	*
I59A	\|Smiley loam, 0 to 2 percent slopes--	48,481	17.5	
I60A	\|Smiley mucky loam, depressional, 0 to 1 percent slopes------------------		1,585	0.6
I61A	\|Strandquist loam, 0 to 2 percent slopes-----------------------------------	1,055	0.4	
I62A	\|Syrene sandy loam, 0 to 2 percent slopes---------------------------------	1,108	0.4	
I63A	\|Thiefriver fine sandy loam, 0 to 2 percent slopes-----------------------		1,339	0.5
I64A	\|Ulen fine sandy loam, 0 to 3 percent slopes-------------------------------	1,300	0.5	
I65A	\mid Ulen loamy fine sand, 0 to 3 percent slopes----------------------------- ${ }^{\text {- }}$ \|	7,611	2.7	
I66A	\|Vallers loam, 0 to 2 percent slopes---------------------------------------	9,651	3.5	
167A	\|Wheatville loam, 0 to 3 percent slopes----------------------------------		3,160	1.1
I68A	\mid Wheatville very fine sandy loam, 0 to 3 percent slopes-------------------\|	702	0.3	
I69A	\|Wyandotte clay loam, 0 to 2 percent slopes------------------------------		372	0.1
I70A	\|Strathcona fine sandy loam, 0 to 2 percent slopes-----------------------		22,271	8.0
M-W	\|Miscellaneous water---	87	*	
w	\|Water---	884	0.3	
	Total--\|	277,000	100.0	

* Less than 0.1 percent.

Use and Management of the Soils

This soil survey is an inventory and evaluation of the soils in the survey area. It can be used to adjust land uses to the limitations and potentials of natural resources and the environment. Also, it can help to prevent soil-related failures in land uses.

In preparing a soil survey, soil scientists, conservationists, engineers, and others collect extensive field data about the nature and behavioral characteristics of the soils. They collect data on erosion, droughtiness, flooding, and other factors that affect various soil uses and management. Field experience and collected data on soil properties and performance are used as a basis in predicting soil behavior.

Information in this section can be used to plan the use and management of soils for crops and pasture; as forest land; as sites for buildings, highways and other transportation systems, and parks and other recreational facilities; and as wildlife habitat. It can be used to identify the potentials and limitations of each soil for specific land uses and to help prevent construction failures caused by unfavorable soil properties.

Planners and others using soil survey information can evaluate the effect of specific land uses on productivity and on the environment in all or part of the survey area. The survey can help planners to maintain or create a land use pattern in harmony with the natural soil.

Contractors can use this survey to locate sources of sand and gravel, roadfill, and topsoil. They can use it to identify areas where bedrock, wetness, or very firm soil layers can cause difficulty in excavation.

Health officials, highway officials, engineers, and others may also find this survey useful. The survey can help them plan the safe disposal of wastes and locate sites for pavements, sidewalks, campgrounds, playgrounds, lawns, and trees and shrubs.

Interpretive Ratings

The interpretive tables in this survey rate the soils in the survey area for various uses. Many of the tables identify the limitations that affect specified uses and indicate the severity of those limitations. The ratings in these tables are both verbal and numerical.

Rating Class Terms

Rating classes are expressed in the tables in terms that indicate the extent to which the soils are limited by all of the soil features that affect a specified use or in terms that indicate the suitability of the soils for the use. Thus, the tables may show limitation classes or suitability classes. Terms for the limitation classes are not limited, somewhat limited, and very limited. The suitability ratings are expressed as well suited, moderately suited, poorly suited, and unsuited or as good, fair, and poor.

Numerical Ratings

Numerical ratings in the tables indicate the relative severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.00 to 1.00 . They indicate
gradations between the point at which a soil feature has the greatest negative impact on the use and the point at which the soil feature is not a limitation. The limitations appear in order from the most limiting to the least limiting. Thus, if more than one limitation is identified, the most severe limitation is listed first and the least severe one is listed last.

Crops and Pasture

General management needed for crops and for hay and pasture is suggested in this section. The estimated yields of the main crops and hay and pasture plants are listed, the system of land capability classification used by the Natural Resources Conservation Service is explained, and prime farmland is described.

About 72 percent of Red Lake County is cultivated. In 1998, the principal crops grown were spring wheat, soybeans, barley, corn, and sunflowers. Alfalfa and other hay crops were planted on about 24,700 acres. Small acreages were planted to oats, potatoes, canola, and sugar beets (Hunst and Howse, 1999).

Planners of management systems for individual fields or farms should consider obtaining specific information from the local office of the Natural Resources Conservation Service or the Cooperative Extension Service.

Cropland Management Considerations

Shawnn Balstad, district conservationist, Natural Resources Conservation Service, helped prepare this section.

The management concerns affecting the use of the soil map units in the survey area for crops are shown in table 6. The main concerns in managing nonirrigated cropland are conserving moisture, controlling wind erosion and water erosion, and maintaining soil fertility and tilth.

Conserving moisture consists primarily of reducing the evaporation and runoff rates and increasing the water infiltration rate. Adequate moisture at planting time is critical to the success of the crop during the growing season. Conserving moisture is most important in areas of excessively drained and moderately well drained, sandy soils, such as Sandberg, Radium, and Flaming soils. Applying conservation tillage and conservation cropping systems, farming on the contour, stripcropping, establishing field windbreaks, and leaving crop residue on the surface conserve moisture.

Wind erosion is a hazard on many of the soils in Red Lake County. It can be a severe hazard in areas of coarse textured soils, such as Poppleton, Flaming, and Foldahl soils. It is also a hazard in areas of Grimstad and Glyndon soils. These soils have a relatively high content of lime and are susceptible to wind erosion in the spring if they have been left bare throughout the winter. Because of freezing and thawing, soil structure can break down. The result is soil aggregates that are susceptible to movement.

Water erosion is a hazard in gently rolling to steep areas, especially if the surface of the soil is left bare. Fairdale and Hattie soils are examples of soils that are susceptible to water erosion.

Generally, a combination of several practices is needed to control wind erosion and water erosion. Conservation tillage, stripcropping, field windbreaks, contour farming, conservation cropping systems, crop residue management, terraces, diversions, and grassed waterways help to prevent excessive soil loss.

Measures that are effective in maintaining soil fertility include applying fertilizer, both organic and inorganic, including manure; incorporating crop residue or green manure crops into the soil; and using proper crop rotations. Controlling erosion helps to prevent the loss of organic matter and plant nutrients and thus helps to maintain
productivity. The loss of organic matter affects soil structure, the rate of water infiltration, available water capacity, and tilth.

Measures that maintain good tilth are especially important in areas of Clearwater and Hattie soils, which have a surface layer of clay. Planting cover crops in fallow fields and leaving a cover of crop residue on the surface can help to maintain soil tilth. Minimizing field traffic during wet periods helps to prevent soil compaction.

Some of the considerations shown in table 6 cannot be easily overcome. These are channels, flooding, gullies, and ponding.

Additional considerations are as follows:
Lime content, limited available water capacity, limited content of organic matter, potential poor tilth and compaction, and restricted permeability.-These limitations can be minimized by incorporating green manure crops, manure, or crop residue into the soil; applying a system of conservation tillage; and using conservation cropping systems. Also, crops may respond well to additions of phosphate fertilizer to soils that have a high content of lime.

Potential for ground-water contamination.-The proper use of nutrients and pesticides can reduce the risk of ground-water contamination.

Potential for surface-water contamination.-The risk of surface-water contamination can be reduced by the proper use of nutrients and pesticides and by conservation farming practices that reduce the runoff rate.

Surface crusting.-This limitation retards seedling development after periods of heavy rainfall.

Surface rock fragments.-This limitation causes rapid wear of tillage equipment. It cannot be easily overcome.

Surface stones.-Stones or boulders on or near the surface can hinder normal tillage unless they are removed.

Salt content.-In areas where this is a limitation, only salt-tolerant crops should be grown.

On irrigated soils the main management concerns are efficient water use, nutrient management, control of erosion, pest and weed control, and timely planting and harvesting for a successful crop. An irrigation system that provides optimum control and distribution of water at minimum cost is needed. Overirrigation wastes water, leaches plant nutrients, and causes erosion. Also, it can increase wetness and soil salinity.

Explanation of Criteria

Acid soil.—The pH is less than 6.1.
Channeled.-The word "channeled" is included in the map unit name.
Dense layer.-The bulk density is $1.80 \mathrm{~g} / \mathrm{cc}$ or greater within the soil profile.
Depth to rock.-The depth to bedrock is less than 40 inches.
Eroded.-The word "eroded" is included in the map unit name.
Excessive permeability.-Saturated hydraulic conductivity is 42 micrometers per second or more within the soil profile.

Flooding.-Flooding is occasional, frequent, or very frequent.
Gullied.-The word "gullied" is included in the map unit name.
High content of organic matter.-The surface layer has more than 20 percent organic matter.

Lime content.-The pH is 7.4 or more in the surface layer, or the wind erodibility group is 4 L .

Limited available water capacity.-The available water capacity calculated to a depth of 60 inches or to a root-limiting layer is 6 inches or less.

Limited content of organic matter.-The content of organic matter is 2 percent or less in the surface layer.

Ponding.-Ponding duration is assigned to the soil. Water is above the surface.
Potential poor tilth and compaction.-The content of clay is 27 percent or more in the surface layer.

Potential for ground-water contamination (by nutrients or pesticides).-The depth to a zone in which the soil moisture status is wet is 4 feet or less, the saturated hydraulic conductivity of any layer is more than 42 micrometers per second, or the depth to bedrock is less than 60 inches.

Potential for surface-water contamination (by nutrients or pesticides).-The soil is occasionally, frequently, or very frequently flooded, is subject to ponding, is assigned to hydrologic group C or D and has a slope of more than 2 percent, is assigned to hydrologic group A and has a slope of more than 6 percent, or is assigned to hydrologic group B, has a slope of 3 percent or more, and has a K factor of more than 0.17 .

Previously eroded.-The word "eroded" is included in the map unit name.
Restricted permeability.-Saturated hydraulic conductivity is less than 0.42 micrometer per second within the soil profile.

Salt content.-The electrical conductivity is 4 or more in the surface layer or 8 or more within a depth of 30 inches.

Slope (equipment limitation).-The slope is more than 15 percent.
Surface crusting.-The content of clay is 27 percent or more and the content of organic matter is 2 percent or less in the surface layer.

Surface rock fragments (equipment limitation).-The terms describing the texture of the surface layer include any rock fragment modifier, except for gravelly, channery, stony, very stony, extremely stony, bouldery, very bouldery, and extremely bouldery.

Surface stones (equipment limitation). -The word "stony" or "bouldery" is included in the description of the surface layer, or 0.01 percent or more of the surface is covered by boulders.

Water erosion.-Either the slope is 6 percent or more, or the slope is more than 3 percent and less than 6 percent and the surface layer is not sandy.

Wet soil moisture status.-A zone in which the soil moisture status is wet is within 2.5 feet of the surface.

Wind erosion.-The wind erodibility group is $1,2,3$, or 4 L .
Erosion factors (e.g., K factor) and wind erodibility groups are described under the heading "Physical and Chemical Properties."

Crop Yield Estimates

The average yields per acre that can be expected of the principal crops and hay and pasture plants under a high level of management are shown in table 7. In any given year, yields may be higher or lower than those indicated in the table because of variations in rainfall and other climatic factors. The land capability classification of the soils in the survey area also is shown in the table.

The yields are based mainly on the experience and records of farmers, conservationists, and extension agents. Available yield data from nearby counties and results of field trials and demonstrations also are considered.

The management needed to obtain the indicated yields of the various crops depends on the kind of soil and the crop. Management can include drainage, erosion control, and protection from flooding; the proper planting and seeding rates; suitable high-yielding crop varieties; appropriate and timely tillage; control of weeds, plant diseases, and harmful insects; favorable soil reaction and optimum levels of nitrogen, phosphorus, potassium, and trace elements for each crop; effective use of crop residue, barnyard manure, and green manure crops; and harvesting that ensures the smallest possible loss.

The estimated yields reflect the productive capacity of each soil for each of the principal crops. Yields are likely to increase as new production technology is developed. The productivity of a given soil compared with that of other soils, however, is not likely to change.

Crops other than those shown in the table are grown in the survey area, but estimated yields are not listed because the acreage of such crops is small. The local office of the Natural Resources Conservation Service or of the Cooperative Extension Service can provide information about the management and productivity of the soils for those crops.

Pasture and Hayland Interpretations

Soils are assigned to forage suitability groups according to their suitability for the production of forage vegetation. The soils in each group are similar enough to be suited to the same species of grasses or legumes, have similar limitations and hazards, require similar management, and have similar productivity levels and other responses to management. The forage suitability groups of the soils in the survey area are listed in table 8. Detailed descriptions of forage suitability groups are available at local offices of the Natural Resources Conservation Service.

Under good management, proper grazing is essential for the production of highquality forage, stand survival, and erosion control. Proper grazing helps plants to maintain sufficient and generally vigorous top growth during the growing season. Brush control is essential in many areas, and weed control generally is needed. Rotation grazing and renovation also are important management practices.

Yield estimates are often provided in animal unit months (AUM), or the amount of forage or feed required to feed one animal unit (one cow, one horse, one mule, five sheep, or five goats) for 30 days.

The local office of the Natural Resources Conservation Service or of the Cooperative Extension Service can provide information about forage yields other than those shown in table 7.

Land Capability Classification

Land capability classification shows, in a general way, the suitability of soils for most kinds of field crops. Crops that require special management are excluded. The soils are grouped according to their limitations for field crops, the risk of damage if they are used for crops, and the way they respond to management. The criteria used in grouping the soils do not take into account major and generally expensive landforming that would change slope, depth, or other characteristics of the soils, nor do they include possible but unlikely major reclamation projects. Capability classification is not a substitute for interpretations designed to show suitability and limitations of groups of soils for woodland or for engineering purposes.

In the capability system, soils generally are grouped at three levels-capability class, subclass, and unit (USDA, 1961). These categories indicate the degree and kinds of limitations affecting mechanized farming systems that produce the more commonly grown field crops, such as corn, small grain, cotton, hay, and field-grown vegetables. Only class and subclass are used in this survey.

Capability classes, the broadest groups, are designated by the numbers 1 through 8. The numbers indicate progressively greater limitations and narrower choices for practical use.

If properly managed, soils in classes $1,2,3$, and 4 are suitable for the mechanized production of commonly grown field crops and for pasture and woodland. The degree of the soil limitations affecting the production of cultivated crops increases progressively from class 1 to class 4 . The limitations can affect levels of production and the risk of permanent soil deterioration caused by erosion and other factors.

Soils in classes 5, 6, and 7 are generally not suited to the mechanized production of commonly grown field crops without special management, but they are suitable for plants that provide a permanent cover, such as grasses and trees. The severity of the soil limitations affecting crops increases progressively from class 5 to class 7 .

Areas in class 8 are generally not suitable for crops, pasture, or woodland without a level of management that is impractical. These areas may have potential for other uses, such as recreational facilities and wildlife habitat.

Capability subclasses identify the dominant kind of limitation in the class. They are designated by adding a small letter, e, w, s, or c, to the class numeral, for example, $2 e$. The letter e shows that the main hazard is the risk of erosion unless a close-growing plant cover is maintained; w shows that water in or on the soil interferes with plant growth or cultivation (in some soils the wetness can be partly corrected by artificial drainage); s shows that the soil is limited mainly because it is shallow, droughty, or stony; and c, used in only some parts of the United States, shows that the chief limitation is climate that is very cold or very dry.

There are no subclasses in class 1 because the soils of this class have few limitations. Class 5 contains only the subclasses indicated by w, s, or c because the soils in class 5 are subject to little or no erosion. They have other limitations that restrict their use mainly to pasture, woodland, wildlife habitat, or recreation.

The capability classification of the soils in the survey area is given in the vields table.

Prime Farmland

Prime farmland is of major importance in meeting the Nation's short- and longrange needs for food and fiber. The acreage of high-quality farmland is limited, and the U.S. Department of Agriculture recognizes that government at local, State, and Federal levels, as well as individuals, must encourage and facilitate the wise use of our Nation's prime farmland.

Prime farmland soils, as defined by the U.S. Department of Agriculture, are soils that are best suited to food, feed, forage, fiber, and oilseed crops. Such soils have properties that favor the economic production of sustained high yields of crops. The soils need only to be treated and managed by acceptable farming methods. An adequate moisture supply and a sufficiently long growing season are required. Prime farmland soils produce the highest yields with minimal expenditure of energy and economic resources, and farming these soils results in the least damage to the environment.

Prime farmland soils may presently be used as cropland, pasture, or woodland or for other purposes. They either are used for food and fiber or are available for these uses. Urban or built-up land, public land, and water areas cannot be considered prime farmland. Urban or built-up land is any contiguous unit of land 10 acres or more in size that is used for such purposes as housing, industrial, and commercial sites, sites for institutions or public buildings, small parks, golf courses, cemeteries, railroad yards, airports, sanitary landfills, sewage treatment plants, and water-control structures. Public land is land not available for farming in National forests, National parks, military reservations, and State parks.

Prime farmland soils commonly receive an adequate and dependable supply of moisture from precipitation or irrigation. The temperature and growing season are favorable, and the level of acidity or alkalinity and the content of salts and sodium are acceptable. The soils have few, if any, rocks and are permeable to water and air. They are not excessively erodible or saturated with water for long periods, and they are not
frequently flooded during the growing season or are protected from flooding. Slopes range mainly from 0 to 6 percent.

Soils in which a zone with a wet soil moisture status is high in the profile or soils that are subject to flooding may qualify as prime farmland where these limitations are overcome by drainage measures or flood control. Onsite evaluation is necessary to determine the effectiveness of corrective measures. More information about the criteria for prime farmland can be obtained at the local office of the Natural Resources Conservation Service.

A recent trend in land use has been the conversion of prime farmland to urban and industrial uses. The loss of prime farmland to other uses puts pressure on lands that are less productive than prime farmland.

About 189,000 acres, or nearly 70 percent of the survey area, meets the requirements for prime farmland.

The map units in the survey area that meet the requirements for prime farmland are listed in table 9. This list does not constitute a recommendation for a particular land use. On some soils included in the table, measures that overcome limitations are needed. The need for these measures is indicated in parentheses after the map unit name. The location of each map unit is shown on the soil maps. The soil qualities that affect use and management are described in the section "Soil Map Unit Descriptions."

Windbreaks and Environmental Plantings

Windbreaks protect livestock, buildings, and yards from wind and snow. They also protect fruit trees and gardens, and they furnish habitat for wildlife. Several rows of low- and high-growing broadleaf and coniferous trees and shrubs provide the most protection.

Field windbreaks are narrow plantings made at right angles to the prevailing wind and at specific intervals across the field. The interval depends on the erodibility of the soil. Field windbreaks protect cropland and crops from wind, help to keep snow on the fields, and provide food and cover for wildlife.

Environmental plantings help to beautify and screen houses and other buildings and to abate noise. The plants, mostly evergreen shrubs and trees, are closely spaced. To ensure plant survival, a healthy planting stock of suitable species should be planted properly on a well prepared site and maintained in good condition.

Windbreaks are often planted on land that did not originally support trees. Knowledge of how trees perform on such land can be gained only by observing and recording the performance of trees that have been planted and have survived. Many popular windbreak species are not indigenous to the areas in which they are planted.

Each tree or shrub species has certain climatic and physiographic limits. Within these parameters, a tree or shrub may grow well or grow poorly, depending on the characteristics of the soil. Each tree or shrub has definable potential heights in a given physiographic area and under a given climate. Accurate definitions of potential heights are necessary when a windbreak is planned and designed.

Table 10 shows the height that locally grown trees and shrubs are expected to reach in 20 years on various soils. The estimates in this table are based on measurements and observation of established plantings that have been given adequate care. They can be used as a guide in planning windbreaks and screens. Additional information on planning windbreaks and screens and planting and caring for trees and shrubs can be obtained from local offices of the Natural Resources Conservation Service or the Cooperative Extension Service or from a nursery.

Hybrid Poplar Ratings

Wendell Johnson, University of Minnesota, Crookston, and Ed Wene, Agriculture Utilization and Research Institute, helped prepare this section.

Hybrid poplars are grown as an alternative crop or as a practice called "short rotation forestry." The trees grow rapidly and have the ability to produce high yields for fuel, pulp, and a variety of wood products. Poplars can also protect soils from wind erosion and water erosion and prevent the runoff of nutrients into streams. Proper site selection, site preparation, selection of planting stock, fertilization, and weed control are important for a successful crop.

Hybrid poplars grow well under a wide range of environmental conditions, but the prairie-forest fringe area generally has the most desirable soil and climatic conditions. Hybrid poplar performs best on medium textured soils that have good fertility and that have reaction ranging from medium acid to slightly alkaline. Ample moisture is especially important during the establishment of the crop. The plants are tolerant of wet soils and standing water for short periods of time. Rock fragments on the surface are a limitation in localized areas of the till-derived soils. This feature can present additional expense in site preparation and equipment wear. Water erosion and wind erosion may be hazards, especially when a new crop is being established.

Table 11 lists factors that affect the soils for the growth of hybrid poplars. The soils were evaluated using the most current data available. The factors considered include acidity, lime content, available water capacity, content of organic matter, permeability, potential for surface-water and ground-water contamination, ponding, slope, and a zone in which the soil moisture status is wet. Further information is available at the University of Minnesota Northwest Research and Outreach Center and the Agriculture Utilization and Research Institute in Crookston, Minnesota.

The following paragraphs provide an explanation of the factors considered and the criteria used in evaluating the soils.

Acid soil.-The pH is less than 5.6. If the pH of a mineral soil is low, some plant nutrients may become unavailable and others become so soluble that they become toxic to plants.

High content of organic matter.-The content of organic matter in the upper 20 inches is more than 8 percent. Organic soils and mineral soils that have a high content of organic matter can make site preparation difficult, reduce cutting survival by desiccation, inhibit herbicide performance, and increase the likelihood of windthrow.

Lime content.-The pH is 7.9 or more, or the calcium carbonate equivalent is 15 percent or more in the upper 20 inches. The availability and uptake of some plant nutrients can be restricted.

Limited available water capacity.-The available water capacity calculated to a depth of 60 inches or to a root-limiting layer is 9 inches or less. Adequate moisture is especially important to ensure cutting survival and good root development.

Limited content of organic matter.-The content of organic matter in the upper 6 inches is 1 percent or less. Sufficient organic matter improves tilth and increases fertility.

Ponding.-Ponding duration is more than 4 days during the period from June through August. Water is above the surface.

Potential for ground-water contamination (by nutrients or pesticides).-The depth to a zone in which the soil moisture status is wet is 4 feet or less, the saturated hydraulic conductivity of any layer is more than 42 micrometers per second, or the depth to bedrock is less than 60 inches.

Potential for surface-water contamination (by nutrients or pesticides).-The soil is occasionally flooded or frequently flooded, is subject to ponding, is assigned to hydrologic group C or D and has a slope of more than 2 percent, is assigned to
hydrologic group A and has a slope of more than 6 percent, or is assigned to hydrologic group B, has a slope of 3 percent or more, and has a K factor of more than 0.17.

Restricted permeability.-Saturated hydraulic conductivity is less than 1.4 micrometer per second within the top 20 inches of the soil profile. In soils that have a high content of clay, root development may be limited and the movement of water and nutrients may be restricted.

Slope.-The slope is more than 4 percent.
Water erosion.-Either the slope is 6 percent or more, or the slope is more than 3 percent and less than 6 percent and the surface layer is not sandy.

Wet soil moisture status.-A zone in which the soil moisture status is wet is within 10 inches of the surface during the growing season.

Wind erosion.-The wind erodibility group is $1,2,3$, or 4 L .

Forest Land Management and Productivity

The tables in this section can help forest owners or managers plan the use of soils for wood crops. They show the potential productivity of the soils for wood crops and describe the limitations that affect various aspects of forest management.

Forest Land Harvest Equipment Considerations

Table 12 provides information regarding the use of harvest equipment in areas used as forest land.

For most soils, spring is the most limiting season because of alternate thawing and freezing during snowmelt, causing saturation and low strength of the surface soil layers. When thawing is complete, saturation continues for short periods in well drained soils to nearly all year in very poorly drained depressional soils. Degrees of wetness are generally proportionate to depth to and duration of a zone in which the soil moisture status is wet. Zones of wet soil moisture status generally are lower in the summer during the heavy use of moisture by vegetation and are nearer to the surface during periods when absorbed precipitation is greater than the vegetative requirements. Harvesting during periods of saturation usually results in severe soil damage, except when the soil is frozen. The preferred season for timber harvest on many soils is winter, when wetness and low soil strength can be overcome by freezing.

Considerations shown in the table are as follows:
Slope.-The upper limit of the slope range is more than 15 percent.
Flooding.-The soil is frequently flooded.
Wetness.-The soil is somewhat poorly drained, poorly drained, or very poorly drained or has a perched zone in which the soil moisture status is wet (any drainage class).

Depth to hard rock.-The depth to hard bedrock is less than 10 inches.
Rubbly surface.-The word "rubbly" is in the map unit name.
Surface stones.-The words "extremely stony" are included in the description of the surface layer, or 3 percent or more of the surface is covered with stones.

Surface boulders.-The word "bouldery" is included in the description of the surface layer, or 0.01 percent or more of the surface is covered with boulders. Areas of rock outcrop.-The words "Rock outcrop" are in the map unit name.
Susceptible to rutting and wheel slippage (low strength).-The AASHTO classification is A-6, A-7, or A-8 in any layer within a depth of 20 inches.

Poor traction (loose sandy material).-The USDA texture includes sand or loamy sand in any layer within a depth of 10 inches.

Forest Haul Road Considerations

Table 13 provides information regarding the use of the soils as haul roads. Haul roads serve as transportation routes from log landings to primary roads. Generally, haul roads are unpaved, but some are graveled.

Considerations shown in the table are as follows:
Slope.-The slope is 8 percent or more.
Flooding.-The soil is frequently flooded.
Wetness.-The soil is somewhat poorly drained, poorly drained, or very poorly drained or has a perched zone in which the soil moisture status is wet (any drainage class).

Depth to hard rock.-The depth to hard bedrock is less than 20 inches.
Depth to soft rock.-The depth to soft bedrock is less than 20 inches.
Surface boulders.- The word "bouldery" is included in the description of the surface layer, or 0.01 percent or more of the surface is covered with boulders.

Areas of rock outcrop.-The words "Rock outcrop" are in the map unit name.
Low bearing strength.-The AASHTO classification is A-6, A-7, or A-8 in any layer within a depth of 20 inches.

Rubbly surface.-The word "rubbly" is in the map unit name.

Forest Log Landing Considerations

Table 14 provides information regarding the use of the soils as log landings. Log landings are areas where logs are assembled for transportation. Areas that require little or no cutting, filling, or surface preparation are desired.

Considerations shown in the table are as follows:
Slope.-The slope is more than 6 percent.
Flooding.-The soil is occasionally flooded or frequently flooded.
Wetness.-The soil is somewhat poorly drained, poorly drained, or very poorly drained or has a perched zone in which the soil moisture status is wet (any drainage class).

Surface boulders.- The word "bouldery" is included in the description of the surface layer, or 0.01 percent or more of the surface is covered with boulders.

Areas of rock outcrop.-The words "Rock outcrop" are in the map unit name.
Susceptible to rutting and wheel slippage (low strength).-The AASHTO classification is A-6, A-7, or A-8 in any layer within a depth of 20 inches.

Rubbly surface.-The word "rubbly" is in the map unit name.

Forest Land Site Preparation and Planting Considerations

Table 15 provides information regarding considerations affecting site preparation and planting in areas used as forest land.

Considerations shown in the table are as follows:
Slope.-The upper limit of the slope range is more than 15 percent.
Flooding.-The soil is frequently flooded.
Wetness.-The soil is somewhat poorly drained, poorly drained, or very poorly drained or has a perched zone in which the soil moisture status is wet (any drainage class).

Depth to hard rock.-The depth to hard bedrock is less than 20 inches.
Surface stones.- The word "stony" is included in the description of the surface layer, or 0.01 percent or more of the surface is covered with stones.

Surface boulders.- The word "bouldery" is included in the description of the surface layer, or 0.01 percent or more of the surface is covered with boulders.

Areas of rock outcrop.-The words "Rock outcrop" are in the map unit name.

Water erosion.-The slope is 8 percent or more.
Potential poor tilth and compaction.-The AASHTO classification is A-6 or A-7 in the upper 10 inches.

Rubbly surface.-The word "rubbly" is in the map unit name.
Cobbly surface. - The word "cobbly" is included in the description of the surface layer, or 0.1 percent or more of the surface is covered with cobbles.

Forest Productivity

Information about the potential productivity of soils for merchantable or common trees is provided in table 16.

The potential productivity of a soil is expressed as a site index and as a volume number.

The site index is the average height, in feet, that dominant and codominant trees of a given species attain in a specified number of years. The site index applies to fully stocked, even-aged, unmanaged stands. Commonly grown trees are those that woodland managers generally favor in intermediate or improvement cuttings. They are selected on the basis of growth rate, quality, value, and marketability.

The volume of wood fiber, a number, is the yield likely to be produced by the most important trees. This number, expressed as cubic feet per acre per year, indicates the amount of wood fiber produced in a fully stocked, even-aged stand.

Trees to manage are those that are suitable for commercial wood production.

Recreation

The soils of the survey area are rated in tables 17a and 17b according to limitations that affect their suitability for recreation. The ratings are both verbal and numerical. Rating class terms indicate the extent to which the soils are limited by all of the soil features that affect the recreational uses.

Not limited indicates that the soil has features that are very favorable for the specified use. Good performance and very low maintenance can be expected.

Somewhat limited indicates that the soil has features that are moderately favorable for the specified use. The limitations can be overcome or minimized by special planning, design, or installation. Fair performance and moderate maintenance can be expected.

Very limited indicates that the soil has one or more features that are unfavorable for the specified use. The limitations generally cannot be overcome without major soil reclamation, special design, or expensive installation procedures. Poor performance and high maintenance can be expected.

Numerical ratings in the tables indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00 . They indicate gradations between the point at which a soil feature has the greatest negative impact on the use (1.00) and the point at which the soil feature is not a limitation (0.00).

The ratings in the tables are based on restrictive soil features, such as wetness, slope, and texture of the surface layer. Susceptibility to flooding is considered. Not considered in the ratings, but important in evaluating a site, are the location and accessibility of the area, the size and shape of the area and its scenic quality, vegetation, access to water, potential water impoundment sites, and access to public sewer lines. The capacity of the soil to absorb septic tank effluent and the ability of the soil to support vegetation also are important. Soils that are subject to flooding are limited for recreational uses by the duration and intensity of flooding and the season when flooding occurs. In planning recreational facilities, onsite assessment of the height, duration, intensity, and frequency of flooding is essential.

The information in the tables can be supplemented by other information in this
survey, for example, interpretations for building site development, construction materials, and water management.

Camp areas require site preparation, such as shaping and leveling the tent and parking areas, stabilizing roads and intensively used areas, and installing sanitary facilities and utility lines. Camp areas are subject to heavy foot traffic and some vehicular traffic. The ratings are based on the soil properties that affect the ease of developing camp areas and the performance of the areas after development. Slope, stoniness, and depth to bedrock or a cemented pan are the main concerns affecting the development of camp areas.

The soil properties that affect the performance of the areas after development are those that influence trafficability and promote the growth of vegetation, especially in heavily used areas. For good trafficability, the surface of camp areas should absorb rainfall readily, remain firm under heavy foot traffic, and not be dusty when dry. The soil properties that influence trafficability are texture of the surface layer, depth to a zone in which the soil moisture status is wet, ponding, flooding, permeability, and large stones. The soil properties that affect the growth of plants are depth to bedrock or a cemented pan, permeability, and toxic substances in the soil.

Picnic areas are subject to heavy foot traffic. Most vehicular traffic is confined to access roads and parking areas. The ratings are based on the soil properties that affect the ease of developing picnic areas and that influence trafficability and the growth of vegetation after development. Slope and stoniness are the main concerns affecting the development of picnic areas. For good trafficability, the surface of picnic areas should absorb rainfall readily, remain firm under heavy foot traffic, and not be dusty when dry. The soil properties that influence trafficability are texture of the surface layer, depth to a zone in which the soil moisture status is wet, ponding, flooding, permeability, and large stones. The soil properties that affect the growth of plants are depth to bedrock or a cemented pan, permeability, and toxic substances in the soil.

Playgrounds require soils that are nearly level, are free of stones, and can withstand intensive foot traffic. The ratings are based on the soil properties that affect the ease of developing playgrounds and that influence trafficability and the growth of vegetation after development. Slope and stoniness are the main concerns affecting the development of playgrounds. For good trafficability, the surface of the playgrounds should absorb rainfall readily, remain firm under heavy foot traffic, and not be dusty when dry. The soil properties that influence trafficability are texture of the surface layer, depth to a zone in which the soil moisture status is wet, ponding, flooding, permeability, and large stones. The soil properties that affect the growth of plants are depth to bedrock or a cemented pan, permeability, and toxic substances in the soil.

Paths and trails for hiking and horseback riding should require little or no slope modification through cutting and filling. The ratings are based on the soil properties that affect trafficability and erodibility. These properties are stoniness, depth to a zone in which the soil moisture status is wet, ponding, flooding, slope, and texture of the surface layer.

Off-road motorcycle trails require little or no site preparation. They are not covered with surfacing material or vegetation. Considerable compaction of the soil material is likely. The ratings are based on the soil properties that influence erodibility, trafficability, dustiness, and the ease of revegetation. These properties are stoniness, slope, depth to a zone in which the soil moisture status is wet, ponding, flooding, and texture of the surface layer.

Golf fairways are subject to heavy foot traffic and some light vehicular traffic. Cutting or filling may be required. Irrigation is not considered in the ratings. The ratings are based on the soil properties that affect plant growth and trafficability after vegetation is established. The properties that affect plant growth are reaction; depth to a zone in which the soil moisture status is wet; ponding; depth to bedrock or a cemented pan;
the available water capacity in the upper 40 inches; the content of salts, sodium, or calcium carbonate; and sulfidic materials. The properties that affect trafficability are flooding, depth to a zone in which the soil moisture status is wet, ponding, slope, stoniness, and the amount of sand, clay, or organic matter in the surface layer. The suitability of the soil for traps, tees, roughs, and greens is not considered in the ratings.

Wildlife Habitat

Soils affect the kind and amount of vegetation that is available to wildlife as food and cover. They also affect the construction of water impoundments. If food, cover, or water is missing, inadequate, or inaccessible, wildlife will be scarce or will not inhabit the area.

If the soils have potential for habitat development, wildlife habitat can be created or improved by planting appropriate vegetation, properly managing the existing plant cover, and fostering the natural establishment of desirable plants.

In table 18, the soils in the survey area are rated according to their potential for providing habitat for various kinds of wildlife. This information can be used in planning parks, wildlife refuges, nature study areas, and other developments for wildlife; in selecting soils that are suitable for establishing, improving, or maintaining specific elements of wildlife habitat; and in determining the intensity of management needed for each element of the habitat.

The potential of the soil is rated good, fair, poor, or very poor. A rating of good indicates that the element or kind of habitat is easily established, improved, or maintained. Few or no limitations affect management, and satisfactory results can be expected. A rating of fair indicates that the element or kind of habitat can be established, improved, or maintained in most places. Moderately intensive management is required for satisfactory results. A rating of poor indicates that limitations are severe for the designated element or kind of habitat. Habitat can be created, improved, or maintained in most places, but management is difficult and must be intensive. A rating of very poor indicates that restrictions for the element or kind of habitat are very severe and that unsatisfactory results can be expected. Creating, improving, or maintaining habitat is impractical or impossible.

The elements of wildlife habitat are described in the following paragraphs.
Grain and seed crops are domestic grains and seed-producing herbaceous plants used by wildlife. Examples are corn, soybeans, wheat, oats, and barley.

Grasses and legumes are domestic perennial grasses and herbaceous legumes planted for wildlife food and cover. Examples are bromegrass, timothy, orchardgrass, clover, alfalfa, wheatgrass, and birdsfoot trefoil.

Wild herbaceous plants are native or naturally established grasses and forbs, including weeds, that provide food and cover for wildlife. Examples are bluestems, indiangrass, blueberry, goldenrod, lambsquarters, dandelions, blackberry, ragweed, wheatgrass, and nightshade.

The major soil properties affecting the growth of grain and forage crops and wild herbaceous plants are depth of the root zone, texture of the surface layer, the amount of water available to plants, wetness, salinity, and flooding. The length of the growing season also is important.

Hardwood trees and woody understory produce nuts or other fruit, buds, catkins, twigs, bark, and foliage that wildlife eat. Examples are oak, poplar, box elder, birch, maple, green ash, willow, and American elm.

Coniferous plants are cone-bearing trees, shrubs, or ground cover that provide habitat or supply food in the form of browse, seed, or fruit-like cones. Examples are pine, spruce, cedar, and tamarack.

The major soil properties affecting the growth of hardwood and coniferous trees and
shrubs are depth of the root zone, the amount of water available to plants, and wetness.

Shrubs are bushy woody plants that produce fruit, buds, twigs, bark, and foliage. Soil properties and features that affect the growth of shrubs are depth of the root zone, available water capacity, salinity, and soil moisture. Examples of shrubs are hawthorn, honeysuckle, American plum, redosier dogwood, chokecherry, highbush cranberry, elderberry, gooseberry, serviceberry, silver buffaloberry, and crabapple.

Wetland plants are annual and perennial wild herbaceous plants that grow on moist or wet sites. Submerged or floating aquatic plants are excluded. Wetland plants produce food or cover for wetland wildlife. Examples of these plants are smartweeds, wild millet, rushes, sedges, bulrushes, wild rice, arrowhead, waterplantain, cattail, prairie cordgrass, bluejoint grass, asters, and beggarticks.

The major soil properties affecting wetland plants are texture of the surface layer, wetness, acidity or alkalinity, and slope.

Shallow water areas have an average depth of less than 5 feet. They are useful as habitat for some wildlife species. They are naturally wet areas or are created by dams, levees, or water-control measures in marshes or streams. Examples are waterfowl feeding areas, wildlife watering developments, beaver ponds, and other wildlife ponds.

The major soil properties affecting shallow water areas are depth to bedrock, wetness, surface stoniness, slope, and permeability.

The habitat for various kinds of wildlife is described in the following paragraphs.
Habitat for openland wildlife consists of cropland, pasture, meadows, and areas that are overgrown with grasses, herbs, and shrubs. These areas produce grain and seed crops, grasses and legumes, and wild herbaceous plants. The wildlife attracted to these areas include Hungarian partridge, ring-necked pheasant, bobwhite quail, sharp-tailed grouse, meadowlark, field sparrow, killdeer, cottontail rabbit, and red fox.

Habitat for woodland wildlife consists of areas of hardwoods or conifers or a mixture of these and associated grasses, legumes, and wild herbaceous plants. The wildlife attracted to this habitat include wild turkey, ruffed grouse, thrushes, woodpeckers, owls, tree squirrels, porcupine, raccoon, white-tailed deer, black bear, and moose.

Habitat for wetland wildlife consists of open, marshy or swampy shallow water areas, bogs, or flood plains that support water-tolerant plants. The wildlife attracted to this habitat include ducks, geese, herons, bitterns, rails, kingfishers, muskrat, otter, mink, and beaver.

Engineering

This section provides information for planning land uses related to urban development and to water management. Soils are rated for various uses, and the most limiting features are identified. Ratings are given for building site development, construction materials, and water management. The ratings are based on observed performance of the soils and on the data in the tables described under the heading "Soil Properties."

Information in this section is intended for land use planning, for evaluating land use alternatives, and for planning site investigations prior to design and construction. The information, however, has limitations. For example, estimates and other data generally apply only to that part of the soil between the surface and a depth of 5 to 7 feet. Because of the map scale, small areas of different soils may be included within the mapped areas of a specific soil.

The information is not site specific and does not eliminate the need for onsite investigation of the soils or for testing and analysis by personnel experienced in the design and construction of engineering works.

Government ordinances and regulations that restrict certain land uses or impose
specific design criteria were not considered in preparing the information in this section. Local ordinances and regulations should be considered in planning, in site selection, and in design.

Soil properties, site features, and observed performance were considered in determining the ratings in this section. During the fieldwork for this soil survey, determinations were made about particle-size distribution, liquid limit, plasticity index, soil reaction, depth to bedrock, hardness of bedrock within 5 to 7 feet of the surface, soil wetness, depth to a zone in which the soil moisture status is wet, ponding, slope, likelihood of flooding, natural soil structure aggregation, and soil density. Data were collected about kinds of clay minerals, mineralogy of the sand and silt fractions, and the kinds of adsorbed cations. Estimates were made for erodibility, permeability, corrosivity, linear extensibility, available water capacity, and other behavioral characteristics affecting engineering uses.

This information can be used to evaluate the potential of areas for residential, commercial, industrial, and recreational uses; make preliminary estimates of construction conditions; evaluate alternative routes for roads, streets, highways, pipelines, and underground cables; plan detailed onsite investigations of soils and geology; locate potential sources of gravel, sand, earthfill, and topsoil; plan drainage systems, irrigation systems, ponds, terraces, and other structures for soil and water conservation; and predict performance of proposed small structures and pavements by comparing the performance of existing similar structures on the same or similar soils.

The information in the tables, along with the soil maps, the soil descriptions, and other data provided in this survey, can be used to make additional interpretations.

Some of the terms used in this soil survey have a special meaning in soil science and are defined in the Glossary.

Building Site Development

Soil properties influence the development of building sites, including the selection of the site, the design of the structure, construction, performance after construction, and maintenance. Tables 19a and 19b show the degree and kind of soil limitations that affect dwellings with and without basements, small commercial buildings, local roads and streets, shallow excavations, and lawns and landscaping.

The ratings in the tables are both verbal and numerical. Rating class terms indicate the extent to which the soils are limited by all of the soil features that affect building site development.

Not limited indicates that the soil has features that are very favorable for the specified use. Good performance and very low maintenance can be expected.

Somewhat limited indicates that the soil has features that are moderately favorable for the specified use. The limitations can be overcome or minimized by special planning, design, or installation. Fair performance and moderate maintenance can be expected.

Very limited indicates that the soil has one or more features that are unfavorable for the specified use. The limitations generally cannot be overcome without major soil reclamation, special design, or expensive installation procedures. Poor performance and high maintenance can be expected.

Numerical ratings in the tables indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00 . They indicate gradations between the point at which a soil feature has the greatest negative impact on the use (1.00) and the point at which the soil feature is not a limitation (0.00).

Dwellings are single-family houses of three stories or less. For dwellings without basements, the foundation is assumed to consist of spread footings of reinforced concrete built on undisturbed soil at a depth of 2 feet or at the depth of maximum frost
penetration, whichever is deeper. For dwellings with basements, the foundation is assumed to consist of spread footings of reinforced concrete built on undisturbed soil at a depth of about 7 feet. The ratings for dwellings are based on the soil properties that affect the capacity of the soil to support a load without movement and on the properties that affect excavation and construction costs. The properties that affect the load-supporting capacity include depth to a zone in which the soil moisture status is wet, ponding, flooding, subsidence, linear extensibility (shrink-swell potential), and compressibility. Compressibility is inferred from the Unified classification. The properties that affect the ease and amount of excavation include depth to a zone in which the soil moisture status is wet, ponding, flooding, slope, depth to bedrock or a cemented pan, hardness of bedrock or a cemented pan, and the amount and size of rock fragments.

Small commercial buildings are structures that are less than three stories high and do not have basements. The foundation is assumed to consist of spread footings of reinforced concrete built on undisturbed soil at a depth of 2 feet or at the depth of maximum frost penetration, whichever is deeper. The ratings are based on the soil properties that affect the capacity of the soil to support a load without movement and on the properties that affect excavation and construction costs. The properties that affect the load-supporting capacity include depth to a zone in which the soil moisture status is wet, ponding, flooding, subsidence, linear extensibility (shrink-swell potential), and compressibility (which is inferred from the Unified classification). The properties that affect the ease and amount of excavation include flooding, depth to a zone in which the soil moisture status is wet, ponding, slope, depth to bedrock or a cemented pan, hardness of bedrock or a cemented pan, and the amount and size of rock fragments.

Local roads and streets have an all-weather surface and carry automobile and light truck traffic all year. They have a subgrade of cut or fill soil material; a base of gravel, crushed rock, or soil material stabilized by lime or cement; and a surface of flexible material (asphalt), rigid material (concrete), or gravel with a binder. The ratings are based on the soil properties that affect the ease of excavation and grading and the traffic-supporting capacity. The properties that affect the ease of excavation and grading are depth to bedrock or a cemented pan, hardness of bedrock or a cemented pan, depth to a zone in which the soil moisture status is wet, ponding, flooding, the amount of large stones, and slope. The properties that affect the traffic-supporting capacity are soil strength (as inferred from the AASHTO group index number), subsidence, linear extensibility (shrink-swell potential), the potential for frost action, depth to a zone in which the soil moisture status is wet, and ponding.

Shallow excavations are trenches or holes dug to a maximum depth of 5 or 6 feet for graves, utility lines, open ditches, or other purposes. The ratings are based on the soil properties that influence the ease of digging and the resistance to sloughing. Depth to bedrock or a cemented pan, hardness of bedrock or a cemented pan, the amount of large stones, and dense layers influence the ease of digging, filling, and compacting. Depth to a zone in which the soil moisture status is wet, flooding, and ponding may restrict the period when excavations can be made. Slope influences the ease of using machinery. Soil texture, depth to a zone in which the soil moisture status is wet, and linear extensibility (shrink-swell potential) influence the resistance to sloughing.

Lawns and landscaping require soils on which turf and ornamental trees and shrubs can be established and maintained. Irrigation is not considered in the ratings. The ratings are based on the soil properties that affect plant growth and trafficability after vegetation is established. The properties that affect plant growth are reaction; depth to a zone in which the soil moisture status is wet; ponding; depth to bedrock or a cemented pan; the available water capacity in the upper 40 inches; the content of salts, sodium, or calcium carbonate; and sulfidic materials. The properties that affect
trafficability are flooding, depth to a zone in which the soil moisture status is wet, ponding, slope, stoniness, and the amount of sand, clay, or organic matter in the surface layer.

Construction Materials

Tables 20a and 20b give information about the soils as potential sources of gravel, sand, reclamation material, roadfill, and topsoil. Normal compaction, minor processing, and other standard construction practices are assumed.

Sand and gravel are natural aggregates suitable for commercial use with a minimum of processing. They are used in many kinds of construction. Specifications for each use vary widely. In table 20a, only the likelihood of finding material in suitable quantity is evaluated. The suitability of the material for specific purposes is not evaluated, nor are factors that affect excavation of the material. The properties used to evaluate the soil as a source of sand or gravel are gradation of grain sizes (as indicated by the Unified classification of the soil), the thickness of suitable material, and the content of rock fragments. If the bottom layer of the soil contains sand or gravel, the soil is considered a likely source regardless of thickness. The assumption is that the sand or gravel layer below the depth of observation exceeds the minimum thickness.

The soils are rated good, fair, or poor as potential sources of sand and gravel. A rating of good or fair means that the source material is likely to be in or below the soil. The bottom layer and the thickest layer of the soils are assigned numerical ratings. These ratings indicate the likelihood that the layer is a source of sand or gravel. The number 0.00 indicates that the layer is a poor source. The number 1.00 indicates that the layer is a good source. A number between 0.00 and 1.00 indicates the degree to which the layer is a likely source.

In table 20b, the soils are rated good, fair, or poor as potential sources of reclamation material, roadfill, and topsoil. The features that limit the soils as sources of these materials are specified in the table. The numerical ratings given after the specified features indicate the degree to which the features limit the soils as sources of reclamation material, roadfill, or topsoil. The lower the number, the greater the limitation.

Reclamation material is used in areas that have been drastically disturbed by surface mining or similar activities. When these areas are reclaimed, layers of soil material or unconsolidated geological material, or both, are replaced in a vertical sequence. The reconstructed soil favors plant growth. The ratings in the table do not apply to quarries and other mined areas that require an offsite source of reconstruction material. The ratings are based on the soil properties that affect erosion and stability of the surface and the productive potential of the reconstructed soil. These properties include the content of sodium, salts, and calcium carbonate; reaction; available water capacity; erodibility; texture; content of rock fragments; and content of organic matter and other features that affect fertility.

Roadfill is soil material that is excavated in one place and used in road embankments in another place. In this table, the soils are rated as a source of roadfill for low embankments, generally less than 6 feet high and less exacting in design than higher embankments.

The ratings are for the whole soil, from the surface to a depth of about 5 feet. It is assumed that soil layers will be mixed when the soil material is excavated and spread.

The ratings are based on the amount of suitable material and on soil properties that affect the ease of excavation and the performance of the material after it is in place. The thickness of the suitable material is a major consideration. The ease of excavation is affected by large stones, depth to a zone in which the soil moisture status is wet, and slope. How well the soil performs in place after it has been compacted and
drained is determined by its strength (as inferred from the AASHTO classification of the soil) and linear extensibility (shrink-swell potential).

Topsoil is used to cover an area so that vegetation can be established and maintained. The upper 40 inches of a soil is evaluated for use as topsoil. Also evaluated is the reclamation potential of the borrow area. The ratings are based on the soil properties that affect plant growth; the ease of excavating, loading, and spreading the material; and reclamation of the borrow area. Toxic substances, soil reaction, and the properties that are inferred from soil texture, such as available water capacity and fertility, affect plant growth. The ease of excavating, loading, and spreading is affected by rock fragments, slope, depth to a zone in which the soil moisture status is wet, soil texture, and thickness of suitable material. Reclamation of the borrow area is affected by slope, depth to a zone in which the soil moisture status is wet, rock fragments, depth to bedrock or a cemented pan, and toxic material.

The surface layer of most soils is generally preferred for topsoil because of its organic matter content. Organic matter greatly increases the absorption and retention of moisture and nutrients for plant growth.

Water Management

Table 21 gives information on the soil properties and site features that affect water management. The degree and kind of soil limitations are given for pond reservoir areas; embankments, dikes, and levees; and aquifer-fed excavated ponds. The ratings are both verbal and numerical. Rating class terms indicate the extent to which the soils are limited by all of the soil features that affect these uses.

Not limited indicates that the soil has features that are very favorable for the specified use. Good performance and very low maintenance can be expected.

Somewhat limited indicates that the soil has features that are moderately favorable for the specified use. The limitations can be overcome or minimized by special planning, design, or installation. Fair performance and moderate maintenance can be expected.

Very limited indicates that the soil has one or more features that are unfavorable for the specified use. The limitations generally cannot be overcome without major soil reclamation, special design, or expensive installation procedures. Poor performance and high maintenance can be expected.

Numerical ratings in the table indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00 . They indicate gradations between the point at which a soil feature has the greatest negative impact on the use (1.00) and the point at which the soil feature is not a limitation (0.00).

Pond reservoir areas hold water behind a dam or embankment. Soils best suited to this use have low seepage potential in the upper 60 inches. The seepage potential is determined by the permeability of the soil and the depth to fractured bedrock or other permeable material. Excessive slope can affect the storage capacity of the reservoir area.

Embankments, dikes, and levees are raised structures of soil material, generally less than 20 feet high, constructed to impound water or to protect land against overflow. Embankments that have zoned construction (core and shell) are not considered. In this table, the soils are rated as a source of material for embankment fill. The ratings apply to the soil material below the surface layer to a depth of about 5 feet. It is assumed that soil layers will be uniformly mixed and compacted during construction.

The ratings do not indicate the ability of the natural soil to support an embankment. Soil properties to a depth even greater than the height of the embankment can affect
performance and safety of the embankment. Generally, deeper onsite investigation is needed to determine these properties.

Soil material in embankments must be resistant to seepage, piping, and erosion and have favorable compaction characteristics. Unfavorable features include less than 5 feet of suitable material and a high content of stones or boulders, organic matter, or salts or sodium. A seasonal zone in which the soil moisture status is wet affects the amount of usable material. It also affects trafficability.

Aquifer-fed excavated ponds are pits or dugouts that extend to a ground-water aquifer or to a depth below a permanent zone in which the soil moisture status is wet. Excluded are ponds that are fed only by surface runoff and embankment ponds that impound water 3 feet or more above the original surface. Excavated ponds are affected by depth to a permanent zone in which the soil moisture status is wet, permeability of the aquifer, and quality of the water as inferred from the salinity of the soil. Depth to bedrock and the content of large stones affect the ease of excavation.

Table 6.--Cropland Management Considerations
(See text for a description of the considerations listed in this table)

Map symbol and soil name	Pct. of map unit	Cropland management considerations
B109A:		
Bowstring----------	45	Flooding
		High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
Fluvaquents---------	40	Flooding
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
Hapludalfs----------	5	Slope
		Limited content of organic matter
		Potential for ground-water contamination
		Potential for surface-water contamination
		Water erosion
		Wet soil moisture status
		Wind erosion
Seelyeville--------	5	Flooding
		High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Water---------------	5	Not applicable
	B200A:	
Garnes	70	Excessive permeability
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Chilgren-----------	13	Excessive permeability
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Eckvoll------------	5	Excessive permeability
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Garnes, very stony--	5	Excessive permeability
		Potential for ground-water contamination
		Potential for surface-water contamination
		Surface stones
		Water erosion
		Wet soil moisture status

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Pct. of map unit	Cropland management considerations
B200A:		
Grygla---------------------- \|	4	Excessive permeability
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
\|		Wet soil moisture status
\|		Wind erosion
Pelan---------------------- \|	3	Excessive permeability
		Potential for ground-water contamination
\|		Wet soil moisture status
		Wind erosion
B201A:		
Chilgren--------------------	75	Excessive permeability
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Garnes---------------------- \|	9	Excessive permeability
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Grygla---------------------- \|	5	Excessive permeability
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Grygla, depressional---------\|	5	Excessive permeability
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Hamre----------------------- \|	5	High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Pelan----------------------- \|	1	Excessive permeability
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
B202A:		
Cathro----------------------- \|	80	High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion

Table 6.--Cropland Management Considerations-Continued

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Pct. of map unit	Cropland management considerations
B203A:		
Grygla---------------------- \|	7	Excessive permeability
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		\| Wet soil moisture status
		Wind erosion
Berner---------------------- \|	5	Excessive permeability
		High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Chilgren-------------------- \|	3	Excessive permeability
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
B204A:		
Roliss---------------------- \|	75	Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Grygla--------------------- \|	8	Excessive permeability
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Chilgren-------------------- \|	5	Excessive permeability
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Garnes--------------------- \|	5	Excessive permeability
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Roliss, depressional--------\|	5	Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
Hamre---------------------- \|	2	High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion

Table 6.--Cropland Management Considerations-Continued

Map symbol and soil name	Pct. of map unit	Cropland management considerations
B205A:		
Berner-------------	80	Excessive permeability
		High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Northwood-----------	7	Excessive permeability
		High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Grygla-------------	5	Excessive permeability
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Cathro-------------	3	High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Hamre--------------	3	High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Seelyeville--------	2	High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
B206A:		
Hamre--------------	80	High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Chilgren-----------	8	Excessive permeability
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Pct. of map unit	Cropland management considerations
B206A:		
Northwood-------------------- \|	5	Excessive permeability
		High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Cathro----------------------- \|	3	High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Grygla---------------------\|	2	Excessive permeability
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Roliss---------------------- \|	2	Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
I1A:		
Augsburg------------------- \|	75	Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Borup---------------------\|	10	Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Foxlake-------------------- \|	5	Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Augsburg, depressional------\|	3	Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Wheatville------------------- \|	3	Lime content
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion

Table 6.--Cropland Management Considerations--Continued

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Pct. of map unit	Cropland management considerations
I2A:		
Hattie-	1	Lime content
		Potential poor tilth and compaction
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
I3A:		
Berner-------------	80	Excessive permeability
		High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Northwood-	7	Excessive permeability
		High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Kratka-------------	5	Excessive permeability
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Hamre-------------	3	High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Strathcona---------	3	Excessive permeability
		Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Seelyeville	2	High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
I4A:		
Berner------------	30	Excessive permeability
		High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Pct. of map unit	Cropland management considerations
I4A:		
Rosewood, depressional------\|	30	Excessive permeability
		Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Strathcona, depressional-----\|	30	Excessive permeability
		Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Rosewood------------------- \|	4	Excessive permeability
		Lime content
		Limited available water capacity
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Deerwood-------------------- \|	2	Excessive permeability
		High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Mavie------------------------\|	2	Excessive permeability
		Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Strathcona----------------- \|	2	Excessive permeability
		Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
I5A:		
Borup----------------------- \|	75	Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Glyndon--------------------- \|	9	Lime content
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Pct. of map unit	Cropland management considerations
I5A:		
Rosewood-------------------- \|	8	Excessive permeability
		Lime content
		Limited available water capacity
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Augsburg-------------------- \|	5	Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Augsburg, depressional------\|	3	Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
I6A:		
Borup---------------------- \|	75	Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Glyndon--------------------- \|	9	Lime content
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Rosewood-------------------- \|	8	Excessive permeability
		Lime content
		Limited available water capacity
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Augsburg-------------------- \|	5	Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Augsburg, depressional-------\|	3	Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Pct. of map unit	Cropland management considerations
17A:		
Bowstring-----------	45	Flooding
		High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
Fluvaquents---------	45	Flooding
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
Hapludolls---------	5	Slope
		Potential for surface-water contamination
		Water erosion
Water-----------------------	5	Not applicable
18A:		
Cathro-------------	80	High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Hamre--------------	8	High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Northwood----------	3	Excessive permeability
		High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Roliss-------------	3	Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Berner-------------	2	Excessive permeability
		High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Kratka-------------	2	Excessive permeability
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion

Table 6.--Cropland Management Considerations--Continued

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Pct. of map unit	Cropland management considerations
I10A:		
Clearwater------------------ \|	9	Ponding
		Potential poor tilth and compaction
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
Augsburg, depressional------\|	3	Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Reis------------------------ \|	2	Lime content
		Potential poor tilth and compaction
		Potential for ground-water contamination
		Wet soil moisture status
Espelie-------------------- \|	1	Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
I11A:		
Deerwood-------------------- \|	85	Excessive permeability
		High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Rosewood------------------- \|	6	Excessive permeability
		Lime content
		Limited available water capacity
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Markey---------------------- \|	3	Excessive permeability
		High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Strathcona------------------ \|	2	Excessive permeability
		Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Pct. of map unit	Cropland management considerations
I11A:		
Syrene-------------	2	Excessive permeability
		Lime content
		Limited available water capacity
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Venlo--------------	2	Excessive permeability
		Limited available water capacity
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
I12A:		
Eckvoll-------------	70	Excessive permeability
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Kratka-------------	8	Excessive permeability
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Smiley------------	7	Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
Linveldt-----------	5	Excessive permeability
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Reiner-------------	5	Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Foldahl------------	2	Excessive permeability
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Pelan--------------	2	Excessive permeability
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Poppleton----------	1	Excessive permeability
		Limited available water capacity
		Limited content of organic matter
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion

Table 6.--Cropland Management Considerations-Continued

Map symbol and soil name	Pct. of map unit	Cropland management considerations
I13A:		
Espelie-------------------- \|	75	Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Foxlake--------------------- \|	8	Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Hilaire---------------------\|	7	Excessive permeability
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Clearwater, depressional-----\|	5	Ponding
		Potential poor tilth and compaction
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
Thiefriver------------------ ${ }^{\text {\| }}$	5	Excessive permeability
		Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
I14B:		
Fairdale------------------- \|	85	Flooding
		Lime content
		Potential for ground-water contamination
		Potential for surface-water contamination
		Water erosion
		Wet soil moisture status
		Wind erosion
Fluvaquents----------------\|	6	Flooding
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
Hapludolls------------------ \|	5	Slope
		Potential for surface-water contamination
		Water erosion
Hapludalfs-----------------\|	2	Slope
		Limited content of organic matter
		Potential for ground-water contamination
		Potential for surface-water contamination
		Water erosion
		Wet soil moisture status
		Wind erosion

Table 6.--Cropland Management Considerations--Continued

Table 6.--Cropland Management Considerations-Continued

Map symbol and soil name	Pct. of map unit	Cropland management considerations
I15A:		
Ulen-----------	5	Excessive permeability
		Lime content
		Limited available water capacity
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Poppleton----------	3	Excessive permeability
		Limited available water capacity
		Limited content of organic matter
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Sandberg-----------	3	Excessive permeability
		Limited available water capacity
		Potential for ground-water contamination
		Wind erosion
Foldahl------------	2	Excessive permeability
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Radium-------------	2	Excessive permeability
		Limited available water capacity
		Potential for ground-water contamination
		Wind erosion
I16F:		
Fluvaquents---------	55	Flooding
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
Hapludolls---------	25	Slope
		Potential for surface-water contamination
		Water erosion
Hapludalfs---------	7	Slope
		Limited content of organic matter
		Potential for ground-water contamination
		Potential for surface-water contamination
		Water erosion
		Wet soil moisture status
		Wind erosion
Fairdale-----------	5	Flooding
		Lime content
		Potential for ground-water contamination
		Potential for surface-water contamination
		Water erosion
		Wet soil moisture status
		Wind erosion
Water---------------	5	Not applicable

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Pct. of map unit	Cropland management considerations
I16F:		
Bowstring----------	2	Flooding
		High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
Rauville-----------	1	Flooding
		Lime content
		Ponding
		Potential poor tilth and compaction
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
I17A:		
Foldahl-----------	75	Excessive permeability
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Kratka-------------	10	Excessive permeability
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Roliss-------------	5	Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Flaming------------	4	Excessive permeability
		Limited available water capacity
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Grimstad-----------	2	Excessive permeability
		Lime content
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Linveldt-----------	2	Excessive permeability
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Eckvoll------------	1	Excessive permeability
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Pct. of map unit	Cropland management considerations
I17A:		
Strathcona---------	1	Excessive permeability
		Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
I18A:		
Foldahl------------	75	Excessive permeability
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Kratka-------------	10	Excessive permeability
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Roliss-------------	5	Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Flaming------------	4	Excessive permeability
		Limited available water capacity
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Grimstad-----------	2	Excessive permeability
		Lime content
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Linveldt-----------	2	Excessive permeability
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Eckvoll------------	1	Excessive permeability
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Strathcona---------	1	Excessive permeability
		Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
I19A:		
Foxhome	65	Excessive permeability
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion

Table 6.--Cropland Management Considerations--Continued

$\begin{aligned} & \text { Map symbol } \\ & \text { and } \\ & \text { soil name } \end{aligned}$	Pct. of map unit	Cropland management considerations
I19A:		
Kittson--------------------- \|	10	Potential for ground-water contamination Wet soil moisture status
Strandquist-----------------\|	10	Excessive permeability
		Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Foldahl--------------------- \|	5	Excessive permeability
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Grimstad--------------------\|	5	Excessive permeability
		Lime content
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Roliss---------------------- \|	3	Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Mavie------------------------	2	Excessive permeability
		Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
I20A:		
Foxlake-------------------- \|	75	Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Clearwater-----------------\|	5	Ponding
		Potential poor tilth and compaction
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
Foxlake, very cobbly---------\|	5	Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Pct. of map unit	Cropland management considerations
I20A:		
Augsburg-------------------- \|	3	Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Clearwater, depressional----\|	3	Ponding
		Potential poor tilth and compaction
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
Espelie--------------------- \|	3	Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Hilaire--------------------- \|	2	Excessive permeability
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Reis----------------------- \|	2	Lime content
		Potential poor tilth and compaction
		Potential for ground-water contamination
		Wet soil moisture status
Wheatville------------------ \|	2	Lime content
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
I21A:		
Fram----------------------- \|	85	Lime content
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Hedman---------------------- \|	12	Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Strathcona----------------- \|	2	Excessive permeability
		Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Foxhome-------------------- \|	1	Excessive permeability
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Pct. of map unit	Cropland management considerations
I22A:		
Glyndon------------	75	Lime content
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Borup--------------	10	Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Augsburg-----------	5	Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Ulen---------------	5	Excessive permeability
		Lime content
		Limited available water capacity
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Wheatville----------	3	Lime content
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Flaming------------	2	Excessive permeability
		Limited available water capacity
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
I23A:		
Glyndon------------	75	Lime content
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Borup--------------	10	Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Augsburg-	5	Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Ulen--------------	5	Excessive permeability
		Lime content
		Limited available water capacity
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion

Table 6.--Cropland Management Considerations-Continued

Map symbol and soil name	Pct. of map unit	Cropland management considerations
I23A:		
Wheatville---------	3	Lime content
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Flaming------------	2	Excessive permeability
		Limited available water capacity
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
I24A:		
Grimstad-----------	70	Excessive permeability
		Lime content
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Strathcona---------	12	Excessive permeability
		Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Foldahl-------------	5	Excessive permeability
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Hamerly------------	5	Lime content
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Foxhome------------	2	Excessive permeability
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Karlsruhe----------	2	Excessive permeability
		Limited available water capacity
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Mavie---------------	2	Excessive permeability
		Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Ulen---------------	2	Excessive permeability
		Lime content
		Limited available water capacity
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Pct. of map unit	Cropland management considerations
125A:		
Hamar--------------	75	Limited available water capacity
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Garborg-	10	Excessive permeability
		Limited available water capacity
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Rosewood-----------	7	Excessive permeability
		Lime content
		Limited available water capacity
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Venlo--------------	3	Excessive permeability
		Limited available water capacity
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Flaming-	2	Excessive permeability
		Limited available water capacity
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Hangaard-	2	Excessive permeability
		Limited available water capacity
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Kratka-------------	1	Excessive permeability
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
I26A:		
Hamerly------------	75	Lime content
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Vallers------------	12	Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Pct. of map unit	Cropland management considerations
I26A:		
Foxhome-	3	Excessive permeability
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Grimstad--------------------\|	3	Excessive permeability
		Lime content
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Hamerly, very cobbly---------\|	3	Lime content
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Strathcona------------------ \|	3	Excessive permeability
		Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Roliss, depressional--------\|	1	Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
I27A:		
Hamre----------------------- \|	80	High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Northwood------------------- \|	5	Excessive permeability
		High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Roliss---------------------- ${ }^{\text {\| }}$	5	Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Smiley----------------------\|	5	Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
Cathro---------------------- ${ }^{\text {\| }}$	3	High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Pct. of map unit	Cropland management considerations
127A:		
Kratka-------------	2	Excessive permeability
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
I28A:		
Hangaard------------	75	Excessive permeability
		Limited available water capacity
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Hamar---------------	7	Limited available water capacity
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Syrene-------------	7	Excessive permeability
		Lime content
		Limited available water capacity
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Karlsruhe----------	3	Excessive permeability
		Limited available water capacity
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Rosewood-----------	3	Excessive permeability
		Lime content
		Limited available water capacity
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Strandquist--------	3	Excessive permeability
		Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Deerwood-----------	2	Excessive permeability
		High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Pct. of map unit	Cropland management considerations
I29A:		
Hattie-------------	75	Lime content
		Potential poor tilth and compaction
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
Clearwater----------	12	Ponding
		Potential poor tilth and compaction
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
Reis---------------	6	Lime content
		Potential poor tilth and compaction
		Potential for ground-water contamination
		Wet soil moisture status
Hattie, very cobbly--	5	Lime content
		Potential poor tilth and compaction
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
Hilaire------------	2	Excessive permeability
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
I29D:		
Hattie------------	85	Slope
		Lime content
		Potential poor tilth and compaction
		Potential for ground-water contamination
		Potential for surface-water contamination
		Water erosion
		Wet soil moisture status
Clearwater----------	6	Ponding
		Potential poor tilth and compaction
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
Hattie, level------	5	Lime content
		Potential poor tilth and compaction
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
Boyerlake----------	4	Lime content
		Potential poor tilth and compaction
		Potential for ground-water contamination
		Potential for surface-water contamination
		Water erosion
		Wet soil moisture status
I30A:		
Hedman-------------	85	Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Pct. of map unit	Cropland management considerations
I30A:		
Fram---------------	5	Lime content
		\| Potential for ground-water contamination
		\| Wet soil moisture status
		\| Wind erosion
Strathcona---------	5	Excessive permeability
		\| Lime content
		\| Ponding
		\| Potential for ground-water contamination
		Potential for surface-water contamination
		\| Wet soil moisture status
		\| Wind erosion
Haug---------------	3	High content of organic matter
		\| Ponding
		\| Potential for ground-water contamination
		\| Potential for surface-water contamination
		Wet soil moisture status
		\| Wind erosion
Strandquist--------	2	Excessive permeability
		\| Lime content
		\| Ponding
		\| Potential for ground-water contamination
		\| Potential for surface-water contamination
		\| Wet soil moisture status
		\| Wind erosion
I31A:		
Hedman--------------	50	Lime content
		\| Ponding
		\| Potential for ground-water contamination
		\| Potential for surface-water contamination
		\| Wet soil moisture status
		Wind erosion
Fram---------------	40	Lime content
		\| Potential for ground-water contamination
		\| Wet soil moisture status
		Wind erosion
Strathcona---------	5	Excessive permeability
		\| Lime content
		Ponding
		\| Potential for ground-water contamination
		\| Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Haug	3	High content of organic matter
		Ponding
		Potential for ground-water contamination
		\| Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Strandquist--------	2	Excessive permeability
		\| Lime content
		Ponding
		Potential for ground-water contamination
		\| Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Pct. of map unit	Cropland management considerations
I32A:		
Hilaire-----------	75	Excessive permeability
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Espelie------------	12	Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Huot---------------	5	Excessive permeability
		Lime content
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Flaming------------	2	Excessive permeability
		Limited available water capacity
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Foxlake------------	2	Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Wheatville---------	2	Lime content
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Thiefriver---------	1	Excessive permeability
		Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Wyandotte----------	1	Excessive permeability
		Lime content
		Ponding
		Potential poor tilth and compaction
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
I33A:		
Hilaire	75	Excessive permeability
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Espelie------------	12	Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Pct. of map unit	Cropland management considerations
Huot---------------	5	Lime content
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Flaming------------	2	Excessive permeability
		Limited available water capacity
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Foxlake------------	2	Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Wheatville---------	2	Lime content
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Thiefriver---------	1	Excessive permeability
		Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Wyandotte----------	1	Excessive permeability
		Lime content
		Ponding
		Potential poor tilth and compaction
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
I34A:		
Huot---------------	75	Excessive permeability
		Lime content
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Thiefriver---------	12	Excessive permeability
		Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Hilaire------------	5	Excessive permeability
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion

Table 6.--Cropland Management Considerations--Continued

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Pct. of map unit	Cropland management considerations
136A:		
Kittson--------------------\|	70	Potential for ground-water contamination Wet soil moisture status
Roliss---------------------- \|	12	Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Hamerly---------------------- \|	5	Lime content
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Kratka----------------------- \|	5	Excessive permeability
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Grimstad--------------------\|	3	Excessive permeability
		Lime content
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Strandquist-----------------	3	Excessive permeability
		Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Foxhome-------------------- \|	2	Excessive permeability
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
137A:		
Kratka, depressional--------\|	45	Excessive permeability
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Strathcona, depressional-----\|	45	Excessive permeability
		Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Pct. of map unit	Cropland management considerations
137A:		
Northwood----------	5	Excessive permeability
		High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Kratka--------------	2	Excessive permeability
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Strathcona---------	2	Excessive permeability
		Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Roliss-------------	1	Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
138A:		
Kratka-------------	70	Excessive permeability
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Smiley-------------	7	Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
Foldahl------------	5	Excessive permeability
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Kratka, very cobbly-	5	Excessive permeability
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Strathcona---------	5	Excessive permeability
		Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Pct. of map unit	Cropland management considerations
138A:		
Kratka, depressional--------- \|	3	Excessive permeability
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Strandquist-----------------\|	3	Excessive permeability
		Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Linveldt-------------------- \|	2	Excessive permeability
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
I39A:		
Linveldt------------------- \|	65	Excessive permeability
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Kratka----------------------- ${ }^{\text {\| }}$	14	Excessive permeability
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Reiner---------------------- \|	10	Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Smiley---------------------	5	Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
Eckvoll--------------------- ${ }^{\text {\| }}$	3	Excessive permeability
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Foldahl--------------------- \|	2	Excessive permeability
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Pelan----------------------- \|	1	Excessive permeability
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
I40B:		
Maddock--------------------- \|	85	Limited available water capacity
		Potential for ground-water contamination
		Wind erosion

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Pct. of map unit	Cropland management considerations
I40B:		
Flaming-	5	Excessive permeability
		Limited available water capacity
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Sandberg-----------	5	Excessive permeability
		Limited available water capacity
		Potential for ground-water contamination
		Wind erosion
Halverson-----------	3	Excessive permeability
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wind erosion
Hamar---------------	2	Limited available water capacity
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
I40F:		
Maddock------------	90	Slope
		Limited available water capacity
		Potential for ground-water contamination
		Potential for surface-water contamination
		Water erosion
		Wind erosion
Flaming------------	5	Excessive permeability
		Limited available water capacity
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Sandberg-----------	5	Excessive permeability
		Limited available water capacity
		Potential for ground-water contamination
		Wind erosion
I41A:		
Markey------------	80	Excessive permeability
		High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Deerwood------------	12	Excessive permeability
		High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Pct. of map unit	Cropland management considerations
141A:		
Berner-------------	2	Excessive permeability
		High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Hamar--------------	2	Limited available water capacity
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Seelyeville--------	2	High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Syrene-------------	2	Excessive permeability
		Lime content
		Limited available water capacity
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
142A:		
Markey, ponded------	85	Excessive permeability
		High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
Markey-------------	5	Excessive permeability
		High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Deerwood-----------	4	Excessive permeability
		High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Seelyeville, ponded-	4	High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Pct. of map unit	Cropland management considerations
142A:		
Hamar----------------------- \|	1	Limited available water capacity
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Hangaard-------------------- \|	1	Excessive permeability
		Limited available water capacity
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
143A:		
Mavie----------------------- \|	70	Excessive permeability
		Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Vallers---------------------	10	Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Strandquist-----------------\|	7	Excessive permeability
		Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Strathcona------------------\|	5	Excessive permeability
		Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Strathcona, depressional-----\|	3	Excessive permeability
		Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Foxhome-------------------\|	2	Excessive permeability
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Pct. of map unit	Cropland management considerations
I43A:		
Karlsruhe----------	2	Excessive permeability
		Limited available water capacity
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Grimstad-----------	1	Excessive permeability
		Lime content
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
I44A:		
Newfolden----------	75	Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
Smiley------------	12	Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
Boash--------------	8	Ponding
		Potential poor tilth and compaction
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
Linveldt-----------	4	Excessive permeability
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Hapludolls---------	1	Slope
		Potential for surface-water contamination
		Water erosion
145A:		
Northwood----------	75	Excessive permeability
		High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Hamre--------------	10	High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Berner-------------	5	Excessive permeability
		High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Pct. of map unit	Cropland management considerations
145A:		
Kratka-	5	Excessive permeability
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Strandquist--------	3	Excessive permeability
		Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Roliss--------------	2	Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
146A:		
Pits--------------------	85	Not applicable
	10	Slope
Udipsamments-------		Excessive permeability
		Limited available water capacity
		Limited content of organic matter
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wind erosion
Radium-------------	2	Excessive permeability
		Limited available water capacity
		Potential for ground-water contamination
		Wind erosion
Maddock-------------	1	Limited available water capacity
		Potential for ground-water contamination
		Wind erosion
Marquette----------		
	1	Excessive permeability
		Limited available water capacity
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wind erosion
Sandberg-----------	1	Excessive permeability
		Limited available water capacity
		Potential for ground-water contamination
		Wind erosion
I47A:		
Poppleton----------	75	Excessive permeability
		Limited available water capacity
		Limited content of organic matter
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Pct. of map unit	Cropland management considerations
147A:		
Flaming------------	12	Excessive permeability
		Limited available water capacity
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Garborg------------	5	Excessive permeability
		Limited available water capacity
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Hamar--------------	3	Limited available water capacity
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Radium-------------	2	Excessive permeability
		Limited available water capacity
		Potential for ground-water contamination
		Wind erosion
Ulen--------------	2	Excessive permeability
		Lime content
		Limited available water capacity
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Maddock------------	1	Limited available water capacity
		Potential for ground-water contamination
		Wind erosion
I48A:		
Radium-------------	75	Excessive permeability
		Limited available water capacity
		Potential for ground-water contamination
		Wind erosion
Sandberg-----------	7	Excessive permeability
		Limited available water capacity
		Potential for ground-water contamination
		Wind erosion
Oylen--------------	5	Excessive permeability
		Limited available water capacity
		Potential for ground-water contamination
		Wind erosion
Flaming------------	4	Excessive permeability
		Limited available water capacity
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Garborg-------------	3	Excessive permeability
		Limited available water capacity
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion

Table 6.--Cropland Management Considerations-Continued

Map symbol and soil name	Pct. of map unit	Cropland management considerations
I48A:		
Hangaard-----------	3	Excessive permeability
		Limited available water capacity
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Hamar--------------	2	Limited available water capacity
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Poppleton----------	1	Excessive permeability
		Limited available water capacity
		Limited content of organic matter
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
I49A:		
Rauville-----------	80	Flooding
		Lime content
		Ponding
		Potential poor tilth and compaction
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Fluvaquents--------	12	Flooding
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
Water--------------Lamoure-------------	5	Not applicable
	3	Flooding
Lamoure------------		Lime content
		Ponding
		Potential poor tilth and compaction
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
I50A:		
Reiner-------------	70	Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Smiley-------------	12	Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
Reiner, very cobbly-	7	Potential for ground-water contamination Wet soil moisture status
		Wind erosion

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Pct. of map unit	Cropland management considerations
I50A:		
Linveldt-------------------- \|	5	Excessive permeability
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Eckvoll--------------------- \|	3	Excessive permeability
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Kratka----------------------\|	3	Excessive permeability
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
I51A:		
Reiner---------------------- \|	65	Excessive permeability
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Smiley---------------------- \|	9	Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
Reiner fine sandy loam------\|	8	Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Linveldt-------------------- \|	7	Excessive permeability
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Kratka---------------------- \|	5	Excessive permeability
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Eckvoll---------------------- \|	3	Excessive permeability
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Reiner, very cobbly----------\|	3	Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
I52A:		
Reis---------------------- \|	55	Lime content
		Potential poor tilth and compaction
		Potential for ground-water contamination
		Wet soil moisture status

Table 6.--Cropland Management Considerations--Continued

$\begin{aligned} & \text { Map symbol } \\ & \text { and } \\ & \text { soil name } \end{aligned}$	Pct. of map unit	Cropland management considerations
I52A:		
Clearwater------------------ \|	30	Ponding
		Potential poor tilth and compaction
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
Clearwater, very cobbly------\|	5	Ponding
		Potential poor tilth and compaction
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
Clearwater, depressional-----\|	3	Ponding
		Potential poor tilth and compaction
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
Espelie--------------------\|	3	Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Hattie---------------------- \|	3	Lime content
		Potential poor tilth and compaction
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
Wyandotte------------------- \|	1	Excessive permeability
		Lime content
		Ponding
		Potential poor tilth and compaction
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
I53A:		
Roliss---------------------	75	Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Kratka----------------------- \|	8	Excessive permeability
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Roliss, very cobbly----------\|	7	Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Kittson--------------------- \|	5	Potential for ground-water contamination
		Wet soil moisture status

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Pct. of map unit	Cropland management considerations
I53A:		
Roliss, depressional--------\|	3	Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
Smiley---------------------- \|	2	Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
I54A:		
Roliss, depressional--------\|	80	Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
Roliss-------------------- \|	12	Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Hamre---------------------- \|	5	High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Kratka--------------------- \|	3	Excessive permeability
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
I55A:		
Rosewood------------------- \|	75	Excessive permeability
		Lime content
		Limited available water capacity
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Ulen------------------------ \|	10	Excessive permeability
		Lime content
		Limited available water capacity
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Hamar------------------------ \|	6	Limited available water capacity
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion

Table 6.--Cropland Management Considerations-Continued

Map symbol and soil name	Pct. of map unit	Cropland management considerations
I55A:		
Rosewood, depressional-------\|	3	Excessive permeability
		Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Syrene---------------------- \|	3	Excessive permeability
		Lime content
		Limited available water capacity
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Karlsruhe------------------- \|	1	Excessive permeability
		Limited available water capacity
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Strathcona------------------\|	1	Excessive permeability
		Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Thiefriver------------------ \|	1	Excessive permeability
		Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
I56A:		
Rosewood-------------------- \|	50	Excessive permeability
		Lime content
		Limited available water capacity
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Venlo----------------------- \|	40	Excessive permeability
		Limited available water capacity
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Pct. of map unit	Cropland management considerations
I56A:		
Deerwood-----------	3	Excessive permeability
		High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Syrene-------------	3	Excessive permeability
		Lime content
		Limited available water capacity
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Ulen---------------	2	Excessive permeability
		Lime content
		Limited available water capacity
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Strathcona---------	1	Excessive permeability
		Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Thiefriver---------	1	Excessive permeability
		Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
I57B:		
Sandberg-----------	50	Excessive permeability
		Limited available water capacity
		Potential for ground-water contamination
		Wind erosion
Radium-------------	25	Excessive permeability
		Limited available water capacity
		Potential for ground-water contamination
		Wind erosion
Sioux--------------	8	Excessive permeability
		Limited available water capacity
		Potential for ground-water contamination
		Wind erosion
Oylen--------------	7	Excessive permeability
		Limited available water capacity
		Potential for ground-water contamination
		Wind erosion

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Pct. of map unit	Cropland management considerations
I57B:		
Flaming------------	5	Excessive permeability
		Limited available water capacity
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Garborg------------	5	Excessive permeability
		Limited available water capacity
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
I58A:		
Seelyeville--------	90	High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Cathro------------	3	High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Dora---------------	3	High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Markey-------------	3	Excessive permeability
		High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Berner-------------	1	Excessive permeability
		High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
I59A:		
Smiley	65	Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
Smiley, very cobbly-	10	Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status

Table 6.--Cropland Management Considerations--Continued

Table 6.--Cropland Management Considerations--Continued

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Pct. of map unit	Cropland management considerations
I62A:		
Rosewood-	11	Excessive permeability
		Lime content
		Limited available water capacity
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Hangaard	5	Excessive permeability
		Limited available water capacity
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Karlsruhe----------	4	Excessive permeability
		Limited available water capacity
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Deerwood-	3	Excessive permeability
		High content of organic matter
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Hamar--------------	3	Limited available water capacity
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Strandquist--------	2	Excessive permeability
		Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Radium	1	Excessive permeability
		Limited available water capacity
		Potential for ground-water contamination
		Wind erosion
Wyandotte----------	1	Excessive permeability
		Lime content
		Ponding
		Potential poor tilth and compaction
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Pct. of map unit	Cropland management considerations
I63A:		
Thiefriver------------------\|	70	Excessive permeability
		Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Espelie--------------------- \|	10	Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Foxlake---------------------\|	7	Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Huot------------------------\|	5	Excessive permeability
		Lime content
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Clearwater, depressional----\|	3	Ponding
		Potential poor tilth and compaction
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
Rosewood-------------------- \|	3	Excessive permeability
		Lime content
		Limited available water capacity
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Ulen------------------------ \|	1	Excessive permeability
		Lime content
		Limited available water capacity
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Wyandotte------------------- \|	1	Excessive permeability
		Lime content
		Ponding
		Potential poor tilth and compaction
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Pct. of map unit	Cropland management considerations
I64A:		
Ulen---------------	70	Excessive permeability
		Lime content
		Limited available water capacity
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Rosewood-	10	Excessive permeability
		Lime content
		Limited available water capacity
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Flaming------------	8	Excessive permeability
		Limited available water capacity
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Karlsruhe-----------	5	Excessive permeability
		Limited available water capacity
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Radium-------------	3	Excessive permeability
		Limited available water capacity
		Potential for ground-water contamination
		Wind erosion
Strathcona---------	2	Excessive permeability
		Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Thiefriver---------	2	Excessive permeability
		Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
165A:		
Ulen---------------	70	Excessive permeability
		Lime content
		Limited available water capacity
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Pct. of map unit	Cropland management considerations
165A:		
Rosewood--------------------- \|	10	Excessive permeability
		Lime content
		Limited available water capacity
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Flaming--------------------- \|	6	Excessive permeability
		Limited available water capacity
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Poppleton------------------- \|	4	Excessive permeability
		Limited available water capacity
		Limited content of organic matter
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Karlsruhe------------------- \|	3	Excessive permeability
		Limited available water capacity
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Radium---------------------\|	3	Excessive permeability
		Limited available water capacity
		Potential for ground-water contamination
		Wind erosion
Strathcona-----------------\|	2	Excessive permeability
		Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Thiefriver------------------\|	2	Excessive permeability
		Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
166A:		
Vallers-------------------- \|	75	Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Vallers, very cobbly---------\|	7	Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Pct. of map unit	Cropland management considerations
166A:		
Hamerly--------------------\|	6	Lime content
		Potential for ground-water contamination Wet soil moisture status
		Wind erosion
Grimstad--------------------\|	3	Excessive permeability
		Lime content
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Mavie------------------------ \|	3	Excessive permeability
		Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Roliss, depressional---------\|	3	Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
Strathcona------------------ \|	3	Excessive permeability
		Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
167A:		
Wheatville-----------------\|	70	Lime content
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Augsburg--------------------	13	Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Glyndon--------------------- \|	8	Lime content
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Foxlake-------------------- \|	5	Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Hilaire--------------------- ${ }^{\text {\| }}$	2	Excessive permeability
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Pct. of map unit	Cropland management considerations
167A:		
Ulen---------------	2	Excessive permeability
		Lime content
		Limited available water capacity
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
I68A:		
Wheatville----------	70	Lime content
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Augsburg-----------	13	Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Glyndon------------	8	Lime content
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Foxlake-----------	5	Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Hilaire------------	2	Excessive permeability
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Ulen---------------	2	Excessive permeability
		Lime content
		Limited available water capacity
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
I69A:		
Wyandotte-----------	65	Excessive permeability
		Lime content
		Ponding
		Potential poor tilth and compaction
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Foxlake------------	10	Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Pct. of map unit	Cropland management considerations
I69A:		
Espelie--------------------- \|	8	Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Clearwater, depressional----\|	5	Ponding
		Potential poor tilth and compaction
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
Thiefriver------------------\|	5	Excessive permeability
		Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Karlsruhe------------------- \|	4	Excessive permeability
		Limited available water capacity
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion
Syrene---------------------- \|	3	Excessive permeability
		Lime content
		Limited available water capacity
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
I70A:		
Strathcona----------------- \|	70	Excessive permeability
		Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Kratka---------------------\|	10	Excessive permeability
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Roliss----------------------\|	6	Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Grimstad-------------------\|	5	Excessive permeability
		Lime content
		Potential for ground-water contamination
		Wet soil moisture status
		Wind erosion

Table 6.--Cropland Management Considerations--Continued

Map symbol and soil name	Pct. of map unit	Cropland management considerations
I70A:		
Mavie------------------------ \|	3	Excessive permeability
		Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Rosewood-------------------- \|	3	Excessive permeability
		Lime content
		Limited available water capacity
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
Strathcona, depressional----\|	3	Excessive permeability
		Lime content
		Ponding
		Potential for ground-water contamination
		Potential for surface-water contamination
		Wet soil moisture status
		Wind erosion
M-W :		
Miscellaneous water---------- \|	100	Not applicable
W:		
Water----------------------- \|	100	Not applicable

(Yields are those that can be expected under a high level of management. They are for nonirrigated areas. Absence of a yield indicates that the soil is not suited to the crop or the crop generally is not grown on the soil)

Map symbol and soil name	$\begin{aligned} & \text { Pct. of } \\ & \text { map unit } \end{aligned}$	Land capability	\|Alfalfa hay	$\begin{gathered} \text { \|Bromegrass } \\ \text { alfalfa } \end{gathered}$	$\begin{array}{\|c} \left\lvert\, \begin{array}{c} \text { Reed } \\ \text { canarygrass } \\ \hline \end{array}\right. \\ \hline \end{array}$	Soybeans	Sunflowers	Barley	\|Spring wheat
			Tons	AUM*	Tons	Bu	Lbs	Bu	Bu
	I		\|						
B109A---------------	\|		\| ---	---	4.0	---	---	---	--
Bowstring--------	45	6w	\|		\|				
Fluvaquents------	40	6w			\|				
Hapludalfs-------	5	6 e							
Seelyeville--------	5	6w			\|				
Water--------------	5	---							
					\|				
B200A--------------	\|		\| 5.5	6.5	\| ---	--	2000	80	45
Garnes------------	70	1			\|				
Chilgren---------	13 \|	2w			\|				
Eckvoll-----------	5	3 s			\|				
Garnes, very stony-	5	2 e			\|				
Grygla-------------	4	4w							
Pelan--------------	3	3 s							
	\|								
B201A--------------	\|		4.0	5.0	\| ---	---	1300	60	35
Chilgren---------	75	2w							
Garnes-----------	9	1			\|				
Grygla-------------	5	4w	\|		\|				
Grygla, depressional	5	6w							
Hamre	5	6w			\|				
Pelan------------	1	3 s							
	\|								
	\|		-	---	5.5	---	---	---	---
Cathro	80	6w							
Hamre--	8 \|	6w			\|				
Chilgren---------	$3 \quad 1$	2w							
Northwood---------	3	6w			\|				
Berner---	2	6w							
Grygla------------	2	4w			\|				
Seelyeville--------	2	6w			\|				
	\|								
B203A---------------	\|		---	---	5.5	---	---	---	---
Northwood--	75	6w			1				
Hamre-------------	10	6w	\|		\|				
Grygla------------	7	4 w							
Berner-------------	5	6w	\|		\|				
Chilgren-----------	3	2w	\|		\|				
	,		\|		1				

See footnote at end of table.

Map symbol and soil name	Pct. of map unit	Land capability	Alfalfa hay	Bromegrass alfalfa	$\begin{array}{\|c} \left\lvert\, \begin{array}{c} \text { Reed } \\ \text { canarygrass } \\ \hline \end{array}\right. \\ \hline \end{array}$	Soybeans	Sunflowers	Barley	\|Spring wheat
			Tons	AUM*	Tons	Bu	Lbs	Bu	Bu
B204A-------------------- \|			4.0	5.0	\| ---	---	1400	65	35
Roliss-----------------	75	2w							
Grygla-----------------\|	8	4w							\|
Chilgren---------------\|	5	2w							\|
Garnes-----------------\|	5	1							
Roliss, depressional----\|	5	6w							
Hamre------------------\|	2	6w							
B205A-------------------\|			---	---	4.5	---	--	--	---
Berner------------------	80	6w							
Northwood---------------\|	7	6w							\|
Grygla----------------- \|	5	4w							\|
Cathro-----------------\|	3	6w							\|
Hamre-------------------	3	6w							
Seelyeville-------------\|	2	6w							\|
B206A-------------------\|			\| ---	---	6.0	---	-	---	---
Hamre------------------	80	6w							
Chilgren----------------	8	2w							
Northwood---------------\|	5	6w							\|
Cathro-----------------\|	3	6w							
Grygla	2	4w							\|
Roliss-----------------\|	2	2w							
I1A---------------------			5.0	6.0	\| ---	30	2000	85	50
Augsburg---------------\|	75	2w							
Borup------------------\|	10	2w							\|
Foxlake----------------\|	5	2w							
Augsburg, depressional--\|	3	6w							\|
Wheatville-------------\|	3	2 s							
Glyndon-----------------\|	2	2 s							\|
Espelie----------------\|	1	2w							
Hattie-----------------\|	1	2 e							
I2A---------------------- \|			5.0	6.0	---	30	2000	85	50
Augsburg	75	2w							
Borup-----------------\|	10	2w							
Foxlake----------------\|	5	2w							
Augsburg, depressional--\|	3	6w							
Wheatville--------------\|	3	2 s			\|				
Glyndon----------------\|	2	2 s							
Espelie-----------------\|	$1 \quad \mid$	2w			\|				
Hattie------------------\|	1	2 e							
\|	1				\|				

Table 7.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Map symbol and soil name	$\begin{aligned} & \text { Pct. of } \\ & \text { map unit } \end{aligned}$	Land capability	\|Alfalfa hay	Bromegrassalfalfa	$\begin{array}{\|c} \mid \text { Reed } \\ \text { canarygrass } \\ \hline \end{array}$	Soybeans	Sunflowers	Barley	\| Spring wheat
			Tons	AUM*	Tons	Bu	Lbs	Bu	Bu
I3A--------------------- \|			\| ---	\| ---	4.5	---	---	-	---
Berner------------------\|	80	6w			\|				I
Northwood---------------\|	7	6w			\|				\|
Kratka-----------------\|	5	2w			\|				\|
Hamre------------------ \|	3	6w			\|				\|
Strathcona-------------\|	3	2w			\|				\|
Seelyeville------------\|	2	6w			\|				\|
					\|				
I4A----------------------			\| ---	\| ---	4.0	---	---	---	\| ---
Berner----------------- \|	30	6w			\|				I
Rosewood, depressional--\|	30	6w			\|				\|
Strathcona, depressional\|	30	6w			\|				\|
Rosewood----------------\|	4	3w			\|				\|
Deerwood---------------- \|	2	6w			\|				\|
Mavie------------------\|	2	3w			\|				\|
Strathcona-------------- \|	2	2w			,				
					\|				
I5A---------------------- \|			5.0	6.0	\| ---	30	2000	85	50
Borup------------------ \|	75	2w			\|				
Glyndon	9	2 s							\|
Rosewood----------------	8	3w			,				
Augsburg	5	2w		\|	\|				\|
Augsburg, depressional--\|	3	6w			,				
					\|				
I6A			5.0	6.0	,	30	2000	85	50
Borup------------------ \|	75	2w			,				\|
Glyndon-	9	2 s							\|
Rosewood---------------- \|	8	3 w			,				\|
Augsburg	5	2w			\|				\|
Augsburg, depressional--\|	3	6w			,				
					1				
I7A----------------------			--	---	\| 4.0	---	---	---	---
Bowstring--------------	45	6w			,				\|
Fluvaquents-------------\|	45	6w			,				\|
Hapludolls--------------\|	5	2 e			,				\|
Water-------------------\|	5	---			\|				\|
					,				
I8A			---	---	5.5	---	---	---	---
Cathro----------------- \|	80	6w			1				
Hamre------------------ \|	8	6w			\|				\|
Northwood---------------\|	3	6w			\|				\|
Roliss-----------------\|	3	2w			\|				\|
Berner----------------- \|	2	6w			\|				\|
Kratka------------------\|	2	2w			,				\|
Seelyeville-------------\|	2	6w			\|				
\|					1				1

Map symbol and soil name	$\begin{aligned} & \text { Pct. of } \\ & \text { map unit } \end{aligned}$	$\begin{gathered} \text { Land } \\ \text { capability } \end{gathered}$	\|Alfalfa hay	$\begin{gathered} \text { \|Bromegrass }- \\ \mid \quad \text { alfalfa } \\ \hline \end{gathered}$	$\begin{array}{\|c} \\ \text { Reed } \\ \mid \text { canarygrass } \end{array}$	Soybeans	Sunflowers	Barley	\| Spring wheat
			Tons	AUM*	Tons	Bu	Lbs	Bu	Bu
I9A--------------------- \|			4.0	5.0	\| ---	30	1800	80	45
Clearwater--------------\|	80	2w							
Clearwater, very cobbly	5	2w							
Reis-------------------\|	5	2w							
Clearwater, depressional\|	3	6w							
Espelie----------------\|	3	2w							
Foxlake---------------- \|	2	2w							
Hattie-----------------\|	1	2 e							
Huot------------------- \|	1	2 s							
I10A-------------------\|			\| ---	\| ---	5.0	---	---	---	---
Clearwater, depressional\|	85	6w							
Clearwater-------------\|	9	2w							
Augsburg, depressional--\|	3	6w							
Reis-------------------\|	2	2w							
Espelie----------------\|	1	2w							
I11A--------------------			-	--	5.0	--	---	---	---
Deerwood----------------\|	85	6w							
Rosewood--------------- \|	6	3w							
Markey-----------------\|	3	6w							
Strathcona--------------\|	2	2w							
Syrene----------------- \|	2	4w							
Venlo------------------- \|	2	6 w							
I12A------------------- \|			5.0	6.0	\| ---	30	1400	65	35
Eckvoll---------------- \|	70	3 s							
Kratka------------------\|	8	2w							
Smiley-----------------\|	7	2w							
Linveldt----------------\|	5	3 s							
Reiner----------------- \|	5	1							
Foldahl----------------\|	2	3 s							
Pelan------------------	2	3 s							
Poppleton-------------\|	1	4 s							
I13A.			4.0	4.5	---	30	1500	70	40
Espelie-----------------	75	2w							
Foxlake----------------\|	8	2w							
Hilaire----------------\|	$7 \quad \mid$	3 s							
Clearwater, depressional\|	5 \|	6 w							
Thiefriver-------------\|	5	2w							

Table 7.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Map symbol and soil name	Pct. of map unit	$\begin{gathered} \text { Land } \\ \text { capability } \end{gathered}$	\|Alfalfa hay	\|Bromegrassalfalfa	$\begin{array}{\|c} \text { Reed } \\ \mid \text { canarygrass } \\ \hline \end{array}$	Soybeans	Sunflowers	Barley	\|Spring wheat
			Tons	AUM*	Tons	Bu	Lbs	Bu	Bu
I14B---------------			4.0	5.5	\| ---	35	1600	75	40
Fairdale----------	85	2 e							
Fluvaquents-------	6	6w			\|				
Hapludolls--------	5	2 e							
Hapludalfs--------	2	6 e							
zell-------------	2	6 e							
I14D---------------			3.5	5.5	\| ---	20	1200	55	30
Fairdale----------	85	3 e							
Fluvaquents-------	6	6w			\|				
Hapludolls--------	4	2 e							
Zell--------------	3	6 e							
Hapludalfs-------	2	6 e							
I15A---------------			4.5	5.5	\| ---	30	1200	60	35
Flaming----------	70	4s							
Garborg-----------	10	3w							
Hamar-------------	5	3w							
Ulen--------------	5	3 s							
Poppleton---------	3	4 s							
Sandberg----------	3	4 s							
Foldahl----------	2	3 s							
Radium------------	2	4 s							
			\| ---	6.0	4.0	---	-	---	---
Fluvaquents------	55	6w							
Hapludolls------	25	2 e							
Hapludalfs------	7	6 e							
Fairdale----------	5	3 e							
Water-------------	5	---							
Bowstring---------	2	6 w							
Rauville----------	1	6w							
I17A			4.0	5.5	---	35	1600	75	40
Foldahl---------	75	2 s							
Kratka------------	10	2w							
Roliss-----------	5	2w			\|				
Flaming-----------	4	4 s							
Grimstad----------	2	2 s							
Linveldt----------	2	3 s			\|				
Eckvoll-----------	1	3 s							
Strathcona--------	1	2w			\|				

See footnote at end of table.

Map symbol and soil name	Pct. of map unit	Land capability	Alfalfa hay	$\begin{gathered} \text { \|Bromegrass - } \\ \mid \quad \text { alfalfa } \\ \hline \end{gathered}$	$\begin{array}{\|c\|c} \\ \text { Reed } \\ \text { \|canarygrass } \\ \hline \end{array}$	Soybeans	Sunflowers	Barley	\|Spring wheat
			Tons	AUM*	Tons	Bu	Lbs	Bu	Bu
I18A-------------------- \|			4.0	5.0	\| ---	30	1400	70	40
Foldahl---------------- \|	75	3 s							
Kratka-----------------	10	2w							\|
Roliss-----------------\|	5	2w							\|
Flaming---------------- \|	4	4 s							
Grimstad---------------\|	2	2 s							\|
Linveldt--------------- \|	2	3 s							
Eckvoll----------------	1	3 s							
Strathcona-------------\|	1	2w							
I19A-------------------- \|			4.0	5.0	\| ---	25	1200	55	30
Foxhome----------------\|	65	3 e							
Kittson----------------\|	10	1							
Strandquist------------\|	10	3w							
Foldahl----------------\|	5	2 s							
Grimstad---------------\|	5	2 s							
Roliss-----------------	3	2w							
Mavie------------------\|	2	3w							
I20A--------------------			4.0	5.0	\| ---	30	1800	80	40
Foxlake----------------	75	2w							
Clearwater-------------\|	5	2w							
Foxlake, very cobbly----\|	5	2w							\|
Augsburg--------------\|	3	2w							\|
Clearwater, depressional\|	3	6w							
Espelie----------------	3	2w							
Hilaire----------------	2	3 s							\|
Reis------------------- \|	2	2w							,
Wheatville-------------\|	2	2 s							
I21A------------------			5.0	6.0	-	30	1800	85	45
Fram-------------------	85	2 e							
Hedman-----------------	12	2w							
Strathcona------------- \|	2	2w							
Foxhome---------------- \|	1	3 e							
I22A-------------------- \|			6.0	7.0	-	45	2500	95	55
Glyndon---------------- \|	75	2 s							
Borup---------------- \|	10 \|	2w			\|				
Augsburg-------------- \|	5	2w							
Ulen------------------- \|	$5 \quad \mid$	3 s			\|				
Wheatville--------------	3	2 s			\|				
Flaming---------------- \|	$2 \quad \mid$	4 s			\|				
\|									

Table 7.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Map symbol and soil name	Pct. of map unit	Land capability	\|Alfalfa hay	Bromegrassalfalfa		Soybeans	Sunflowers	Barley	\|Spring wheat
			Tons	AUM*	Tons	Bu	Lbs	Bu	Bu
I23A--------------			\| 6.0	7.0	---	45	2500	95	55
Glyndon------------	75	2 s	\|		\|				
Borup-------------	10	2w	\|		\|				,
Augsburg-----------	5	2w	\|		\|				
Ulen--------------	$5 \quad \mid$	3 s	\|		\|				
Wheatville--------	$3 \quad \mid$	2 s	,		\|				
Flaming-----------	2	4 s			\|				
					\|				
124A--	-		15.0	6.0	\| ---	30	1600	75	40
Grimstad---------	70 \|	2s	1		\|				-
Strathcona--------	12 \|	2w	\|		\|				
Foldahl----------	5	2 s	I		\|				
Hamerly----------	5 \|	2 s	\|		\|				
Foxhome----------	2	3 e	\|		\|				
Karlsruhe---------	$2 \quad \mid$	4 e			\|				
Mavie----	2	3w			\|				
Ulen---------------	2 \|	3 s			\|				
					\|				
I25A---------------	\|		\| 3.5	4.0	\| ---	25	1300	55	35
Hamar-------------	75 \|	3w			\|				
Garborg-----	10	3w	\|		\|				
Rosewood----------	7	3w			\|				
Venlo------------	3	6w	,		\|				
Flaming-----------	2	4 s			\|				
Hangaard-	2	4w			\|				
Kratka------------	1	2w			\|				
					\|				
126A---------------			16.0	7.0	\| ---	35	2200	90	50
Hamerly-----------	75	2 s			\|				
Vallers-----------	12	2w	\|		\|				
Foxhome---------	3	3 e	,		,				
Grimstad----------	3	2 s			\|				
Hamerly, very cobbly	3	2 s			\|				
Strathcona--------	3	2w			\|				
Roliss, depressional	1	6 w			\|				
					1				
I27A---------------	-		---	---	6.0	---	---	---	---
Hamre-------------	80	6w	\|		\|				
Northwood-	5 \|	6w	\|		\|				
Roliss-----------	5 \|	2w	\|		\|				
Smiley------------	5	2w	\|		\|				
Cathro------------	$3 \quad \mid$	6w	\|		\|				
Kratka-------------	2 \|	2w	\|		\|				
					\|				

Map symbol and soil name	$\begin{aligned} & \text { Pct. of } \\ & \text { map unit } \end{aligned}$	Land capability	\|Alfalfa hay	$\begin{array}{\|c} \mid \text { Bromegrass - } \\ \mid \quad \text { alfalfa } \\ \hline \end{array}$	$\begin{array}{\|c} \text { Reed } \\ \mid \text { canarygrass } \end{array}$	Soybeans	Sunflowers	Barley	\|Spring wheat
			Tons	AUM*	Tons	Bu	Lbs	Bu	Bu
			\|						
I28A---------------			3.0	3.5	---	20	1100	40	25
Hangaard---------	75 \|	4w							
Hamar-------------	$7 \quad \mid$	3w							\|
Syrene-----------	$7 \quad \mid$	4w	\|						,
Karlsruhe--------	3 \|	4 e							
Rosewood---------	3	3w							
Strandquist--	$3 \quad 1$	3w	\|						
Deerwood---------	2 \|	6w							
I29A--------------			4.5	5.5	---	35	2000	90	45
Hattie-----------	75 \|	2 e	\|						
Clearwater--------	12 \|	2w							\|
Reis-------------	6 \|	2w	\|						
Hattie, very cobbly	5 \|	2 e							
Hilaire----------	2 \|	2 s							
			1						
I29D--------------	I		2.0	3.0	--	---	---	---	---
Hattie-	85 \|	4 e							
Clearwater------	6 \|	2w							
Hattie, level----	5 \|	2 e							
Boyerlake--------	4 \|	2 e							
	\|		4.0	5.0	\| ---	25	1600	75	40
Hedman--	85	2w							
Fram---	5 \|	2 e	\|		\|				
Strathcona-	5 \|	2w							
Haug-----	$3 \quad 1$	6w	\|		\|				
Strandquist------	2 \|	3w							
	\|		4.0	5.0	---	25	1700	80	40
Hedman	50 \|	2w							
Fram----------	40 \|	2 e	\|		\|				\|
Strathcona-----	5 \|	2w							
Haug	$3 \quad \mid$	6w	\|						
Strandquist-------	2 \|	3 w							
I32A	,		5.0	6.0	---	30	1600	75	40
Hilaire-------	75 \|	2 s							
Espelie----------	12 \|	2w	\|						\|
Huot---	5 \|	2 s	\|						\|
Flaming----------	2 \|	4 s	\|						
Foxlake-------	2 \|	2w							
Wheatville----	2 \|	2 s	\|						
Thiefriver--------	1 \|	2w	\|						\|
WYandotte--------	1 \|	3w	\|						
									\|

Table 7.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Map symbol and soil name	Pct. of map unit	Land capability	\|Alfalfa hay	\|Bromegrassalfalfa	$\begin{array}{\|c} \left\lvert\, \begin{array}{c} \text { Reed } \\ \mid \text { canarygrass } \\ \hline \end{array}\right. \\ \hline \end{array}$	Soybeans	Sunflowers	Barley	\|Spring wheat
			Tons	AUM*	Tons	Bu	Lbs	Bu	Bu
I33A-------------------- \|	\|		5.0	6.0	---	25	1400	70	35
Hilaire----------------\|	75	3 s			\|				
Espelie----------------	12	2w	\|		\|				
Huot------------------- \|	5	2 s	\|		\|				
Flaming----------------	2	4 s			\|				
Foxlake---------------\|	2	2w	\|		\|				
Wheatville-------------\|	2	2 s			\|				
Thiefriver-------------\|	1	2w	\|		\|				
Wyandotte--------------\|	1	3w							
I34A-------------------- \|	\|		\| 5.0	6.0	\| ---	30	1600	75	40
Huot------------------- \|	75	2s							
Thiefriver-------------\|	12	2w	\|		\|				
Hilaire---------------\|	5	2 s			\|				
Flaming----------------\|	3	4 s			\|				
Foxlake----------------\|	$3 \quad \mid$	2w							
Ulen------------------\|	2	3 s							
I35A-------------------- \|	\|		3.5	4.0	\| ---	15	1100	35	25
Karlsruhe--------------\|	70	4 e			\|				
Syrene----------------\|	10	4w							
Ulen-------------------\|	10 \|	3 s			\|				
Radium----------------- \|	5 \|	4 s							
Rosewood---------------\|	3	3w			\|				
Sandberg---------------\|	2	4 s							
I36A---------------------	\|		\| 6.0	7.0	\| ---	35	2200	90	50
Kittson----------------\|	70	1							
Roliss-----------------	12	2w			\|				
Hamerly-----------------\|	5	2 s			\|				
Kratka-----------------\|	5	2w			\|				
Grimstad---------------\|	3	2 s			\|				
Strandquist------------\|	3	3w							
Foxhome---------------\|	2	3 e			\|				
I37A-------------------- \|	\|		\| ---	---	4.5	---	---	---	---
Kratka, depressional----\|	45	2w							
Strathcona, depressional\|	45	6w			\|				
Northwood--------------\|	5 \|	6 w			\|				
Kratka-----------------\|	2	2w			\|				
Strathcona-------------\|	2 \|	2w			\|				
Roliss-----------------	1	2w	\|		\|				

See footnote at end of table.

Table 7.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Map symbol and soil name	$\begin{aligned} & \text { Pct. of } \\ & \text { map unit } \end{aligned}$	Land capability	\|Alfalfa hay	\|Bromegrassalfalfa		Soybeans	Sunflowers	Barley	\|Spring wheat
			Tons	AUM*	Tons	Bu	Lbs	Bu	Bu
I43A-------------------			3.5	4.0	\| ---	25	1300	60	35
Mavie----------------- \|	70	3w							
Vallers----------------\|	10	2w							
Strandquist------------\|	7	3w							
Strathcona-------------\|	5	2w			\|				
Strathcona, depressional\|	3	6w							
Foxhome----------------\|	2	3 e							
Karlsruhe--------------- \|	2	4 e							
Grimstad---------------\|	1	2 s							
I44A--------------------			5.0	6.5	-	35	2100	90	50
Newfolden--------------\|	75	2 s							
Smiley-----------------\|	12	2w							
Boash------------------	8	2w							
Linveldt---------------\|	4	3 s							
Hapludolls--------------\|	1	2 e							
I45A-------------------- \|			-	-	5.5	---	---	---	---
Northwood--------------\|	75	6w							
Hamre	10	6w							
Berner----------------- \|	5	6w							
Kratka-----------------\|	5	2w							
Strandquist-------------\|	3	3w							
Roliss-----------------\|	2	2w							
									\|
I46A---------------------			---	---	---	---	---	---	---
Pits------------------\|	85	---							
Udipsamments-----------\|	10	8 s							
Radium-----------------\|	2	4 s							
Maddock----------------\|	1	4 s							
Marquette---------------\|	1	4 s							
Sandberg---------------\|	1	4 s							
I47A			3.5	4.0	---	15	800	35	\| 20
Poppleton--------------\|	75	4 s							
Flaming----------------\|	12	4 s							
Garborg----------------\|	5	3w							
Hamar------------------\|	3	3w							
Radium-----------------\|	2	4 s							
Ulen-------------------\|	2	3 s							
Maddock----------------\|	1	4 s							

See footnote at end of table.

Map symbol and soil name	$\begin{aligned} & \text { Pct. of } \\ & \text { map unit } \end{aligned}$	Land capability	\|Alfalfa hay	$\begin{gathered} \text { \|Bromegrass- } \\ \mid \quad \text { alfalfa } \\ \hline \end{gathered}$	$\begin{array}{\|c} \text { Reed } \\ \mid \text { canarygrass } \\ \hline \end{array}$	Soybeans	Sunflowers	Barley	\|Spring wheat
			Tons	AUM*	Tons	Bu	Lbs	Bu	Bu
Radium----------------\|	75	4 s							
Sandberg---------------\|	7	4 s							
Oylen------------------	5	3 s							
Flaming---------------\|	4	4 s							
Garborg----------------\|	3	3w							
Hangaard---------------\|	3	4w							
Hamar------------------	2	3w							
Poppleton--------------\|	1	4 s							
I49A-------------------- \|			\| ---	\| ---	4.5	---	---	---	---
Rauville---------------\|	80	6w							
Fluvaquents------------\|	12	6w							
Water------------------\|	5	---							
Lamoure----------------\|	3	2w							
I50A-------------------- \|			6.0	7.0	\| ---	35	2100	90	50
Reiner-----------------\|	70	1							
Smiley----------------\|	12	2w							
Reiner, very cobbly-----\|	7	1							
Linveldt---------------\|	5	3 s							
Eckvoll	3	3 s							
Kratka----------------\|	3	2w							
	\|		6.0	7.0	--	30	1900	85	45
Reiner-----------------\|	65	2 s							
Smiley----------------\|	9	2w							
Reiner fine sandy loam--\|	8	1							
Linveldt--------------\|	7	3 s							
Kratka---------------- \|	5	2w							
Eckvoll----------------\|	3	3 s							
Reiner, very cobbly-----\|	3	1							
I52A---------------------	\|		4.0	5.0	---	30	1900	85	45
Reis-------------------\|	55	2w							
Clearwater-------------\|	30	2w							
Clearwater, very cobbly-\|	5	2w							
Clearwater, depressional\|	3	6w							
Espelie---------------\|	3	2w							
Hattie-----------------\|	3	2 e							
Wyandotte--------------\|	1	3w							

Table 7.--Land Capability and Yields per Acre of Crops and Pasture--Continued

See footnote at end of table.

Map symbol and soil name	$\begin{aligned} & \text { Pct. of \| } \\ & \text { map unit } \end{aligned}$	$\begin{gathered} \text { Land } \\ \text { capability } \end{gathered}$	\|Alfalfa hay	$\begin{array}{\|c} \mid \text { Bromegrass - } \\ \mid \quad \text { alfalfa } \\ \hline \end{array}$	$\begin{array}{\|c} \text { Reed } \\ \mid \text { canarygrass } \\ \hline \end{array}$	Soybeans	Sunflowers	Barley	\| Spring wheat
	\|		Tons	AUM*	Tons	Bu	Lbs	Bu	Bu
I58A---------------	\|		---	\| ---	5.5	---	--	--	---
Seelyeville-------	90	6w							,
Cathro------------	3	6w							\|
Dora--------------	3	6w							,
Markey-----------	3	6w							\|
Berner-	1	6w							,
I59A----------------	\|		5.0	6.0	---	30	1800	85	45
Smiley------------	65	2w							\|
Smiley, very cobbly-	10	2w							\|
Kratka-	9	2w							
Roliss-	5	2w							\|
Reiner------------	4	1			\|				\|
Linveldt----------	3	3 s							\|
Smiley, depressional	3	6w							
Strandquist--------	1	3w							\|
I60A----------------	\|		---	\| ---	5.0	---	---	---	\| ---
Smiley, depressional	80	6w							
Smiley-----	10 \|	2w			\|				
Hamre------------	5 \|	6w							\|
Kratka--	5 \|	2w							
	\|								
I61A----------------	\|		3.5	4.0	---	25	1300	60	35
Strandquist-------	70 \|	3w							\|
Mavie-	8 \|	3w			\|				
Roliss-	7 \|	2w			\|				
Kratka------------	5 \|	2w			\|				\|
Foxhome-----------	4 \|	3 e			\|				
Hangaard-----------	$3 \quad \mid$	4w							\|
Northwood----------	$3 \quad 1$	6w			\|				
	,								
162A---------------	,		3.0	3.5	-	20	1000	40	25
Syrene------------	70	4w			\|				\|
Rosewood--	11 \|	3w			\|				\|
Hangaard----------	5 \|	4w			\|				\|
Karlsruhe----------	4 \|	4 e							\|
Deerwood---------	3 \|	6w			\|				
Hamar-------------	$3 \quad \mid$	3w							\|
Strandquist-	2 \|	3w			\|				\|
Radium------------	1 \|	4 s							\|
Wyandotte-----------	1 \|	3w			\|				
	I								\|

Table 7.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Map symbol and soil name	$\begin{aligned} & \text { Pct. of } \\ & \text { map unit } \end{aligned}$	Land capability	\|Alfalfa hay	$\begin{gathered} \text { \|Bromegrass - } \\ \mid \quad \text { alfalfa } \\ \hline \end{gathered}$	$\begin{array}{\|c} \left\lvert\, \begin{array}{c} \text { Reed } \\ \mid \text { canarygrass } \\ \hline \end{array}\right. \\ \hline \end{array}$	Soybeans	Sunflowers	Barley	\| Spring wheat
			Tons	AUM*	Tons	Bu	Lbs	Bu	Bu
I63A--------------------			4.0	4.5	\| ---	30	1500	70	40
Thiefriver-------------\|	70	2w							
Espelie----------------\|	10	2w							
Foxlake---------------- \|	7	2w							
Huot------------------- \|	5	2 s							
Clearwater, depressional\|	3	6w							
Rosewood----------------\|	3	3w							
Ulen-------------------	1	3 s							
Wyandotte---------------\|	1	3w							
I64A-------------------- \|			4.5	5.5	- ---	30	1200	60	35
Ulen-------------------	70	3 s							
Rosewood----------------	10	3w							
Flaming----------------\|	8 \|	4 s							
Karlsruhe---------------\|	5	4 e							
Radium-----------------	3	4 s							
Strathcona-------------\|	2	2w							
Thiefriver--------------\|	2	2w							
165A-------------------- \|			4.5	5.5	\| ---	25	1100	55	30
Ulen-------------------\|	70 \|	3 s							
Rosewood---------------\|	10 \|	3w							
Flaming----------------\|	6	4 s			\|				
Poppleton---------------\|	4	4 s							
Karlsruhe---------------	3	4 e			\|				
Radium----------------- \|	3	4 s							
Strathcona--------------\|	2	2w							
Thiefriver--------------\|	2	2w							
166A-------------------- \|	\|		5.0	6.0	-	30	1800	85	45
Vallers----------------\|	75	2w							
Vallers, very cobbly----\|	7 \|	2w			\|				
Hamerly----------------\|	6 \|	2 s							
Grimstad---------------\|	$3 \quad \mid$	2 s							
Mavie------------------\|	3	3 w							
Roliss, depressional----\|	3	6 w							
Strathcona-------------\|	3	2w							
167A-------------------- \|			6.0	7.0	---	45	2500	95	55
Wheatville--------------\|	70	2 s							
Augsburg---------------\|	13	2w							
Glyndon---------------- \|	8 \|	2s							
Foxlake-----------------	5 \|	2w							
Hilaire----------------\|	$2 \quad \mid$	3 s							
Ulen------------------- \|	2 \|	3 s							
	\|								

Table 7.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Map symbol and soil name	$\begin{aligned} & \text { Pct. of } \\ & \text { map unit } \end{aligned}$	Land capability	\|Alfalfa hay	$\begin{gathered} \text { \|Bromegrass } \\ \mid \quad \text { alfalfa } \\ \hline \end{gathered}$	$\begin{gathered} \text { Reed } \\ \mid \text { canarygrass } \\ \hline \end{gathered}$	Soybeans	Sunflowers	Barley	\|Spring wheat
			Tons	AUM*	Tons	Bu	Lbs	Bu	Bu
			\| 0						
168A--------------------- \|	\|		6.0	7.0	---	45	2500	95	55
Wheatville--------------\|	70	2s							
Augsburg---------------\|	13 \|	2w							
Glyndon----------------\|	8	2s	\|						
Foxlake----------------\|	5 \|	2w							
Hilaire----------------\|	$2 \quad \mid$	3 s							
Ulen-------------------\|	$2 \quad \mid$	3 s							
169A-------------------- \|	\|		3.5	4.0	---	25	1300	60	35
Wyandotte---------------\|	65 \|	3w							
Foxlake-----------------	10 \|	2w							
Espelie----------------\|	8 \|	2w							
Clearwater, depressional\|	5	6w							
Thiefriver-------------\|	5 \|	2w							
Karlsruhe--------------\|	$4 \quad \mid$	4 e							
Syrene-----------------\|	$3 \quad \mid$	4w							
I70A-------------------- \|	\|		4.0	4.5	---	30	1600	70	40
Strathcona-------------\|	70 \|	2w							
Kratka-----------------\|	10 \|	2w							
Roliss-----------------\|	6 \|	2w							
Grimstad---------------\|	5 \|	2 s							
Mavie------------------\|	$3 \quad \mid$	3w							
Rosewood---------------- \|	3	3w							
Strathcona, depressional\|	3	6w							
M-w.	\|		\|						
Miscellaneous water	\|		\|						\|
	\|								
w.	\|		\|						
Water \|	\|		I						\|

* Animal unit month: The amount of forage or feed required to feed one animal unit (one cow, one horse, one mule, five sheep, or five goats) for 30 days.

Table 8.--Forage Suitability Groups
(See text for an explanation of forage suitability groups)

```Map symbol and soil name```	Forage suitability group
B109A:	
Bowstring--	16
Fluvaquents-	16
Hapludalfs-	23
Seelyeville--	14
Water----	--
B200A :	
Garnes--	02
Chilgren-	01
Eckvoll--	02
Garnes, very sto	02
Grygla--------	01
Pelan---------	02
B201A:	
Chilgren--	01
Garnes-	02
Grygla--	01
Grygla, depressi	13
Hamre----	13
Pelan--------	02
B202A:	
Cathro-	14
Hamre--------	13
Chilgren------	01
Northwood-----	13
Berner--------	14
Grygla---------	01
Seelyeville----	14
B203A:	
Northwood------	13
Hamre---------	13
Grygla----------	01


Map symbol   and   soil name	Forage suitability group
B203A:	
Berner---------------- \|	14
Chilgren-------------	01
B204A:	
Roliss---------------	09
Grygla---------------- \|	01
Chilgren------------- \|	01
Garnes---------------- \|	02
Roliss, depressional--\|	13
Hamre---------------- \|	13
B205A:	
Berner--------------- \|	14
Northwood------------- \|	13
Grygla---------------- \|	01
Cathro--------------- \|	14
Hamre---------------- \|	13
Seelyeville---------- \|	14
B206A:	
Hamre---------------- \|	13
Chilgren-------------- \|	01
Northwood------------- \|	13
Cathro--------------- \|	14
Grygla---------------\|	01
Roliss---------------\|	09
I1A:	
Augsburg-------------- \|	09
Borup----------------	09
Foxlake-------------- \|	09
Augsburg, depressional\|	13
Wheatville------------	10
Glyndon--------------- \|	10
Espelie-------------- \|	01
Hattie---------------\|	10



| Table 8.--Forage Suitability Groups--Continued |
| :---: | :---: |
| Mapmbl |
| and |
| soil name |$:$| Forage |
| :---: |
| suitability |
| group |



Map symbol   and   soil name	$\begin{gathered} \text { Forage } \\ \text { suitability } \\ \text { group } \\ \hline \end{gathered}$
115A:	
Flaming--	04
Garborg------	04
Hamar--------	03
Ulen-------	12
Poppleton----	04
Sandberg--	04
Foldahl------	02
Radium---	04
I16F:	
Fluvaquents--	16
Hapludolls----	17
Hapludalfs--	23
Fairdale-----	23
Water-------	---
Bowstring--	16
Rauville---	13
I17A:	
Foldahl------	02
Kratka----	01
Roliss-------	09
Flaming---	04
Grimstad---	10
Linveldt---	02
Eckvoll------	02
Strathcona----	09
I18A:	
Foldahl--------	02
Kratka--------------- \| 01	
Roliss---------------\| 09	
Flaming--------------\|	04
Grimstad-------------\|	10
Linveldt------	02



Map symbol and soil name	Forage suitability group
I23A:	
Glyndon--------------\|	10
Borup---------------- \|	09
Augsburg------------- \|	09
Ulen-----------------	12
Wheatville------------\|	10
Flaming--------------\|	04
I24A:	
Grimstad-------------\|	10
Strathcona-----------\|	09
Foldahl-------------- \|	02
Hamerly--------------\|	10
Foxhome--------------\|	02
Karlsruhe------------\|	12
Mavie-----------------\|	09
Ulen----------------- \|	12
I25A:	
Hamar---------------- \|	03
Garborg--------------\|	04
Rosewood------------- \|	11
Venlo---------------- \|	13
Flaming--------------\|	04
Hangaard-------------- \|	03
Kratka--------------- \|	01
I26A:	
Hamerly--------------	10
Vallers--------------\|	09
Foxhome--------------\|	02
Grimstad-------------\|	10
Hamerly, very cobbly--\|	10
Strathcona-----------\|	09
Roliss, depressional--\|	13
\|	



Map symbol   and   soil name	Forage suitability group
I31A:	
Strathcona----	09
Haug---------	13
Strandquist--	09
I32A:	
Hilaire-	02
Espelie------	01
Huot-------	10
Flaming-------	04
Foxlake----	09
Wheatville-----	10
Thiefriver-----	09
Wyandotte-----	09
I33A:	
Hilaire----	02
Espelie--------	01
Huot------	10
Flaming-------	04
Foxlake---	09
Wheatville---	10
Thiefriver---	09
WYandotte------	09
I34A:	
Huot----------	10
Thiefriver---	09
Hilaire------	02
Flaming-------	04
Foxlake-------	09
Ulen----------	12
I35A:	
Karlsruhe------	12
Syrene--------	11
Ulen----------	12
Radium--------	04





Map symbol and soil name	$\begin{gathered} \text { Forage } \\ \text { suitability } \\ \text { group } \\ \hline \end{gathered}$
148A:	
Oylen---------------- \|	08
Flaming-------------- \|	04
Garborg-------------	04
Hangaard-------------- \|	03
Hamar---------------- \|	03
Poppleton------------ \|	04
I49A:	
Rauville------------	13
Fluvaquents-----------\|	16
Water---------------- \|	---
Lamoure-------------- \|	16
I50A:	
Reiner--------------- \|	02
Smiley--------------- \|	01
Reiner, very cobbly---\|	02
Linveldt--------------	02
Eckvoll--------------- \|	02
Kratka---------------- \|	01
I51A:	
Reiner--------------- \|	02
Smiley--------------- \|	01
Reiner fine sandy loam\|	02
Linveldt-------------- \|	02
Kratka--------------- \|	01
Eckvoll--------------- \|	02
Reiner, very cobbly---\|	02
I52A:	
Reis-----------------	09
Clearwater------------ \|	01
Clearwater, very cobbly	01
Clearwater, depressional	13
Espelie--------------	01



Map symbol and soil name	$\begin{gathered} \text { Forage } \\ \text { suitability } \\ \text { group } \\ \hline \end{gathered}$
I57B:	
Sandberg------------- \|	04
Radium---------------	04
Sioux----------------- \|	04
OYlen---------------- \|	08
Flaming-------------- \|	04
Garborg--------------- \|	04
I58A:	
Seelyeville---------- \|	14
Cathro--------------- \|	14
Dora------------------ \|	14
Markey---------------- \|	14
Berner--------------- \|	14
I59A:	
Smiley--------------- \|	01
Smiley, very cobbly---\|	01
Kratka--------------- \|	01
Roliss----------------	09
Reiner--------------- \|	02
Linveldt-------------- \|	02
Smiley, depressional--\|	13
Strandquist----------\|	09
I60A:	
Smiley, depressional--\|	13
Smiley--------------- \|	01
Hamre----------------	13
Kratka--------------- \|	01
161A:	
Strandquist----------\|	09
Mavie--------------- \|	09
Roliss---------------\|	09
Kratka--------------- \|	01
Foxhome-------------- \|	02
Hangaard------------- \|	03
Northwood------------\|	13
Northwood	





## Table 9.--Prime Farmland

(Only the soils considered prime farmland are listed. Urban or built-up areas of the soils listed are not considered prime farmland. If a soil is prime farmland only under certain conditions, the conditions are specified in parentheses after the soil name)

$\begin{gathered} \text { Map } \\ \text { symbol } \end{gathered}$	Soil name	
B200A	\|Garnes fine sandy loam, 0 to 3 percent slopes	
B201A	$\mid$ Chilgren fine sandy loam, 0 to 2 percent slopes (where drained)	
B204A	\|Roliss loam, MLRA 88, 0 to 2 percent slopes (where drained)	
I1A	\|Augsburg loam, 0 to 2 percent slopes (where drained)	
I2A	$\mid$ Augsburg very fine sandy loam, 0 to 2 percent slopes (where drained)	
15A	\|Borup loam, 0 to 2 percent slopes (where drained)	
I6A		
I9A	$\mid$ Clearwater clay, 0 to 2 percent slopes (where drained)	
I13A	\|Espelie fine sandy loam, 0 to 2 percent slopes (where drained)	
I14B	\|Fairdale silt loam, 1 to 6 percent slopes, occasionally flooded (where protected from	flooding or not frequently flooded during the growing season)
I17A	\|Foldahl fine sandy loam, 0 to 3 percent slopes	
I20A	\|Foxlake loam, 0 to 2 percent slopes (where drained)	
I21A	\|Fram loam, 1 to 3 percent slopes	
I22A	$\mid$ Glyndon loam, 0 to 2 percent slopes	
I23A	\|Glyndon very fine sandy loam, 0 to 2 percent slopes	
I24A	\|Grimstad fine sandy loam, 0 to 3 percent slopes	
I26A	$\mid$ Hamerly loam, 0 to 2 percent slopes	
I29A	\|Hattie clay, 0 to 3 percent slopes	
I30A	\|Hedman loam, 0 to 2 percent slopes (where drained)	
I31A	\|Hedman-Fram complex, 0 to 3 percent slopes (where drained)	
I32A	$\mid$ Hilaire fine sandy loam, 0 to 3 percent slopes	
I34A	$\mid$ Huot fine sandy loam, 0 to 3 percent slopes	
I36A	\|Kittson loam, 0 to 3 percent slopes	
I38A	$\mid$ Kratka fine sandy loam, 0 to 2 percent slopes (where drained)	
I39A	$\mid$ Linveldt fine sandy loam, 0 to 3 percent slopes	
I44A	\|Newfolden loam, 0 to 3 percent slopes	
I50A	$\mid$ Reiner fine sandy loam, 0 to 3 percent slopes	
I51A	$\mid$ Reiner loamy fine sand, 0 to 3 percent slopes	
I52A	\|Reis-Clearwater complex, 0 to 2 percent slopes (where drained)	
I53A	\|Roliss loam, 0 to 2 percent slopes (where drained)	
I59A	\|Smiley loam, 0 to 2 percent slopes (where drained)	
I63A	$\mid$ Thiefriver fine sandy loam, 0 to 2 percent slopes (where drained)	
I66A	\|vallers loam, 0 to 2 percent slopes (where drained)	
I67A	\|Wheatville loam, 0 to 3 percent slopes	
I68A	$\mid$ Wheatville very fine sandy loam, 0 to 3 percent slopes	
I70A	$\mid$ Strathcona fine sandy loam, 0 to 2 percent slopes (where drained)	

(Only the map units that include soils suitable for windbreaks and environmental plantings are listed. Absence of an entry indicates that trees generally do not grow to the given height)

Map symbol	Pct. of	Trees having predicted 20-year average height, in feet, of--							
and soil name	map unit\|	<8	8-15	16-25	26-35	>35			
B200A:									
Garnes	70	\|Peking cotoneaster, redosier dogwood, sargent crabapple	\|American   \| cranberrybush,   \| American plum,   \| common lilac	\|Blue spruce, eastern	arborvitae, eastern	redcedar, bur oak, white spruce	\|Norway spruce, paper	  birch, eastern   white pine, green ash, red pine	Eastern cottonwood, Siouxland cottonwood
Chilgren-	13	$\mid$ Nanking cherry, $\left\|\begin{array}{l}\text { Peking cotoneaster, } \\ \mid \\ \text { common ninebark, } \\ \text { redosier dogwood }\end{array}\right\|$	\|American cranberrybush, common lilac	\|Eastern arborvitae, black ash, white spruce	\|Paper birch, green ash, white willow	\|Silver maple, eastern cottonwood			
						Silver maple,			
Eckvoll---	5	\|Peking cotoneaster, redosier dogwood	American plum, \| common chokecherry	\|Blue spruce, eastern   redcedar,   Manchurian   crabapple, Scotch   pine, bur oak,   white spruce	American basswood, eastern white pine, golden willow	Silver maple, eastern cottonwood			
Garnes, very stony	5	\|Peking cotoneaster, redosier dogwood, sargent crabapple	\|American   \| cranberrybush,   \| American plum,   \| common lilac	\|Eastern arborvitae, Black Hills spruce, Scotch pine, white spruce	\|Paper birch, eastern	white pine, green ash, red pine	Eastern cottonwood,   Siouxland   cottonwood		
Grygla	4	$\mid$ Nanking cherry,   $\left\|\begin{array}{l}\text { Peking cotoneaster, } \\ \text { common ninebark, } \\ \mid \text { redosier dogwood }\end{array}\right\|$	```\|American cranberrybush, common lilac```	Eastern arborvitae, Black Hills spruce, black ash, white spruce	$\begin{aligned} & \text { \| Paper birch, green } \\ & \text { \| ash } \end{aligned}$	$\begin{aligned} & \text { \|Silver maple, } \\ & \mid \text { Siouxland } \\ & \text { \| cottonwood } \end{aligned}$			
Pelan-	3	\|Peking cotoneaster, redosier dogwood	American plum, common chokecherry,   hedge cotoneaster,   common lilac,   silver buffaloberry	$\mid$ Ponderosa pine,   Manchurian   crabapple, bur oak,   $\mid$ Russian olive	$\begin{aligned} & \text { \|Green ash, Siberian } \\ & \text { elm } \end{aligned}$	\|Silver maple, imperial Carolina poplar, eastern cottonwood			
B201A:									
Chilgren	75	$\mid$ Nanking cherry,   $\|$Peking cotoneaster   common ninebark,   $\mid$   redosier dogwood	```\|American cranberrybush, common lilac```	\|Eastern arborvitae, black ash, white spruce	\| Paper birch, green ash, white willow	\|Silver maple, eastern cottonwood			

Table 10.--Windbreaks and Environmental Plantings--Continued


Table 10.--Windbreaks and Environmental Plantings--Continued


Table 10.--Windbreaks and Environmental Plantings--Continued

Map symbol and soil name	Pct. of map unit	Trees having predicted 20-year average height, in feet, of--										
		<8	8-15	16-25	26-35	>35						
B205A:												
Grygla-	5	$\mid$ Nanking cherry,   $\mid$ Peking cotoneaster,   $\mid$ common ninebark,   $\mid$   redosier dogwood	$\begin{aligned} & \text { \|American } \\ & \mid \text { cranberrybush, } \\ & \text { common lilac } \end{aligned}$	\|Eastern arborvitae,   \| Black Hills spruce,   \| black ash, white   \| spruce	$\begin{aligned} & \text { \| Paper birch, green } \\ & \text { \| ash } \end{aligned}$	$\begin{aligned} & \text { \|Silver maple, } \\ & \mid \text { Siouxland } \\ & \text { cottonwood } \end{aligned}$						
Cathro--	3	-	,	---	$\mid$--- \|	\| ---						
		$\mid$ \|										
Hamre-	3	---	---	---	\| ---		---					
Seelyeville-	2	---	---	---	-	---						
B206A:												
Hamre-	80	\| ---		\| ---		-	\| ---	---				
Chilgren-	8	$\mid$ Nanking cherry, $\mid$ Peking cotoneaster, $\mid$ common ninebark, $\mid$ redosier dogwood		\|Eastern arborvitae, $\mid$ black ash, white $\mid$ spruce	$\begin{aligned} & \text { \| Paper birch, green } \\ & \text { \| ash, white willow } \end{aligned}$	$\begin{aligned} & \mid \text { Silver maple, } \\ & \mid \text { eastern cottonwood } \end{aligned}$						
Northwood-------------- \|	5	$\mid$--- \|	,	--	$\mid$--- \|	\| ---						
Cathro-----------------	3	$\mid$--- \|	\| ---		---	\| ---		\| ---				
Grygla------------	2	```\|Nanking cherry,	Peking cotoneaster,	common ninebark,	redosier dogwood```	\|American   cranberrybush, common lilac	\|Eastern arborvitae,	Black Hills spruce,	black ash, white	spruce	$\begin{aligned} & \text { \|Paper birch, green } \\ & \text { \| ash } \end{aligned}$	\|Silver maple, $\mid$ Siouxland \| cottonwood
Roliss-------------	2	$\begin{aligned} & \text { \|Redosier dogwood, } \\ & \text { \| sargent crabapple } \end{aligned}$	$\begin{aligned} & \text { \|Common chokecherry, } \\ & \text { \| common lilac } \end{aligned}$	\|Eastern arborvitae, Black Hills spruce, bur oak, Russian olive, white spruce		\|Golden willow, Siberian elm	\| Imperial Carolina   \| poplar, eastern   \| cottonwood,   \| Siouxland   \| cottonwood					
I1A:												
Augsburg----------	75	$\mid$ Russian almond,   $\mid$ sandbar willow,   $\mid$ indigobush,   $\mid$ redosier dogwood	```\|Common chokecherry, common lilac, silver buffaloberry```	\|Black Hills spruce,	common hackberry	$\begin{aligned} & \text { \|Laurel willow, green\| } \\ & \mid \text { ash, robusta } \\ & \text { \| cottonwood } \end{aligned}$	$\begin{aligned} & \text { Eastern cottonwood, } \\ & \mid \text { imperial Carolina } \\ & \text { poplar } \end{aligned}$					
Borup-	10	$\mid$ Russian almond,   $\mid$ sandbar willow,   $\mid$ indigobush,   $\mid$   redosier dogwood	```\|ommon chokecherry, common lilac, silver buffaloberry```	\|Black Hills spruce,   \| black ash	\| Green ash, laurel $\mid$ willow, robusta \| cottonwood	$\begin{aligned} & \text { \|Eastern cottonwood, } \\ & \mid \text { imperial Carolina } \\ & \text { \| poplar } \end{aligned}$						

Table 10.--Windbreaks and Environmental Plantings--Continued


Table 10.--Windbreaks and Environmental Plantings--Continued

Map symbol and soil name	$\begin{aligned} & \text { Pct. of } \\ & \text { map unit } \end{aligned}$	Trees having predicted 20-year average height, in feet, of--							
		< 8	8-15	16-25	26-35	>35			
I2A:									
Augsburg---------------	75	\|Russian almond, sandbar willow, blueleaf honeysuckle, indigobush, redosier dogwood	```\|Siberian peashrub, common chokecherry, common lilac, silver buffaloberry```	\|Black Hills spruce, eastern arborvitae	\|Laurel willow,	robusta cottonwood	\|Eastern cottonwood, imperial Carolina poplar		
Borup----------------- \|	10	```\|Russian almond,	sandbar willow,	indigobush,	redosier dogwood```	```\|Siberian peashrub, common chokecherry, common lilac, silver buffaloberry```	\|Black Hills spruce, common hackberry	\|Laurel willow, green ash, robusta cottonwood	Eastern cottonwood, imperial Carolina poplar
Foxlake---------------- \|	5	\| Nanking cherry,   Russian almond,   Saskatoon   serviceberry,   Siberian peashrub, golden currant, redosier dogwood, silver buffaloberry		```\|Black Hills spruce,	```	\|Laurel willow, Siberian elm	Imperial Carolina poplar, eastern cottonwood		
Augsburg, depressional--\|	3	\| ---				---	---		
Wheatville-------------\|	3	\|Blueleaf   \| honeysuckle,   \| indigobush,   \| silverberry	```\|Siberian peashrub, common chokecherry, common lilac, silver buffaloberry, eastern arborvitae, eastern redcedar```	\| Black Hills spruce,   bur oak, ponderosa   $\mid$ pine, common   hackberry, green   ash   $\mid$	\|Laurel willow,	silver maple	\|Eastern cottonwood, imperial Carolina poplar		
Glyndon--------------- \|	2 \|	\|Blueleaf   \| honeysuckle,   \| indigobush,   \| silverberry	```\|Siberian peashrub, common chokecherry, common lilac, silver buffaloberry, common lilac, eastern arborvitae, eastern redcedar```		\| Common hackberry,$\mid$ green ash, laurelwillow, laurel\| willow, silver\| maple$\mid$	\|Imperial Carolina poplar, eastern cottonwood			
Espelie----------------	1	\| Nanking cherry, golden currant, redosier dogwood	\|Amur maple, Siberian peashrub, common lilac, American plum, Manchurian apricot, common chokecherry	```Manchurian crabapple, black \| ash, blue spruce,	common hackberry```	$\begin{aligned} & \mid \text { Siberian elm, laurel\| } \\ & \text { \| willow } \end{aligned}$	Carolina poplar, eastern cottonwood		

Table 10.--Windbreaks and Environmental Plantings--Continued


Table 10.--Windbreaks and Environmental Plantings--Continued

Map symbol and soil name	Pct. of map unit	Trees having predicted 20-year average height, in feet, of--							
		$<8$	8-15	16-25	26-35	>35			
			\|						
I4A:									
Strathcona-	2	\|Siberian peashrub,   common lilac,   redosier dogwood,   western sandcherry	```\|ommon chokecherry,	silver	buffaloberry,	eastern arborvitae```	\|Black Hills spruce, common hackberry, green ash	Laurel willow, Siberian elm	$\mid$ Siouxland $\mid$ cottonwood, $\mid$ imperial Carolina \| poplar
I5A:									
Borup-----------------	75	\|Russian almond,   \| sandbar willow,   indigobush,   redosier dogwood	$\begin{aligned} & \text { \|Common chokecherry, } \\ & \mid \text { common lilac, } \\ & \mid \text { silver buffaloberry } \end{aligned}$	\|Black Hills spruce,	black ash	\|Green ash, laurel willow, robusta cottonwood	\|Eastern cottonwood, imperial Carolina poplar		
Glyndon-	$9 \quad \mid$	\|Blueleaf   honeysuckle,   indigobush,   silverberry	```\|Siberian peashrub, common chokecherry, common lilac, silver buffaloberry, common lilac, eastern arborvitae, eastern redcedar```	\|Black Hills spruce, ponderosa pine, ponderosa pine, bur oak, common hackberry	```\| Common hackberry, green ash, laurel willow, laurel willow, silver maple```	$\begin{aligned} & \text { \| Imperial Carolina } \\ & \mid \text { poplar, eastern } \\ & \mid \text { cottonwood } \end{aligned}$			
Rosewood-	8	\|Siberian peashrub, common lilac,   indigobush, redosier dogwood	$\begin{aligned} & \text { \|Common chokecherry, } \\ & \text { \| nannyberry, silver } \\ & \text { \| buffaloberry, } \\ & \text { \| eastern arborvitae } \end{aligned}$	\|Black Hills spruce,   black ash, common   hackberry, green ash	\|Laurel willow, Siberian elm	$\mid$ Siouxland $\mid$ cottonwood, $\mid$ imperial Carolina poplar			
Augsburg	5	\|Russian almond, sandbar willow, indigobush, redosier dogwood	$\begin{aligned} & \text { \|Common chokecherry, } \\ & \mid \text { common lilac, } \\ & \mid \text { silver buffaloberry } \end{aligned}$	\|Black Hills spruce, common hackberry	\|Laurel willow, green ash, robusta cottonwood	\|Eastern cottonwood, imperial Carolina poplar			
Augsburg, depressional--\|	3		-	--	\| ---				
I6A:									
Borup------------------ \|	75	\|Russian almond, sandbar willow, indigobush, redosier dogwood	$\begin{aligned} & \mid \text { Siberian peashrub, } \\ & \mid \text { common chokecherry, } \\ & \mid \text { common lilac, } \\ & \text { silver buffaloberry } \end{aligned}$	Black Hills spruce, common hackberry	\|Laurel willow, green ash, robusta cottonwood	```Eastern cottonwood, imperial Carolina poplar```			
Glyndon---------------- \|	9	\|Blueleaf   honeysuckle,   indigobush,   silverberry	\|Siberian peashrub,$\mid$ common chokecherry,$\mid$ common lilac,$\mid$ silver$\mid$ buffaloberry,$\mid$ common lilac,$\mid$ eastern arborvitae,$\mid$ eastern redcedar$\mid$	Black Hills spruce, ponderosa pine, ponderosa pine, bur oak, common hackberry	```Common hackberry, green ash, laurel willow, laurel willow, silver maple```	\|Imperial Carolina   \| poplar, eastern   \| cottonwood			

Table 10.--Windbreaks and Environmental Plantings--Continued


Table 10.--Windbreaks and Environmental Plantings--Continued


Table 10.--Windbreaks and Environmental Plantings--Continued

Map symbol and soil name	$\begin{aligned} & \text { Pct. of } \\ & \text { map unit } \end{aligned}$	Trees having predicted 20-year average height, in feet, of--						
		$<8$	8-15	16-25	26-35	>35		
I9A:								
Hattie-	1	\|American plum,   Russian almond, blueleaf honeysuckle, common\| chokecherry, golden currant	```\|Siberian peashrub, late lilac, Manchurian crabapple```	\|Blue spruce, Black Hills spruce, bur oak	\|Common hackberry,	green ash, American	basswood	```\|Siberian elm, eastern cottonwood, imperial Carolina poplar```
Huot--	1 \|	\| Indigobush, sargent crabapple, silverberry	Siberian peashrub, common chokecherry, common lilac, eastern arborvitae, eastern redcedar	\|Ponderosa pine,   black ash, bur oak	$\begin{aligned} & \text { \|Common hackberry, } \\ & \mid \text { green ash } \end{aligned}$	\|Siberian elm, eastern cottonwood		
I10A:								
Clearwater, depressional\|	85				---			
Clearwater-	9	\|Nanking cherry,   Russian almond,   Saskatoon serviceberry, Siberian peashrub, golden currant, redosier dogwood, silver buffaloberry	```Common chokecherry, common lilac, cotoneaster```	\|Black Hills spruce, blue spruce, common hackberry, green ash	\|Laurel willow, Siberian elm	\|Imperial Carolina poplar, eastern cottonwood		
Augsburg, depressional--\|	$3 \quad \mid$	--- \|	\| ---			---		
Reis-------------------	2	\|Russian almond,   Saskatoon serviceberry, Siberian peashrub, redosier dogwood	\|Siberian peashrub, common chokecherry, common lilac, cotoneaster, common chokecherry	\|White spruce, Black Hills spruce, Russian olive, blue spruce, common hackberry, green ash	\|Laurel willow, Siberian elm	\|Golden willow, imperial Carolina poplar, eastern cottonwood		
Espelie---------------	1	\|Nanking cherry, golden currant, redosier dogwood	Amur maple, Siberian peashrub, common lilac, American plum, Manchurian apricot, common chokecherry	Manchurian   crabapple, black   ash, blue spruce, common hackberry	$\begin{aligned} & \text { \|Siberian elm, laurel\| } \\ & \mid \text { willow } \end{aligned}$	\|Carolina poplar, eastern cottonwood		

Table 10.--Windbreaks and Environmental Plantings--Continued

Map symbol and soil name	Pct. of map unit	Trees having predicted 20-year average height, in feet, of--											
		$<8$	8-15	16-25	26-35	>35							
			\|										
I11A:													
Deerwood--	85	\| ---	\| ---		\| ---		\| ---	---					
Rosewood--	6	\|Siberian peashrub,   common lilac,   indigobush,   redosier dogwood	$\begin{aligned} & \text { \| Common chokecherry, } \\ & \text { \| nannyberry, silver } \\ & \text { \| buffaloberry, } \\ & \text { \| eastern arborvitae } \end{aligned}$	$\begin{aligned} & \text { \|Black Hills spruce, } \\ & \text { \| black ash, common } \\ & \text { hackberry, green } \\ & \text { \| ash } \end{aligned}$	\|Laurel willow,   \| Siberian elm	```\|Siouxland	cottonwood,	imperial Carolina	poplar```				
Markey--	3	-	---	---	---	---							
Strathcona-	2	\|Siberian peashrub,   common lilac,   redosier dogwood,   western sandcherry	```\|ommon chokecherry,	silver	buffaloberry,	eastern arborvitae```	$\begin{aligned} & \text { \|Black Hills spruce, } \\ & \text { common hackberry, } \\ & \text { green ash } \end{aligned}$	\| Laurel willow,	Siberian elm	```\|Siouxland	cottonwood,	imperial Carolina	poplar```
Syrene-	2	\|Siberian peashrub, redosier dogwood, western sandcherry	\|Common chokecherry,   late lilac, eastern   arborvitae,   nannyberry, silver   buffaloberry	$\begin{aligned} & \text { \|Black Hills spruce, } \\ & \text { \| common hackberry, } \\ & \text { \| green ash } \end{aligned}$	\|Laurel willow,	Siberian elm	```\|Siouxland	cottonwood,	imperial Carolina	poplar```			
Venlo-	2		$\mid$--- \|	\| ---		\| ---	-						
I12A:													
Eckvoll------------	70	\|Peking cotoneaster,   \| Saskatoon   \| serviceberry,   \| silver   \| buffaloberry,   \| western sandcherry	\|Amur maple, Siberian   peashrub,   nannyberry, common   chokecherry,   eastern redcedar	```Manchurian \| crabapple, Black Hills spruce,	Scotch pine,	Siberian elm, bur	oak, common	hackberry, green	ash	```	\|Red maple, green ash, paper birch	\| Imperial Carolina$\mid$ poplar, Siouxland\| cottonwood	
Kratka------------	8	\|American plum, Nanking cherry, Siberian peashrub, golden currant, redosier dogwood	```\|mur maple, Peking cotoneaster, common chokecherry, indigobush, nannyberry```	\|Manchurian apricot,   Russian olive, blue   spruce, Black Hills   spruce, common   hackberry	\|Green ash, laurelwillow, Siberianelm	$\mid$ Siouxland   $\mid$ cottonwood,   $\mid$   imperial Carolina   poplar							

Table 10.--Windbreaks and Environmental Plantings--Continued


Table 10.--Windbreaks and Environmental Plantings--Continued

Map symbol   and soil name	Pct. of map unit	Trees having predicted 20-year average height, in feet, of--						
		$<8$	8-15	16-25	26-35	>35		
I13A:								
Espelie	75	\| Nanking cherry, golden currant, redosier dogwood	\|Amur maple, Siberian peashrub, common lilac, American plum, Manchurian apricot, common chokecherry	Manchurian   crabapple, black   ash, blue spruce, common hackberry	$\text { \| Siberian elm, laurel\| } \mid$	\|Carolina poplar, eastern cottonwood		
Foxlake----------------	8	\| Nanking cherry,   \| Russian almond,   \| Saskatoon   \| serviceberry,   \| Siberian peashrub,   \| golden currant,   \| redosier dogwood,   \| silver buffaloberry	$\begin{aligned} & \text { \|Common chokecherry, } \\ & \mid \text { common lilac, } \\ & \mid \text { eastern arborvitae } \end{aligned}$	\|Black Hills spruce, blue spruce, common hackberry, green ash	\|Laurel willow, Siberian elm	Imperial Carolina poplar, eastern cottonwood		
Hilaire----------------	7		\| Saskatoon   serviceberry,   Siberian peashrub,   Amur maple, common   chokecherry,   eastern redcedar,   nannyberry			\| Siberian elm,$\mid$ Siouxland$\mid$ cottonwood,$\mid$imperial Carolina$\mid$poplar		
		\|American plum,   \| Peking cotoneaster,   \| Saskatoon   \| serviceberry,   \| western sandcherry		\| Manchurian   crabapple, Black   Hills spruce,   \| Scotch pine, bur   \| oak, paper birch	Common hackberry, green ash			
Clearwater, depressional\|	5	\| ---	\| ---	\| ---	\| ---	\| ---		
Thiefriver	5	\|Siberian peashrub, common lilac, redosier dogwood	\|Common chokecherry, nannyberry, eastern	arborvitae	\|Black Hills spruce,   black ash, green ash	\|Laurel willow,   Siberian elm	\|Eastern cottonwood, imperial Carolina poplar	
I14B:								
Fairdale-	85	\|Peking cotoneaster,   \| Russian almond,   \| Saskatoon   \| serviceberry,   \| golden currant	\|American plum, Siberian peashrub, American cranberrybush, common chokecherry, eastern redcedar	\|Black Hills spruce, ponderosa pine, bur	oak, common hackberry, paper birch	$\begin{aligned} & \text { \| Green ash, laurel } \\ & \text { \| willow } \end{aligned}$	\|American basswood, eastern cottonwood	
Fluvaquents------------\|	6	\| ---		-	\| ---		--- \|	---
Hapludolls-------------	5	\| Nanking cherry, golden currant, indigobush	\|American plum, Siberian peashrub, common lilac, eastern redcedar	\|Siberian crabapple, Russian olive, bur oak, ponderosa pine, blue spruce	\|Green ash, honeylocust	\|Siberian elm, eastern cottonwood, imperial Carolina poplar, silver maple		

Table 10.--Windbreaks and Environmental Plantings--Continued


Table 10.--Windbreaks and Environmental Plantings--Continued

Map symbol and soil name	Pct. of map unit	Trees having predicted 20-year average height, in feet, of--					
		$<8$	8-15	16-25	26-35	>35	
I15A:							
Garborg-----------	10	\|Nanking cherry,   Peking cotoneaster,   blueleaf   honeysuckle,   redosier dogwood	\|American   cranberrybush,   \| Rocky Mountain   \| juniper, common   \| lilac, peashrub,   \| common chokecherry,   \| eastern redcedar	\|Siberian crabapple, blue spruce, Black Hills spruce, Scotch pine, common hackberry	$\begin{aligned} & \text { \| Green ash, laurel } \\ & \text { willow } \end{aligned}$	Eastern cottonwood, imperial Carolina poplar	
Hamar-------------	5	\| Nanking cherry,   Siberian peashrub,   redosier dogwood,   silver buffaloberry	```American cranberrybush, common chokecherry, common lilac```	\|Siberian crabapple,   Black Hills spruce,   blue spruce, black   ash, common   hackberry	$\begin{aligned} & \text { \| Green ash, laurel } \\ & \text { \| willow } \end{aligned}$	Eastern cottonwood, imperial Carolina poplar	
Ulen	5	\|Amur honeysuckle, indigobush	\|Peking cotoneaster, Siberian peashrub, common chokecherry, silver buffaloberry, eastern redcedar	\|Black Hills spruce, bur oak, ponderosa pine, common hackberry	$\begin{aligned} & \text { \| Green ash, laurel } \\ & \text { willow } \end{aligned}$	```Carolina poplar, Siberian elm, Siouxland cottonwood```	
						```Siouxland cottonwood, imperial Carolina poplar```	
Poppleton---------	3	\|Peking cotoneaster, blueleaf honeysuckle, silver buffaloberry, silverberry, western sandcherry	\|Rocky Mountain juniper, Siberian peashrub, late lilac, common chokecherry, eastern redcedar	\|Black Hills spruce, \| Scotch pine	\|Red maple, green ash		
		\|Silver buffaloberry, western sandcherry	\mid Russian olive, \mid common chokecherry, \mid peashrub, late \mid lilac	\mid Eastern redcedar, Scotch pine	\|Green ash, silver maple, Carolina poplar, Siouxland cottonwood	---	
	$3 \quad 1$						
Foldahl	2	\|Peking cotoneaster, Saskatoon \| serviceberry, \| western sandcherry	\mid Amur maple, Siberian peashrub, silver buffaloberry, common chokecherry, \mid eastern redcedar, late lilac, nannyberry	\|Black Hills spruce,\| Scotch pine, redmaple\mid	\|Common hackberry, paper birch, silver\| maple, green ash	```Siouxland cottonwood, imperial Carolina poplar```	

Table 10.--Windbreaks and Environmental Plantings--Continued

		Trees having predicted 20-year average height, in feet, of--				
Map symbol	Pct. of					
and soil name	map unit\|	<8	8-15	16-25	26-35	>35
						1
I15A:						
Radium------------	2	$\begin{aligned} & \text { \|Sandbar willow, } \\ & \mid \text { common lilac, } \end{aligned}$	\|Siberian peashrub,	\| Black Hills spruce,	\|Siberian elm,	---
			common chokecherry,	\| Russian olive,	\| Siouxland	
		cotoneaster, silver\|		eastern arborvitae, \|	cottonwood, green	\|
		buffaloberry	nannyberry	eastern redcedar,	ash, laurel willow	
				Scotch pine, common\|		
				hackberry \|		\|
						\|
I16F:						
Fluvaquents	55	---	---	---	---	---
Hapludolls--------	25	$\begin{aligned} & \text { \| Nanking cherry, } \\ & \text { \| golden currant, } \\ & \text { \| indigobush } \end{aligned}$	\|American plum, Siberian peashrub, common lilac, eastern redcedar	\|Siberian crabapple, Russian olive, bur oak, ponderosa pine, blue spruce	Green ash, honeylocust	\|Siberian elm, eastern cottonwood, imperial Carolina poplar, silver maple
Hapludalfs-------------\|	7	\| ---	\| ---	\| ---	\| ---	---
Fairdale----------	5	\|Peking cotoneaster, silver buffaloberry, silverberry	\|American plum, peashrub, common chokecherry, eastern arborvitae, eastern redcedar, ponderosa pine	\|Black Hills spruce, black ash, paper birch, common hackberry	Green ash, laurel willow, quaking aspen	American basswood, \| eastern cottonwood
Water		---	---		---	---
	5					
Bowstring--------------------Rauville----	2	---	---	---	---	---
	1	---	---	---	---	---
I17A:			-	\|	Paper birch, common hackberry, green ash, silver maple	
Foldahl-----------	75	\|Saskatoon serviceberry,	\|Amur maple, Peking cotoneaster,	Manchurian crabapple, Black Hills spruce, Scotch pine, bur oak, ponderosa pine, red maple		Imperial Carolina poplar, cottonwood
		\| blueleaf	Siberian peashrub,			
		\| honeysuckle,	nannyberry, silver			
		\| indigobush,	buffaloberry,			
		\| silverberry,	common chokecherry,			
		\| western sandcherry	common lilac,			
			eastern arborvitae,			
			eastern redcedar,			
			late lilac,			
			nannyberry			

Table 10.--Windbreaks and Environmental Plantings--Continued

Map symbol and soil name	Pct. of map unit	Trees having predicted 20-year average height, in feet, of--							
		<8	8-15	16-25	26-35	>35			
I17A:									
Kratka	10	\|American plum, Nanking cherry, \| Siberian peashrub, \| golden currant, redosier dogwood	\|Amur maple, Peking cotoneaster, common chokecherry, indigobush, nannyberry	```\|Manchurian apricot, Russian olive, blue spruce, Black Hills spruce, common hackberry```	$\begin{aligned} & \text { \| Green ash, laurel } \\ & \mid \text { willow, Siberian } \\ & \text { \| elm } \end{aligned}$	\|Siouxland \| cottonwood, \| imperial Carolina \| poplar			
Roliss------------	5	```\|Sandbar willow,	Siberian peashrub,	indigobush,	redosier dogwood```	```Common chokecherry, common lilac, cotoneaster, eastern arborvitae```		\|Laurel willow, Siberian elm	\|Imperial Carolina poplar, eastern cottonwood
Flaming-----------	4	\|Peking cotoneaster, blueleaf honeysuckle, silverberry, western sandcherry	\mid Rocky Mountain \mid juniper, \mid nannyberry, $\left\|\begin{array}{l}\text { peashrub, silver } \\ \text { buffaloberry, } \\ \text { common chokecherry } \\ \text { eastern redcedar }\end{array}\right\|$	\|Black Hills spruce, Scotch pine, ponderosa pine	\|Red maple, green ash, Siouxland cottonwood	---			
Grimstad-	2	\|Blueleaf honeysuckle, indigobush, silverberry	\|Arnold hawthorn, Siberian peashrub, common chokecherry, late lilac, silver buffaloberry, eastern redcedar	\mid Black Hills spruce, \mid black ash, \mid ponderosa pine, bur \mid oak \mid	$\begin{aligned} & \text { Common hackberry, } \\ & \text { green ash, laurel } \\ & \text { willow, red maple } \end{aligned}$	\|Eastern cottonwood, imperial Carolina poplar			
Linveldt	2	\| Nanking cherry, \| Saskatoon \| serviceberry, \| indigobush, silver \| buffaloberry	\|Siberian peashrub, common chokecherry, common lilac, American cranberrybush, Amur maple, eastern redcedar	\|Black Hills spruce, Russian olive, Scotch pine, bur oak, common hackberry	\|Imperial Carolina poplar, robusta cottonwood	$\begin{aligned} & \text { \|Siberian elm, } \\ & \mid \text { eastern cottonwood } \end{aligned}$			
Eckvoll-	1	\|Peking cotoneaster, \| Saskatoon \| serviceberry, \| silver \| buffaloberry, \| western sandcherry	\|Amur maple, Siberian	 peashrub, nannyberry, common chokecherry, eastern redcedar	\|Manchurian crabapple, Black Hills spruce, Scotch pine, Siberian elm, bur oak, common hackberry, green ash	\|Red maple, green ash, paper birch	Imperial Carolina poplar, Siouxland cottonwood		

Table 10.--Windbreaks and Environmental Plantings--Continued

Map symbol and soil name	Pct. of map unit	Trees having predicted 20-year average height, in feet, of--					
		<8	8-15	16-25	26-35	>35	
I17A:							
Strathcona-	1	```Siberian peashrub, common lilac, redosier dogwood, western sandcherry```	\|Common chokecherry, \mid silver \mid buffaloberry, eastern arborvitae	\|Black Hills spruce, common hackberry, green ash	\|Laurel willow, Siberian elm	```\|Siouxland cottonwood, imperial Carolina poplar```	
I18A:							
Foldahl	75	```Peking cotoneaster, Saskatoon serviceberry, western sandcherry```	\|Amur maple, Siberian \| peashrub, silver \| buffaloberry, \| common chokecherry, \| eastern redcedar, \| late lilac, \| nannyberry	\|Black Hills spruce, Scotch pine, red maple	$\begin{aligned} & \text { \|Common hackberry, } \\ & \mid \text { paper birch, silver } \\ & \text { \| maple, green ash } \end{aligned}$	\|Siouxland cottonwood, imperial Carolina poplar	
Kratka------------	10	\|American plum, Nanking cherry, Siberian peashrub, golden currant, redosier dogwood	\|Amur maple, Peking cotoneaster, common chokecherry, indigobush, nannyberry	\|Manchurian apricot, Russian olive, blue spruce, Black Hills spruce, common hackberry	\| Green ash, laurel	willow, Siberian \mid elm	```\|siouxland cottonwood, imperial Carolina poplar```
Roliss-----------	5	\|Sandbar willow, Siberian peashrub, indigobush, redosier dogwood	```\| Common chokecherry, common lilac, cotoneaster, eastern arborvitae```	\|Black Hills spruce, blue spruce, bur oak, common hackberry, green ash	\|Laurel willow, Siberian elm	\| Imperial Carolina poplar, eastern cottonwood	
Flaming	4	\mid Peking cotoneaster, blueleaf honeysuckle, silverberry, western sandcherry	\|Rocky Mountain \| juniper, \| nannyberry, \| peashrub, silver \| buffaloberry, \| common chokecherry, \| eastern redcedar	\|Black Hills spruce, Scotch pine, ponderosa pine	\|Red maple, green ash, Siouxland cottonwood	---	
Grimstad-	2	\|Blueleaf \| honeysuckle, \| indigobush, \| silverberry	\|Arnold hawthorn, Siberian peashrub, common chokecherry, late lilac, silver buffaloberry, eastern redcedar	\|Black Hills spruce, black ash, ponderosa pine, bur	oak	Common hackberry, green ash, laurel willow, red maple	\|Eastern cottonwood, imperial Carolina poplar

Table 10.--Windbreaks and Environmental Plantings--Continued

Table 10.--Windbreaks and Environmental Plantings--Continued

		Trees having predicted 20-year average height, in feet, of--										
Map symbol	Pct. of											
and soil name	map unit\|	<8	8-15	16-25	26-35	>35						
122A:												
Borup-------------	10	\|Russian almond, sandbar willow, indigobush, redosier dogwood	```Common chokecherry, common lilac, silver buffaloberry```	\|Black Hills spruce, black ash	\|Green ash, laurel willow, robusta cottonwood	Eastern cottonwood, imperial Carolina poplar						
Augsburg----------	5	\|Russian almond, \| sandbar willow, \| indigobush, \| redosier dogwood	$\begin{aligned} & \text { \|Common chokecherry, } \\ & \mid \text { common lilac, } \\ & \text { \| silver buffaloberry } \end{aligned}$	\|Black Hills spruce, common hackberry	Laurel willow, green ash, robusta cottonwood	Eastern cottonwood, imperial Carolina poplar						
Ulen--------------	5	\|Amur honeysuckle, \| indigobush	Peking cotoneaster, Siberian peashrub, common chokecherry, silver buffaloberry, eastern redcedar	\|Black Hills spruce, bur oak, ponderosa pine, common hackberry	$\begin{aligned} & \text { \|Green ash, laurel } \\ & \text { \| willow } \end{aligned}$	```Carolina poplar, Siberian elm, Siouxland cottonwood```						
Wheatville--------	3	\|Blueleaf \| honeysuckle, \| indigobush, \| silverberry	\|Siberian peashrub, common chokecherry, common lilac, silver buffaloberry, eastern arborvitae, eastern redcedar	\|Black Hills spruce, bur oak, ponderosa pine, common hackberry, green ash	\|Laurel willow, silver maple	Eastern cottonwood, imperial Carolina poplar						
Flaming		\|Peking cotoneaster, \| blueleaf \| honeysuckle, \| silverberry, \| western sandcherry	\mid Rocky Mountain juniper, \mid nannyberry, $\left\|\begin{array}{l}\text { peashrub, silver } \\ \text { buffaloberry, } \\ \text { common chokecherry } \\ \text { eastern redcedar }\end{array}\right\|$	\|Black Hills spruce, Scotch pine, ponderosa pine	Red maple, green ash, Siouxland cottonwood	---						
Glyndon-----------	75	\|Blueleaf honeysuckle, indigobush, silverberry	\|Siberian peashrub, common chokecherry, common lilac, silver buffaloberry, common lilac, eastern arborvitae, eastern redcedar	\|Black Hills spruce, ponderosa pine, ponderosa pine, bur oak, common hackberry	```Common hackberry, green ash, laurel willow, laurel willow, silver maple```	\| Imperial Carolina poplar, eastern cottonwood						

Table 10.--Windbreaks and Environmental Plantings--Continued

Table 10.--Windbreaks and Environmental Plantings--Continued

Table 10.--Windbreaks and Environmental Plantings--Continued

Table 10.--Windbreaks and Environmental Plantings--Continued

		Trees having predicted 20-year average height, in feet, of--							
Map symbol	Pct. of								
and soil name	map unit\|	<8	8-15	16-25	26-35	>35			
			\|						
I25A:									
Kratka---------------- \|	1	\| American plum,\| Nanking cherry,	\|Amur maple, Peking	\| Manchurian apricot,	\|Green ash, laurel	\|Siouxland			
			\| cotoneaster, common		Russian olive, blue\|	willow, Siberian	cottonwood,		
		Siberian peashrub,	\| chokecherry,		\| spruce, Black Hills		elm	\| imperial Carolina	
		\| golden currant,	\| indigobush,	spruce, common		poplar			
		redosier dogwood	\| nannyberry	\| hackberry					
I26A:									
Hamerly	75	\|Russian almond, Saskatoon	\|Arnold hawthorn, Siberian peashrub,	Blue spruce, bur oak, ponderosa pine	Common hackberry, green ash, laurel				
		Saskatoon serviceberry,	Siberian peashrub, \| common lilac,	oak, ponderosa pine	green ash, laurel willow	eastern cottonwood			
		blueleaf	silver						
		honeysuckle,	\| buffaloberry,						
		indigobush	\| eastern redcedar						
Vallers-									
	12	\|Russian almond,	\|Common chokecherry,	\|Black Hills spruce, blue spruce, green	Laurel willow, quaking aspen	\|Imperial Carolina poplar, eastern cottonwood			
		\| Siberian peashrub,	\| eastern redcedar	ash, common					
		indigobush		hackberry					
Foxhome---------------- \|	3	\|Blueleaf	\| Amur maple, common\| chokecherry,	Scotch pine, bur oak, ponderosa pine					
		\| honeysuckle,			eastern cottonwood, green ash	\| ---			
		eastern redcedar,	\| eastern arborvitae,						
		\| hedge cotoneaster,	\| eastern redcedar,						
			\| nannyberry						
		\| buffaloberry,							
		\| western sandcherry							
Grimstad--------------\|	3	\|Blueleaf honeysuckle, indigobush, silverberry	\|Arnold hawthorn, Siberian peashrub, common chokecherry, late lilac, silver buffaloberry, eastern redcedar	```\|Black Hills spruce,	black ash,	ponderosa pine, bur	oak```	Common hackberry, green ash, laurel willow, red maple	\|Eastern cottonwood, imperial Carolina poplar
Hamerly, very cobbly----\|	3	\mid Russian almond, $\|$Saskatoon \mid serviceberry, \mid blueleaf honeysuckle, indigobush	\mid Arnold hawthorn, $\|$Siberian peashrub, \mid common lilac, silver $\|$buffaloberry, \mid eastern redcedar	\|Blue spruce, bur \| oak, ponderosa pine			```Siberian elm, eastern cottonwood```		
				\| oak, ponderosa pine	green ash, laurel willow	eastern cottonwood			
Strathcona------------- \|	3	\|Siberian peashrub, common lilac, redosier dogwood, western sandcherry	```Common chokecherry, \| silver	buffaloberry,	eastern arborvitae```	\|Black Hills spruce, common hackberry, green ash	Laurel willow, Siberian elm	```Siouxland cottonwood, imperial Carolina poplar```	

Table 10.--Windbreaks and Environmental Plantings--Continued

Map symbol and soil name	Pct. of map unit	Trees having predicted 20-year average height, in feet, of--						
		<8	8-15	16-25	26-35	>35		
I26A:								
Roliss, depressional----\|	1	---	---	---	---	\| ---		
						\|		
I27A:								
Hamre------------------ \|	80	\| ---		--- \|	\| ---		\| ---	\| ---
Northwood--------------	5	\| ---		--- \|	\| ---		\| ---	\mid---
Roliss----------------	5	\|Sandbar willow, Siberian peashrub, indigobush, redosier dogwood	```Common chokecherry, common lilac, cotoneaster, eastern arborvitae```	\|Black Hills spruce, blue spruce, bur oak, common hackberry, green ash	\|Laurel willow, Siberian elm	Imperial Carolina poplar, eastern cottonwood		
Smiley-----------------	5	\|Russian almond, golden currant, honeysuckle, indigobush, redosier dogwood	\|Amur maple, Arnold hawthorn, Siberian peashrub, common lilac, late lilac, American plum, common chokecherry, gray dogwood, nannyberry, silver buffaloberry	\|Black Hills spruce, \| Manchurian apricot, \| Manchurian \| crabapple, blue \| spruce	\|Green ash, quaking aspen, American basswood	```\|Siberian elm, laurel ```		
Cathro-----------------	3	-	-	\| ---	---			
Kratka-----------------	2	\|American plum, Nanking cherry, Siberian peashrub, golden currant, redosier dogwood	\|Amur maple, Peking cotoneaster, common chokecherry, indigobush, nannyberry	\|Manchurian apricot, Russian olive, blue spruce, Black Hills spruce, common hackberry	\|Green ash, laurel willow, Siberian elm	\|Siouxland \mid cottonwood, \mid imperial Carolina \mid poplar		
I28A:								
Hangaard--------------- \|	75	\|Peking cotoneaster, sandbar willow, Siberian peashrub, redosier dogwood, western sandcherry	\|Amur maple, common chokecherry	\|Black Hills spruce, Scotch pine, black ash, common hackberry	$\begin{aligned} & \text { \|Green ash, laurel } \\ & \text { willow, silver } \\ & \text { maple } \end{aligned}$	\|Siberian elm,\mid Siouxland\mid cottonwood,\mid imperial Carolina$\|$poplar		
Hamar-	7	\|Nanking cherry, Siberian peashrub, redosier dogwood, silver buffaloberry		\|Siberian crabapple, Black Hills spruce, blue spruce, black ash, common hackberry	$\begin{aligned} & \text { \|Green ash, laurel } \\ & \text { \| willow } \end{aligned}$	$\begin{aligned} & \text { \|Eastern cottonwood, } \\ & \mid \text { imperial Carolina } \\ & \text { \| poplar } \end{aligned}$		

Table 10.--Windbreaks and Environmental Plantings--Continued

Map symbol and soil name	$\begin{aligned} & \text { Pct. of } \\ & \text { map unit } \end{aligned}$	Trees having predicted 20-year average height, in feet, of--						
		<8	8-15	16-25	26-35	>35		
I28A:								
Syrene------------	7	\|Siberian peashrub, redosier dogwood, western sandcherry	Common chokecherry, late lilac, eastern arborvitae, nannyberry, silver buffaloberry	\|Black Hills spruce, common hackberry, green ash	\|Laurel willow, Siberian elm	```Siouxland cottonwood, imperial Carolina poplar```		
Karlsruhe	3	$\begin{aligned} & \text { \|Common lilac, silver\| } \\ & \text { \| buffaloberry, } \\ & \text { \| silverberry } \end{aligned}$	```Peashrub, common chokecherry, eastern arborvitae, eastern redcedar```	\|Black Hills spruce, ponderosa pine, Siberian elm, green ash	\|Laurel willow, silver maple	```\|Siouxland cottonwood, imperial Carolina poplar```		
Rosewood-	3	$\begin{aligned} & \mid \text { Siberian peashrub, } \\ & \mid \text { common lilac, } \\ & \mid \text { indigobush, } \\ & \text { redosier dogwood } \end{aligned}$	\|Common chokecherry, nannyberry, silver buffaloberry, eastern arborvitae	\|Black Hills spruce, \| black ash, common \| hackberry, green \| ash	\|Laurel willow, Siberian elm	```Siouxland cottonwood, imperial Carolina poplar```		
Strandquist-------	3	\mid Siberian peashrub, \mid common lilac, redosier dogwood, \mid silverberry, \mid western sandcherry	\|Buffaloberry, common	chokecherry, late lilac, eastern arborvitae, eastern	redcedar, nannyberry	\|Black Hills spruce, Russian olive, black ash, common hackberry, green ash	\| Laurel willow, Siberian elm	\|Siouxland\mid cottonwood,imperial Carolina\mid poplar
Deerwood--------------- \|	2		---	---				
I29A:								
Hattie-	75	\|American plum, Russian almond, blueleaf honeysuckle, common chokecherry, golden\| currant	\|Siberian peashrub, \| late lilac, \| Manchurian \| crabapple	\|Blue spruce, Black Hills spruce, bur oak	Common hackberry, green ash, American basswood	```Siberian elm, eastern cottonwood, imperial Carolina poplar```		
Clearwater	12	\| Nanking cherry, Russian almond, Saskatoon serviceberry, Siberian peashrub, golden currant, redosier dogwood, silver buffaloberry	\|Common chokecherry, common lilac, cotoneaster	\|Black Hills spruce, blue spruce, common\| hackberry, green ash	Laurel willow, Siberian elm	\| Imperial Carolina poplar, eastern cottonwood		

Table 10.--Windbreaks and Environmental Plantings--Continued

Table 10.--Windbreaks and Environmental Plantings--Continued

Map symbol and soil name	$\begin{aligned} & \text { Pct. of } \\ & \text { map unit } \end{aligned}$	Trees having predicted 20-year average height, in feet, of--						
		<8	8-15	16-25	26-35	>35		
I30A:								
Hedman	85	\|Siberian peashrub, common lilac, redosier dogwood	\|Common chokecherry	\mid Eastern redcedar, \mid Russian olive, blue \mid spruce, white spruce	\|Golden willow, green ash, Siberian elm	Eastern cottonwood		
Fram-	5	\|Nanking cherry, \| Russian almond, \| Saskatoon \| serviceberry, \| blueleaf \| honeysuckle, \| indigobush, \| silverberry	\|American plum, Arnold hawthorn, common lilac, silver buffaloberry, eastern redcedar	\|Siberian crabapple, Black Hills spruce, blue spruce, bur oak, common hackberry, ponderosa pine	$\begin{aligned} & \text { \| Green ash, laurel } \\ & \text { \| willow } \end{aligned}$	\|Eastern cottonwood, imperial Carolina poplar		
Strathcona-	5	\|Siberian peashrub, common lilac, redosier dogwood, western sandcherry	```Common chokecherry, silver buffaloberry, eastern arborvitae```	\|Black Hills spruce, common hackberry, green ash	\|Laurel willow, Siberian elm	\|Siouxland \| cottonwood, \| imperial Carolina \| poplar		
Haug-	3	\| ---	---	---	---	---		
Strandquist-	2	\|Siberian peashrub, common lilac, redosier dogwood, silverberry, western sandcherry	\|Buffaloberry, common chokecherry, late lilac, eastern arborvitae, eastern	redcedar, nannyberry	Black Hills spruce, Russian olive, black ash, common hackberry, green ash	\|Laurel willow, Siberian elm	\mid Siouxland \mid cottonwood, \mid imperial Carolina \mid poplar	
I31A:								
		common lilac, redosier dogwood	mon	\mid Russian olive, blue\| \mid spruce, white \mid spruce	ash, Siberian elm			
Fram-	40	\| Nanking cherry, \| Russian almond, \| Saskatoon \| serviceberry, \| blueleaf \| honeysuckle, \| indigobush, \| silverberry	\|American plum, Arnold hawthorn,	common lilac,	silver \| buffaloberry, \| eastern redcedar	\|Siberian crabapple, Black Hills spruce, blue spruce, bur oak, common hackberry, ponderosa pine	\|Green ash, laurel willow	Eastern cottonwood, imperial Carolina poplar

Table 10.--Windbreaks and Environmental Plantings--Continued

Map symbol and soil name	Pct. of map unit	Trees having predicted 20-year average height, in feet, of--						
		<8	8-15	16-25	26-35	>35		
I31A:								
Strathcona	5	\|Siberian peashrub, common lilac, redosier dogwood, western sandcherry	```Common chokecherry, silver buffaloberry, eastern arborvitae```	\|Black Hills spruce, common hackberry, green ash	Laurel willow, Siberian elm	\|Siouxland cottonwood, imperial Carolina poplar		
Haug-	3	\| ---	--- \|	\| ---	--- \|	\| ---		
Strandquist	2	\|Siberian peashrub, common lilac, redosier dogwood, silverberry, western sandcherry	\|Buffaloberry, common	chokecherry, late lilac, eastern arborvitae, eastern	redcedar, nannyberry	\|Black Hills spruce, Russian olive, black ash, common hackberry, green ash	Laurel willow, Siberian elm	\|Siouxland cottonwood, imperial Carolina poplar
I32A:								
Hilaire-----------	75	\|American plum, Peking cotoneaster, Saskatoon serviceberry, western sandcherry	\|Saskatoon serviceberry, Siberian peashrub, Amur maple, common chokecherry, eastern redcedar, nannyberry	\|Manchurian crabapple, Black Hills spruce, Scotch pine, bur oak, paper birch	$\begin{aligned} & \text { \|Common hackberry, } \\ & \text { \| green ash } \end{aligned}$	\|Siberian elm, Siouxland cottonwood, imperial Carolina poplar		
				Manchurian crabapple, black ash, blue spruce, common hackberry		Carolina poplar, eastern cottonwood		
Espelie-----------	12	\| Nanking cherry, golden currant, redosier dogwood	\|Amur maple, Siberian peashrub, common lilac, American plum, Manchurian apricot, common chokecherry		$\begin{aligned} & \text { \|Siberian elm, laurel\| } \\ & \mid \text { willow } \end{aligned}$			
Huot	5	$\begin{aligned} & \text { \| Indigobush, sargent } \\ & \text { \| crabapple, } \\ & \text { \| silverberry } \end{aligned}$	\|Siberian peashrub, common chokecherry, common lilac, eastern arborvitae, eastern redcedar	\|Ponderosa pine, black ash, bur oak	$\begin{aligned} & \text { \|Common hackberry, } \\ & \mid \text { green ash } \end{aligned}$	```\|Siberian elm, eastern cottonwood```		
Flaming	2	\|Peking cotoneaster, blueleaf honeysuckle, silverberry, western sandcherry	\|Rocky Mountain juniper, nannyberry, peashrub, silver buffaloberry, common chokecherry, eastern redcedar	\|Black Hills spruce, Scotch pine, ponderosa pine		---		

Table 10.--Windbreaks and Environmental Plantings--Continued

Map symbol and soil name	Pct. of map unit	Trees having predicted 20-year average height, in feet, of--					
		< 8	8-15	16-25	26-35	>35	
I32A:							
Foxlake-	2	\|Nanking cherry, \| Russian almond, \| Saskatoon \| serviceberry, \| Siberian peashrub, \| golden currant, \| redosier dogwood, \| silver buffaloberry	$\begin{aligned} & \text { \|Common chokecherry, } \\ & \mid \text { common lilac, } \\ & \mid \text { eastern arborvitae } \end{aligned}$	```\|Black Hills spruce,	```	\|Laurel willow, Siberian elm	\|Imperial Carolina poplar, eastern cottonwood
Wheatville---	2	\|Blueleaf \| honeysuckle, \| indigobush, \| silverberry	\|Siberian peashrub, common chokecherry, common lilac, silver buffaloberry, eastern arborvitae, eastern redcedar	```\|Black Hills spruce, bur oak, ponderosa pine, common hackberry, green ash```	\|Laurel willow, silver maple	\|Eastern cottonwood, imperial Carolina poplar	
Thiefriver-	1	$\begin{aligned} & \text { \| Siberian peashrub, } \\ & \mid \text { common lilac, } \\ & \mid \text { redosier dogwood } \end{aligned}$	\|Common chokecherry, nannyberry, eastern arborvitae	$\begin{aligned} & \text { \|Black Hills spruce, } \\ & \text { \| black ash, green } \\ & \text { \| ash } \end{aligned}$	\|Laurel willow, Siberian elm	\|Eastern cottonwood, imperial Carolina poplar	
Wyandotte-	1	\|Siberian peashrub, silverberry, western sandcherry	\|Common chokecherry, common lilac, silver buffaloberry, eastern redcedar	\mid Black Hills spruce, \mid eastern arborvitae, \mid ponderosa pine \mid	$\begin{aligned} & \text { \| Laurel willow, } \\ & \mid \text { Siberian elm, } \\ & \text { \| eastern cottonwood } \end{aligned}$	---	
I33A:							
Hilaire	75	\|American plum, \| Peking cotoneaster, \| Saskatoon \| serviceberry, \| western sandcherry	\| Saskatoon serviceberry, Siberian peashrub, Amur maple, common chokecherry, eastern redcedar, nannyberry	\| Manchurian crabapple, Black Hills spruce, Scotch pine, bur oak, paper birch	$\begin{aligned} & \text { \|Common hackberry, } \\ & \text { \| green ash } \end{aligned}$	\|Siberian elm, Siouxland \| cottonwood, \| imperial Carolina \| poplar	
Espelie-	12	\| Nanking cherry, golden currant, redosier dogwood	\|Amur maple, Siberian peashrub, common lilac, American plum, Manchurian apricot, common chokecherry	```Manchurian crabapple, black ash, blue spruce, common hackberry```	$\begin{aligned} & \text { \|Siberian elm, laurel } \\ & \text { willow } \end{aligned}$	Carolina poplar, eastern cottonwood	

Table 10.--Windbreaks and Environmental Plantings--Continued

Table 10.--Windbreaks and Environmental Plantings--Continued

		Trees having predicted 20-year average height, in feet, of--									
Map symbol	Pct. of										
and soil name	map unit\|	<8	8-15	16-25	26-35	>35					
						\|					
I34A:											
Huot--------------	75	Indigobush, sargent crabapple, silverberry	\|Siberian peashrub, common chokecherry, common lilac, eastern arborvitae, eastern redcedar	\|Ponderosa pine, \| black ash, bur oak	$\begin{aligned} & \text { \|Common hackberry, } \\ & \text { \| green ash } \end{aligned}$	$\begin{aligned} & \text { \|Siberian elm, } \\ & \text { \| eastern cottonwood } \end{aligned}$					
Thiefriver-	12	\|Siberian peashrub, common lilac, redosier dogwood	\|Common chokecherry, nannyberry, eastern arborvitae	Black Hills spruce, black ash, green ash	\|Laurel willow, Siberian elm	\|Eastern cottonwood, imperial Carolina poplar					
Hilaire-----------	5	\|American plum, \| Peking cotoneaster, \| Saskatoon \| serviceberry, \| western sandcherry		\|Manchurian crabapple, Black Hills spruce, \| Scotch pine, bur \| oak, paper birch	$\begin{aligned} & \text { \|Common hackberry, } \\ & \text { \| green ash } \end{aligned}$	\|Siberian elm, Siouxland cottonwood, imperial Carolina poplar					
Flaming	3	\mid Peking cotoneaster, \mid blueleaf \mid honeysuckle, \mid silverberry, \mid western sandcherry$\|$	```\|Rocky Mountain juniper,	nannyberry,	peashrub, silver	buffaloberry,	common chokecherry,	eastern redcedar```	\|Black Hills spruce, Scotch pine, ponderosa pine	\|Red maple, green ash, Siouxland cottonwood	---
Foxlake-	3	```Nanking cherry, Russian almond, Saskatoon serviceberry, Siberian peashrub, golden currant, redosier dogwood, silver buffaloberry```	\|Common chokecherry, common lilac, eastern arborvitae	\| Black Hills spruce,\mid blue spruce, common\mid hackberry, green\mid ash	\| Laurel willow, Siberian elm	\|Imperial Carolina poplar, eastern cottonwood					
Ulen-	2	\|Amur honeysuckle, indigobush	```\|Peking cotoneaster, Siberian peashrub, common chokecherry, silver buffaloberry, eastern redcedar```	Black Hills spruce, bur oak, ponderosa pine, common hackberry	$\begin{aligned} & \text { \| Green ash, laurel } \\ & \text { willow } \end{aligned}$	\|Carolina poplar, Siberian elm, Siouxland cottonwood					

Table 10.--Windbreaks and Environmental Plantings--Continued

Map symbol and soil name	$\begin{aligned} & \text { Pct. of } \\ & \text { map unit } \end{aligned}$	Trees having predicted 20-year average height, in feet, of--								
		<8	8-15 \|	\| 16-25			>35			
I35A:										
Karlsruhe	70	\|Common lilac, silver buffaloberry, silverberry	```Peashrub, common chokecherry, eastern arborvitae, eastern redcedar```	```\|Black Hills spruce,	ponderosa pine,	Siberian elm, green		ash```	\|Laurel willow, silver maple	\mid Siouxland \mid cottonwood, imperial Carolina \mid poplar
Syrene-	10	\|Siberian peashrub, redosier dogwood, western sandcherry	\|Common chokecherry, late lilac, eastern arborvitae, nannyberry, silver buffaloberry	```\|Black Hills spruce, common hackberry, green ash```	\|Laurel willow, Siberian elm	\|Siouxland \| cottonwood, \| imperial Carolina \| poplar				
Ulen-	10	\|Amur honeysuckle, indigobush, silver buffaloberry	\|Peking cotoneaster, Siberian peashrub, common chokecherry, silver buffaloberry, eastern arborvitae, eastern redcedar	\|Black Hills spruce, bur oak, ponderosa pine, bur oak, common hackberry	$\begin{aligned} & \text { \|Laurel willow, green\| } \\ & \text { \| ash } \end{aligned}$	\|Siberian elm, \mid Siouxland cottonwood				
Radium-	5	\|Sandbar willow, \| common lilac, \| cotoneaster, silver \| buffaloberry	```\|Siberian peashrub, common chokecherry, late lilac, nannyberry```	\|Black Hills spruce, Russian olive, eastern arborvitae, eastern redcedar, Scotch pine, common hackberry	\|Siberian elm, Siouxland cottonwood, green ash, laurel willow	\| ---				
Rosewood--	3	\|Siberian peashrub, common lilac, indigobush, redosier dogwood	\|Common chokecherry, nannyberry, silver buffaloberry, eastern arborvitae	\|Black Hills spruce, \| black ash, common \| hackberry, green \| ash	\|Laurel willow, Siberian elm	\|Siouxland \mid cottonwood, \mid imperial Carolina \mid poplar				
Sandberg-	2	\|Silver buffaloberry, western sandcherry	```\|ussian olive, common chokecherry, peashrub, late lilac```	$\begin{aligned} & \text { \|Eastern redcedar, } \\ & \mid \text { Scotch pine } \end{aligned}$	\|Green ash, silver maple, Carolina poplar, Siouxland cottonwood	---				
I36A:										
Kittson	70	\|Nanking cherry, Saskatoon serviceberry, golden currant, silverberry	American cranberrybush, American plum, Siberian peashrub, eastern arborvitae	\| Nannyberry, Manchurian apricot, Manchurian crabapple, Black Hills spruce, blue spruce, bur oak	\|American basswood, green ash, robusta cottonwood	\|Red maple, eastern	cottonwood, \| imperial Carolina \| poplar			

Table 10.--Windbreaks and Environmental Plantings--Continued

Map symbol and soil name	Pct. of map unit	Trees having predicted 20-year average height, in feet, of--						
		<8	8-15	16-25	26-35	>35		
I36A: \|								
Roliss----------------		\|Sandbar willow, Siberian peashrub, indigobush, redosier dogwood	```Common chokecherry, common lilac, cotoneaster, eastern arborvitae```	\|Black Hills spruce, \| blue spruce, bur \| oak, common \| hackberry, green \| ash	Laurel willow, Siberian elm	\|Imperial Carolina poplar, eastern cottonwood		
Hamerly---------------	5							
		\|Russian almond, Saskatoon serviceberry, blueleaf honeysuckle, indigobush	\|Arnold hawthorn, Siberian peashrub,	common lilac, \| silver \| buffaloberry, \| eastern redcedar	\|Blue spruce, bur oak, ponderosa pine	Common hackberry, green ash, laurel willow	$\begin{aligned} & \text { \|Siberian elm, } \\ & \mid \text { eastern cottonwood } \end{aligned}$	
Kratka-	5	\|American plum, Nanking cherry, Siberian peashrub, golden currant, redosier dogwood	\|Amur maple, Peking cotoneaster, common	chokecherry, indigobush, nannyberry	\|Manchurian apricot, Russian olive, blue spruce, Black Hills spruce, common hackberry	$\begin{aligned} & \text { \| Green ash, laurel } \\ & \mid \text { willow, Siberian } \\ & \text { \| elm } \end{aligned}$	\|Siouxland \mid cottonwood, \mid imperial Carolina \mid poplar	
Grimstad-	3	\|Blueleaf honeysuckle, indigobush, silverberry	\|Arnold hawthorn, Siberian peashrub, common chokecherry, late lilac, silver buffaloberry, eastern redcedar	\|Black Hills spruce, black ash, ponderosa pine, bur oak	\|Common hackberry, green ash, laurel willow, red maple	$\begin{aligned} & \text { \|Eastern cottonwood, } \\ & \mid \text { imperial Carolina } \\ & \text { \| poplar } \end{aligned}$		
Strandquist-----------\|	3	\|Siberian peashrub, common lilac, redosier dogwood, silverberry, western sandcherry	\|Buffaloberry, common	chokecherry, late lilac, eastern arborvitae, eastern	redcedar, nannyberry	Black Hills spruce, Russian olive, black ash, common hackberry, green ash	\|Laurel willow, Siberian elm	```Siouxland cottonwood, imperial Carolina poplar```
Foxhome-	2	\|Blueleaf honeysuckle, eastern redcedar, hedge cotoneaster, peashrub, silver buffaloberry, western sandcherry	Amur maple, common chokecherry, eastern arborvitae, eastern redcedar, nannyberry	Scotch pine, bur oak, ponderosa pine		- ---		
Kratka, depressional----	45	---	---	---	--	--		
Strathcona, depressional\|	45	\| ---	-	---	---	\| ---		

Table 10.--Windbreaks and Environmental Plantings--Continued

Map symbol and soil name	$\begin{aligned} & \text { Pct. of } \\ & \text { map unit } \end{aligned}$	Trees having predicted 20-year average height, in feet, of--							
		<8	8-15	16-25	26-35	>35			
			\|						
137A:									
Northwood-	5	\| ---	\| ---	--- \|	---	---			
Kratka-	2	\|American plum, \| Nanking cherry, \| Siberian peashrub, \| golden currant, \| redosier dogwood	\|Amur maple, Peking cotoneaster, common	chokecherry, indigobush, nannyberry	\|Manchurian apricot, Russian olive, blue	spruce, Black Hills	spruce, common hackberry	$\begin{aligned} & \text { \|Green ash, laurel } \\ & \text { willow, Siberian } \\ & \text { elm } \end{aligned}$	\mid Siouxland \mid cottonwood, \mid imperial Carolina \mid poplar
Strathcona-	2	\|Siberian peashrub, \| common lilac, \| redosier dogwood, \| western sandcherry	```Common chokecherry, silver buffaloberry, eastern arborvitae```	\|Black Hills spruce, common hackberry, green ash	\|Laurel willow, \| Siberian elm	\mid Siouxland \mid cottonwood, \mid imperial Carolina \mid poplar			
Roliss	1	\|Sandbar willow, \| Siberian peashrub, \| indigobush, \| redosier dogwood	\mid Common chokecherry, common lilac, cotoneaster, \mid eastern arborvitae	\|Black Hills spruce, \| blue spruce, bur \| oak, common \| hackberry, green \| ash	\|Laurel willow, \| Siberian elm	\mid Imperial Carolina \mid poplar, eastern \| cottonwood			
I38A:									
Kratka	70	\|American plum, \| Nanking cherry, \| Siberian peashrub, \| golden currant, \| redosier dogwood	\|Amur maple, Peking cotoneaster, common	 chokecherry, indigobush, nannyberry	\|Manchurian apricot, Russian olive, blue\| spruce, Black Hills\| spruce, common hackberry	\|Green ash, laurel willow, Siberian elm	\|Siouxland \| cottonwood, \| imperial Carolina \| poplar		
Smiley-	7	\|Russian almond, \| golden currant, \| honeysuckle, \| indigobush, \| redosier dogwood	\|Amur maple, Arnold hawthorn, Siberian peashrub, common lilac, late lilac, American plum, common chokecherry, gray dogwood, nannyberry, silver buffaloberry	\|Black Hills spruce, \| Manchurian apricot, \| Manchurian \| crabapple, blue \| spruce	\|Green ash, quaking aspen, American basswood	\|Siberian elm, laurel \mid willow, eastern \| cottonwood, robusta cottonwood			

Table 10.--Windbreaks and Environmental Plantings--Continued

Table 10.--Windbreaks and Environmental Plantings--Continued

Map symbol and soil name	$\begin{aligned} & \text { Pct. of } \\ & \text { map unit } \end{aligned}$	Trees having predicted 20-year average height, in feet, of-						
		<8	8-15	16-25	26-35	>35		
						,		
I42A:								
Markey, ponded-	85	\| ---		- -- \|	\| ---		\| ---	\| ---
Markey	5	--	---	---	---	\| ---		
Deerwood-	4	\| ---		--- \|	\| ---		\| ---	\| ---
Seelyeville, ponded-----\|	4	\| ---		--- \|	\| ---	---	\| ---	
Hamar------------------- \|	1	\|Nanking cherry, Siberian peashrub, redosier dogwood, silver buffaloberry\|	\mid American cranberrybush, \| common chokecherry common lilac	Siberian crabapple, Black Hills spruce, blue spruce, black ash, common hackberry	$\begin{aligned} & \text { \|Green ash, laurel } \\ & \text { \| willow } \end{aligned}$	\|Eastern cottonwood, imperial Carolina poplar		
Hangaard---------------	1	\|Peking cotoneaster, sandbar willow, Siberian peashrub, redosier dogwood, western sandcherry	\|Amur maple, common chokecherry	\|Black Hills spruce, \| Scotch pine, black \| ash, common \| hackberry	$\begin{aligned} & \text { \|Green ash, laurel } \\ & \text { \| willow, silver } \\ & \text { \| maple } \end{aligned}$	```Siberian elm, Siouxland cottonwood, imperial Carolina poplar```		
I43A:								
Mavie	70 \|	\|Sandbar willow, Siberian peashrub, common lilac, indigobush	\|Common chokecherry, late lilac, eastern\| arborvitae, eastern\| redcedar	\|Black ash, Black Hills spruce, common hackberry, green ash	\|Laurel willow, Siberian elm, Siouxland cottonwood	---		
Vallers-	10	\|Russian almond, sandbar willow, Siberian peashrub, indigobush	\|Common chokecherry, common lilac, eastern redcedar	\|Black Hills spruce, blue spruce, green ash, common hackberry	\|Laurel willow, quaking aspen	$\begin{aligned} & \text { \|Imperial Carolina } \\ & \mid \text { poplar, eastern } \\ & \text { cottonwood } \end{aligned}$		
Strandquist	7	\|Siberian peashrub, common lilac, redosier dogwood, silverberry, western sandcherry	\|Buffaloberry, common	chokecherry, late lilac, eastern arborvitae, eastern	redcedar, nannyberry	```\|lack Hills spruce, Russian olive, black ash, common hackberry, green ash```	\| Laurel willow, \| Siberian elm	\mid Siouxland \mid cottonwood, imperial Carolina \| poplar
Strathcona-	5	```Siberian peashrub, common lilac, redosier dogwood, western sandcherry```	\|Common chokecherry, \mid silver \mid buffaloberry, eastern arborvitae	\|Black Hills spruce, common hackberry, green ash	\| Laurel willow, \| Siberian elm	\|Siouxland \| cottonwood, \| imperial Carolina \| poplar		
Strathcona, depressional\|	$3 \quad 1$	\| ---		\| ---		\| ---	---	---

Table 10.--Windbreaks and Environmental Plantings--Continued

Table 10.--Windbreaks and Environmental Plantings--Continued

Table 10.--Windbreaks and Environmental Plantings--Continued

		Trees having predicted 20-year average height, in feet, of--						
Map symbol	Pct. of							
and soil name	map unit\|	<8	8-15	16-25	26-35	>35		
			\square					
I46A:								
Radium------------	2	$\begin{aligned} & \text { \|Sandbar willow, } \\ & \text { \| common lilac, } \end{aligned}$		\|Black Hills spruce,	Siberian elm,	---		
					\| Siouxland			
		cotoneaster, silver	common chokecherry, late lilac,	Russian olive, eastern arborvitae,	\| cottonwood, green			
			nannyberry	eastern redcedar,	ash, laurel willow			
					\| Scotch pine, common ${ }_{\text {l }}$ hackberry			
Maddock------------	1	\|Siberian peashrub, silver	\|Common chokecherry, eastern redcedar	$\begin{aligned} & \text { \|Bur oak, Black Hills } \\ & \mid \text { spruce, Scotch } \\ & \text { \| pine, green ash } \end{aligned}$	Siouxland cottonwood, red		---	
		buffaloberry, western sandcherry			\| maple			
Marquette----------	1	\|Silver buffaloberry,	\|Russian olive, common chokecherry,	\|Eastern redcedar, Scotch pine	\| Green ash, silver	---		
		\| western sandcherry						
			\| peashrub, late		poplar, Siouxland			
			lilac		cottonwood			
Sandberg----------	1 \|		\|Russian olive, common chokecherry,	\|Eastern redcedar, Scotch pine	Green ash, silver maple, Carolina	---		
		western sandcherry						
			peashrub, late		poplar, Siouxland			
			lilac		cottonwood			
147A:								
Poppleton-	75	\|Peking cotoneaster,	\|Rocky Mountain juniper, Siberian	\|Black Hills spruce,	Red maple, green ash	\| Siouxland		
Poppleton				\| Scotch pine	\|Red maple, green ash		\| cottonwood,	
		\| honeysuckle, silver		\| peashrub, late			imperial Carolina	
		buffaloberry,	lilac, common			poplar		
		silverberry,	chokecherry,					
		western sandcherry	eastern redcedar					
Flaming	12	\|Peking cotoneaster, blueleaf	\|Rocky Mountain	\| Black Hills spruce,	\|Red maple, green	---		
				\| Scotch pine,				
		\| honeysuckle,	\| nannyberry,		cottonwood			
		\| silverberry,	peashrub, silver					
		western sandcherry	buffaloberry,					
			common chokecherry,					
			eastern redcedar					
Garborg-----------	5	\|Nanking cherry, Peking cotoneaster, blueleaf honeysuckle, redosier dogwood	\mid American cranberrybush, Rocky Mountain juniper, common $\|$lilac, peashrub, common chokecherry, eastern redcedar	\|Siberian crabapple, blue spruce, Black Hills spruce, Scotch pine, common hackberry	$\begin{aligned} & \text { \|Green ash, laurel } \\ & \text { willow } \end{aligned}$	Eastern cottonwood, imperial Carolina poplar		

Table 10.--Windbreaks and Environmental Plantings--Continued

Table 10.--Windbreaks and Environmental Plantings--Continued

Map symbol and soil name	Pct. of map unit	Trees having predicted 20-year average height, in feet, of--						
		<8	8-15	16-25	26-35	>35		
				\|		\|		
I51A:								
Reiner, very cobbly-	3	\|Russian almond, Saskatoon serviceberry, golden currant, silverberry	\|American \| cranberrybush, \| American plum, \| common chokecherry, \| eastern redcedar	\|Black Hills spruce, Manchurian apricot, blue spruce, bur oak	\|Laurel willow, American basswood	\|Siberian elm, sugar maple, eastern cottonwood		
152A:								
Reis	55	\|Russian almond, Saskatoon serviceberry, Siberian peashrub, redosier dogwood	\|Siberian peashrub, common chokecherry, common lilac, cotoneaster, common chokecherry	\|White spruce, Black Hills spruce, Russian olive, blue	spruce, common hackberry, green ash	\| Laurel willow, Siberian elm	```Golden willow, imperial Carolina poplar, eastern cottonwood```	
Clearwater	30	\|Nanking cherry, Russian almond, Saskatoon serviceberry, Siberian peashrub, golden currant, redosier dogwood, silver buffaloberry	$\begin{aligned} & \text { Common chokecherry, } \\ & \mid \text { common lilac, } \\ & \text { cotoneaster } \end{aligned}$	\|Black Hills spruce, blue spruce, common\| hackberry, green ash	\|Laurel willow, Siberian elm	\|Imperial Carolina poplar, eastern cottonwood		
Clearwater, very cobbly	5	\| Nanking cherry, Russian almond, Saskatoon serviceberry, Siberian peashrub, golden currant, redosier dogwood, silver buffaloberry	```\|ommon chokecherry, common lilac, cotoneaster```	\|Black Hills spruce, blue spruce, common\| hackberry, green ash	\|Laurel willow, Siberian elm	Imperial Carolina poplar, eastern cottonwood		
Clearwater, depressional\|	3	---	---	--	---	---		
Espelie----------------	3	\| Nanking cherry, golden currant, redosier dogwood	\|Amur maple, Siberian peashrub, common lilac, American plum, Manchurian apricot, common chokecherry	Manchurian crabapple, black ash, blue spruce, common hackberry	$\begin{aligned} & \text { \|Siberian elm, laurel } \\ & \text { \| willow } \end{aligned}$	Carolina poplar, eastern cottonwood		

Table 10.--Windbreaks and Environmental Plantings--Continued

Map symbol and soil name	Pct. of map unit	Trees having predicted 20-year average height, in feet, of--					
		<8	8-15	16-25	26-35	>35	
I52A:							
Hattie	3	American plum, Russian almond, blueleaf honeysuckle, common chokecherry, golden currant	\|Siberian peashrub, late lilac, Manchurian crabapple	\|Blue spruce, Black Hills spruce, bur oak	\| Common hackberry, green ash, American basswood	```Siberian elm, eastern cottonwood, imperial Carolina poplar```	
Wyandotte	1	\|Siberian peashrub, silverberry, western sandcherry	```\|ommon chokecherry, common lilac, silver buffaloberry, eastern redcedar```	\|Black Hills spruce, eastern arborvitae, ponderosa pine	\|Laurel willow, Siberian elm, eastern cottonwood	\| ---	
I53A:							
Roliss	75	\|Sandbar willow, Siberian peashrub, indigobush, redosier dogwood	```\|ommon chokecherry, common lilac, cotoneaster, eastern arborvitae```	\|Black Hills spruce, blue spruce, bur oak, common hackberry, green ash	\|Laurel willow, Siberian elm	Imperial Carolina poplar, eastern cottonwood	
Kratka	8	\|American plum, Nanking cherry, Siberian peashrub, golden currant, redosier dogwood	\|Amur maple, Peking cotoneaster, common chokecherry, indigobush, nannyberry	\|Manchurian apricot, Russian olive, blue\| spruce, Black Hills spruce, common hackberry	$\begin{aligned} & \text { \|Green ash, laurel } \\ & \text { willow, Siberian } \\ & \text { elm } \end{aligned}$	```\|Siouxland cottonwood, imperial Carolina poplar```	
Roliss, very cobbly-----	7	\|Sandbar willow, Siberian peashrub, indigobush, redosier dogwood		\|Black Hills spruce, blue spruce, bur oak, common hackberry, green ash	\|Laurel willow, Siberian elm	\|Imperial Carolina poplar, eastern cottonwood	
Kittson----------------	5		American cranberrybush, American plum, Siberian peashrub, eastern arborvitae	\| Nannyberry, Manchurian apricot, Manchurian crabapple, Black Hills spruce, blue spruce, bur oak			
		\|Nanking cherry, Saskatoon serviceberry, golden currant, silverberry			American basswood, green ash, robusta cottonwood	\|Red maple, eastern cottonwood, imperial Carolina poplar	
	3	---	---	---	\| ---		\| ---

Table 10.--Windbreaks and Environmental Plantings--Continued

Table 10.--Windbreaks and Environmental Plantings--Continued

Table 10.--Windbreaks and Environmental Plantings--Continued

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \& \& \multicolumn{5}{|c|}{Trees having predicted 20-year average height, in feet, of--} \\
\hline Map symbol \& Pct. of \& \& \& \& \& \\
\hline \multirow[t]{2}{*}{and soil name} \& map unit| \& \(<8\) \& 8-15 \& 16-25 \& 26-35 \& >35 \\
\hline \& \& \& \& \& \& \\
\hline \multicolumn{7}{|l|}{I56A:} \\
\hline \multirow[t]{2}{*}{Strathcona--------} \& \multirow[t]{2}{*}{1} \& |Siberian peashrub, common lilac, redosier dogwood, western sandcherry \& ```
Common chokecherry,
silver
buffaloberry,
eastern arborvitae
``` \& \[
\begin{aligned}
\& \text { |Black Hills spruce, } \\
\& \text { common hackberry, } \\
\& \text { green ash }
\end{aligned}
\] \& \begin{tabular}{l}
| Laurel willow, \\
| Siberian elm
\end{tabular} \& \begin{tabular}{|l}
\(\mid\) Siouxland \\
\(\mid\) cottonwood, \\
\(\mid\) \\
imperial Carolina \\
| poplar
\end{tabular} \\
\hline \& \& \& \& \& \& \\
\hline \multirow[t]{2}{*}{Thiefriver--------} \& \multirow[t]{2}{*}{1} \& \multirow[t]{2}{*}{\begin{tabular}{|l|} 
|Siberian peashrub, \\
common lilac, \\
| redosier dogwood
\end{tabular}} \& \multirow[t]{2}{*}{Common chokecherry, nannyberry, eastern arborvitae} \& \multirow[t]{2}{*}{\begin{tabular}{l}
|Black Hills spruce, \\
| black ash, green \\
| ash
\end{tabular}} \& \multirow[t]{2}{*}{|Laurel willow, Siberian elm} \& \multirow[t]{2}{*}{|Eastern cottonwood, imperial Carolina poplar} \\
\hline \& \& \& \& \& \& \\
\hline \multicolumn{7}{|l|}{I57B:} \\
\hline \multirow[t]{5}{*}{Sandberg----------} \& \multirow[t]{5}{*}{50} \& \multirow[t]{5}{*}{|Silver buffaloberry, western sandcherry} \& \multirow[t]{5}{*}{```
|ussian olive,
common chokecherry,
peashrub, late
lilac
```} \& \multirow[t]{5}{*}{|Eastern redcedar, Scotch pine} \& \multirow[t]{5}{*}{\begin{tabular}{l}
|Green ash, silver \\
| maple, Carolina \\
| poplar, Siouxland \\
| cottonwood
\end{tabular}} \& \multirow[t]{5}{*}{---} \\
\hline \& \& \& \& \& \& \\
\hline \multirow[t]{7}{*}{Radium------------} \& \multirow[t]{7}{*}{25} \& \multirow[t]{7}{*}{\begin{tabular}{|l|}
|Sandbar willow, \\
| common lilac, \\
cotoneaster, silver \\
\(\mid\) \\
buffaloberry
\end{tabular}} \& \multirow[t]{7}{*}{|Siberian peashrub, common chokecherry, late lilac, nannyberry} \& \multirow[t]{7}{*}{|Black Hills spruce, Russian olive, eastern arborvitae, eastern redcedar, Scotch pine, common hackberry} \& \multirow[t]{7}{*}{\begin{tabular}{|l|}
| Siberian elm, \\
\(\mid\) Siouxland \\
cottonwood, green \\
| ash, laurel willow
\end{tabular}} \& \multirow[t]{7}{*}{---} \\
\hline \& \& \& \& \& \& \\
\hline \multirow[t]{5}{*}{Sioux-------------} \& \multirow[t]{5}{*}{8} \& \multirow[t]{5}{*}{|Silver buffaloberry, western sandcherry} \& \multirow[t]{5}{*}{\begin{tabular}{|l|}
\(\mid\) Russian olive, \\
\(\mid\) common chokecherry, \\
\(\mid\) peashrub, late \\
\(\mid\) lilac
\end{tabular}} \& \multirow[t]{5}{*}{|Eastern redcedar, Scotch pine} \& \multirow[t]{5}{*}{Green ash, silver maple, Carolina poplar, Siouxland cottonwood} \& \multirow[t]{5}{*}{---} \\
\hline \& \& \& \& \& \& \\
\hline \multirow[t]{7}{*}{Oylen-------------} \& \multirow[t]{7}{*}{7} \& \multirow[t]{7}{*}{---} \& \multirow[t]{7}{*}{|Siberian peashrub, common chokecherry, nannyberry} \& \multirow[t]{7}{*}{|Black Hills spruce, Russian olive, eastern arborvitae, eastern redcedar, Scotch pine, common hackberry} \& \multirow[t]{7}{*}{\begin{tabular}{l}
|Siberian elm, \\
| Siouxland \\
| cottonwood, green \\
| ash, laurel willow
\end{tabular}} \& \multirow[t]{7}{*}{---} \\
\hline \& \& \& \& \& \& \\
\hline \multirow[t]{8}{*}{Flaming-----------} \& \multirow[t]{8}{*}{5} \& \multirow[t]{8}{*}{\begin{tabular}{l}
|Peking cotoneaster, \\
blueleaf \\
| honeysuckle, \\
| silverberry, \\
| western sandcherry
\end{tabular}} \& \multirow[t]{8}{*}{\begin{tabular}{l}
|Rocky Mountain \\
| juniper, \\
| nannyberry, \\
| peashrub, silver \\
| buffaloberry, \\
| common chokecherry, \\
| eastern redcedar

} \& \multirow[t]{8}{*}{

|Black Hills spruce,

Scotch pine, ponderosa pine
\end{tabular}} \& \multirow[t]{8}{*}{|Red maple, green ash, Siouxland cottonwood} \& \multirow[t]{8}{*}{---}

\hline \& \& \& \& \& \&

\hline \& \& \& \& \& \&

\hline \& \& \& \& \& \&

\hline \& \& \& \& \& \&

\hline \& \& \& \& \& \&

\hline \& \& \& \& \& \&

\hline \& \& \& \& \& \&

\hline
\end{tabular}

Table 10.--Windbreaks and Environmental Plantings--Continued

Table 10.--Windbreaks and Environmental Plantings--Continued

| Map symbol
 and soil name | Pct. of map unit | Trees having predicted 20-year average height, in feet, of-- | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|
| | | | | | | |
| | | <8 | 8-15 | 16-25 | 26-35 | >35 |
| | | | \| | | | \| | |
| I59A: | | | | | | |
| Linveldt--------------- | 3 | \| Nanking cherry,
 Saskatoon
 \| serviceberry,
 \| indigobush, silver
 \| buffaloberry | | Black Hills spruce, Russian olive, Scotch pine, bur oak, common hackberry | $\begin{aligned} & \text { \| Imperial Carolina } \\ & \text { poplar, robusta } \\ & \text { cottonwood } \end{aligned}$ | ```Siberian elm, eastern cottonwood``` |
| | | | | | | |
| Smiley, depressional---\| | $3 \quad 1$ | | | --- \| | - -- | |
| | | | | | | |
| Strandquist | 1 | \|Siberian peashrub,
 common lilac,
 redosier dogwood,
 silverberry,
 western sandcherry | \|Buffaloberry, common| chokecherry, late lilac, eastern arborvitae, eastern| redcedar, nannyberry | Black Hills spruce, Russian olive, black ash, common hackberry, green ash | \|Laurel willow, | Siberian elm | \| Siouxland \mid cottonwood, imperial Carolina \mid poplar |
| | | | | | | |
| I60A: | | | | | | |
| Smiley, depressional----\| | 80 | \| --- | \| --- | | --- \| | \| --- | --- |
| | | | | | | |
| Smiley | 10 | \|Russian almond, golden currant, honeysuckle, indigobush, redosier dogwood | \|Amur maple, Arnold hawthorn, Siberian peashrub, common lilac, late lilac, American plum, common chokecherry, gray dogwood, nannyberry, silver buffaloberry | Black Hills spruce, Manchurian apricot, Manchurian crabapple, blue spruce | $\begin{aligned} & \text { \|Green ash, quaking } \\ & \mid \text { aspen, American } \\ & \text { \| basswood } \end{aligned}$ | $\begin{aligned} & \text { \| Siberian elm, laurel } \\ & \mid \text { willow, eastern } \\ & \mid \text { cottonwood, robusta } \\ & \text { cottonwood } \end{aligned}$ |
| Hamre------------------ | 5 | - -- | \| --- | | --- | \| --- | |
| \| | | | | | | |
| Kratka------------------ | 5 | \|American plum,
 Nanking cherry,
 Siberian peashrub,
 golden currant,
 redosier dogwood | \|Amur maple, Peking | cotoneaster, common|
 \| chokecherry,
 \| indigobush,
 \| nannyberry | Manchurian apricot, Russian olive, blue spruce, Black Hills spruce, common hackberry | $\begin{aligned} & \text { Green ash, laurel } \\ & \text { willow, Siberian } \\ & \text { elm } \end{aligned}$ | \| Siouxland \mid cottonwood, imperial Carolina \| poplar |
| I61A: | | | | | | |
| Strandquist------------\| | 70 | \|Siberian peashrub,
 common lilac,
 redosier dogwood,
 silverberry,
 western sandcherry | \|Buffaloberry, common| chokecherry, late lilac, eastern arborvitae, eastern| redcedar, nannyberry | Black Hills spruce, Russian olive, black ash, common hackberry, green ash | \|Laurel willow, | Siberian elm | $\begin{aligned} & \mid \text { Siouxland } \\ & \left\lvert\, \begin{array}{l} \text { cottonwood, } \\ \text { imperial Carolina } \\ \text { poplar } \end{array}\right. \end{aligned}$ |

Table 10.--Windbreaks and Environmental Plantings--Continued

Table 10.--Windbreaks and Environmental Plantings--Continued

| Map symbol and soil name | $\begin{aligned} & \text { Pct. of } \\ & \text { map unit } \end{aligned}$ | Trees having predicted 20-year average height, in feet, of-- | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | |
| | | <8 | 8-15 | 16-25 | 26-35 | >35 |
| | | | | | | \| |
| I62A: | | | | | | |
| | 5 | \|Peking cotoneaster, sandbar willow, Siberian peashrub, redosier dogwood, western sandcherry | Amur maple, common \| chokecherry | Black Hills spruce, Scotch pine, black ash, common hackberry | \|Green ash, laurel willow, silver maple | \| Siberian elm,\mid Siouxlandeottonwood,imperial Carolina$\|$poplar |
| | | | | | | |
| Karlsruhe--------- | 4 | \|Common lilac, silver buffaloberry, silverberry | ```Peashrub, common chokecherry, eastern arborvitae, eastern redcedar``` | \|Black Hills spruce, ponderosa pine, Siberian elm, green ash | \|Laurel willow, silver maple | \|Siouxland
 \| cottonwood,
 \| imperial Carolina
 \| poplar |
| | 3 | | --- | --- | | --- |
| Deerwood---------------\| | | | | | | |
| Hamar------------- | 3 | \|Nanking cherry,
 Siberian peashrub,
 redosier dogwood,
 silver buffaloberry | \mid American
 cranberrybush,
 common chokecherry
 common lilac | \|Siberian crabapple, Black Hills spruce, blue spruce, black ash, common hackberry | $\begin{aligned} & \text { \|Green ash, laurel } \\ & \text { \| willow } \end{aligned}$ | \|Eastern cottonwood, imperial Carolina poplar |
| | | | | | | |
| Strandquist | 2 | ```\|Siberian peashrub, | common lilac, | redosier dogwood, | silverberry, | western sandcherry``` | \|Buffaloberry, common chokecherry, late lilac, eastern arborvitae, eastern redcedar, nannyberry | \|Black Hills spruce, Russian olive, black ash, common hackberry, green ash | \|Laurel willow, Siberian elm | ```Siouxland cottonwood, imperial Carolina poplar``` |
| | 1 | \|Sandbar willow,common lilac,\| cotoneaster, silver\| buffaloberry | ```\|Siberian peashrub, common chokecherry, late lilac, nannyberry``` | \|Black Hills spruce, Russian olive, eastern arborvitae, eastern redcedar, Scotch pine, common hackberry | \|Siberian elm,
 Siouxland
 cottonwood, green
 ash, laurel willow | --- |
| | | | | | | |
| | | | | | | |
| Wyandotte | 1 \| | \|Siberian peashrub, silverberry, western sandcherry | ```\|Common chokecherry, ``` | \|Black Hills spruce, eastern arborvitae, ponderosa pine | Laurel willow, Siberian elm, eastern cottonwood | --- |
| I63A: | | | | | | |
| Thiefriver- | 70 | $\begin{aligned} & \text { \|Siberian peashrub, } \\ & \mid \text { common lilac, } \\ & \mid \text { redosier dogwood } \end{aligned}$ | ```\|Common chokecherry, nannyberry, eastern arborvitae``` | Black Hills spruce, black ash, green ash | Laurel willow, Siberian elm | ```\|Eastern cottonwood, imperial Carolina poplar``` |

Table 10.--Windbreaks and Environmental Plantings--Continued

| Map symbol and soil name | Pct. of map unit | Trees having predicted 20-year average height, in feet, of-- | | | | | | |
|---|---|---|---|---|---|---|---|---|
| | | \| < | 8-15 | 16-25 | 26-35 | >35 |
| | | | | | | |
| | | | | | | |
| I63A: | | | | | | |
| Espelie- | 10 | $\begin{aligned} & \text { \| Nanking cherry, } \\ & \text { \| golden currant, } \\ & \text { \| redosier dogwood } \end{aligned}$ | \|Amur maple, Siberian peashrub, common lilac, American plum, Manchurian apricot, common chokecherry | Manchurian
 crabapple, black
 ash, blue spruce,
 common hackberry | \| Siberian elm, laurel willow | Carolina poplar, eastern cottonwood |
| | | | | | | |
| Foxlake- | 7 | \|Nanking cherry,
 Russian almond,
 Saskatoon
 serviceberry,
 Siberian peashrub,
 golden currant,
 redosier dogwood,
 silver buffaloberry | $\begin{aligned} & \text { Common chokecherry, } \\ & \text { common lilac, } \\ & \text { eastern arborvitae } \end{aligned}$ | \|Black Hills spruce, blue spruce, common| hackberry, green ash | \|Laurel willow, Siberian elm | Imperial Carolina poplar, eastern cottonwood |
| | | | | | | |
| Huot- | 5 | \| Indigobush, sargent | crabapple, | silverberry | \|Siberian peashrub, common chokecherry, common lilac, eastern arborvitae, eastern redcedar | \|Ponderosa pine, black ash, bur oak | $\begin{aligned} & \text { \|Common hackberry, } \\ & \text { \| green ash } \end{aligned}$ | $\begin{aligned} & \mid \text { Siberian elm, } \\ & \mid \text { eastern cottonwood } \end{aligned}$ |
| Clearwater, depressional\| | 3 | \| --- | - | | --- | |
| | | | | | | |
| Rosewood--------------- \| | 3 | \|Siberian peashrub,
 common lilac,
 indigobush,
 redosier dogwood | \|Common chokecherry,
 nannyberry, silver
 buffaloberry,
 eastern arborvitae | \|Black Hills spruce,
 black ash, common
 hackberry, green ash | \|Laurel willow, Siberian elm | \|Siouxland
 \| cottonwood,
 \| imperial Carolina
 \| poplar |
| Ulen- | 1 | \|Amur honeysuckle, indigobush | \|Peking cotoneaster, Siberian peashrub, common chokecherry, silver buffaloberry, eastern redcedar | \|Black Hills spruce,
 bur oak, ponderosa
 pine, common
 hackberry | $\begin{aligned} & \text { \|Green ash, laurel } \\ & \text { \| willow } \end{aligned}$ | \|Carolina poplar, \mid Siberian elm, \mid Siouxland \mid cottonwood |
| Wyandotte--------------\| | 1 | \|Siberian peashrub, silverberry, western sandcherry | \|Common chokecherry,
 common lilac,
 silver
 buffaloberry,
 eastern redcedar | \|Black Hills spruce, eastern arborvitae, ponderosa pine | \|Laurel willow, Siberian elm, eastern cottonwood | --- |

Table 10.--Windbreaks and Environmental Plantings--Continued

| Map symbol and soil name | Pct. of map unit | Trees having predicted 20-year average height, in feet, of-- | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|
| | | | | | | |
| | | <8 | 8-15 | 16-25 | 26-35 | >35 |
| | | | | | | |
| 164A: | | | | | | |
| Ulen | 70 | $\begin{aligned} & \mid \text { Amur honeysuckle, } \\ & \mid \text { indigobush } \end{aligned}$ | \mid Peking cotoneaster, Black Hills spruce,
 \mid Siberian peashrub, bur oak, ponderosa
 \| common chokecherry, pine, common
 \| silver hackberry
 \mid buffaloberry,
 $\|$eastern redcedar | | $\begin{aligned} & \text { \|Green ash, laurel } \\ & \text { \| willow } \end{aligned}$ | \|Carolina poplar,
 Siberian elm,
 Siouxland
 cottonwood |
| | | | | | |
| Rosewood | 10 | \mid Siberian peashrub, \mid common lilac, \mid indigobush, \mid redosier dogwood | \|Common chokecherry,
 nannyberry, silver
 buffaloberry,
 eastern arborvitae | \|Black Hills spruce, black ash, common hackberry, green ash | | Laurel willow,
 Siberian elm | \|Siouxland\mid cottonwood,imperial Carolina\| poplar |
| Flaming----------- | | | ```\|ocky Mountain juniper, nannyberry, peashrub, silver buffaloberry, common chokecherry, |eastern redcedar``` | | | |
| | 8 | \mid Peking cotoneaster,
 \mid blueleaf
 \mid honeysuckle,
 \mid silverberry,
 \mid western sandcherry
 \mid | | \|Black Hills spruce, Scotch pine, ponderosa pine | Red maple, green ash, Siouxland cottonwood | --- | |
| | | | | | | | |
| Karlsruhe- | 5 | | ```Peashrub, common chokecherry, eastern arborvitae, eastern redcedar``` | Black Hills spruce, ponderosa pine, Siberian elm, green\| ash | \|Laurel willow, silver maple | \|Siouxland\mid cottonwood,imperial Carolina\| poplar | |
| | | | | | | | |
| Radium- | 3 | ```\|Sandbar willow, common lilac, cotoneaster, silver buffaloberry``` | \|Siberian peashrub, common chokecherry,
 late lilac, nannyberry | \|Black Hills spruce, Russian olive, eastern arborvitae, eastern redcedar, Scotch pine, common| hackberry | \|Siberian elm,
 Siouxland
 cottonwood, green
 ash, laurel willow | --- | |
| | | | | | | | |
| Strathcona- | 2 | \|Siberian peashrub,
 common lilac,
 redosier dogwood,
 western sandcherry | \|Common chokecherry,
 silver
 buffaloberry,
 eastern arborvitae | \|Black Hills spruce, common hackberry, green ash | \|Laurel willow,
 Siberian elm | \mid Siouxland \mid cottonwood, \mid imperial Carolina \mid poplar | |
| Thiefriver | 2 | \|Siberian peashrub, common lilac, redosier dogwood | \|Common chokecherry, nannyberry, eastern| arborvitae | \|Black Hills spruce, | black ash, green ash | \|Laurel willow, Siberian elm | $\begin{aligned} & \text { \|Eastern cottonwood, } \\ & \mid \text { imperial Carolina } \\ & \text { \| poplar } \end{aligned}$ | |

Table 10.--Windbreaks and Environmental Plantings--Continued

| Map symbol and soil name | Pct. of map unit | Trees having predicted 20-year average height, in feet, of-- | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|
| | | | | | | |
| | | <8 | 8-15 | 16-25 | 26-35 | >35 |
| | | | | | | |
| 165A: | | | | | | |
| Ulen-------------- | 70 | \|Amur honeysuckle, indigobush, silver | \| Peking cotoneaster, | \|Black Hills spruce, | | Siberian elm, |
| | | | | | ash | \| Siouxland |
| | | buffaloberry | \| common chokecherry, | \| pine, bur oak, | | cottonwood |
| | | | silver | \| common hackberry | | |
| | | | \| buffaloberry, | | | |
| | | | eastern arborvitae, | | | |
| | | | eastern redcedar | | | |
| | | | | | | |
| Rosewood---------- | 10 | \|Siberian peashrub, common lilac, | \|Common chokecherry, | \|Black Hills spruce,
 black ash, common | \|Laurel willow, Siberian elm | Siouxland |
| | | | nannyberry, silver | | | \| cottonwood, |
| | | \| indigobush, | \| buffaloberry, | hackberry, green | | imperial Carolina |
| | | redosier dogwood | eastern arborvitae | ash | | poplar |
| | | | | | | |
| Flaming----------- | 6 | \|Peking cotoneaster, blueleaf | \|Rocky Mountain\| juniper, | \|Black Hills spruce, | \|Red maple, green ash, Siouxland | --- |
| | | | | Scotch pine, | | |
| | | \| honeysuckle, | \| nannyberry, | ponderosa pine | ash, Siouxland cottonwood | |
| | | $\begin{aligned} & \text { silverberry, } \\ & \text { western sandcherry } \end{aligned}$ | peashrub, silver | | | |
| | | | \| buffaloberry, | | | |
| | | western sandcherry | common chokecherry, \| | | | |
| | | | eastern redcedar | | | |
| | | | | | | |
| Poppleton--------- | 4 | \| Peking cotoneaster, | | \| Rocky Mountain | \| Black Hills spruce, | \|Red maple, green ash| | Siouxland |
| | | \| blueleaf | \| juniper, Siberian | \| Scotch pine | | cottonwood, |
| | | honeysuckle, silver\| | peashrub, late | | | imperial Carolina |
| | | \| buffaloberry, | lilac, common | | | poplar |
| | | silverberry, | chokecherry, | | | |
| | | western sandcherry | eastern redcedar | | | |
| | | | | | | |
| Karlsruhe- | 3 | | \|Peashrub, common chokecherry, | \|Black Hills spruce, ponderosa pine, | \|Laurel willow, silver maple | Siouxland cottonwood, |
| | | buffaloberry, | | | | |
| | | | eastern redcedar | \| ash | | | poplar |
| | | | | | | |
| Radium------------ | 3 | \|Sandbar willow,
 \mid common lilac,
 cotoneaster, silver
 \mid buffaloberry | \|Siberian peashrub, common chokecherry, | \| Black Hills spruce, | | --- |
| | | | | Russian olive, | $\begin{aligned} & \text { \|Siberian elm, } \\ & \text { \| Siouxland } \end{aligned}$ | |
| | | | late lilac, | eastern arborvitae, | cottonwood, green | |
| | | | nannyberry | eastern redcedar, \| | ash, laurel willow | |
| | | | | Scotch pine, common\| | | |
| | | | | hackberry | | |
| | | | | | | |
| Strathcona- | 2 | \|Siberian peashrub, common lilac, redosier dogwood, western sandcherry | ```\|ommon chokecherry, | silver | buffaloberry, | eastern arborvitae``` | $\begin{aligned} & \text { \|Black Hills spruce, } \\ & \mid \text { common hackberry, } \\ & \text { green ash } \end{aligned}$ | \|Laurel willow, Siberian elm | ```Siouxland cottonwood, imperial Carolina poplar``` |
| | | | | | | |
| | | | | | | |
| | | | | | | |

Table 10.--Windbreaks and Environmental Plantings--Continued

| Map symbol and soil name | $\begin{aligned} & \text { Pct. of } \\ & \text { map unit } \end{aligned}$ | Trees having predicted 20-year average height, in feet, of-- | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|
| | | <8 | $8-15$ | \| 16-25 | | 26-35 | >35 |
| | | | | | | |
| | | | \mid \| | | | |
| 165A: | | | | | | |
| Thiefriver- | 2 | \|Siberian peashrub, common lilac, redosier dogwood | $\begin{aligned} & \text { \|Common chokecherry, } \\ & \mid \text { nannyberry, eastern } \\ & \text { \| arborvitae } \end{aligned}$ | \|Black Hills spruce,
 black ash, green
 ash | \|Laurel willow,
 \| Siberian elm | $\begin{aligned} & \text { \|Eastern cottonwood, } \\ & \mid \text { imperial Carolina } \\ & \text { \| poplar } \end{aligned}$ |
| | | | | | | |
| 166A: | | | | | | |
| Vallers---------------- \| | 75 | \|Russian almond, sandbar willow, Siberian peashrub, indigobush | $\begin{aligned} & \text { \| Common chokecherry, } \\ & \text { \| common lilac, } \\ & \text { \| eastern redcedar } \end{aligned}$ | \|Black Hills spruce,
 \| blue spruce, green
 \| ash, common
 \| hackberry | \| Laurel willow, quaking aspen | $\begin{aligned} & \text { \| Imperial Carolina } \\ & \text { poplar, eastern } \\ & \text { \| cottonwood } \end{aligned}$ |
| | | | | | | |
| Vallers, very cobbly--- | 7 | \|Russian almond, sandbar willow, Siberian peashrub, indigobush | $\begin{aligned} & \text { \| Common chokecherry, } \\ & \text { common lilac, } \\ & \text { \| eastern redcedar } \end{aligned}$ | \|Black Hills spruce,
 \| blue spruce, green
 \| ash, common
 \| hackberry | \|Laurel willow, quaking aspen | $\begin{aligned} & \text { \|Imperial Carolina } \\ & \text { poplar, eastern } \\ & \text { cottonwood } \end{aligned}$ |
| | | | | | | |
| Hamerly | 6 | \|Russian almond,
 Saskatoon
 serviceberry,
 blueleaf
 honeysuckle,
 indigobush | \|Arnold hawthorn,\mid Siberian peashrub,\mid common lilac,\mid silver$\|$buffaloberry,
 \mid
 eastern redcedar | \|Blue spruce, bur | oak, ponderosa pine \mid | $\begin{aligned} & \text { \| Common hackberry, } \\ & \text { \| green ash, laurel } \\ & \text { willow } \end{aligned}$ | $\begin{aligned} & \text { \|Siberian elm, } \\ & \mid \text { eastern cottonwood } \end{aligned}$ |
| Grimstad- | 3 | | | | | |
| Grimstad- | 3 | honeysuckle,
 indigobush,
 silverberry | Arnold hawthorn,
 Siberian peashrub, common chokecherry, late lilac, silver buffaloberry, eastern redcedar | $\|$black ash,
 $\left\|\begin{array}{l}\text { ponderosa pine, bur } \\ \text { oak }\end{array}\right\|$ | green ash, laurel
 willow, red maple | $\begin{aligned} & \text { \| imperial Carolina } \\ & \text { \| poplar } \end{aligned}$ |
| Mavie- | 3 | | | | | |
| Mavie- | 3 | Siberian peashrub,
 common lilac,
 indigobush | ```\| late lilac, eastern| | arborvitae, eastern| redcedar``` | ```\| Hills spruce, common hackberry, | green ash``` | $\|$Siberian elm,
 \mid Siouxland
 cottonwood | |
| Roliss, depressional---- | 3 | - | --- | --- | --- | --- |
| | | | | | | |
| Strathcona-------------\| | 3 | \|Siberian peashrub, common lilac, redosier dogwood, western sandcherry | $\begin{aligned} & \text { \|Common chokecherry, } \\ & \text { \| silver } \\ & \text { \| buffaloberry, } \\ & \text { \| eastern arborvitae } \end{aligned}$ | \|Black Hills spruce, common hackberry, green ash | \|Laurel willow, Siberian elm | \|Siouxland \mid cottonwood, imperial Carolina \| poplar |

Table 10.--Windbreaks and Environmental Plantings--Continued

Table 10.--Windbreaks and Environmental Plantings--Continued

Table 10.--Windbreaks and Environmental Plantings--Continued

Table 10.--Windbreaks and Environmental Plantings--Continued

| Map symbol and soil name | $\begin{aligned} & \text { Pct. of } \\ & \text { map unit } \end{aligned}$ | Trees having predicted 20-year average height, in feet, of-- | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|
| | | | | | | |
| | | <8 | 8-15 | 16-25 | 26-35 | >35 |
| | | | | | | |
| I70A: | | | | | | |
| Kratka | 10 | American plum, Nanking cherry, Siberian peashrub, golden currant, redosier dogwood | \|Amur maple, Peking cotoneaster, common|
 chokecherry,
 indigobush,
 nannyberry | \| Manchurian apricot, Russian olive, blue| spruce, Black Hills| spruce, common hackberry | \|Green ash, laurel willow, Siberian elm | \|Siouxland
 \| cottonwood,
 \| imperial Carolina
 \| poplar |
| Roliss------------------ | 6 | \|Sandbar willow, Siberian peashrub, indigobush, redosier dogwood | $\begin{aligned} & \text { \|Common chokecherry, } \\ & \mid \text { common lilac, } \\ & \text { cotoneaster, } \\ & \text { eastern arborvitae } \end{aligned}$ | \|Black Hills spruce,
 blue spruce, bur oak, common hackberry, green ash | Laurel willow, Siberian elm | \|Imperial Carolina poplar, eastern cottonwood |
| | | | | | | |
| Grimstad- | 5 | \|Blueleaf honeysuckle, indigobush, silverberry | \|Arnold hawthorn, Siberian peashrub, common chokecherry, late lilac, silver buffaloberry, eastern redcedar | \mid Black Hills spruce,
 $\|$black ash,
 ponderosa pine, bur
 oak | Common hackberry, green ash, laurel willow, red maple | \|Eastern cottonwood, imperial Carolina poplar |
| Mavie- | $3 \quad 1$ | \|Sandbar willow, Siberian peashrub, common lilac, indigobush | \|Common chokecherry,
 late lilac, eastern
 arborvitae, eastern
 redcedar | ```\|Black ash, Black Hills spruce, common hackberry, green ash``` | \|Laurel willow,
 \| Siberian elm,
 \| Siouxland
 \| cottonwood | --- |
| Rosewood---------------- \| | 3 | \|Siberian peashrub, common lilac, indigobush, redosier dogwood | \|Common chokecherry, nannyberry, silver buffaloberry, eastern arborvitae | \|Black Hills spruce,
 \| black ash, common
 \| hackberry, green
 \| ash | \|Laurel willow,
 Siberian elm | ```Siouxland cottonwood, imperial Carolina poplar``` |
| Strathcona, depressional | 3 | --- | --- | --- \| | --- | --- |
| | | | | | | |

Table 11.--Hybrid Poplar Management Considerations
(See text for a description of the considerations listed in this table)

| Map symbol
 and
 soil name | Pct. of map unit | Hybrid poplar management considerations |
| :---: | :---: | :---: |
| | | |
| B109A: | | |
| Bowstring---------- | 45 | High content of organic matter |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | |
| Fluvaquents--------- | 40 | Limited available water capacity |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | |
| Hapludalfs---------- | 5 | Slope |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Water erosion |
| | | Wind erosion |
| | | |
| Seelyeville-------- | 5 | High content of organic matter |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Water- | 5 | Not applicable |
| | | |
| B200A: | | |
| Garnes------------- | 70 | Lime content |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Chilgren---------- | 13 | Lime content |
| | | Limited content of organic matter |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Eckvoll------------- | 5 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Garnes, very stony-- | 5 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Water erosion |
| | | |
| Grygla------------- | 4 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Pelan-------------- | 3 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |

Table 11.--Hybrid Poplar Management Considerations--Continued

| $\begin{aligned} & \text { Map symbol } \\ & \text { and } \\ & \text { soil name } \end{aligned}$ | Pct. of map unit | Hybrid poplar management considerations |
| :---: | :---: | :---: |
| | | |
| B201A: | | |
| Chilgren-------------------- \| | 75 | Lime content |
| | | Limited content of organic matter |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Garnes----------------------- \| | 9 | Lime content |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Grygla---------------------- \| | 5 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Grygla, depressional---------\| | 5 | High content of organic matter |
| | | Limited available water capacity |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Hamre----------------------- \| | 5 | High content of organic matter |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Pelan----------------------- ${ }^{\text {\| }}$ | 1 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| B202A: | | |
| Cathro--------------------- \| | 80 | High content of organic matter |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Hamre----------------------- \| | 8 | High content of organic matter |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Chilgren-------------------- \| | 3 | Lime content |
| | | Limited content of organic matter |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |

Table 11.--Hybrid Poplar Management Considerations--Continued

Table 11.--Hybrid Poplar Management Considerations--Continued

| Map symbol and soil name | Pct. of map unit | Hybrid poplar management considerations |
| :---: | :---: | :---: |
| B204A: | | |
| Roliss---------------------- \| | 75 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Grygla----------------------- \| | 8 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Chilgren--------------------- | 5 | Lime content |
| | | Limited content of organic matter |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Garnes---------------------- \| | 5 | Lime content |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Roliss, depressional--------\| | 5 | High content of organic matter |
| | | Lime content |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | |
| Hamre---------------------- \| | 2 | High content of organic matter |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| B205A: | | |
| Berner---------------------- \| | 80 | High content of organic matter |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Northwood------------------- \| | 7 | High content of organic matter |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Grygla----------------------- \| | 5 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |

Table 11.--Hybrid Poplar Management Considerations--Continued

Table 11.--Hybrid Poplar Management Considerations--Continued

| Map symbol and soil name | Pct. of map unit | Hybrid poplar management considerations |
| :---: | :---: | :---: |
| I1A: | | |
| Augsburg-------------------- \| | 75 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Borup----------------------- \| | 10 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Foxlake-------------------- \| | 5 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Restricted permeability |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Augsburg, depressional-------\| | 3 | High content of organic matter |
| | | Lime content |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Wheatville------------------\| | 3 | Lime content |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| Glyndon--------------------- \| | 2 | Lime content |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| Espelie--------------------- \| | 1 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Hattie---------------------\| | 1 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Restricted permeability |
| | | |
| I2A: | | |
| Augsburg------------------- \| | 75 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Borup----------------------- \| | 10 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |

Table 11.--Hybrid Poplar Management Considerations--Continued

Table 11.--Hybrid Poplar Management Considerations--Continued

| Map symbol and soil name | Pct. of map unit | Hybrid poplar management considerations |
| :---: | :---: | :---: |
| | | |
| I3A: | | |
| Strathcona------------------ \| | 3 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Seelyeville----------------- \| | 2 | High content of organic matter |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| I4A: | | |
| Berner---------------------- \| | 30 | High content of organic matter |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Rosewood, depressional------\| | 30 | High content of organic matter |
| | | Lime content |
| | | Limited available water capacity |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Strathcona, depressional----- | 30 | High content of organic matter |
| | | Lime content |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Rosewood-------------------- \| | 4 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wind erosion |
| | | |
| Deerwood--------------------- \| | 2 | High content of organic matter |
| | | Lime content |
| | | Limited available water capacity |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Mavie---------------------- \| | 2 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |

Table 11.--Hybrid Poplar Management Considerations--Continued

| Map symbol and soil name | Pct. of map unit | Hybrid poplar management considerations |
| :---: | :---: | :---: |
| I4A: | | |
| Strathcona------------------\| | 2 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| I5A: | | |
| Borup----------------------- \| | 75 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Glyndon--------------------- \| | 9 | Lime content |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Rosewood--------------------- \| | 8 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wind erosion |
| | | |
| Augsburg--------------------\| | 5 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Augsburg, depressional-------\| | 3 | High content of organic matter |
| | | Lime content |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| I6A: | | |
| Borup--------------------- | 75 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Glyndon--------------------- \| | 9 | Lime content |
| | | Potential for ground-water contamination Wind erosion |
| | | |
| Rosewood-------------------- \| | 8 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wind erosion |
| | | |
| Augsburg------------------- \| | 5 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |

Table 11.--Hybrid Poplar Management Considerations--Continued

| Map symbol and soil name | Pct. of map unit | Hybrid poplar management considerations |
| :---: | :---: | :---: |
| I6A: | | |
| Augsburg, depressional------- \| | 3 | High content of organic matter |
| | | Lime content |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| 17A: | | |
| Bowstring------------------- \| | 45 | High content of organic matter |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | |
| Fluvaquents----------------- \| | 45 | Limited available water capacity |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | |
| Hapludolls------------------ \| | 5 | Slope |
| | | Lime content |
| | | Potential for surface-water contamination |
| | | Water erosion |
| | | |
| Water------------------------ \| | 5 | Not applicable |
| | | |
| I8A: | | |
| Cathro---------------------- \| | 80 | High content of organic matter |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Hamre----------------------- \| | 8 | High content of organic matter |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Northwood------------------- \| | 3 | High content of organic matter |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Roliss--------------------- \| | 3 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Berner--------------------- \| | 2 | High content of organic matter |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |

Table 11.--Hybrid Poplar Management Considerations--Continued

Table 11.--Hybrid Poplar Management Considerations--Continued

| $\begin{aligned} & \text { Map symbol } \\ & \text { and } \\ & \text { soil name } \end{aligned}$ | Pct. of map unit | Hybrid poplar management considerations |
| :---: | :---: | :---: |
| | | |
| I9A: | | |
| Huot------------------------ \| | 1 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| I10A: | | |
| Clearwater, depressional----\| | 85 | High content of organic matter |
| | | Lime content |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Restricted permeability |
| | | Wet soil moisture status |
| | | |
| Clearwater------------------ \| | 9 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Restricted permeability |
| | | Wet soil moisture status |
| | | |
| Augsburg, depressional-------\| | 3 | High content of organic matter |
| | | Lime content |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Reis----------------------- \| | 2 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Restricted permeability |
| | | Wet soil moisture status |
| | | |
| Espelie--------------------- \| | 1 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| I11A: | | |
| Deerwood-------------------- \| | 85 | High content of organic matter |
| | | Lime content |
| | | Limited available water capacity |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Rosewood-------------------- \| | 6 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wind erosion |
| | | |

Table 11.--Hybrid Poplar Management Considerations--Continued

| Map symbol and soil name | Pct. of map unit | Hybrid poplar management considerations |
| :---: | :---: | :---: |
| I11A: | | |
| Markey------------- | 3 | High content of organic matter |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Strathcona--------- | 2 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Syrene------------- | 2 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Venlo-------------- | 2 | High content of organic matter |
| | | Limited available water capacity |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| I12A: | | |
| Eckvoll------------ | 70 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Kratka------------- | 8 | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Smiley------------ | 7 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | |
| Linveldt----------- | 5 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Reiner------------- | 5 | Lime content |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Foldahl------------ | 2 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Pelan-------------- | 2 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |

Table 11.--Hybrid Poplar Management Considerations--Continued

| Map symbol and soil name | Pct. of map unit | Hybrid poplar management considerations |
| :---: | :---: | :---: |
| I12A: | | |
| Poppleton------------------- \| | 1 | Limited available water capacity Potential for ground-water contamination Wind erosion |
| | | |
| I13A: | | |
| Espelie--------------------- \| | 75 | Limited available water capacity
 Potential for ground-water contamination
 Potential for surface-water contamination
 Wet soil moisture status
 Wind erosion |
| | | Lime content |
| Foxlake--------------------- \| | 8 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Restricted permeability |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Hilaire--------------------- \| | 7 | Limited available water capacity |
| | | Wind erosion |
| Clearwater, depressional-----\| | 5 | High content of organic matter |
| | | Lime content |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Restricted permeability |
| | | Wet soil moisture status |
| Thiefriver------------------\| | 5 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| I14B: | | |
| Fairdale-------------------- \| | 85 | Slope |
| | | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Water erosion |
| | | Wind erosion |
| | | |
| Fluvaquents----------------- \| | 6 | Limited available water capacity |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| Hapludolls------------------ \| | 5 | Slope |
| | | Lime content |
| | | Potential for surface-water contamination |
| | | Water erosion |
| | | |
| Hapludalfs------------------ \| | 2 | Slope |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Water erosion |
| | | Wind erosion |
| | | |

Table 11.--Hybrid Poplar Management Considerations--Continued

| Map symbol and soil name | Pct. of map unit | Hybrid poplar management considerations |
| :---: | :---: | :---: |
| I14B : | | |
| Zell--------------- | 2 | Slope |
| | | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Water erosion |
| | | Wind erosion |
| | | |
| I14D: | | |
| Fairdale----------- | 85 | Slope |
| | | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Water erosion |
| | | Wind erosion |
| | | |
| Fluvaquents-------- | 6 | Limited available water capacity |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | |
| Hapludolls | 4 | Slope |
| | | Lime content |
| | | Potential for surface-water contamination |
| | | Water erosion |
| | | |
| Zell--------------- | 3 | Slope |
| | | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Water erosion |
| | | Wind erosion |
| | | |
| Hapludalfs--------- | 2 | Slope |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Water erosion |
| | | Wind erosion |
| | | |
| I15A: | | |
| Flaming------------ | 70 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| Garborg------------ | 10 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| Hamar--------------- | 5 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wind erosion |
| | | |
| Ulen--------------- | 5 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Poppleton---------- | 3 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |

Table 11.--Hybrid Poplar Management Considerations--Continued

| Map symbol and soil name | Pct. of map unit | Hybrid poplar management considerations |
| :---: | :---: | :---: |
| I15A: | | |
| Sandberg----------- | 3 | Slope |
| | | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Foldahl------------ | 2 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Radium------------- | 2 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| I16F: | | |
| Fluvaquents--------- | 55 | Limited available water capacity |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | |
| Hapludolls--------- | 25 | Slope |
| | | Lime content |
| | | Potential for surface-water contamination |
| | | Water erosion |
| | | |
| Hapludalfs--------- | 7 | Slope |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Water erosion |
| | | Wind erosion |
| | | |
| Fairdale----------- | 5 | Slope |
| | | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Water erosion |
| | | Wind erosion |
| | | |
| Water---------------Bowstring----------- | 5 | Not applicable |
| | | |
| | 2 | High content of organic matter |
| Bowstring---------- | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | |
| Rauville----------- | 1 | Lime content |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| I17A: | | |
| Foldahl----------- | 75 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Kratka------------- | 10 | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |

Table 11.--Hybrid Poplar Management Considerations--Continued

| Map symbol and soil name | Pct. of map unit | Hybrid poplar management considerations |
| :---: | :---: | :---: |
| I17A: | | |
| Roliss------------- | 5 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Flaming------------ | 4 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Grimstad----------- | 2 | Lime content |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Linveldt----------- | 2 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Eckvoll------------ | 1 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Strathcona--------- | 1 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| I18A: | | |
| Foldahl------------ | 75 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Kratka------------- | 10 | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Roliss------------- | 5 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Flaming------------ | 4 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Grimstad----------- | 2 | Lime content |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Linveldt----------- | 2 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Eckvoll------------- | 1 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |

Table 11.--Hybrid Poplar Management Considerations--Continued

| Map symbol and soil name | Pct. of map unit | Hybrid poplar management considerations |
| :---: | :---: | :---: |
| | | |
| I18A: | | |
| Strathcona--------- | 1 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| I19A: | | |
| Foxhome------------ | 65 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Kittson------------ | 10 | Lime content |
| | | Potential for ground-water contamination |
| | | |
| Strandquist-------- | 10 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Foldahl------------ | 5 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Grimstad----------- | 5 | Lime content |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Roliss------------ | 3 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Mavie-------------- | 2 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| I20A: | | |
| Foxlake----------- | 75 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Restricted permeability |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Clearwater--------- | 5 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Restricted permeability |
| | | Wet soil moisture status |
| | | |

Table 11.--Hybrid Poplar Management Considerations--Continued

| Map symbol and soil name | Pct. of map unit | Hybrid poplar management considerations |
| :---: | :---: | :---: |
| I20A: | | |
| Foxlake, very cobbly---------\| | 5 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Restricted permeability |
| | | Wet soil moisture status |
| | | Wind erosion |
| Augsburg-------------------- \| | 3 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Clearwater, depressional-----\| | 3 | High content of organic matter |
| | | Lime content |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Restricted permeability |
| | | Wet soil moisture status |
| | | |
| Espelie---------------------\| | 3 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Hilaire---------------------\| | 2 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| Reis------------------------ \| | 2 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Restricted permeability |
| | | Wet soil moisture status |
| | | |
| Wheatville------------------\| | 2 | Lime content |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| I21A: | | |
| Fram---------------------- \| | 85 | Lime content |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Hedman---------------------- \| | 12 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Strathcona------------------ \| | 2 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Foxhome-------------------- \| | 1 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |

Table 11.--Hybrid Poplar Management Considerations--Continued

| Map symbol
 and
 soil name | Pct. of map unit | Hybrid poplar management considerations |
| :---: | :---: | :---: |
| | | |
| I22A: | | |
| Glyndon------------ | 75 | Lime content |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Borup-------------- | 10 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Augsburg----------- | 5 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Ulen-------------- | 5 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Wheatville---------- | 3 | Lime content |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Flaming------------ | 2 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| I23A: | | |
| Glyndon----------- | 75 | Lime content |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Borup-------------- | 10 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Augsburg----------- | 5 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Ulen--------------- | 5 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Wheatville---------- | 3 | Lime content |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Flaming------------ | 2 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |

Table 11.--Hybrid Poplar Management Considerations--Continued

| Map symbol and soil name | Pct. of map unit | Hybrid poplar management considerations |
| :---: | :---: | :---: |
| I24A: | | |
| Grimstad----------- | 70 | Lime content |
| | | Potential for ground-water contamination Wind erosion |
| | | |
| Strathcona--------- | 12 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Foldahl------------ | 5 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Hamerly------------ | 5 | Lime content |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Foxhome------------ | 2 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| Karlsruhe----------- | | |
| | 2 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Mavie-------------- | 2 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Ulen--------------- | 2 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| I25A: | | |
| Hamar--------------- | 75 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wind erosion |
| | | |
| Garborg------------ | 10 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Rosewood----------- | 7 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wind erosion |
| | | |
| Venlo--------------- | 3 | High content of organic matter |
| | | Limited available water capacity |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |

Table 11.--Hybrid Poplar Management Considerations--Continued

| Map symbol and soil name | Pct. of map unit | Hybrid poplar management considerations |
| :---: | :---: | :---: |
| 125A: | | |
| Flaming---------------------- \| | 2 | Limited available water capacity Potential for ground-water contamination Wind erosion |
| | | |
| Hangaard-------------------- \| | 2 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Kratka-----------------------\| | 1 | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| I26A: | | |
| Hamerly--------------------- \| | 75 | Lime content |
| | | Potential for ground-water contamination Wind erosion |
| | | |
| Vallers---------------------- \| | 12 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Foxhome------------------- \| | 3 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| Grimstad-------------------- \| | 3 | Lime content |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Hamerly, very cobbly---------\| | 3 | Lime content |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Strathcona------------------ \| | 3 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Roliss, depressional--------\| | 1 | High content of organic matter |
| | | Lime content |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | |
| I27A: | | |
| Hamre----------------------- \| | 80 | High content of organic matter |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |

Table 11.--Hybrid Poplar Management Considerations--Continued

| Map symbol and soil name | Pct. of map unit | Hybrid poplar management considerations |
| :---: | :---: | :---: |
| 127A: | | |
| Northwood---------- | 5 | High content of organic matter |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Roliss------------- | 5 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Smiley------------- | 5 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | |
| Cathro-------------- | 3 | High content of organic matter |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Kratka------------- | 2 | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| I28A : | | |
| Hangaard----------- | 75 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Hamar-------------- | 7 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wind erosion |
| | | |
| Syrene------------- | 7 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Karlsruhe---------- | 3 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Rosewood- | 3 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wind erosion |
| | | |

Table 11.--Hybrid Poplar Management Considerations--Continued

| Map symbol
 and
 soil name | Pct. of map unit | Hybrid poplar management considerations |
| :---: | :---: | :---: |
| | | |
| I28A: | | |
| Strandquist-------- | 3 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Deerwood----------- | 2 | High content of organic matter |
| | | Lime content |
| | | Limited available water capacity |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| I29A: | | |
| Hattie------------- | 75 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Restricted permeability |
| | | |
| Clearwater--------- | 12 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Restricted permeability |
| | | Wet soil moisture status |
| | | |
| Reis--------------- | 6 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Restricted permeability |
| | | Wet soil moisture status |
| | | |
| Hattie, very cobbly- | 5 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Restricted permeability |
| | | |
| Hilaire------------ | 2 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| I29D: | | |
| Hattie------------- | 85 | Slope |
| | | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Restricted permeability |
| | | Water erosion |
| | | |
| Clearwater--------- | 6 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Restricted permeability |
| | | Wet soil moisture status |
| | | |

Table 11.--Hybrid Poplar Management Considerations--Continued

| Map symbol and soil name | Pct. of map unit | Hybrid poplar management considerations |
| :---: | :---: | :---: |
| I29D: | | |
| Hattie, level | 5 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Restricted permeability |
| | | |
| Boyerlake---------- | 4 | Slope |
| | | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Restricted permeability |
| | | Water erosion |
| | | |
| I30A: | | |
| Hedman-------------- | 85 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Fram--------------- | 5 | Lime content |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Strathcona--------- | 5 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Haug---------------- | 3 | High content of organic matter |
| | | Lime content |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Strandquist-------- | 2 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| I31A: | | |
| Hedman------------- | 50 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Fram--------------- | 40 | Lime content |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Strathcona--------- | 5 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |

Table 11.--Hybrid Poplar Management Considerations--Continued

| $\begin{gathered} \text { Map symbol } \\ \text { and } \\ \text { soil name } \end{gathered}$ | Pct. of map unit | Hybrid poplar management considerations |
| :---: | :---: | :---: |
| 131A: | | |
| Haug--------------- | 3 | High content of organic matter |
| | | Lime content |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Strandquist-------- | 2 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| I32A: | | |
| Hilaire------------ | 75 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Espelie------------ | 12 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Huot---------------- | 5 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Flaming------------ | 2 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Foxlake------------ | 2 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Restricted permeability |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Wheatville---------- | 2 | Lime content |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Thiefriver--------- | 1 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Wyandotte----------- | 1 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |

Table 11.--Hybrid Poplar Management Considerations--Continued

| Map symbol and soil name | Pct. of map unit | Hybrid poplar management considerations |
| :---: | :---: | :---: |
| I33A: | | |
| Hilaire- | 75 | Limited available water capacity
 Potential for ground-water contamination Wind erosion |
| Espelie- | 12 | Limited available water capacity
 Potential for ground-water contamination
 Potential for surface-water contamination
 Wet soil moisture status
 Wind erosion |
| Huot- | 5 | Lime content
 Limited available water capacity
 Potential for ground-water contamination Wind erosion |
| Flaming- | 2 | ```Limited available water capacity Potential for ground-water contamination Wind erosion``` |
| Foxlake- | 2 | Lime content
 Limited available water capacity
 Potential for ground-water contamination
 Potential for surface-water contamination
 Restricted permeability
 Wet soil moisture status
 Wind erosion |
| Wheatville- | 2 | Lime content
 Potential for ground-water contamination Wind erosion |
| Thiefriver | 1 | Lime content
 Limited available water capacity
 Potential for ground-water contamination
 Potential for surface-water contamination
 Wet soil moisture status
 Wind erosion |
| Wyandotte- | 1 | Lime content
 Limited available water capacity
 Potential for ground-water contamination
 Potential for surface-water contamination
 Wet soil moisture status
 Wind erosion |
| I34A: | | |
| Huot | 75 | Lime content
 Limited available water capacity
 Potential for ground-water contamination
 Wind erosion |
| Thiefriver | 12 | Lime content
 Limited available water capacity
 Potential for ground-water contamination
 Potential for surface-water contamination
 Wet soil moisture status
 Wind erosion |
| Hilaire- | 5 | Limited available water capacity
 Potential for ground-water contamination Wind erosion |

Table 11.--Hybrid Poplar Management Considerations--Continued

Table 11.--Hybrid Poplar Management Considerations--Continued

| Map symbol and soil name | Pct. of map unit | Hybrid poplar management considerations |
| :---: | :---: | :---: |
| 136A: | | |
| Hamerly--------------------- \| | 5 | Lime content |
| | | Potential for ground-water contamination Wind erosion |
| | | |
| Kratka---------------------- \| | 5 | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Grimstad-------------------- \| | 3 | Lime content |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Strandquist-----------------\| | 3 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | \| Wet soil moisture status |
| | | Wind erosion |
| | | |
| Foxhome--------------------- \| | 2 | Lime content |
| | | \| Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| 137A: | | |
| Kratka, depressional--------- \| | 45 | High content of organic matter |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Strathcona, depressional-----\| | 45 | High content of organic matter |
| | | \| Lime content |
| | | \| Ponding |
| | | Potential for ground-water contamination |
| | | \| Potential for surface-water contamination |
| | | \| Wet soil moisture status |
| | | Wind erosion |
| | | |
| Northwood------------------- \| | 5 | High content of organic matter |
| | | \| Ponding |
| | | Potential for ground-water contamination |
| | | \| Potential for surface-water contamination |
| | | \| Wet soil moisture status |
| | | Wind erosion |
| | | |
| Kratka---------------------- \| | 2 | Potential for ground-water contamination |
| | | \| Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Strathcona------------------ \| | 2 | Lime content |
| | | Potential for ground-water contamination |
| | | \| Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Roliss---------------------- | 1 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |

Table 11.--Hybrid Poplar Management Considerations--Continued

Table 11.--Hybrid Poplar Management Considerations--Continued

| Map symbol and soil name | Pct. of map unit | Hybrid poplar management considerations |
| :---: | :---: | :---: |
| 139A: | | |
| Eckvoll- | 3 | Limited available water capacity
 Potential for ground-water contamination Wind erosion |
| | | |
| Foldahl | 2 | Limited available water capacity Potential for ground-water contamination Wind erosion |
| Pelan- | 1 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination Wind erosion |
| | | Wind erosion |
| I40B: | | |
| Maddock------------ | 85 | Slope |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| Flaming- | 5 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| Sandberg----------- | 5 | Slope |
| | | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination Wind erosion |
| | | |
| Halverson---------- | 3 | Slope |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wind erosion |
| | | |
| Hamar--------------- | 2 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wind erosion |
| | | |
| I40F: | | |
| Maddock----------- | 90 | Slope |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Water erosion |
| | | Wind erosion |
| | | |
| Flaming------------ | 5 | Limited available water capacity |
| | | Potential for ground-water contamination Wind erosion |
| | | |
| Sandberg----------- | 5 | Slope |
| | | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |

Table 11.--Hybrid Poplar Management Considerations--Continued

Table 11.--Hybrid Poplar Management Considerations--Continued

| Map symbol and soil name | Pct. of map unit | Hybrid poplar management considerations |
| :---: | :---: | :---: |
| I42A: | | |
| Deerwood-------------------- \| | 4 | High content of organic matter |
| | | Lime content |
| | | Limited available water capacity |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Seelyeville, ponded---------- | 4 | High content of organic matter |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | |
| Hamar-----------------------\| | 1 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wind erosion |
| | | |
| Hangaard-------------------- \| | 1 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| I43A: | | |
| Mavie----------------------- \| | 70 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Vallers--------------------- \| | 10 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Strandquist-----------------\| | 7 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Strathcona------------------\| | 5 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Strathcona, depressional-----\| | 3 | High content of organic matter |
| | | Lime content |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |

Table 11.--Hybrid Poplar Management Considerations--Continued

| Map symbol and soil name | Pct. of map unit | Hybrid poplar management considerations |
| :---: | :---: | :---: |
| I43A: | | |
| Foxhome- | 2 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Karlsruhe---------- | 2 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| Grimstad----------- | 1 | Lime content |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| I44A: | | |
| Newfolden---------- | 75 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Restricted permeability |
| | | |
| Smiley------------- | 12 | Lime content
 Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | |
| Boash-------------- | 8 | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Restricted permeability |
| | | Wet soil moisture status |
| | | |
| Linveldt----------- | 4 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Hapludolls--------- | 1 | Slope |
| | | Lime content |
| | | Potential for surface-water contamination |
| | | Water erosion |
| | | |
| 145A: | | |
| Northwood---------- | 75 | High content of organic matter |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Hamre-------------- | 10 | High content of organic matter |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Berner-------------- | 5 | High content of organic matter |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |

Table 11.--Hybrid Poplar Management Considerations--Continued

Table 11.--Hybrid Poplar Management Considerations--Continued

Table 11.--Hybrid Poplar Management Considerations--Continued

| Map symbol and
 soil name | Pct. of map unit | Hybrid poplar management considerations |
| :---: | :---: | :---: |
| I49A: | | |
| Rauville--------------------\| | 80 | Lime content |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Fluvaquents-----------------\| | 12 | Limited available water capacity |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | |
| Water------------------------ \| | 5 | Not applicable |
| Lamoure----------------------\| | 3 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Restricted permeability |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| I50A: | | |
| Reiner---------------------- \| | 70 | Lime content |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Smiley---------------------- \| | 12 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | |
| Reiner, very cobbly----------\| | 7 | Lime content |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Linveldt-------------------- \| | 5 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Eckvoll--------------------- \| | 3 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Kratka----------------------- \| | 3 | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| I51A: | | |
| Reiner---------------------- \| | 65 | Lime content |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Smiley---------------------- \| | 9 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | |
| Reiner fine sandy loam------\| | 8 | Lime content |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |

Table 11.--Hybrid Poplar Management Considerations--Continued

| Map symbol
 and
 soil name | Pct. of map unit | Hybrid poplar management considerations |
| :---: | :---: | :---: |
| I51A: | | |
| Linveldt--------------------- \| | 7 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination Wind erosion |
| | | |
| Kratka----------------------- \| | 5 | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Eckvoll---------------------- \| | 3 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Reiner, very cobbly---------- \| | 3 | Lime content |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| I52A: | | |
| Reis---------------------- \| | 55 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Restricted permeability |
| | | Wet soil moisture status |
| | | |
| Clearwater----------------- \| | 30 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Restricted permeability |
| | | Wet soil moisture status |
| | | |
| Clearwater, very cobbly------\| | 5 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Restricted permeability |
| | | Wet soil moisture status |
| | | |
| Clearwater, depressional-----\| | 3 | High content of organic matter |
| | | Lime content |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Restricted permeability |
| | | Wet soil moisture status |
| | | |
| Espelie-------------------- \| | 3 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Hattie--------------------- \| | 3 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Restricted permeability |
| | | |

Table 11.--Hybrid Poplar Management Considerations--Continued

| Map symbol and soil name | Pct. of map unit | Hybrid poplar management considerations |
| :---: | :---: | :---: |
| I52A: | | |
| Wyandotte------------------- \| | 1 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| I53A: | | |
| Roliss---------------------- \| | 75 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Kratka---------------------- \| | 8 | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Roliss, very cobbly---------- | 7 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Kittson-------------------- \| | 5 | Lime content |
| | | Potential for ground-water contamination |
| | | |
| Roliss, depressional--------- \| | 3 | High content of organic matter |
| | | Lime content |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | |
| Smiley---------------------- \| | 2 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | |
| 154A: | | |
| Roliss, depressional--------\| | 80 | High content of organic matter |
| | | Lime content |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | |
| Roliss---------------------- \| | 12 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Hamre---------------------- \| | 5 | High content of organic matter |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |

Table 11.--Hybrid Poplar Management Considerations--Continued

| Map symbol and soil name | Pct. of map unit | Hybrid poplar management considerations |
| :---: | :---: | :---: |
| I54A: | | |
| Kratka----------------------- \| | 3 | ```Potential for ground-water contamination Potential for surface-water contamination Wet soil moisture status Wind erosion``` |
| | | |
| I55A: | | |
| Rosewood-------------------- \| | 75 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | |
| Ulen----------------------- \| | 10 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Hamar----------------------- \| | 6 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wind erosion |
| | | |
| Rosewood, depressional-------\| | 3 | High content of organic matter |
| | | Lime content |
| | | Limited available water capacity |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Syrene--------------------- \| | 3 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Karlsruhe------------------- \| | 1 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Strathcona------------------ \| | 1 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Thiefriver------------------\| | 1 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| I56A: | | |
| Rosewood-------------------- \| | 50 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wind erosion |
| | | |

Table 11.--Hybrid Poplar Management Considerations--Continued

| Map symbol
 and
 soil name | Pct. of map unit | Hybrid poplar management considerations |
| :---: | :---: | :---: |
| I56A: | | |
| Venlo--------------- | 40 | High content of organic matter |
| | | Limited available water capacity |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Deerwood- | 3 | High content of organic matter |
| | | Lime content |
| | | Limited available water capacity |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Syrene------------- | 3 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Ulen--------------- | 2 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Strathcona--------- | 1 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Thiefriver--------- | 1 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| I57B: | | |
| Sandberg | 50 | Slope |
| | | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Radium------------- | 25 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Sioux-------------- | 8 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Oylen-------------- | 7 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |

Table 11.--Hybrid Poplar Management Considerations--Continued

Table 11.--Hybrid Poplar Management Considerations--Continued

| Map symbol and soil name | Pct. of map unit | Hybrid poplar management considerations |
| :---: | :---: | :---: |
| I59A: | | |
| Roliss---------------------- \| | 5 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| Reiner---------------------- \| | 4 | Lime content |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| Linveldt-------------------- \| | 3 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| Smiley, depressional--------- \| | 3 | High content of organic matter |
| | | Lime content |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | |
| Strandquist-----------------\| | 1 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| I60A: | | |
| Smiley, depressional--------- \| | 80 | High content of organic matter |
| | | Lime content |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | |
| Smiley---------------------\| | 10 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | |
| Hamre---------------------- \| | 5 | High content of organic matter |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Kratka----------------------- \| | 5 | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| 161A: | | |
| Strandquist----------------- \| | 70 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |

Table 11.--Hybrid Poplar Management Considerations--Continued

| Map symbol
 and
 soil name | Pct. of map unit | Hybrid poplar management considerations |
| :---: | :---: | :---: |
| | | |
| I61A: | | |
| Mavie--------------- | 8 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Roliss | 7 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Kratka------------- | 5 | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Foxhome------------ | 4 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Hangaard------------ | 3 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Northwood----------- | 3 | High content of organic matter |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| I62A: | | |
| Syrene------------ | 70 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Rosewood------------ | 11 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wind erosion |
| | | |
| Hangaard----------- | 5 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |

Table 11.--Hybrid Poplar Management Considerations--Continued

| Map symbol
 and
 soil name | Pct. of map unit | Hybrid poplar management considerations |
| :---: | :---: | :---: |
| | | |
| 162A: | | |
| Karlsruhe---------- | 4 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination Wind erosion |
| | | |
| Deerwood----------- | 3 | High content of organic matter |
| | | Lime content |
| | | Limited available water capacity |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Hamar-------------- | 3 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wind erosion |
| | | |
| Strandquist-------- | 2 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Radium------------- | 1 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Wyandotte---------- | 1 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| I63A: | | |
| Thiefriver--------- | 70 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Espelie------------ | 10 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Foxlake------------ | 7 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Restricted permeability |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Huot--------------- | 5 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |

Table 11.--Hybrid Poplar Management Considerations--Continued

| Map symbol and soil name | Pct. of map unit | Hybrid poplar management considerations |
| :---: | :---: | :---: |
| I63A: | | |
| Clearwater, depressional----\| | 3 | ```High content of organic matter Lime content Ponding Potential for ground-water contamination Potential for surface-water contamination Restricted permeability Wet soil moisture status``` |
| Rosewood-------------------- \| | 3 | Lime content
 Limited available water capacity
 Potential for ground-water contamination
 Potential for surface-water contamination Wind erosion |
| Ulen----------------------- \| | 1 | Lime content
 Limited available water capacity
 Potential for ground-water contamination
 Wind erosion |
| Wyandotte-------------------- \| | 1 | Lime content
 Limited available water capacity
 Potential for ground-water contamination
 Potential for surface-water contamination
 Wet soil moisture status
 Wind erosion |
| I64A: | | |
| Ulen----------------------- \| | 70 | ```Lime content Limited available water capacity Potential for ground-water contamination Wind erosion``` |
| Rosewood-------------------- \| | 10 | Lime content
 Limited available water capacity
 Potential for ground-water contamination
 Potential for surface-water contamination
 Wind erosion |
| Flaming--------------------- \| | 8 | Limited available water capacity Potential for ground-water contamination Wind erosion |
| Karlsruhe-------------------\| | 5 | ```Lime content Limited available water capacity Potential for ground-water contamination Wind erosion``` |
| Radium--------------------- \| | 3 | ```Limited available water capacity Potential for ground-water contamination Wind erosion``` |
| Strathcona------------------ \| | 2 | Lime content
 Potential for ground-water contamination
 Potential for surface-water contamination
 Wet soil moisture status
 Wind erosion |
| Thiefriver------------------\| | 2 | Lime content
 Limited available water capacity
 Potential for ground-water contamination
 Potential for surface-water contamination
 Wet soil moisture status
 Wind erosion |

Table 11.--Hybrid Poplar Management Considerations--Continued

| Map symbol and soil name | Pct. of map unit | Hybrid poplar management considerations |
| :---: | :---: | :---: |
| 165A: | | |
| Ulen------------ | 70 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Rosewood-------------------- \| | 10 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wind erosion |
| | | |
| Flaming--------------------- ${ }^{\text {\| }}$ | 6 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Poppleton------------------- \| | 4 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Karlsruhe------------------- | 3 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Radium---------------------\| | 3 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Strathcona------------------ \| | 2 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Thiefriver------------------\| | 2 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| I66A: | | |
| Vallers---------------------- \| | 75 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Vallers, very cobbly---------\| | 7 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Hamerly---------------------\| | 6 | Lime content |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Grimstad------------------- \| | 3 | Lime content |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |

Table 11.--Hybrid Poplar Management Considerations--Continued

| Map symbol and soil name | Pct. of map unit | Hybrid poplar management considerations |
| :---: | :---: | :---: |
| 166A: | | |
| Mavie----------------------- \| | 3 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Roliss, depressional--------\| | 3 | High content of organic matter |
| | | Lime content |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | |
| Strathcona------------------ \| | 3 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| 167A: | | |
| Wheatville------------------- \| | 70 | Lime content |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Augsburg------------------- \| | 13 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Glyndon--------------------- \| | 8 | Lime content |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Foxlake--------------------- \| | 5 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Restricted permeability |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Hilaire-------------------- \| | 2 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Ulen------------------------ \| | 2 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| I68A: | | |
| Wheatville------------------ \| | 70 | Lime content |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Augsburg-------------------- \| | 13 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |

Table 11.--Hybrid Poplar Management Considerations--Continued

| Map symbol
 and
 soil name | Pct. of map unit | Hybrid poplar management considerations |
| :---: | :---: | :---: |
| 168A: | | |
| Glyndon--------------------- \| | 8 | Lime content |
| | | Potential for ground-water contamination Wind erosion |
| | | |
| Foxlake---------------------\| | 5 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Restricted permeability |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Hilaire--------------------\| | 2 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Ulen----------------------- \| | 2 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| I69A: | | |
| Wyandotte------------------ \| | 65 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Foxlake--------------------- \| | 10 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Restricted permeability |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Espelie--------------------- \| | 8 | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Clearwater, depressional-----\| | 5 | High content of organic matter |
| | | Lime content |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Restricted permeability |
| | | Wet soil moisture status |
| | | |
| Thiefriver------------------\| | 5 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Karlsruhe------------------- \| | 4 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |

Table 11.--Hybrid Poplar Management Considerations--Continued

| Map symbol and soil name | Pct. of map unit | Hybrid poplar management considerations |
| :---: | :---: | :---: |
| I69A: | | |
| Syrene---------------------- \| | 3 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| I70A: | | |
| Strathcona------------------ \| | 70 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Kratka---------------------- \| | 10 | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Roliss--------------------- \| | 6 | Lime content |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Grimstad-------------------- \| | 5 | Lime content |
| | | Potential for ground-water contamination |
| | | Wind erosion |
| | | |
| Mavie---------------------- \| | 3 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| Rosewood-------------------- \| | 3 | Lime content |
| | | Limited available water capacity |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wind erosion |
| | | |
| Strathcona, depressional----\| | 3 | High content of organic matter |
| | | Lime content |
| | | Ponding |
| | | Potential for ground-water contamination |
| | | Potential for surface-water contamination |
| | | Wet soil moisture status |
| | | Wind erosion |
| | | |
| M-W : | | |
| Miscellaneous water----------\| | 100 | Not applicable |
| | | |
| W: | | |
| Water----------------------- \| | 100 | Not applicable |
| | | |

Table 12.--Forest Land Harvest Equipment Considerations
(Only the map units that have soils commonly used for forest production are listed. see text for a description of the considerations listed in this table)

Table 12.--Forest Land Harvest Equipment Considerations--Continued

| Map symbol
 and
 soil name | Pct. of
 map unit | Forest land harvest equipment |
| :---: | :---: | :--- |
| considerations | | |

Table 12.--Forest Land Harvest Equipment Considerations--Continued

| ```Map symbol and soil name``` | Pct. of map unit | Forest land harvest equipment considerations |
| :---: | :---: | :---: |
| | | |
| B206A: | | |
| Northwood--------------------- \| | 5 | Wetness |
| | | Susceptible to rutting and wheel slippage |
| | | Poor traction (loose sandy material) |
| | | |
| Cathro------------------------ | 3 | Wetness |
| | | Susceptible to rutting and wheel slippage |
| | | |
| Grygla------------------------- \| | 2 | Wetness |
| | | Poor traction (loose sandy material) |
| | | |
| Roliss----------------------- | 2 | Wetness |
| | | Susceptible to rutting and wheel slippage |
| | | |

Table 13.--Forest Haul Road Considerations
(Only the map units that have soils commonly used for forest production are listed. see text for a description of the considerations listed in this table)

| Map symbol and
 soil name | Pct. of map unit | Forest haul road considerations |
| :---: | :---: | :---: |
| | | |
| B200A: | | |
| Garnes---------------------- \| | 70 | Low bearing strength |
| | | |
| Chilgren--------------------- \| | 13 | Wetness |
| | | Low bearing strength |
| | | |
| Eckvoll------------------------ | 5 | No major considerations |
| | | |
| Garnes, very stony------------ \| | 5 | Low bearing strength |
| | | |
| Grygla----------------------- | 4 | Wetness |
| | | |
| Pelan------------------------- | 3 | Low bearing strength |
| | | |
| B201A: | | |
| Chilgren--------------------- \| | 75 | |
| | | Low bearing strength |
| | | |
| Garnes------------------------ | 9 | Low bearing strength |
| | | |
| Grygla------------------------ | 5 | Wetness |
| \| | | |
| Grygla, depressional---------\| | 5 | Wetness |
| \| | | |
| Hamre------------------------- \| | 5 | Wetness |
| | | Low bearing strength |
| | | |
| Pelan----------------------- \| | 1 | Low bearing strength |
| | | |
| B202A: | | |
| Cathro---------------------- | 80 | Wetness |
| | | Low bearing strength |
| | | |
| Hamre------------------------- | 8 | Wetness |
| | | Low bearing strength |
| | | |
| Chilgren---------------------- | 3 | Wetness |
| | | Low bearing strength |
| | | |
| Northwood-------------------- \| | 3 | Wetness |
| | | Low bearing strength |
| | | |
| Berner---------------------- \| | 2 | Wetness |
| | | Low bearing strength |
| | | |
| Grygla----------------------- \| | 2 | Wetness |
| | | |
| Seelyeville------------------ \| | 2 | Wetness |
| | | Low bearing strength |
| | | |
| B203A: | | |
| Northwood-------------------- | 75 | Wetness |
| | | Low bearing strength |
| | | |
| Hamre------------------------ | 10 | Wetness |
| | | Low bearing strength |
| | | |
| Grygla------------------------ \| | 7 | Wetness |
| | | |

Table 13.--Forest Haul Road Considerations--Continued

| Map symbol and soil name | Pct. of map unit | Forest haul road considerations | |
|---|---|---|---|
| | | |
| B203A: | | |
| Berner---------------------- | 5 | Wetness |
| | | Low bearing strength |
| | | |
| Chilgren--------------------- \| | 3 | Wetness |
| | | Low bearing strength |
| | | |
| B204A: | | |
| Roliss----------------------- | 75 | Wetness |
| | | Low bearing strength |
| | | |
| Grygla----------------------- \| | 8 | Wetness |
| | | |
| Chilgren-------------------- \| | 5 | Wetness |
| | | Low bearing strength |
| | | |
| Garnes---------------------- \| | 5 | Low bearing strength |
| | | |
| Roliss, depressional--------- \| | 5 | Wetness |
| | | Low bearing strength |
| | | |
| Hamre------------------------ \| | 2 | Wetness |
| | | Low bearing strength |
| | | |
| B205A: | | |
| Berner----------------------- \| | | 80 | Wetness |
| | Low bearing strength | |
| | | |
| Northwood--------------------- \| | 7 | Wetness |
| | | Low bearing strength |
| | | |
| Grygla---------------------- \| | 5 | Wetness |
| | | |
| Cathro----------------------- | 3 | Wetness |
| | | Low bearing strength |
| | | |
| Hamre----------------------- | 3 | Wetness |
| | | Low bearing strength |
| | | |
| Seelyeville----------------- \| | 2 | Wetness |
| | | Low bearing strength |
| | | |
| B206A: | | |
| Hamre---------------------- | 80 | Wetness |
| | | Low bearing strength |
| | | |
| Chilgren--------------------- \| | 8 | Wetness |
| | | Low bearing strength |
| | | |
| Northwood-------------------- \| | 5 | |
| | | Low bearing strength |
| | | |
| Cathro------------------------ | 3 | Wetness |
| | | Low bearing strength |
| | | |
| Grygla----------------------- | 2 | Wetness |
| | | |
| Roliss----------------------- | 2 | Wetness |
| | | Low bearing strength |
| | | |

Table 14.--Forest Log Landing Considerations
(Only the map units that have soils commonly used for forest production are listed. see text for a description of the considerations listed in this table)

| Map symbol and soil name | Pct. of map unit | Forest log landing considerations |
| :---: | :---: | :---: |
| | | |
| B200A: | | |
| Garnes - | 70 | Susceptible to rutting and wheel slippage |
| Chilgren----------- | 13 | Wetness |
| | | Susceptible to rutting and wheel slippage |
| | | |
| Eckvoll------------ | 5 | No major considerations |
| | 5 | Susceptible to rutting and wheel slippage |
| Grygla---------------------- \| | 4 | Wetness |
| Pelan---------------------- \| | 3 | Susceptible to rutting and wheel slippage |
| B201A: | | |
| Chilgren----------- | 75 | Wetness |
| | | Susceptible to rutting and wheel slippage |
| | | |
| Garnes---------------------- \| | 9 | Susceptible to rutting and wheel slippage |
| Grygla----------------------\| | 5 | Wetness |
| Grygla, depressional---------\| | 5 | Wetness |
| Hamre--------------Pelan-------------- | 5 | Wetness |
| | | Susceptible to rutting and wheel slippage |
| | 1 | Susceptible to rutting and wheel slippage |
| B202A: | | |
| Cathro------------- | 80 | Wetness |
| | | Susceptible to rutting and wheel slippage |
| | 8 | |
| Hamre-------------- | | Wetness |
| | | Susceptible to rutting and wheel slippage |
| | | |
| Chilgren----------- | 3 | Wetness |
| | | Susceptible to rutting and wheel slippage |
| | | |
| Northwood---------- | 3 | Wetness |
| | | Susceptible to rutting and wheel slippage |
| | | |
| Berner------------- | 2 | Wetness |
| | | Susceptible to rutting and wheel slippage |
| | 2 | |
| Grygla----------------------\| | | Wetness |
| Seelyeville-------- | 2 | Wetness |
| | | Susceptible to rutting and wheel slippage |
| | | |
| B203A: | | |
| Northwood---------- | 75 | Wetness |
| | | Susceptible to rutting and wheel slippage |
| | | |
| Hamre--------------- | 10 | Wetness |
| | | Susceptible to rutting and wheel slippage |
| | | |
| Grygla---------------------- \| | 7 | Wetness |
| | | |

Table 14.--Forest Log Landing Considerations--Continued

| Map symbol and soil name | Pct. of map unit | Forest log landing considerations |
| :---: | :---: | :---: |
| B203A: | | |
| Berner-------------------- | 5 | Wetness |
| | | Susceptible to rutting and wheel slippage |
| | | |
| Chilgren-------------------- \| | 3 | Wetness |
| | | Susceptible to rutting and wheel slippage |
| | | |
| B204A: | | |
| Roliss---------------------- \| | 75 | Wetness |
| | | Susceptible to rutting and wheel slippage |
| | | |
| Grygla----------------------\| | 8 | Wetness |
| | | |
| Chilgren-------------------- \| | 5 | Wetness |
| | | Susceptible to rutting and wheel slippage |
| | | |
| Garnes---------------------\| | 5 | Susceptible to rutting and wheel slippage |
| | | |
| Roliss, depressional--------\| | 5 | Susceptible to rutting and wheel slippage |
| | | |
| Hamre----------------------- \| | 2 | Wetness |
| | | Susceptible to rutting and wheel slippage |
| | | |
| B205A: | | |
| Berner----------------------\| | 80 | Wetness |
| | | Susceptible to rutting and wheel slippage |
| | | |
| Northwood------------------- \| | 7 | Wetness |
| | | Susceptible to rutting and wheel slippage |
| | | |
| Grygla----------------------\| | 5 | Wetness |
| Cathro--------------------- | | Wetness |
| | 3 | Susceptible to rutting and wheel slippage |
| | | |
| Hamre------------------------ \| | 3 | Wetness |
| | | Susceptible to rutting and wheel slippage |
| | | |
| Seelyeville-----------------\| | 2 | Wetness |
| | | Susceptible to rutting and wheel slippage |
| | | |
| B206A: | | |
| Hamre---------------------- | 80 | Wetness |
| | | Susceptible to rutting and wheel slippage |
| | | |
| Chilgren--------------------\| | 8 | Wetness |
| | | Susceptible to rutting and wheel slippage |
| | | |
| Northwood------------------- \| | 5 | Wetness |
| | | Susceptible to rutting and wheel slippage |
| | | |
| Cathro---------------------- \| | 3 | Wetness |
| | | Susceptible to rutting and wheel slippage |
| | | |
| Grygla----------------------- \| | 2 | Wetness |
| | | |
| Roliss----------------------\| | 2 | Susceptible to rutting and wheel slippage |
| | | |

Table 15.--Forest Land Site Preparation and Planting Considerations
(Only the map units that have soils commonly used for forest production are listed. see text for a description of the considerations listed in this table)

Table 15.--Forest Land Site Preparation and Planting Considerations--Continued

| Map symbol
 and
 soil name | Pct. of
 map unit | Forest land site preparation and planting |
| :---: | :---: | :--- |
| considerations | | |

Table 16.--Forest Productivity
(Only the map units that have soils commonly used for forest production are listed. See text for an explanation of terms used in this table)

Table 16.--Forest Productivity--Continued

| Map symbol and soil name | $\begin{aligned} & \text { Pct. of } \\ & \text { map unit } \end{aligned}$ | Potential productivity | | | Trees to manage |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | Common trees | $\begin{aligned} & \text { \|Site } \\ & \mid \text { index } \mid \end{aligned}$ | Volume of wood fiber | |
| B201A:Grygla, depressional----\| | 5 | | \|cu ft/ac | | \|Black ash, black spruce |
| | | | | | |
| | | | | | |
| | | Black ash------ | 40 | 14 | |
| | | \|Black spruce--- | 35 | 43 | |
| | | Quaking aspen- | 40 | 29 | |
| | | | | | |
| Hamre------------------ | 5 | --- | --- | --- | --- |
| | | | | | |
| Pelan----------------- | 1 | Bur oak- | 50 | 29 | \| Bur oak, red pine |
| | | Quaking aspen-- | 55 | 57 | |
| | | \|Red pine | 60 | 100 | |
| | | | | | |
| B202A: | | | | | |
| Cathro------------------ \| | 80 | - | --- | - | --- |
| | | | | | |
| Hamre----------------- | 8 | - | --- | - | --- |
| | | | | | |
| Chilgren---------------\| | 3 | Balsam fir | 60 | 114 29 | \|Black ash, black spruce, white |
| | | Paper birch- | 60 | 72 | \| spruce |
| | | Quaking aspen-- | 65 | 72 | |
| | | White spruce--- | -\| 55 | 100 | |
| | | | | | |
| Northwood--------------- \| | 3 | - | --- | --- | --- |
| | | | | | |
| Berner---------------- | 2 | --- | --- | --- | --- |
| | | | | | |
| Grygla------------------ | 2 | Balsam fir | 60 | 114 | \|Black ash, black |
| | | Paper birch- | 60 | 72 | \| spruce, white |
| | | Quaking aspen | 65 | 72 | \| spruce |
| | | White spruce- | \| 60 | 114 | |
| | | | | | |
| Seelyeville------------ | 2 | -- | --- | --- | --- |
| | | | | | |
| B203A: | | | | | |
| Northwood--------------- \| | 75 | --- | --- | --- | --- |
| | | | | | |
| Hamre------------------- \| | 10 | --- | --- | --- | --- |
| | | | | | |
| Grygla------------------ \| | 7 | Balsam fir- | 60 | 114 | \|Black ash, black |
| | | \| Paper birch---- | 60 | 72 | \| spruce, white |
| | | Quaking aspen-- | 65 | 72 | \| spruce |
| | | White spruce--- | - 60 | 114 | |
| | | | | | |
| Berner----------------- | 5 | --- | --- | --- | --- |
| | | | | | |
| Chilgren--------------- | 3 | Balsam fir | 60 | 114 | \|Black ash, black |
| | | Black ash------ | \| 50 | 29 | \| spruce, white |
| | | Paper birch---- | -60 | 72 | \| spruce |
| | | Quaking aspen-- | - 65 | 72 | |
| | | White spruce--- | - 55 | 100 | |
| | | | | | |
| B204A: | | | | | |
| Roliss------------------ | 75 | --- | --- | --- | -- |
| | | | | | |
| Grygla----------------- \| | 8 | Balsam fir----- | | | |
| | | Paper birch---- | - 60 | \| 72 | \| spruce, white |
| | | Quaking aspen-- | \| 65 | 72 | \| spruce |
| | | White spruce---- | - 60 | 114 | |
| | | | | | |

Table 16.--Forest Productivity--Continued

(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00 . The larger the value, the greater the limitation. "Not rated" indicates that data are not available or that no rating is applicable. See text for further explanation of ratings in this table)

Table 17a.--Recreation--Continued

| Map symbol and soil name | Pct. of map unit | Camp areas | | Picnic areas | | Playgrounds | | |
|---|---|---|---|---|---|---|---|---|
| | | Rating class and limiting features | \|Value| | Rating class and limiting features | \| Value | Rating class and limiting features | \|Value |
| B200A : | | | | | | | |
| Grygla------------- \| | 4 | Very limited | | \| Very limited | | \| Very limited | |
| | | Depth to | 11.00 | Depth to | \| 1.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 11.00 | Ponding | 1.00 | Ponding | 1.00 |
| | | Too sandy | 0.12 | Too sandy | 0.12 | Too sandy | 0.12 |
| | | | | | | | |
| Pelan------------- | 3 | Somewhat limited | | \| Not limited | | \|Somewhat limited | |
| | | Depth to | 0.01 | | | Depth to | 0.01 |
| | | saturated zone | | | | saturated zone | |
| | | | | | | | |
| B201A: | | | | | | | |
| Chilgren----------- \| | 75 | Very limited | | \| Very limited | | \| Very limited | |
| | | Depth to | 11.00 | Depth to | 1.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 11.00 | Ponding | 1.00 | Ponding | 1.00 |
| | | | | | | | |
| Garnes------------- \| | 9 | Somewhat limited | | \| Not limited | | Somewhat limited | |
| | | Depth to | 0.01 | | | Depth to | 0.01 |
| | | saturated zone | | | | saturated zone | |
| | | | | | | | |
| Grygla------------- \| | 5 | Very limited | | \| Very limited | | \| Very limited | |
| | | Depth to | 11.00 | Depth to | 1.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 11.00 | Ponding | 1.00 | Ponding | 1.00 |
| | | Too sandy | 0.12 | Too sandy | 0.12 | Too sandy | 0.12 |
| | | | | | | | |
| Grygla, depressional\| | 5 | Very limited | | \| Very limited | | \| Very limited | |
| | | Depth to | 11.00 | Ponding | \| 1.00 | Depth to | 1.00 |
| | | saturated zone | | Depth to | 1.00 | saturated zone | |
| | | Ponding | 11.00 | saturated zone | | Ponding | 1.00 |
| | | Too sandy | 0.12 | Too sandy | 0.12 | Too sandy | 0.12 |
| | | | | | | | |
| Hamre------------- \| | 5 | Very limited | | \| Very limited | | \| Very limited | |
| | | Depth to | 11.00 | Ponding | 11.00 | Depth to | 1.00 |
| | | saturated zone | | Depth to | \| 1.00 | saturated zone | |
| | | Ponding | 11.00 | saturated zone | | Content of | 1.00 |
| | | Content of | 11.00 | Content of | 1.00 | organic matter | |
| | | organic matter | | organic matter | | Ponding | 1.00 |
| | | | | | | | |
| Pelan--------------- \| | 1 | Somewhat limited | | \| Not limited | | | |
| | | Depth to | 0.01 | | | Depth to | 0.01 |
| | | saturated zone | | | | saturated zone | |
| | | | | | | | |
| B202A: | | | | | | | |
| Cathro------------- \| | 80 | Very limited | | \| Very limited | | \| Very limited | |
| | | Depth to | 11.00 | Ponding | 11.00 | Depth to | 1.00 |
| | | saturated zone | | Depth to | \| 1.00 | saturated zone | |
| | | Ponding | 11.00 | saturated zone | | Content of | 1.00 |
| | | Content of | 11.00 | Content of | 11.00 | organic matter | |
| | | organic matter | | organic matter | | Ponding | 1.00 |
| | | | | | | | |
| Hamre-------------- \| | 8 | Very limited | | \| Very limited | | \| Very limited | |
| | | Depth to | 11.00 | Ponding | \| 1.00 | Depth to | \| 1.00 |
| | | saturated zone | | \| Depth to | \| 1.00 | saturated zone | |
| | | Ponding | 1.00 | saturated zone | | Content of | 1.00 |
| | | Content of | 11.00 | Content of | \| 1.00 | organic matter | |
| | | organic matter | | organic matter | | Ponding | 1.00 |
| | | | | | | | |

Table 17a.--Recreation--Continued

| Map symbol and soil name | $\left.\begin{array}{\|c} \mid \text { Pct. } \\ \mid \text { of } \\ \mid \text { map } \\ \mid \text { unit } \end{array} \right\rvert\,$ | Camp areas | | Picnic areas | | Playgrounds | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | \|Value | Rating class and limiting features | \|Value | Rating class and limiting features | \|Value |
| | | | | | | | |
| B202A: | | | | | | | |
| Chilgren-------- | \| 3 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 11.00 | Ponding | 1.00 | Ponding | 1.00 |
| | | | | | | | |
| Northwood------- | 3 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to | 11.00 | \| Ponding | 11.00 | Depth to | 1.00 |
| | | saturated zone | | Depth to | 1.00 | saturated zone | |
| | | Ponding | 11.00 | saturated zone | | Ponding | 1.00 |
| | | | | | | | |
| Berner----------- | 2 | \|Very limited | | \|Very limited | | \mid Very limited | |
| | | Depth to | 11.00 | Ponding | 11.00 | Depth to | 1.00 |
| | | saturated zone | | Depth to | 11.00 | saturated zone | |
| | | Ponding | 11.00 | saturated zone | | Content of | 1.00 |
| | | Content of | 11.00 | Content of | 1.00 | organic matter | |
| | | organic matter | | organic matter | | Ponding | 1.00 |
| | | | | | | | |
| Grygla---------- | 2 | \|Very limited | | \mid Very limited | | \|Very limited | |
| | | Depth to | 11.00 | Depth to | 1.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 11.00 | Ponding | 1.00 | Ponding | 1.00 |
| | | Too sandy | 10.12 | Too sandy | 0.12 | Too sandy | 0.12 |
| | | | | | | | |
| Seelyeville----- | 2 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to | 11.00 | \| Ponding | 11.00 | Depth to | 1.00 |
| | | saturated zone | | Depth to | 11.00 | saturated zone | |
| | | Ponding | 11.00 | saturated zone | | Ponding | 1.00 |
| | | | | | | | |
| B203A: | | | | | | | |
| Northwood | 75 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to | 11.00 | Ponding | 11.00 | \| Depth to | 1.00 |
| | | saturated zone | | Depth to | 1.00 | saturated zone | |
| | | Ponding | 11.00 | saturated zone | | Ponding | 1.00 |
| | | | | | | | |
| Hamre----------- | 10 | \|Very limited | | \|Very limited | | \mid Very limited | |
| | | Depth to | 11.00 | \| Ponding | 11.00 | Depth to | 1.00 |
| | | saturated zone | | Depth to | 11.00 | saturated zone | |
| | | Ponding | 11.00 | saturated zone | | Content of | 1.00 |
| | | Content of | 11.00 | Content of | 1.00 | organic matter | |
| | | organic matter | | organic matter | | Ponding | 1.00 |
| | | | | | | | |
| Grygla---------- | 7 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | \| 1.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 |
| | | Ponding | \| 1.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | Too sandy | 10.12 | Too sandy | 10.12 | Too sandy | 0.12 |
| | | | | | | | |
| Berner---------- | 5 | | | \mid Very limited | | \|Very limited | |
| | | Depth to | 11.00 | \| Ponding | 11.00 | \| Depth to | 1.00 |
| | | saturated zone | | Depth to | 11.00 | saturated zone | |
| | | Ponding | 11.00 | saturated zone | | Content of | 1.00 |
| | | Content of | 11.00 | Content of | 1.00 | organic matter | 1.00 |
| | | organic matter | | organic matter | | Ponding | 1.00 |
| Chilgren-------- | 3 | \|Very limited | | \|Very limited | | | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 | \| Depth to
 \| saturated zone | 1.00 |
| | | Ponding | \| 1.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | | | | | | |

Table 17a.--Recreation--Continued

Table 17a.--Recreation--Continued

Table 17a.--Recreation--Continued

Table 17a.--Recreation--Continued

| Map symbol and soil name | $\begin{aligned} & \mid \text { Pct. } \\ & \mid \text { of } \\ & \mid \text { map } \\ & \mid \text { unit } \end{aligned}$ | Camp areas | | Picnic areas | | Playgrounds | | |
|---|---|---|---|---|---|---|---|---|
| | 1 | Rating class and limiting features | \|Value | Rating class and limiting features | \| Value | Rating class and limiting features | Value |
| I2A: | | | | | | | |
| Foxlake--------- | 5 | Very limited | | \| Very limited | | \| Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | Restricted | \| 0.96 | Restricted | 10.96 | Restricted | 0.96 |
| | | permeability | | permeability | | permeability | |
| | | | | | | | |
| Augsburg, | | | | | | | |
| depressional---- | 3 | Very limited | | Very limited | | \| Very limited | |
| | | Depth to | \| 1.00 | Ponding | \| 1.00 | Depth to | 1.00 |
| | | saturated zone | | Depth to | \| 1.00 | saturated zone | |
| | | Ponding | 11.00 | saturated zone | | Ponding | 1.00 |
| | | Restricted | 10.96 | Restricted | 0.96 | Restricted | 10.96 |
| | | permeability | | permeability | | permeability | |
| | | | | | | | |
| Wheatville------ | 3 | \| Very limited | | Somewhat limited | | \| Very limited | |
| | | Depth to | 1.00 | Restricted | 0.96 | Depth to | 1.00 |
| | | saturated zone | | permeability | | saturated zone | |
| | | Restricted | 0.96 | Depth to | 10.90 | Restricted | 0.96 |
| | | permeability | | saturated zone | | permeability | |
| | | | | | | | |
| Glyndon--------- | 2 | Very limited | | Very limited | | \| Very limited | |
| | | Depth to | \| 1.00 | Depth to | 11.00 | Depth to | \| 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Espelie--------- | 1 \| | \| Very limited | | Very limited | | \| Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 11.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | \| 1.00 | Ponding | 1.00 | Ponding | 1.00 |
| | | Restricted | 10.96 | Restricted | 0.96 | Restricted | 0.96 |
| | | permeability | | permeability | | permeability | |
| | | | | | | | |
| Hattie--------- | 1 | Very limited | | Very limited | | \| Very limited | |
| | | Too clayey | 11.00 | Too clayey | \| 1.00 | Too clayey | \| 1.00 |
| | | Restricted | 10.96 | Restricted | 10.96 | Restricted | 0.96 |
| | | permeability | | permeability | | permeability | |
| | | Depth to | 10.20 | Depth to | 0.10 | Depth to | 0.20 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| I3A: | | | | | | | |
| Berner | 80 | Not rated | \| | Not rated | | Not rated | |
| | | | | | | | |
| Northwood----.-- | 7 | Not rated | | Not rated | | Not rated | |
| | | | | | | | |
| | 5 | Very limited | | Very limited | | \| Very limited | |
| Kratka---------- | | Depth to | \| 1.00 | Depth to | 11.00 | Depth to | 11.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | \| 1.00 | Ponding | \| 1.00 | Ponding | 1.00 |
| | | | | | | | |
| Hamre----------- | \| 3 | | Not rated | \| | Not rated | | Not rated | |
| | | | \| | | | | |
| | 3 | Very limitedDepth tosaturated zonePonding | | Very limited | | \| Very limited | |
| Strathcona------ | | | 11.00 | Depth to | 11.00 | Depth to | 11.00 |
| | | | | saturated zone | | saturated zone | |
| | | | \| 1.00 | Ponding | 11.00 | Ponding | \| 1.00 |
| | | | \| | | | | |
| Seelyeville | | \| Not rated | | Not rated | | \| Not rated | |
| | | | | | | |

Table 17a.--Recreation--Continued

Table 17a.--Recreation--Continued

| Map symbol and soil name | $\left.\begin{array}{\|l\|} \mid \text { Pct. } \\ \mid \text { of } \\ \mid \text { ofap } \\ \mid \text { unit } \end{array} \right\rvert\,$ | Camp areas | | Picnic areas | | Playgrounds | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | \| Value | Rating class and limiting features | \| Value | Rating class and limiting features | \|Value |
| | | | | | | | |
| I6A: | | | | | | | |
| Borup----------- | 75 | | | \mid Very limited | | \mid Very limited | |
| | | | 11.00 | Depth to | 11.00 | Depth to | \| 1.00 |
| | | | | saturated zone | | saturated zone | |
| | | | 11.00 | Ponding | 11.00 | Ponding | \| 1.00 |
| | | | | | | | |
| Glyndon--------- | 9 | \|Very limited | | \|Very limited | | \mid Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 11.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Rosewood-------- | 8 | \|Very limited | | \|Very limited | | \| Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 11.00 |
| | | saturated zone | | \| saturated zone | | saturated zone | |
| | | Ponding | 11.00 | Ponding | 1.00 | \| Ponding | 11.00 |
| | | | | | | | |
| Augsburg-------- | 5 | \|Very limited | | \mid Very limited | | \mid Very limited | |
| | | Depth to saturated zo | 11.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | \| 1.00 |
| | | Ponding | \| 1.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | | 10.96 | | 10.96 | | 10.96 |
| | | permeability | | permeability | | permeability | |
| | | | | | | | |
| Augsburg, | | | | | | | |
| depressional--- | \| 3 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | \| Depth to | 11.00 | \| Ponding | 1.00 | \| Depth to | 11.00 |
| | | saturated zone | | Depth to | \| 1.00 | saturated zone | |
| | | \| Ponding | 11.00 | saturated zone | | Ponding | 11.00 |
| | | Restricted | 10.96 | Restricted | 10.96 | Restricted | 10.96 |
| | | permeability | | permeability | | permeability | |
| | | | | | | | |
| 17A: | | | | | | | |
| Bowstring- | 45 | \| Not rated | | \| Not rated | | \| Not rated | |
| | | | | | | | |
| Fluvaquents----- | 45 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | \| Depth to | 11.00 | \| Ponding | \| 1.00 | \| Depth to | \| 1.00 |
| | | saturated zone | | Depth to | 11.00 | saturated zone | |
| | | Flooding | 11.00 | saturated zone | | Flooding | 11.00 |
| | | Ponding | 11.00 | Flooding | 10.60 | Ponding | 11.00 |
| | | | | | | | |
| Hapludolls------ | 5 | \|Very limited | | \| Somewhat limited | | \mid Very limited | |
| | | \| Flooding | 11.00 | \| Slope | 10.63 | \| slope | 11.00 |
| | | \| Slope | 10.63 | | | | |
| | | | | | | | |
| Water-----------I8A: | 5 | \| Not rated | | \| Not rated | | \| Not rated | |
| | | | | | | | |
| | 18A: | | | | | | |
| Cathr | 80 | \| Not rated | | \| Not rated | | \| Not rated | |
| | | | | | | | |
| Hamre------------ | 8 | \| Not rated | | \| Not rated | | \| Not rated | |
| | | | | | | | |
| | 31 | \| Not rated | | \| Not rated | | \| Not rated | |
| Northwood--------Roliss----------- | | | | | | | |
| | 3 | | | | | \|Very limited | |
| Roliss---------- | | \| $\begin{gathered}\text { Depth to } \\ \text { saturated zone }\end{gathered}$ | 11.00 | \| Depth to $\begin{aligned} & \text { saturated zone }\end{aligned}$ | \| 1.00 | \| Depth to | \| 1.00 |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | | | | | | |
| Berner---------- | 2 | \| Not rated | | \| Not rated | | \| Not rated | |
| | | | | | | | |

Table 17a.--Recreation--Continued

Table 17a.--Recreation--Continued

Table 17a.--Recreation--Continued

Table 17a.--Recreation--Continued

Table 17a.--Recreation--Continued

Table 17a.--Recreation--Continued

| Map symbol and soil name | Pct.
 of map unit | \| Camp areas | | Picnic areas | | Playgrounds | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | \| Value | Rating class and limiting features | \| Value | Rating class and
 limiting features | \|Value |
| | | | | | | | |
| I15A: | | | | | | | |
| Foldahl--------- | 2 | \| Somewhat limited | | \|Somewhat limited | | \|Somewhat limited | |
| | | Too sandy | 10.31 | Too sandy | 0.31 | Too sandy | 0.31 |
| | | Depth to | 10.01 | | | Depth to | 0.01 |
| | | saturated zone | | | | saturated zone | |
| | | | | | | | |
| Radium---------- | 2 | \| Somewhat limited | | \|Somewhat limited | | \|Somewhat limited | |
| | | Too sandy | 10.36 | Too sandy | 0.36 | Too sandy | 0.36 |
| | | | | | | | |
| I16F: | | | | | | | |
| Fluvaquents----- | 55 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to | 11.00 | Ponding | 11.00 | Depth to | 1.00 |
| | | saturated zone | | Depth to | 11.00 | saturated zone | |
| | | Flooding | \| 1.00 | saturated zone | | Flooding | 1.00 |
| | | Ponding | 11.00 | Flooding | 0.60 | Ponding | 1.00 |
| | | | | | | | |
| Hapludolls------ | 25 | \|Very limited | | \|Somewhat limited | | \|Very limited | |
| | | \| Flooding | 11.00 | \| slope | 0.63 | \| slope | 1.00 |
| | | Slope | 10.63 | | | | |
| | | | | | | | |
| Hapludalfs------ | 7 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Flooding | 11.00 | slope | 1.00 | slope | 1.00 |
| | | Slope | 11.00 | | | Depth to | 0.01 |
| | | Depth to | 10.01 | | | saturated zone | |
| | | saturated zone | | | | | |
| | | | | | | | |
| Fairdale-------- | 5 | | | \|Somewhat limited | | \|Very limited | |
| | | \| Flooding | 11.00 | Slope | 10.37 | Slope | 1.00 |
| | | Slope | 10.37 | | | Flooding | 0.60 |
| | | Depth to | 10.01 | | | Depth to | 0.01 |
| | | saturated zone | | | | saturated zone | |
| | | | | | | | |
| Water------------------Bowstring---- | 5 | Not rated | | \| Not rated | | \| Not rated | |
| | | | | | | | |
| | 2 | \| Not rated | | \| Not rated | | \| Not rated | |
| Bowstring-----------------Rauville--- | | | | | | | |
| | 1 | \|Very limited | | \|Very limited | | \mid Very limited | |
| Rauville-------- | | Depth to | 11.00 | \| Ponding | 11.00 | \| Depth to | 1.00 |
| | | saturated zone | | Depth to | 1.00 | saturated zone | |
| | | Flooding | 11.00 | saturated zone | | Flooding | 1.00 |
| | | Ponding | 11.00 | Flooding | 0.60 | Ponding | 1.00 |
| | | | | | | | |
| 117A: | | | | | | | |
| Foldahl | 75 | \|Somewhat limited | | \| Not limited | | \|Somewhat limited | |
| | | Depth to | 10.01 | | | Depth to | 0.01 |
| | | \| saturated zone | | | | \| saturated zone | |
| | | | | | | | |
| Kratka | 10 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 |
| | | Ponding | 11.00 | Ponding | 1.00 | Ponding | 1.00 |
| | | | | | | | |
| Roliss---------- | 5 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | \| Depth to saturated zone | 11.00 | \| Depth to saturated zone | 1.00 | \| Depth to
 \| saturated zone | 1.00 |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | | | | | | |

Table 17a.--Recreation--Continued

| Map symbol and soil name | $\begin{aligned} & \text { \| Pct. } \\ & \text { \| of } \\ & \text { \|map } \\ & \text { \|unit } \end{aligned}$ | \| Camp areas | | Picnic areas | | Playgrounds | | |
|---|---|---|---|---|---|---|---|---|
| | | Rating class and limiting features | \|Value| | Rating class and limiting features | \|Value | Rating class and limiting features | \| Value |
| | | | | | | | |
| I17A: | | | | | | | |
| Flaming--------- | \| 4 | \|Somewhat limited | | \|Somewhat limited | | \|Somewhat limited | |
| | | Too sandy | 10.31 | Too sandy | 0.31 | Too sandy | 10.31 |
| | | Depth to | 10.01 | | | Depth to | \| 0.01 |
| | | saturated zone | | | | saturated zone | |
| | | | | | | | |
| Grimstad-------- | 2 | \|Very limited | | \| Somewhat limited | | \|Somewhat limited | |
| | | Depth to saturated zone | 10.99 | Depth to saturated zone | 10.78 | Depth to saturated zone | 10.99 |
| | | | | | | | |
| Linveldt-------- | 2 | \| Somewhat limited | | \| Not limited | | \|Somewhat limited | |
| | | Depth to | 10.01 | | | Depth to | 0.01 |
| | | saturated zone | | | | saturated zone | |
| | | | | | | | |
| Eckvoll--------- | 1 | \|Somewhat limited | | \|Somewhat limited | | \|Somewhat limited | |
| | | Too sandy | 10.31 | Too sandy | 0.31 | Too sandy | 10.31 |
| | | | 10.01 | | | Depth to | 10.01 |
| | | saturated zone | | | | saturated zone | |
| | | | | | | | |
| Strathcona------ | 1 | | | | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 |
| | | Ponding | 11.00 | Ponding | 1.00 | Ponding | 1.00 |
| | | | | | | | |
| I18A: | | | | | | | |
| Foldah | 75 | \|Somewhat limited | | \|Somewhat limited | | \|Somewhat limited | |
| | | Too sandy | 10.31 | Too sandy | 0.31 | \| Too sandy | 0.31 |
| | | Depth to | 10.01 | | | Depth to | 10.01 |
| | | saturated zone | | | | saturated zone | |
| | | | | | | | |
| Kratka | 10 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | \| Depth to saturated zone | 11.00 | \| Depth to saturated zone | 1.00 |
| | | Ponding | \| 1.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | | | | | | |
| Roliss---------- | ${ }^{5}$ | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 |
| | | Ponding | 11.00 | Ponding | 11.00 | \| Ponding | 1.00 |
| | | | | | | | |
| Flaming--------- | 4 4 | | | | | | |
| | | Too sandy | 10.31 | Too sandy | 0.31 | Too sandy | 10.31 |
| | | Depth to | 10.01 | | | Depth to | 10.01 |
| | | saturated zone | | | | saturated zone | |
| | | | | | | | |
| Grimstad-------- | I | \|Very limited | | \|Somewhat limited | | \|Somewhat limited | |
| | | Depth to | 10.99 | Depth to | 0.78 | Depth to | 10.99 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Linveldt-------- | 2 | Somewhat limited | 10.01 | \| Not limited | | \| Somewhat limited | |
| | | Depth to | 10.01 | | | Depth to | 10.01 |
| | | \| saturated zone | | | | \| saturated zone | |
| | | | | | | | |
| Eckvoll--------- | 1 | \|Somewhat limited | | \|Somewhat limited | | \|Somewhat limited | |
| | | Too sandy | 10.31 | Too sandy | 10.31 | Too sandy | 10.31 |
| | | Depth to | 10.01 | | | Depth to | 10.01 |
| | | saturated zone | | | | saturated zone | |

Table 17a.--Recreation--Continued

Table 17a.--Recreation--Continued

Table 17a.--Recreation--Continued

| Map symbol and soil name | Pct.
 of map unit | Camp areas | | Picnic areas | | Playgrounds | | |
|---|---|---|---|---|---|---|---|---|
| | | Rating class and limiting features | \|Value| | Rating class and limiting features | \|Value | Rating class and limiting features | \| Value |
| | | | | | | | |
| I22A: | | | | | | | |
| Glyndon | 75 | Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to
 saturated zone | 11.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | | | saturated zone | | saturated zone | |
| | | | | | | | |
| Borup | 10 | \|Very limited | | \mid Very limited | | \|Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | \| 1.00 | Ponding | 11.00 | \| Ponding | 1.00 |
| | | | | | | | |
| Augsburg-------- | 5 | \|Very limited | | \|Very limited | | \| Very limited | |
| | | Depth to saturated zo | 11.00 | Depth to saturated z | 11.00 | Depth to saturated zone | 1.00 |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | Restricted | 10.96 | Restricted | 10.96 | Restricted | 0.96 |
| | | permeability | | permeability | | permeability | |
| | | | | | | | |
| Ulen | 5 | \|Somewhat limited | | \|Somewhat limited | | \|Somewhat limited | |
| | | Depth to | 10.44 | Depth to | 10.22 | Depth to | 0.44 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Wheatville------ | 3 | | | \|Somewhat limited | | | |
| | | Depth to | 11.00 | Restricted | 10.96 | \| Depth to | 1.00 |
| | | saturated zone Restricted | 10.96 | permeability
 Depth to | 10.90 | saturated zone Restricted | 0.96 |
| | | permeability | | saturated zone | | permeability | |
| | | | | | | | |
| Flaming-------- | 2 | \|Somewhat limited | | \|Somewhat limited | | \|Somewhat limited | |
| | | Too sandy | 10.31 | Too sandy | 0.31 | \| Too sandy | 0.31 |
| | | Depth to saturated zone | 10.01 | | | Depth to saturated zone | 0.01 |
| | | | | | | | |
| I23A: | | | | | | | |
| Glyndo | 75 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to | 11.00 | Depth to | 1.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Borup | 10 | \|Very limited | | \|Very limited | | \mid Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | | | | | | |
| Augsburg------- | 5 | | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 | \| Depth to saturated zone | 1.00 |
| | | Ponding | \| 1.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | Restricted | 10.96 | Restricted | 10.96 | Restricted | 0.96 |
| | | permeability | | permeability | | permeability | |
| | | | | | | | |
| Ulen------------- | 5 | | | | | | |
| | | \| Depth to | 10.44 | Too sandy | 10.31 | \| Depth to | 0.44 |
| | | saturated zone | | Depth to | 10.22 | saturated zone | |
| | | Too sandy | 10.31 | saturated zone | | Too sandy | 0.31 |
| | | | | | | | |
| Wheatville------ | 3 | \|Very limited | | \|Somewhat limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Restricted | 10.96 | Depth to saturated zone | 1.00 |
| | | Restricted | 10.96 | Depth to | 10.90 | Restricted | 0.96 |
| | | permeability | | saturated zone | | \| permeability | |
| | | | | | | | |

Table 17a.--Recreation--Continued

| Map symbol and soil name | Pct.
 of map unit | Camp areas | | Picnic areas | | Playgrounds | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | \| Value | Rating class and limiting features | \|Value | Rating class and limiting features | \| Value |
| | | | | | | | |
| I23A: | | | | | | | |
| Flaming--------- | 2 | Somewhat limited | | \|Somewhat limited | | \|Somewhat limited | |
| | | \| Too sandy | 10.31 | \| Too sandy | 10.31 | \| Too sandy | 0.31 |
| | | Depth to saturated zone | 10.01 | | | Depth to | 0.01 |
| | | | | | | saturated zone | |
| | | | | | | | |
| I24A: | | | | | | | |
| Grimstad-------- | 70 | \|Very limited | | Somewhat limited | | \|Somewhat limited | |
| | | Depth to saturated zone | 10.99 | Depth to | 10.78 | Depth to | 0.99 |
| | | | | saturated zone | | saturated zone | |
| | | | | | | | |
| Strathcona | 12 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | ```Depth to saturated zone Ponding``` | 11.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | \| 1.00 |
| | | | 11.00 | Ponding | \| 1.00 | Ponding | 11.00 |
| | | | | | | | |
| Foldahl--------- | 5 | Somewhat limited | | \| Not limited | | \| Somewhat limited | |
| | | Depth to saturated zone | 10.01 | | | Depth to | 0.01 |
| | | | | | | saturated zone | |
| | | | | | | | |
| Hamerly--------- | 5 | Very limited | | Somewhat limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 10.90 | Depth to saturated zone | \| 1.00 |
| | | | | | | | |
| Foxhome--------- | 2 | Somewhat limited Depth to saturated zone | | Not limited | | \|Somewhat limited | |
| | | | 10.01 | | | Depth to | 0.01 |
| | | | | | | saturated zone | |
| | | | | | | | |
| Karlsruhe------- | 2 | Somewhat limited
 Depth to saturated zone | | Somewhat limited | | \|Somewhat limited | |
| | | | 10.44 | ```Depth to saturated zone``` | 10.22 | Depth to saturated zone | 10.44 |
| | | | | | | | |
| | | | | | | | |
| Mavie----------- | 2 | Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | \| 1.00 |
| | | Ponding | \| 1.00 | Ponding | \| 1.00 | Ponding | \| 1.00 |
| | | | | | | | |
| Ulen | 2 | | | \|Somewhat limited | | \|Somewhat limited | |
| | | Depth to | 10.44 | Depth to | 10.22 | \| Depth to | 0.44 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| I25A: | | | | | | | |
| Hamar | 75 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | \| 1.00 |
| | | Ponding | 12.00 | Ponding | \| 1.00 | Ponding | \| 1.00 |
| | | Too sandy | \| 0.31 | Too sandy | 10.31 | Too sandy | 10.31 |
| | | | | | | | |
| Garborg | 10 | | | \|Somewhat limited | | \|Somewhat limited | |
| | | \| Depth to | 10.99 | Depth to
 saturated zone | 10.78 | Depth to
 saturated zone | 0.99 |
| | | Too sandy | 10.31 | Too sandy | 10.31 | Too sandy | 10.31 |
| | | | | | | | |
| Rosewood | 77 | ```Very limited Depth to saturated zone Ponding``` | | \| Very limited | | \|Very limited | |
| | | | 11.00 | Depth to | 11.00 | Depth to | \| 1.00 |
| | | | 11.00 | saturated zone Ponding | \| 1.00 | saturated zone | \| 1.00 |
| | | | | | | Ponding | |

Table 17a.--Recreation--Continued

Table 17a.--Recreation--Continued

Table 17a.--Recreation--Continued

Table 17a.--Recreation--Continued

| Map symbol and soil name | Pct.
 of map unit | \| Camp areas | | Picnic areas | | Playgrounds | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | \| Value | Rating class and limiting features | \|Value | Rating class and limiting features | \| Value |
| | | | | | | | |
| I30A: | | | | | | | |
| Hedman---------- | 85 | | | \|Very limited | | \|Very limited | |
| | | | 11.00 | Depth to | 11.00 | Depth to | 11.00 |
| | | | | saturated zone | | saturated zone | |
| | | | 11.00 | Ponding | 11.00 | Ponding | \| 1.00 |
| | | | | | | | |
| Fram- | 5 | Somewhat limited | | | | \|Somewhat limited | |
| | | Depth to | 10.01 | Not limited | | Depth to | 0.01 |
| | | saturated zone | | | | saturated zone | |
| | | | | | | | |
| Strathcona------- | 5 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 11.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | | | | | | |
| Haug------------Strandquist------ | 3 | Not rated | | Not rated | | \| Not rated | |
| | | | | | | | |
| | 2 | Very limited | | \|Very limited | | \|Very limited | |
| Strandquist----- | | Depth to saturated zone | 11.00 | Depth tosaturated zone | 11.00 | Depth to | 11.00 |
| | | | | | | saturated zone | |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | | | | | | |
| I31A: | | | | | | | |
| Hedman | 50 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | \| 1.00 |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | \| 1.00 |
| | | | | | | | |
| Fram | 40 | \|Somewhat limited | | Not limited | | \|Somewhat limited | |
| | | Depth to | 10.01 | | | Depth to | 0.01 |
| | | saturated zone | | | | saturated zone | |
| | | | | | | | |
| Strathcona------ | 5 | \| Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | \| 1.00 |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | | | | | | |
| Haug------------Strandquist------ | 3 | \| Not rated | | Not rated | | Not rated | |
| | | | | | | | |
| | 2 | \|Very limited | | \|Very limited | | \|Very limited | |
| Strandquist----- | | Depth to saturated zone | 11.00 | ```Depth to saturated zone Ponding``` | 11.00 | Depth to saturated zone | \| 1.00 |
| | | Ponding | 11.00 | | \| 1.00 | Ponding | \| 1.00 |
| | | | | | | | |
| | | | | | | | |
| I32A:Hilair | 75 | \|Somewhat limited | | \|Somewhat limited | | Somewhat limited | |
| | | Restricted | 10.96 | Restricted | 10.96 | Restricted | 10.96 |
| | | permeability | | permeability | | permeability | |
| | | Depth to | 10.01 | | | Depth to | 10.01 |
| | | saturated zone | | | | saturated zone | |
| | | | | | | | |
| Espelie | 12 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 |
| | | Ponding | \| 1.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | Restricted | 10.96 | | 10.96 | | 10.96 |
| | | permeability | | permeability | | permeability | |
| | | | | | | | |

Table 17a.--Recreation--Continued

Table 17a.--Recreation--Continued

Table 17a.--Recreation--Continued

Table 17a.--Recreation--Continued

| Map symbol and soil name | | \| Camp areas | | Picnic areas | | Playgrounds | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | \| Value | Rating class and limiting features | \| Value | Rating class and
 \| limiting features | \|Value |
| | | | | | | | |
| 136A: | | | | | | | |
| Kratka-------------\| | 5 | \|Very limited | | \|Very limited | | \mid Very limited | |
| | | Depth to | 11.00 | Depth to | 1.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 11.00 | Ponding | 1.00 | Ponding | 1.00 |
| | | | | | | | |
| Grimstad-----------\| | 3 | \| Very limited | | Somewhat limited | | \| Somewhat limited | |
| | | Depth to | 10.99 | Depth to | 10.78 | Depth to | 0.99 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Strandquist--------\| | 3 | \|Very limited | | \|Very limited | | \mid Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 11.00 | Ponding | 1.00 | Ponding | 1.00 |
| | | | | | | | |
| Foxhome------------\| | 2 | \| Somewhat limited | | Not limited | | \| Somewhat limited | |
| | | Depth to | 10.01 | | | Depth to | 0.01 |
| | | saturated zone | | | | saturated zone | |
| | | | | | | | |
| 137A: | 45 | | | | | | |
| Kratka, depressional\| | | \|Very limited | | \|Very limited | | \mid Very limited | |
| | | Depth to | 11.00 | Ponding | 1.00 | Depth to | 1.00 |
| | | saturated zone | | Depth to | 1.00 | saturated zone | |
| | | Ponding | 11.00 | saturated zone | | Ponding | 1.00 |
| | | | | | | | |
| Strathcona, depressional | | | | | | | |
| | 45 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | \| Depth to | 11.00 | Ponding | 1.00 | \| Depth to | 11.00 |
| | | saturated zone | | Depth to | $\text { \| } 1.00$ | saturated zone | |
| | | Ponding | 1.00 | saturated zone | | Ponding | 1.00 |
| | | | | | | | |
| Northwood---------- \| | 5 | Not rated | | Not rated | | \| Not rated | |
| | | | | | | | |
| Kratka-------------\| | 2 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated z | 1.00 | \| Depth to
 \| saturated zone | 11.00 |
| | | Ponding | 11.00 | Ponding | 1.00 | Ponding | 1.00 |
| | | | | | | | |
| Strathcona---------\| | 2 | \|Very limited | | \|Very limited | | \mid Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 | Depth to saturated zone | 1.00 |
| | | Ponding | 11.00 | Ponding | 1.00 | Ponding | 1.00 |
| | | | | | | | |
| Roliss-------------\| | 1 | \|Very limited | | \|Very limited | | \mid Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 | \| Depth to | 1.00 |
| | | Ponding | 11.00 | Ponding | 1.00 | Ponding | 1.00 |
| | | | | | | | |
| I38A: | | | | | | | |
| Kratka------------- \| | 70 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to | 11.00 | Depth to | 1.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | \| saturated zone | |
| | | Ponding | 11.00 | Ponding | 1.00 | Ponding | 1.00 |
| | | | | | | | |
| Smiley-------------\| | 7 | \|Very limited | | \|Very limited | | \mid Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 | ```Depth to saturated zone``` | 1.00 |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | | | | | | |

Table 17a.--Recreation--Continued

Table 17a.--Recreation--Continued

Table 17a.--Recreation--Continued

Table 17a.--Recreation--Continued

Table 17a.--Recreation--Continued

Table 17a.--Recreation--Continued

| Map symbol and soil name | $\begin{aligned} & \text { \| Pct. } \\ & \text { \| of } \\ & \text { \|map } \\ & \text { \|unit } \end{aligned}$ | \| Camp areas | | Picnic areas | | Playgrounds | | | | |
|---|---|---|---|---|---|---|---|---|---|---|
| | \| | | Rating class and limiting features | \|Value| | Rating class and limiting features | \|Value| | Rating class and limiting features | \|Value |
| | | | | | | | |
| I48A: | | | | | | | |
| Oylen | 5 | \| Not limited | | \| Not limited | | \| Not limited | |
| | | | | | | | |
| Flaming | 4 | \|Somewhat limited | | \|Somewhat limited | | \|Somewhat limited | |
| | | Too sandy | 10.31 | Too sandy | 10.31 | Too sandy | 0.31 |
| | | Depth to | 10.01 | | | Depth to | 0.01 |
| | | saturated zone | | | | saturated zone | |
| | | | | | | | |
| Garborg | \| 3 | \|Very limited | | \|Somewhat limited | | \|Somewhat limited | |
| | | Depth to | 10.99 | Depth to | 10.78 | Depth to | 0.99 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Too sandy | 10.31 | Too sandy | 10.31 | Too sandy | 0.31 |
| | | | | | | | |
| Hangaard-------- | 3 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | | | | | | |
| Hamar----------- | 2 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | Too sandy | \| 0.31 | Too sandy | 0.31 | Too sandy | 0.31 |
| | | | | | | | |
| Poppleton------- | 1 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Too sandy | 11.00 | Too sandy | 11.00 | Too sandy | 1.00 |
| | | Depth to | 10.01 | | | Depth to | 0.01 |
| | | saturated zone | | | | saturated zone | |
| | | | | | | | |
| I49A: | | | | | | | |
| Rauville-------- | 80 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to | 11.00 | \| Ponding | 1.00 | Depth to | 1.00 |
| | | saturated zone | | Depth to | 1.00 | saturated zone | |
| | | Flooding | 1.00 | saturated zone | | Flooding | 1.00 |
| | | Ponding | \| 1.00 | Flooding | 0.60 | Ponding | 1.00 |
| | | | | | | | |
| Fluvaquents----- | 12 \| | \|Very limited | | \|Very limited | | \mid Very limited | |
| | | Depth to | 11.00 | Ponding | | Depth to | 1.00 |
| | | saturated zone | | Depth to | 11.00 | saturated zone | |
| | | Flooding | 11.00 | saturated zone | | \| Flooding | 1.00 |
| | | Ponding | 1.00 | Flooding | 0.60 | Ponding | 1.00 |
| | | | | | | | |
| Water------------Lamoure--------- | 5 | \| Not rated | | \| Not rated | | \| Not rated | |
| | | | | | | | |
| | \| 3 | \|Very limited | | \|Very limited | | \|Very limited | |
| Lamoure--------- | | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 | \| Depth to
 \| saturated zone | 1.00 |
| | | Flooding | 11.00 | Ponding | 11.00 | Flooding | 1.00 |
| | | Ponding | \| 1.00 | Flooding | 10.40 | Ponding | 11.00 |
| | | | | | | | |
| I50A: | | | | | | | |
| Reiner | 70 | \|Somewhat limited | | \| Not limited | | \|Somewhat limited | |
| | | Depth to | 10.01 | | | Depth to | 0.01 |
| | | \| saturated zone | | | | \| saturated zone | |
| | | | | | | | |
| Smiley | 12 | ```\|Very limited ``` | | \|Very limited | | \|Very limited | |
| | | | 11.00 | ```Depth to saturated zone``` | 11.00 | Depth to saturated zone | 1.00 |
| | | | 1.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | | | | | | |

Table 17a.--Recreation--Continued

| Map symbol and soil name | $\begin{aligned} & \mid \text { Pct. } \\ & \mid \text { of } \\ & \mid \text { map } \\ & \mid \text { unit } \end{aligned}$ | Camp areas | | Picnic areas | | Playgrounds | | | |
|---|---|---|---|---|---|---|---|---|---|
| | | Rating class and limiting features | \| Value| | Rating class and limiting features | \|Value| | Rating class and limiting features | \| Value |
| I50A: | \| 7 | | | | | | |
| Reiner, very cobbly | | Somewhat limited | | \| Not limited | | \|Somewhat limited | |
| | | Depth to | 0.01 | | | Depth to | 0.01 |
| | | saturated zone | | | | saturated zone | |
| | | | | | | | |
| Linveldt----------- | 5 | Somewhat limited | | \| Not limited | | \| Somewhat limited | |
| | | Depth to | 0.01 | | | Depth to | 0.01 |
| | | saturated zone | | | | saturated zone | |
| | | | | | | | |
| Eckvoll------------ | 3 | Somewhat limited | | \| Somewhat limited | | \| Somewhat limited | |
| | | Too sandy | 0.31 | Too sandy | 0.31 | Too sandy | 0.31 |
| | | Depth to | 0.01 | | | Depth to | 0.01 |
| | | saturated zone | | | | saturated zone | |
| | | | | | | | |
| Kratka------------- | 3 | Very limited | | \| Very limited | | \| Very limited | |
| | | Depth to | 11.00 | Depth to | \| 1.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | | | | | | |
| I51A: | | | | | | | |
| Reine | 65 | Somewhat limited | | \| Somewhat limited | | \|Somewhat limited | |
| | | Too sandy | 0.31 | Too sandy | 0.31 | Too sandy | 0.31 |
| | | Depth to | 10.01 | | | Depth to | 0.01 |
| | | saturated zone | | | | saturated zone | |
| | | | | | | | |
| Smiley------------- | 9 | Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 11.00 | Ponding | 1.00 | Ponding | 11.00 |
| | | | | | | | |
| Reiner fine sandyloam---------- | | | | | | | |
| | 8 | Somewhat limited | | \| Not limited | | \|Somewhat limited | |
| | | Depth to | 0.01 | | | Depth to | 0.01 |
| | | saturated zone | | | | saturated zone | |
| | | | | | | | |
| Linveldt----------- | 7 | Somewhat limited | | \| Not limited | | \| Somewhat limited | |
| | | Depth to | 0.01 | | | Depth to | 0.01 |
| | | saturated zone | | | | saturated zone | |
| | | | | | | | |
| Kratka------------- | 5 | Very limited | | \|Very limited | | \| Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 |
| | | Ponding | \| 1.00 | Ponding | \| 1.00 | Ponding | \| 1.00 |
| | | | | | | | |
| Eckvoll------------ | 3 | Somewhat limited | | \| Somewhat limited | | Somewhat limited | |
| | | Too sandy | 0.31 | \| Too sandy | \| 0.31 | Too sandy | 0.31 |
| | | Depth to | 0.01 | | | Depth to | 0.01 |
| | | saturated zone | | | | saturated zone | |
| | | | | | | | |
| Reiner, very cobbly | 3 | Somewhat limited | | \| Not limited | | \| Somewhat limited | |
| | | Depth to | 0.01 | | | Depth to | 0.01 |
| | | saturated zone | | | | saturated zone | |
| | | | | | | | |
| I52A: | | | | | | | |
| Reis | 55 | Very limited | | \|Very limited | | \| Very limited | |
| | | Depth to | 11.00 | Depth to | \| 1.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Too clayey | \| 1.00 | Too clayey | \| 1.00 | Too clayey | \| 1.00 |
| | | Restricted | 10.96 | Restricted | 10.96 | Restricted | 0.96 |
| | | permeability | | permeability | | permeability | |
| | | | | | | | |

Table 17a.--Recreation--Continued

Table 17a.--Recreation--Continued

| Map symbol and soil name | $\begin{aligned} & \mid \text { Pct. } \\ & \mid \text { of } \\ & \mid \text { map } \\ & \mid \text { unit } \mid \end{aligned}$ | \| Camp areas | | Picnic areas | | Playgrounds | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | \|Value | Rating class and limiting features | \|Value | Rating class and limiting features | \|Value |
| | | | | | | | |
| I53A: | | | | | | | |
| Roliss, very cobbly | 7 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 11.00 | Ponding | 1.00 | Ponding | 1.00 |
| | | | | | | | |
| Kittson------------- \| | 5 | \| Somewhat limited | | \| Not limited | | \| Somewhat limited | |
| | | Depth to | 10.01 | | | Depth to | 0.01 |
| | | saturated zone | | | | saturated zone | |
| | | | | | | | |
| Roliss, depressional\| | 3 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to | 11.00 | Ponding | 11.00 | Depth to | 1.00 |
| | | saturated zone | | Depth to | 11.00 | saturated zone | |
| | | Ponding | 11.00 | saturated zone | | \| Ponding | 1.00 |
| | | | | | | | |
| Smiley------------- \| | 2 | \|Very limited | | \mid Very limited | | \mid Very limited | |
| | | Depth to saturated zo | 11.00 | Depth to saturated zo | 11.00 | Depth to saturated zon | 1.00 |
| | | Ponding | 11.00 | Ponding | 1.00 | Ponding | 1.00 |
| | | | | | | | |
| I54A: | | | | | | | |
| Roliss, depressional | 80 | \|Very limited | | \|Very limited | | \mid Very limited | |
| | | Depth to | 11.00 | Ponding | 11.00 | Depth to | 1.00 |
| | | saturated zone | | Depth to | 11.00 | saturated zone | |
| | | Ponding | 11.00 | saturated zone | | Ponding | 1.00 |
| | | | | | | | |
| Roliss------------- | 12 | | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 |
| | | Ponding | 11.00 | Ponding | 1.00 | Ponding | 1.00 |
| | | | | | | | |
| Hamre-------------- | 5 \| | \| Not rated | | \| Not rated | | \| Not rated | |
| | | | | | | | |
| Kratka------------- \| | 31 | | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zon | 11.00 | Depth to saturated zone | 1.00 |
| | | Ponding | 11.00 | Ponding | 1.00 | Ponding | 1.00 |
| | | | | | | | |
| I55A: | | | | | | | |
| Rosewood----------- \| | 75 | \|Very limited | | \mid Very limited | | \mid Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 | Depth to saturated zone | 1.00 |
| | | Ponding | 11.00 | Ponding | 1.00 | Ponding | 1.00 |
| | | | | | | | |
| Ulen--------------- \| | 10 | | | | | | |
| | | Depth to saturated zone | 10.44 | Depth to saturated zone | 0.22 | \| Depth to
 \| saturated zone | 0.44 |
| | | | | | | | |
| Hamar--------------- \| | $6 \mid$ | | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to
 saturated zone | 11.00 | Depth to
 saturated zone | 1.00 |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | Too sandy | 10.31 | Too sandy | 10.31 | Too sandy | 0.31 |
| | | | | | | | |
| Rosewood, depressional | | | | | | | |
| | 3 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to | 11.00 | Ponding | 11.00 | Depth to | 1.00 |
| | | saturated zone | | Depth to | 11.00 | saturated zone | |
| | | Ponding | 11.00 | saturated zone | | Ponding | 1.00 |

Table 17a.--Recreation--Continued

| Map symbol and soil name | $\begin{aligned} & \text { \| Pct. } \\ & \text { \| of } \\ & \text { \|map } \\ & \text { \|unit } \end{aligned}$ | \| Camp areas | | Picnic areas | | Playgrounds | | |
|---|---|---|---|---|---|---|---|---|
| | | Rating class and limiting features | \|Value| | Rating class and limiting features | \|Value | Rating class and limiting features | \|Value |
| | | | | | | | |
| I55A: | | | | | | | |
| Syrene---------- | 3 | \|Very limited | | \|Very limited | | \mid Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to | 1.00 | \| Depth to | 1.00 |
| | | | | saturated zone | | saturated zone | |
| | | Ponding | 11.00 | Ponding | 1.00 | Ponding | 1.00 |
| | | | | | | | |
| Karlsruhe------- | 1 | Somewhat limited Depth to saturated zone | | \|Somewhat limited | | \|Somewhat limited | |
| | | | 10.44 | Depth to | 0.22 | Depth to | 0.44 |
| | | | | saturated zone | | saturated zone | |
| Strathcona------ | 1 | Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | | | saturated zone | | saturated zone | |
| | | \| Ponding | 11.00 | Ponding | 1.00 | Ponding | 1.00 |
| | | | | | | | |
| Thiefriver------ | 1 | Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zon | 11.00 | Depth to saturated zo | 11.00 | \| Depth to | 1.00 |
| | | Ponding | 11.00 | Ponding | \| 1.00 | Ponding | 1.00 |
| | | | 10.96 | | 10.96 | | 0.96 |
| | | permeability | | permeability | | permeability | |
| | | | | | | | |
| I56A: | | | | | | | |
| Rosewood | 50 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | $\|$Depth to
 saturated zone
 Ponding | 11.00 | Depth to
 \| saturated zone | 11.00 | Depth to saturated zone | 1.00 |
| | | | 11.00 | \| Ponding | 11.00 | Ponding | 1.00 |
| | | | | | | | |
| Venlo----------- | 40 | \|Very limited | | \|Very limited | | | |
| | | Depth to saturated zone | 1.00 | Ponding | 11.00 | Very limited Depth to | 1.00 |
| | | | | Depth to | 11.00 | saturated zone | |
| | | Ponding | 11.00 | saturated zone | | Ponding | 1.00 |
| | | | | | | | |
| Deerwood-------------------Syrene--- | 31 | \| Not rated | | \| Not rated | | \| Not rated | |
| | | | | | | | |
| | 3 | Very limitedDepth tosaturated zonePonding | | \|Very limited | | \|Very limited | |
| Syrene---------- | | | 11.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 |
| | | | 11.00 | Ponding | 1.00 | Ponding | 1.00 |
| | | | | | | | |
| Ulen------------ | 2 | Somewhat limited | | | | Somewhat limited | |
| | | Depth to saturated zone | 10.44 | \| Too sandy | 10.31 | Depth to | 0.44 |
| | | | | Depth to | 10.22 | saturated zone | |
| | | Too sandy | 10.31 | saturated zone | | Too sandy | 0.31 |
| | | | | | | | |
| Strathcona------ | 1 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone Ponding | 11.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | | | saturated zone | | saturated zone | |
| | | | 11.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | | | | | | |
| Thiefriver------ | 1 | Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 | \| Depth to saturated zone | 1.00 |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | Restricted | 10.96 | Restricted | 10.96 | Restricted | 0.96 |
| | | permeability | | permeability | | permeability | |
| | | | | | | | |

Table 17a.--Recreation--Continued

Table 17a.--Recreation--Continued

Table 17a.--Recreation--Continued

Table 17a.--Recreation--Continued

Table 17a.--Recreation--Continued

| Map symbol and soil name | $\begin{aligned} & \mid \text { Pct. } \\ & \mid \text { of } \\ & \mid \text { of } \\ & \mid \text { map } \\ & \mid \text { unit } \end{aligned}$ | Camp areas | | Picnic areas | | Playgrounds | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | \| Value | Rating class and limiting features | \|Value | Rating class and
 \| limiting features | \| Value |
| | | | | | | | |
| I64A: | | | | | | | |
| Flaming--------- | 8 | \|Somewhat limited | | Somewhat limited Too sandy | 0.31 | \|Somewhat limited | \| |
| | | Too sandy | 10.31 | | | Too sandy | 0.31 |
| | | Depth to | 10.01 | | | Depth to | 10.01 |
| | | saturated zone | | | | saturated zone | |
| | | | | | | | |
| Karlsruhe------- | 5 | \| Somewhat limited | | Somewhat limited
 Depth to saturated zone | 10.22 | Somewhat limited | |
| | | Depth to | 10.44 | | | Depth to | 10.44 |
| | | saturated zone | | | | saturated zone | |
| Radium---------- | 3 | \| Somewhat limited | | Somewhat limited | | \| Somewhat limited | |
| | | Too sandy | 10.36 | Too sandy | 10.36 | Too sandy | 10.36 |
| | | | | | | | |
| Strathcona------ | 2 | \|Very limited | | Very limited | | \|Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 11.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | | | | | | |
| Thiefriver------ | 2 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 | Depth to saturated zone | 11.00 |
| | | Ponding | 11.00 | Ponding | 1.00 | Ponding | \| 1.00 |
| | | Restricted | 0.96 | Restricted | 0.96 | Restricted | 10.96 |
| | | permeability | | permeability | | permeability | |
| | | | | | | | |
| 165A: | | | | | | | |
| Ulen | 70 | | | Somewhat limited | | \|Somewhat limited | |
| | | Depth to | 10.44 | Too sandy | 10.31 | \| Depth to | 0.44 |
| | | saturated zone | | Depth to | 10.22 | saturated zone | |
| | | Too sandy | 10.31 | saturated zone | | Too sandy | 0.31 |
| | | | | | | | |
| Rosewood- | 10 | \|Very limited | | Very limited | | \|Very limited | |
| | | Depth to saturated zone | \| 1.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | \| 1.00 |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | | | | | | |
| Flaming--------- | 6 | \|Somewhat limited | | Somewhat limited | | \|Somewhat limited | |
| | | \| Too sandy | 0.31 | Too sandy | 0.31 | \| Too sandy | 0.31 |
| | | Depth to | 10.01 | | | Depth to | 10.01 |
| | | saturated zone | | | | \| saturated zone | |
| | | | | | | | |
| Poppleton------- | 4 | | | Very limited | | \|Very limited | |
| | | Too sandy | 11.00 | Too sandy | 1.00 | Too sandy | \| 1.00 |
| | | Depth to | 10.01 | | | Depth to | 0.01 |
| | | saturated zone | | | | saturated zone | |
| | | | | | | | |
| Karlsruhe------- | 31 | \| Somewhat limited | | Somewhat limited | | \| Somewhat limited | |
| | | Depth to | 10.44 | Depth to | 10.22 | Depth to | 10.44 |
| | | saturated zone | | saturated zone | | saturated zone | |
| Radium---------- | 3 | | | | | | |
| | | Too sandy | 10.36 | Too sandy | 10.36 | \| Too sandy | 10.36 |
| | | | | | | | |
| Strathcona------ | 2 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 11.00 |
| | | saturated zone | | saturated zone | | \| saturated zone | |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | | | | | | |

Table 17a.--Recreation--Continued

| Map symbol and soil name | \mid \mid Pct. \mid of \mid \mid map \mid unit \mid | \| Camp areas | | Picnic areas | | Playgrounds | | | |
|---|---|---|---|---|---|---|---|---|---|
| | 1 | Rating class and limiting features | \|Value| | Rating class and limiting features | \|Value| | Rating class and limiting features | \|Value |
| | | | | | | | |
| 165A: | | | | | | | |
| Thiefriver---------\| | \| | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | Restricted | 10.96 | Restricted | 0.96 | Restricted | 0.96 |
| | | permeability | | permeability | | permeability | |
| | | | | | | | |
| I66A: | | | | | | | |
| Vallers------------\| | 75 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | | | | | | |
| Vallers, very cobbly | 7 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | \| 1.00 | Depth to saturated zone | 11.00 | ```Depth to saturated zone``` | 1.00 |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | | | | | | |
| Hamerly------------ | 6 | \|Very limited | | \|Somewhat limited | | \|Very limited | |
| | | Depth to | \| 1.00 | Depth to | 0.90 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| Grimstad------------ \| | ${ }^{3}$ | \|Very limited | | \|Somewhat limited | | \|Somewhat limited | |
| | | Depth to saturated zon | 10.99 | Depth to saturated zone | 0.78 | Depth to saturated zone | 0.99 |
| | | | | | | | |
| Mavie--------------- \| | 31 | | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | \| 1.00 | Depth to saturated zone | \| 1.00 | Depth to saturated zone | 1.00 |
| | | Ponding | 11.00 | Ponding | 1.00 | Ponding | 1.00 |
| | | | | | | | |
| Roliss, depressional\| | 3 | \|Very limited | | \|Very limited | | \mid Very limited | |
| | | Depth to | 11.00 | Ponding | 11.00 | Depth to | 1.00 |
| | | saturated zone | | Depth to | \| 1.00 | \| saturated zone | |
| | | Ponding | 11.00 | saturated zone | | \| Ponding | 1.00 |
| | | | | | | | |
| Strathcona--------- \| | 31 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zon | 11.00 | Depth to saturated zone | 1.00 |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | | | | | | |
| 167A: | | | | | | | |
| Wheatville---------\| | 70 | \|Very limited | | \|Somewhat limited | | \|Very limited | |
| | | Depth to saturated zone | \| 1.00 | Restricted permeability | 10.96 | \| Depth to saturated zone | 1.00 |
| | | Restricted | 10.96 | Depth to | 10.90 | Restricted | 0.96 |
| | | permeability | | saturated zone | | permeability | |
| | | | | | | | |
| Augsburg------------ \| | 13 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | Restricted | 10.96 | Restricted | 10.96 | Restricted | 0.96 |
| | | permeability | | permeability | | permeability | |
| | | | | | | | |
| Glyndon------------ \| | 8 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |

Table 17a.--Recreation--Continued

Table 17a.--Recreation--Continued

Table 17a.--Recreation--Continued

(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00 . The larger the value, the greater the limitation. "Not rated" indicates that data are not available or that no rating is applicable. See text for further explanation of ratings in this table)

| Map symbol and soil name | $\left\|\begin{array}{l}\mid \text { Pct. } \\ \left\lvert\, \begin{array}{l}\text { of }\end{array}\right. \\ \mid \text { map } \\ \mid \text { unit }\end{array}\right\|$ | Paths and trails | | Off-road
 motorcycle trails | | Golf fairways | | |
|---|---|---|---|---|---|---|---|---|
| | | Rating class and limiting features | \|Value | Rating class and limiting features | \|Value | Rating class and limiting features | \|Value |
| | | | | | | | |
| B109A: | | | | | | | |
| Bowstring----------\| | 45 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to | 1.00 | Ponding | 1.00 |
| | | | | saturated zone | | Flooding | 1.00 |
| | | Content of organic matter | 11.00 | Content of | 1.00 | Content of | 1.00 |
| | | | | organic matter | | organic matter | |
| | | Ponding | 11.00 | Ponding | 11.00 | Depth to | 1.00 |
| | | Flooding | 10.60 | Flooding | 10.60 | saturated zone | |
| | | | | | | | |
| Fluvaquents-------- \| | 40 | \| Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to | 11.00 | Ponding | 1.00 |
| | | | | saturated zone | | Flooding | 1.00 |
| | | Ponding | 11.00 | Ponding | 11.00 | Depth to | 1.00 |
| | | Flooding | 10.60 | Flooding | 10.60 | saturated zone | |
| | | | | | | | |
| Hapludalfs---------\| | 5 | \|Very limited | | Somewhat limited | | \mid Very limited | |
| | | | 11.00 | Slope | 10.44 | Slope | 1.00 |
| | | | | | | | |
| Seelyeville--------\| | 5 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 1.00 | Depth to | 1.00 | Ponding | 11.00 |
| | | | | saturated zone | | Flooding | 11.00 |
| | | Ponding | 11.00 | Ponding | 11.00 | Depth to | 1.00 |
| | | Flooding | 10.60 | Flooding | 0.60 | saturated zone | |
| | | | | | | | |
| Water--------------- \| | 5 | Not rated | | Not rated | | Not rated | |
| | | | | | | | |
| B200A: | | | | | | | |
| Garnes--------------\| | 70 | \| Not limited | | \| Not limited | | \| Not limited | |
| | | | | | | | |
| Chilgren------------ | 13 | \|Very limited\mid Depth tosaturated zonePonding | | \|Very limited | | \|Very limited | |
| | | | 11.00 | Depth to saturated zone Ponding | 11.00 | Depth to saturated zone | 1.00 |
| | | | 11.00 | | 11.00 | Ponding | 1.00 |
| | | | | | | | |
| Eckvoll------------- \| | 5 | \| Not limited | | \| Not limited | | \| Not limited | |
| | | | | | | | |
| Garnes, very stony--\| | \| 5 | | \|Somewhat limitedToo stony | | \|Somewhat limited | | Somewhat limited Content of large stones | |
| | | | 10.04 | Too stony | 10.04 | | 0.01 |
| | | | | | | | |
| Grygla-------------\| | 4 | Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | Too sandy | 10.12 | Too sandy | 10.12 | | |
| | | | | | | | |
| Pelan------------- | \| 3 | | \| Not limited | | Not limited | | \| Not limited | |
| | | \| | | \| | | | | |
| | \mid \| | | | | | | |
| Chilgren | | \|Very limitedDepth tosaturated zonePonding | | \|Very limited | | \|Very limited | |
| | | | 11.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 |
| | | | 11.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | | | | | | |

Table 17b.--Recreation--Continued

| Map symbol and soil name | Pct.
 of map unit | Paths and trails | | motorcycle trails | | Golf fairways | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | Value | Rating class and limiting features | \| Value | Rating class and
 limiting features | \|Value |
| B201A: | | | | | | | |
| Garnes--------------- \| | 9 | Not limited | | Not limited | | \| Not limited | |
| Grygla-------------- \| | 5 | Very limited | | \| Very limited | | \| Very limited | |
| | | Depth to $\begin{aligned} & \text { saturated zone }\end{aligned}$ | 1.00 | Depth to saturated zone | \| 1.00 | Depth to saturated zone | 1.00 |
| | | Ponding | 1.00 | Ponding | \| 1.00 | Ponding | 1.00 |
| | | Too sandy | 0.12 | Too sandy | \| 0.12 | | |
| | | | | | | | |
| Grygla, depressional\| | 5 | Very limited | | Very limited | | \| Very limited | |
| | | Depth to | 1.00 | Depth to | \| 1.00 | Ponding | 1.00 |
| | | saturated zone | | saturated zone | | Depth to | 1.00 |
| | | Ponding | 1.00 | Ponding | \| 1.00 | saturated zone | |
| | | Too sandy | 0.12 | Too sandy | \| 0.12 | | |
| | | | | | | | |
| Hamre-------------- \| | 5 | \| Very limited | | Very limited | | \| Very limited | |
| | | Depth to | 1.00 | Depth to | 11.00 | Ponding | 1.00 |
| | | saturated zone | | saturated zone | | Content of | 1.00 |
| | | Content of | 1.00 | Content of | 11.00 | organic matter | |
| | | organic matter | | organic matter | | Depth to | 1.00 |
| | | Ponding | 1.00 | Ponding | 11.00 | saturated zone | |
| | | | | | | | |
| Pelan-------------- \| | 1 | Not limited | | \| Not limited | | \| Not limited | |
| | | | | | | | |
| B202A: | | | | | | | |
| Cathro------------- \| | 80 | \| Very limited | | \| Very limited | | \| Very limited | |
| | | Depth to | 1.00 | Depth to | \| 1.00 | \| Ponding | 1.00 |
| | | saturated zone | | saturated zone | | Content of | \| 1.00 |
| | | Content of | 1.00 | Content of | 1.00 | organic matter | |
| | | organic matter | | organic matter | | Depth to | 1.00 |
| | | Ponding | 1.00 | Ponding | 11.00 | saturated zone | |
| | | | | | | | |
| Hamre--------------- \| | 8 | Very limited | | \| Very limited | | \| Very limited | |
| | | Depth to | 1.00 | Depth to | \| 1.00 | \| Ponding | 1.00 |
| | | saturated zone | | saturated zone | | Content of | \| 1.00 |
| | | Content of | 1.00 | Content of | 1.00 | organic matter | |
| | | organic matter | | organic matter | | Depth to | 1.00 |
| | | Ponding | 1.00 | Ponding | 11.00 | saturated zone | |
| | | | | | | | |
| Chilgren------------ \| | 3 | Very limited | | \| Very limited | | \| Very limited | |
| | | Depth to | 1.00 | Depth to | 11.00 | \| Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 1.00 | Ponding | \| 1.00 | Ponding | 1.00 |
| | | | | | | | |
| Northwood----------- \| | 3 | Very limited | | \| Very limited | | \| Very limited | |
| | | Depth to | 1.00 | Depth to | \| 1.00 | Ponding | 1.00 |
| | | saturated zone | | saturated zone | | Depth to | 1.00 |
| | | Ponding | 1.00 | Ponding | 11.00 | saturated zone | |
| | | | | | | | |
| Berner-------------- \| | 2 | \| Very limited | | \| Very limited | | \| Very limited | |
| | | Depth to | 1.00 | Depth to | \| 1.00 | Ponding | 1.00 |
| | | saturated zone | | saturated zone | | Content of | 1.00 |
| | | Content of | 1.00 | Content of | 11.00 | organic matter | |
| | | organic matter | | organic matter | | \| Depth to | 1.00 |
| | | Ponding | 1.00 | Ponding | 11.00 | saturated zone | |
| | | | | | | | |

Table 17b.--Recreation--Continued

Table 17b.--Recreation--Continued

| Map symbol and soil name | $\begin{aligned} & \text { \| Pct. } \\ & \mid \text { of } \\ & \mid \text { map } \\ & \mid \text { unit } \end{aligned}$ | \| Paths and trails | | Off-road motorcycle trai | | Golf fairways | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | Value | Rating class and limiting features | \|Value | Rating class and limiting features | \|Value |
| | | | | | | | |
| I10A: | | | | | | | |
| Clearwater, | | | | | | | |
| depressional--- | 85 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to | 1.00 | Depth to | \| 1.00 | Ponding | 1.00 |
| | | saturated zone | | saturated zone | | Depth to | 1.00 |
| | | Ponding | 1.00 | Ponding | 11.00 | saturated zone | |
| | | | | | | | |
| Clearwater------ | 9 | Very limited Depth to saturated zone | | \|Very limited | | \|Very limited | |
| | | | 1.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | | | saturated zone | | saturated zone | |
| | | Too clayey | 1.00 | Too clayey | \| 1.00 | Too clayey | 1.00 |
| | | Ponding | 1.00 | Ponding | \| 1.00 | Ponding | 1.00 |
| | | | | | | | |
| Augsburg, | | | | | | | |
| depressional---- | 3 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to | 1.00 | Depth to | 11.00 | Ponding | 1.00 |
| | | saturated zone | | saturated zone | | Depth to | 1.00 |
| | | Ponding | 1.00 | Ponding | 11.00 | saturated zone | |
| | | | | | | | |
| Reis------------- | 2 \| | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 1.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 |
| | | Too clayey | 1.00 | Too clayey | 1.00 | Too clayey | 1.00 |
| | | | | | | | |
| Espelie--------- | 1 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 1.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 |
| | | Ponding | 1.00 | Ponding | \| 1.00 | Ponding | 1.00 |
| | | | | | | | |
| I11A: \| | | | | | | | |
| Deerwood | 85 | \| Not rated | | \| Not rated | | \mid Very limited | |
| | | | | \| | | Ponding | 1.00 |
| | | | | | | Depth tosaturated zone | 1.00 |
| | | | | | | | |
| | | | | | | | |
| Rosewood-------- | 61 | \|Very limited | | \|Very limited | | \mid Very limited | |
| | | Depth to saturated zone | 1.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | | | | | | |
| Markey---------- | 3 | Not rated | | \| Not rated | | \|Very limited | |
| | | | | | | \| Ponding | 1.00 |
| | | | | | | Content of | 1.00 |
| | | | | | | organic matter | |
| | | | | | | Depth to | 1.00 |
| | | | | | | saturated zone | |
| | | | | | | | |
| Strathcona------ | 2 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 1.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | | | | | | |
| Syrene---------- | 2 | ```Very limited Depth to saturated zone Ponding``` | | \|Very limited | | \|Very limited | |
| | | | 1.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 |
| | | | 1.00 | \| Ponding | 11.00 | \| Ponding | 1.00 |
| | | | | | | Droughty | 0.30 |
| | | | | | | | |

Table 17b.--Recreation--Continued

| Map symbol and soil name | $\left.\begin{array}{\|l\|} \mid \text { Pct. } \\ \mid \text { of } \\ \mid \text { of } \\ \mid \text { unit } \end{array} \right\rvert\,$ | Paths and trails | | Off-road motorcycle trails | | Golf fairways | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | Rating class and limiting features | \|Value | Rating class and limiting features | \| Value | Rating class and
 \| limiting features | \|Value |
| | | | | | | | |
| I11A: | | | | | | | |
| Venlo----------- | 2 | Very limited | | Very limited | | \|Very limited | |
| | | Depth to | \| 1.00 | Depth to | \| 1.00 | Ponding | 1.00 |
| | | saturated zone | | saturated zone | | Depth to | 1.00 |
| | | Ponding | 11.00 | Ponding | 1.00 | saturated zone | |
| | | | | | | Droughty | 0.01 |
| | | | | | | | |
| I12A: | | | | | | | |
| Eckvoll--------- | 70 | \| Somewhat limited | | Somewhat limited | | \| Not limited | |
| | | | 10.31 | Too sandy | 10.31 | | |
| | | | | | | | |
| Kratka---------- | 8 | \|Very limited | | Very limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to | 11.00 | \| Depth to | 1.00 |
| | | | | saturated zone | | saturated zone | |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | | | | | | |
| Smiley---------- | 7 | \|Very limited | | Very limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | Ponding | \| 1.00 | saturated zone Ponding | \| 1.00 | saturated zone Ponding | 1.00 |
| | | | | | | | |
| Linveldt-------- | 5 | \| Not limited | | Not limited | | \| Not limited | |
| | | | | | | | |
| | 5 | \| Not limited | | Not limited | | \| Not limited | |
| | | | | | | | |
| Foldahl--------- | 2 | \|Somewhat limited | | Somewhat limited | | \| Not limited | |
| | | \| Too sandy | 10.31 | Too sandy | 10.31 | | |
| | | | | | | | |
| Pelan-------------------Poppleton--- | 2 | Not limited | | Not limited | | \| Not limited | |
| | | | | | | | |
| | 1 | Very limited Too sandy | | \|Very limited | | \|Somewhat limited | |
| Poppleton------- | | | 11.00 | Too sandy | 11.00 | \| Droughty | 0.09 |
| | | | | | | | |
| I13A: \| | | | | | | | | | | | | | |
| Espeli | 75 | \|Very limited | | Very limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | | | | | | |
| Foxlake--------- | 8 | \|Very limited | | Very limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | | | | | | |
| Hilaire--------- | 7 | \| Not limited | | Not limited | | \|Somewhat limited | |
| | | | | | | Droughty | 0.01 |
| | | | | | | | |
| Clearwater, | | | | | | | |
| depressional---- | \| 5 | \|Very limited | | Very limited | | \|Very limited | |
| | | \| Depth to | 11.00 | Depth to | 11.00 | Ponding | 1.00 |
| | | saturated zone | | saturated zone | | Depth to | 1.00 |
| | | Ponding | 11.00 | Ponding | 11.00 | saturated zone | |
| | | | | | | | |
| Thiefriver------ | 5 | \|Very limited | | Very limited | | \|Very limited | |
| | | \| Depth to | 11.00 | Depth to | 11.00 | \| Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | \| 1.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | | | | | | |

Table 17b.--Recreation--Continued

Table 17b.--Recreation--Continued

Table 17b.--Recreation--Continued

Table 17b.--Recreation--Continued

Table 17b.--Recreation--Continued

| Map symbol and soil name | Pct.
 of map unit | Paths and trails | | motorcycle trails | | Golf fairways | | |
|---|---|---|---|---|---|---|---|---|
| | 1 | Rating class and limiting features | \|Value| | Rating class and limiting features | \| Value | Rating class and
 limiting features | \|Value |
| I20A: | | | | | | | |
| Wheatville------ | 2 | \|Somewhat limited | | Somewhat limited | | Somewhat limited | |
| | | Depth to | 0.78 | Depth to | 10.78 | Depth to | 0.90 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| I21A: | | | | | | | |
| Fram---------------- 85 | | \| Not limited | | Not limited | | \| Not limited | |
| | | | | | | |
| Hedman---------- | 12 | | \| Very limited | | \| Very limited | | Very limited | |
| | | Depth to | 1.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 1.00 | Ponding | \| 1.00 | Ponding | 1.00 |
| | | | | | | | |
| Strathcona------ | 2 | \| Very limited | | Very limited | | \|Very limited | |
| | | Depth to | 1.00 | Depth to | \| 1.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 1.00 | Ponding | 1.00 | Ponding | 1.00 |
| | | | | | | | |
| Foxhome-------- | 1 | \| Not limited | | Not limited | | \| Not limited | |
| | | | | | | | |
| | I22A: | | | | | | |
| Glyndon--------- | 75 | \|Very limited | | \| Very limited | | \mid Very limited | |
| | | Depth to | 1.00 | Depth to | 1.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Borup----------- | 10 | \| Very limited | | \| Very limited | | \| Very limited | |
| | | \| Depth to | 1.00 | Depth to | 1.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 1.00 | Ponding | 1.00 | Ponding | 1.00 |
| | | | | | | | |
| Augsburg-------- | 5 | \| Very limited | | \| Very limited | | \| Very limited | |
| | | \| Depth to | 1.00 | Depth to | \| 1.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 1.00 | Ponding | 1.00 | Ponding | 1.00 |
| | | | | | | | |
| Ulen------------ | 5 | \| Not limited | | \| Not limited | | \|Somewhat limited | |
| | | | | | | Depth to | 0.22 |
| | | | | | | saturated zone | |
| | | | | | | | |
| Wheatville------ | 3 | \|Somewhat limited | | Somewhat limited | | \|Somewhat limited | | |
| | | \| Depth to | 0.78 | Depth to | 0.78 | Depth to | 0.90 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Flaming--------- | \| 2 | \|Somewhat limited | | \|Somewhat limited | | | \|Somewhat limited | |
| | | \| Too sandy | 0.31 | Too sandy | 0.31 | Droughty | 0.15 |
| | | | | | | | |
| I23A: | | | | | | | |
| Glyndon | 75 | \| Very limited | | \| Very limited | | \| Very limited | |
| | | Depth to | 1.00 | Depth to | \| 1.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| | 10 | \| Very limited | | \| Very limited | | Very limited | |
| | | Depth to | 1.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 1.00 | Ponding | \| 1.00 | Ponding | 1.00 |
| | | | | | | | |

Table 17b.--Recreation--Continued

Table 17b.--Recreation--Continued

| Map symbol and soil name | $\left.\begin{array}{\|} \mid \text { Pct. } \\ \mid \text { of } \\ \mid \text { map } \end{array} \right\rvert\,$ | Paths and trails | | Off-road | | Golf fairways | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | \| Value | Rating class and limiting features | \| Value | Rating class and limiting features | Value |
| | | | | | | | |
| Hamar---------- | \| 3 | \| Very limited | | Very limited | | Very limited | |
| | | Depth to | \| 1.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | $\text { \| } 1.00$ | Ponding | 1.00 | Ponding | 1.00 |
| | | Too sandy | 0.31 | Too sandy | \| 0.31 | Droughty | 0.21 |
| | | | | | | | |
| Radium---------- | 2 | \|Somewhat limited | | Somewhat limited | | Somewhat limited | |
| | | Too sandy | 10.36 | Too sandy | 10.36 | Droughty | 0.76 |
| | | | | | | | |
| Ulen------------ | 2 | \| Somewhat limited | | Somewhat limited | | Somewhat limited | |
| | | Too sandy | 0.31 | Too sandy | 0.31 | Depth to | 0.22 |
| | | | | | | saturated zone | |
| | | | | | | | |
| Maddock--------- | 1 | \|Somewhat limited | | Somewhat limited | | Somewhat limited | |
| | | Too sandy | 0.31 | Too sandy | 10.31 | Droughty | 0.27 |
| | | | | | | | |
| I48A: | | | | | | | |
| Radium | 75 | \|Somewhat limited | | Somewhat limited | | Somewhat limited | |
| | | Too sandy | 10.36 | Too sandy | 10.36 | Droughty | 0.76 |
| | | | | | | | |
| Sandberg-------- | 7 | \| Somewhat limited | | Somewhat limited | | Somewhat limited | |
| | | Too sandy | 0.30 | Too sandy | 10.30 | Droughty | 0.85 |
| | | | | | | Gravel content | 0.01 |
| | | | | | | | |
| Oylen----------- | 5 | \| Not limited | | Not limited | | Somewhat limited | |
| | | | | | | Droughty | 0.01 |
| | | | | | | | |
| Flaming--------- | 4 | \| Somewhat limited | | Somewhat limited | | Somewhat limited | |
| | | Too sandy | 0.31 | Too sandy | 0.31 | Droughty | 0.15 |
| | | | | | | | |
| Garborg--------- | 3 | \| Somewhat limited | | Somewhat limited | | Somewhat limited | |
| | | Depth to | 0.50 | Depth to | 0.50 | Depth to | 0.78 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Too sandy | \| 0.31 | Too sandy | 0.31 | Droughty | 0.02 |
| | | | | | | | |
| Hangaard-------- | 3 | \|Very limited | | Very limited | | Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | \| 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | | | | | Droughty | 0.92 |
| | | | | | | | |
| Hamar----------- | 2 | | | Very limited | | Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 11.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | \| 1.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | Too sandy | \| 0.31 | Too sandy | \| 0.31 | Droughty | 0.21 |
| | | | | | | | |
| Poppleton------- | 1 | \| Very limited | | Very limited | | Somewhat limited | |
| | | Too sandy | 11.00 | Too sandy | 11.00 | Droughty | 10.09 |
| | | | | | | | |
| I49A: | | | | | | | |
| Rauville | 80 | \| Very limited | | Very limited | | Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Ponding | \| 1.00 |
| | | saturated zone | | saturated zone | | Flooding | \| 1.00 |
| | | Ponding | 11.00 | Ponding | 11.00 | Depth to | 1.00 |
| | | Flooding | 0.60 | Flooding | 0.60 | saturated zone | |
| | | | | | | | |

Table 17b.--Recreation--Continued

Table 17b.--Recreation--Continued

| Map symbol and soil name | $\begin{array}{\|} \mid \text { Pct. } \\ \mid \text { of } \\ \mid \text { map } \\ \mid \text { unit } \mid \end{array}$ | Paths and trails | | motorcycle trails | | Golf fairways | | | |
|---|---|---|---|---|---|---|---|---|---|
| | | Rating class and limiting features | Value | Rating class and | \| Value | Rating class and limiting features | Value |
| | | | | | | | |
| Strathcona---------\| | 2 | Very limited | | Very limited | | \| Very limited | |
| | | Depth to saturated zone | 1.00 | Depth to | 1.00 | Depth to | 1.00 |
| | | | | saturated zone | | saturated zone | |
| | | Ponding | 1.00 | Ponding | 1.00 | Ponding | 1.00 |
| | | | | | | | |
| Thiefriver--------- | 2 | Very limited | | Very limited | | \| Very limited | |
| | | Depth to | 1.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 1.00 | Ponding | 1.00 | Ponding | 1.00 |
| | | | | | | | |
| I66A: | | | | | | | |
| Vallers------------ \| | 75 | Very limited | | Very limited | | \| Very limited | |
| | | Depth to | 1.00 | Depth to | 1.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 1.00 | Ponding | 1.00 | Ponding | 1.00 |
| | | | | | | | |
| Vallers, very cobbly | 7 | \| Very limited | | \|Very limited | | \| Very limited | |
| | | Depth to | 1.00 | Depth to | 1.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 1.00 | Ponding | 1.00 | Ponding | 1.00 |
| | | | | | | | |
| Hamerly------------ | 6 \| | Somewhat limited | | Somewhat limited | | Somewhat limited | |
| | | Depth to saturated zone | 0.78 | Depth to saturated zone | 0.78 | Depth to saturated zone | 0.90 |
| | | | | | | | |
| | | | | | | | |
| Grimstad----------- \| | 31 | \|Somewhat limited | | | | Somewhat limited | | Somewhat limited | |
| | | Depth to | 0.50 | Depth to | 10.50 | Depth to | 0.78 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Mavie-------------\| | 31 | \| Very limited | | Very limited | | \| Very limited | |
| | | Depth to | 1.00 | Depth to | \| 1.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | | | | | Droughty | 0.01 |
| | | | | | | | |
| Roliss, depressional\| | 31 | \| Very limited | | Very limited | | \|Very limited | |
| | | Depth to | 1.00 | Depth to | \| 1.00 | Ponding | 1.00 |
| | | saturated zone | | saturated zone | | Depth to | 1.00 |
| | | Ponding | 1.00 | Ponding | 11.00 | saturated zone | |
| | | | | | | | |
| Strathcona---------\| | 3 | \| Very limited | | Very limited | | \|Very limited | |
| | | Depth to | 1.00 | Depth to | 11.00 | Depth to | \| 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | | | | | | |
| I67A: | | | | | | | |
| Wheatville---------\| | 70 | \|Somewhat limited | | Somewhat limited | | \| Somewhat limited | |
| | | Depth to saturated zone | 0.78 | Depth to | 10.78 | \| Depth to | 0.90 |
| | | | | saturated zone | | saturated zone | |
| | | | | | | | |
| Augsburg----------- \| | 13 \| | \| Very limited | | Very limited | | \| Very limited | |
| | | Depth to | 1.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 1.00 | Ponding | \| 1.00 | Ponding | 1.00 |
| | | | | | | | |
| Glyndon------------- \| | 8 | ```\|Very limited Depth to saturated zone``` | | Very limited | | Very limited | |
| | | | 1.00 | Depth to | 11.00 | Depth to | 11.00 |
| | | | | saturated zone | | \| saturated zone | |
| | | | | | | | |

Table 17b.--Recreation--Continued

Table 17b.--Recreation--Continued

Table 17b.--Recreation--Continued

(See text for definitions of terms used in this table. Absence of an entry indicates that no rating is applicable)

Table 18.--Wildlife Habitat--Continued

| Map symbol
 and
 soil name | $\begin{aligned} & \mid \text { Pct. } \\ & \text { \|of map } \\ & \mid \text { unit } \end{aligned}$ | Potential for habitat elements | | | | | | | | \| Potential as habitat for-- | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | Grain
 and
 seed
 crops | $\begin{array}{\|c\|} \hline \text { Grasses } \\ \left\lvert\, \begin{array}{c} \text { and } \end{array}\right. \\ \mid \text { legumes } \end{array}$ | \mid Wild
 \mid herba-
 ceous
 \mid plants | Hardwood trees | \|Conif-
 \| erous
 \|plants | \|Shrubs | \|Wetland
 \|plants | | Open-
 land
 wild-
 life | Wood-
 land
 wild-
 life | ```Wetland wild- life``` |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| B205A: | | | | | | | | | | | | |
| Berner------------------ \| | \| 80 | $\begin{aligned} & \mid \text { Very } \\ & \text { \| poor } \end{aligned}$ | \| Poor | \| Poor | \| Poor | \| Poor | Poor | Good | \| Good | Poor | Poor | \| Good |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| Northwood--------------- \| | \| 7 | \|Very | \| Very | \| Poor | \| Poor | \| Poor | Poor | Good | \| Good | \mid very | \| Poor | Good |
| | | \| poor | \| poor | | | | | , | | poor | | |
| | 5 | | | Fair | \|Fair | | \| Fair | \| Good | | | | | |
| Grygla | | Fair | \| Good | | | \|Fair | | | \| Fair | Fair | Fair | Fair |
| | | | | | | | | | | | | |
| Cathro | 3 | \| Poor | \| Fair | Poor | \| Poor | \| Poor | \| Poor | \| Good | | \| Good | \| Poor | \| Poor | Good |
| | | | | | | | | | | | | |
| Hamre- | $3 \mid$ | \| Poor | \| Fair | \| Poor | \| Poor | \mid Poor | \| Poor | \| Good | \| Good | \| Poor | \| Poor | \| Good |
| | | | | | | | | | | | | |
| Seelyeville------------\| | 12 | \| Very
 \| poor | \| Fair | \| Poor | \| Poor | \mid Poor | \| Poor | \| Good | \| Good | \| Good | \| Poor | \| Good |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| B206A: \| | | | \|Poor | \|Fair | \| Poor | \| Poor | \| Poor | Poor | \|Good | \| Good | Poor | Poor | \| Good |
| Hamre- | 80 | | | | | | | | | | | |
| | | \| | \| Good | \|Fair | \|Fair | \|Fair | \|Fair | | \| | \| | \| | |
| Chilgren- | 8 \| | \|Fair | | | | | | \| Good | \| Fair | \| Fair | \| Good | \|Fair |
| | | | Good | \| | \|Fair | \| Fair | \|Fair | | | | | |
| Northwood-------------- \| | 5 | \| very
 \| poor | $\begin{aligned} & \text { \|very } \\ & \text { \| poor } \end{aligned}$ | \| Poor | \| Poor | \| Poor | \| Poor | \| Good | \| Good | Very poor | \| Poor | \| Good |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| Cathro | $3 \mid$ | \| Poor | \|Fair | \mid Poor | \| Poor | \| Poor | Poor | \| Good | \| Good | Poor | Poor | \| Good |
| | | | | | | | | | | | | |
| Grygla- | 2 \| | \|Fair | \| Good | \|Fair | \| Fair | \| Fair | \| Fair | \| Good | \| Fair | \| Fair | Fair | \|Fair |
| | | | | | | | | | | | | |
| Roliss | 2 | \|Fair | \| Good | \| Fair | \| Fair | \| Fair | \| Fair | \| Good | \|Fair | \| Good | \| Fair | \| Fair |
| | | | | | | | | | | | | |
| I1A: | | | | | | | | | | | | |
| Augsburg---------------- \| | 75 | \|Fair | \| Good | \| Fair | \| Fair | \| Poor | \mid Fair | \| Fair | \|Fair | \| Good | Fair | \| Fair |
| | | | | | | | | | | | | |
| Borup- | 10 | \| Fair | \| Good | \| Good | \| Fair | Fair | \| Good |
| | | | | | | | | | | | | |
| Foxlake----------------- \| | 5 | \mid Fair | \| Poor | \| Poor | \| Good | \| Good | \| Fair | \| Fair |
| | | | | | | | | | | | | |
| Augsburg, depressional--\| | 3 | \| Poor | Poor | \| Good | \| Good | \| Poor | \| Poor | \| Good |
| | | | | | | | | | | | | |
| Wheatville--------------\| | 3 | \| Good | \| Good | \| Good | \| Fair | \| Poor | \mid Fair | \| Poor | \| Poor | \| Good | \| Fair | \| Poor |
| | | | | | | | | | | | | |
| Glyndon----------------\| | \| 2 | \| Good | \| Good | \| Good | \| Fair | \| Fair | \| Fair | \| Poor | \| Poor | \| Good | \| Fair | \| Poor |
| | | | | | | | | | | | | |

Table 18.--Wildlife Habitat--Continued

| | | Potential for habitat elements | | | | | | | | \| Potential as habitat for-- | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Grain
 and
 seed
 crops | $\begin{array}{\|c\|} \mid \text { Grasses } \\ \text { and } \\ \mid \text { legumes } \end{array}$ | $\begin{array}{\|l} \mid \text { Wild } \\ \mid \text { herba- } \\ \text { \| ceous } \\ \text { \| plants } \end{array}$ | Hard-
 wood
 trees | \|Conif-
 erous \|plants | \|Shrubs | $\begin{aligned} & \mid \\ & \mid \text { Wetland } \mid \\ & \mid \text { plants } \mid \end{aligned}$ | Shallow\|waterareas | Open-
 land
 wild-
 life | Wood-
 land
 lild-
 wil
 life | ```Wetland wild- life``` |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | \| | | | | | | | |
| I1A: | | | | | | | | | | | | |
| Espelie--------------- | 1 | \|Fair | \| Good | \| Fair | \| Fair | \|Fair | \| Fair | \| Good | \| Good | \| Fair | \|Fair | \| Good |
| | | | | | | | | | | | | |
| Hattie----------------- \| | 1 | \|Fair | \| Good | \|Fair | \| Fair | \| Good | \|Fair | | \|Very | \| Fair | \| Good | \| Very |
| | | | | | | | | \| poor | poor | | | poor |
| | | | | | | | | | | | | |
| I2A: | | | | | | | | | | | | |
| Augsburg | 75 | \|Fair | \| Good | \|Fair | \| Fair | \| Poor | \|Fair | \|Fair | \|Fair | \| Good | \|Fair | \|Fair |
| | | | | | | | | | | | | |
| Borup- | 10 | \|Fair | \| Fair | \| Fair | \| Fair | \| Poor | \| Fair | \| Good | \| Good | \| Fair | \|Fair | \| Good |
| | | | | | | | | | | | | |
| Foxlake---------------- \| | 5 | \| Fair | \| Poor | \| Poor | \| Good | \| Good | \| Fair | \| Fair |
| | | | | | | | | | | | | |
| Augsburg, depressional--\| | 3 | \| Poor | \| Good | \| Good | \| Poor | \| Poor | \| Good |
| | | | | | | | | | | | | |
| Wheatville-------------\| | 3 | \| Good | \| Good | \| Good | \| Fair | \| Poor | \| Fair | \| Poor | \| Poor | \| Good | \|Fair | \| Poor |
| | | | | | | | | | | | | |
| Glyndon---------------- \| | 2 | \| Good | \| Good | \| Good | \| Fair | \| Fair | \| Fair | \| Poor | \| Poor | \| Good | \| Fair | \| Poor |
| | | | | | | | | | | | | |
| Espelie- | 1 | \| Fair | \| Good | \| Fair | \| Fair | \| Fair | \| Fair | \| Good | \| Good | \| Fair | \| Fair | \| Good |
| | | | | | | | | | | | | |
| Hattie | 1 | \|Fair | \| Good | \|Fair | \|Fair | \| Good | \| Fair | | | Fair | \| Good | |
| | | | | | | | | \| poor | poor | | | \| poor |
| | | | | | | | | | | | | |
| I3A: | | | | | | | | | | | | |
| Berner---------------- | 80 | \| Very | \| Poor | \| Good | \| Good | \mid Poor | \| Poor | \| Good |
| | | poor | | | | | | | | | | |
| Northwood-------------- \| | | | | | | | | | | | | |
| | \| 7 | \|very poor | \mid very
 poor | \| Good | \| Good | \| Very
 poor | \| Poor | \| Good |
| | | | | | | | | | | | | |
| Kratka-----------------\| | 5 | \|Fair | \| Good | \| Fair | \|Fair | \|Fair | \| Fair | \| Good | Fair | \| Fair | \|Fair | \|Fair |
| | | | | | | | | | | | | |
| Hamre------------------- | \| 3 | \| Poor | \| Fair | \| Poor | \| Poor | \| Poor | \| Poor | \| Good | \| Good | \| Poor | \| Poor | \| Good |
| | | | | | | | | | | | | |
| Strathcona-------------\| | 3 | \|Fair | \| Good | \|Fair | \| Fair | \|Fair | \|Fair | \| Good | \| Good | \| Fair | \|Fair | \| Good |
| | | | | | | | | | | | | |
| Seelyeville------------ | \| 2 | $\begin{aligned} & \mid \text { very } \\ & \text { \| poor } \end{aligned}$ | \| Fair | \| Poor | \| Poor | \| Poor | \| Poor | \| Good | \| Good | \| Good | \| Poor | \| Good |
| | | | | | | | | | | | | |
| I4A: | | | | | | | | | | | | |
| Berner---------------- | 30 | \| Very | \mid very | \| Poor | \| Poor | \| Poor | \| Poor | \| Good | \| Good | \| Poor | \| Poor | \| Good |
| | | \| poor | \| poor | | | | | | | | | |
| | | | | | | | | | | | | |

| Map symbol
 and
 soil name | | Potential for habitat elements | | | | | | | | \| Potential as habitat for-- | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | $\begin{aligned} & \mid \text { Pct. } \mid \\ & \mid \text { of map } \mid \\ & \mid \text { unit } \mid \end{aligned}$ | Grain
 and
 seed
 crops | $\begin{aligned} & \text { \|Grasses } \\ & \text { and } \\ & \mid \text { legumes } \end{aligned}$ | \| Wild herbaceous plants | Hardwood trees | $\begin{aligned} & \text { \|Conif- } \\ & \text { erous } \\ & \text { \|plants } \end{aligned}$ | \| Shrubs | \|Wetland| | Shallow \mid water \mid areas | Open-
 land
 wild-
 life | Wood-
 land
 wild-
 life | $\begin{aligned} & \text { Wetland } \\ & \text { wild- } \\ & \text { life } \end{aligned}$ |
| | | | | | | | , | | | | | |
| I4A: | | | | | | | | | | | | |
| Rosewood, depressional--\| | \| 30 | $\begin{aligned} & \text { \|Very } \\ & \text { \| poor } \end{aligned}$ | \| Very
 poor | Poor | Poor | \| Poor | \| Poor | \| Good | \| Good | \| Poor | \| Poor | Good |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| Strathcona, depressional\| | \| 30 | | \mid Very\mid poor | \| Very | Poor | Poor | \| Poor | \| Poor | \| Good | \| Good | \mid Poor | \| Poor | Good |
| | | | \| poor | | | | | | | | | |
| | | | | | | | | | | | | |
| Rosewood-------------- \| | \| 4 | Fair | \|Fair | Fair | Fair | \|Fair | Fair | Good | \| Good | Fair | \|Fair | \| Good |
| | | | | | | | | | | | | |
| Deerwood---------------\| | \| 2 | Very poor | \| Very
 poor | Poor | \| Poor | \| Poor | \mid Poor | \| Good | \| Good | \| Very
 poor | \mid Poor | Good |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| Mavie-----------------\| | 2 | Fair | \| Fair | Fair | \| Fair | \| Poor | \| Fair | \| Good | | \| Good | \| Fair | Fair | \| Good |
| | | | | | | | | | | | | |
| Strathcona-------------\| | \| 2 | Fair | \| Good | \| Fair | \| Fair | \|Fair | \|Fair | Good \| | \| Good | \| Fair | \|Fair | \| Good |
| | | | | | | | | | | | | |
| I5A: | 75 | \| Fair | \|Fair | Fair | \| Fair | \|Fair | \| Fair | \| Good | \| Good | Fair | \|Fair | \| Good |
| Borup- | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| Glyndon---------------- | 9 | Good | \| Good | \| Good | \|Fair | \|Fair | \| Fair | Poor \| | \| Poor | Good | \|Fair | \| Poor |
| | | | | | | | | | | | | |
| Rosewood--------------- \| | \| 8 | \|Fair | \|Fair | \|Fair | \|Fair | \| Fair | \|Fair | \|Good | \| Good | Fair | \|Fair | \| Good |
| | | | | | | | | | | | | |
| Augsburg-------------- \| | \| 5 | Fair | \| Good | \|Fair | \|Fair | \| Poor | \|Fair | \|Fair | | \| Fair | Good | \| Fair | \| Fair |
| | | | | | | | | | | | | |
| Augsburg, depressional--\| | \| 3 | \| Poor | \| Good | \| Good | \| Poor | \| Poor | \| Good |
| | | | | | | | | | | | | |
| I6A:
 Borup- | 75 | \| Fair | \| Fair | \| Fair | \| Fair | \| Poor | \| Fair | \| Good | \| Good | \| Fair | \|Fair | \| Good |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| Glyndon---------------- \| | 9 | \| Good | \| Good | \| Good | Fair | \|Fair | \| Fair | \| Poor | \| Poor | \| Good | \|Fair | \| Poor |
| | | | | | | | | | | | | |
| Rosewood---------------- \| | 8 | \|Fair | \| Fair | \| Fair | \|Fair | \|Fair | \| Fair | \| Good | \| Good | \mid Fair | Fair | \| Good |
| | | | | | | | | | | | | |
| Augsburg--------------- \| | 5 | \|Fair | \| Good | \|Fair | Fair | \| Poor | \| Fair | \|Fair | \| Fair | \| Good | \|Fair | \|Fair |
| | | | | | | | | | | | | |
| Augsburg, depressional--\| | 3 | \| Poor | \| Good | \| Good | \| Poor | \| Poor | \| Good |
| | | | | | | | | | | | | |
| 17A: | | | | | | | | | | | | |
| Bowstring-------------- \| | \| 45 | \mid very | \| Poor | \| Good | \| Good | Poor | \| Poor | \| Good |
| Bowstring - | | \| poor | | | | | | | | | | |
| | | | | | | | | | | | | |
| Fluvaquents------------\| | \| 45 | \|very poor | \| Poor | \| Poor | Poor | \| Poor | \| Poor | \| Good | \| Good | \| Very
 poor | \| Poor | \| Good |
| | | | | | | | | | | | | |

Table 18.--Wildlife Habitat--Continued

| Map symbol
 and
 soil name | | Potential for habitat elements | | | | | | | | \| Potential as habitat for-- | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Pct. \|of map unit | Grain and seed crops | $\begin{array}{\|c\|} \hline \text { \|Grasses } \mid \\ \left\|\begin{array}{c} \text { and } \end{array}\right\| \\ \mid \text { legumes } \end{array}$ | $\begin{array}{\|l} \left\lvert\, \begin{array}{c} \text { Wild } \\ \mid \text { herba- } \\ \text { ceous } \\ \mid \text { plants } \end{array}\right. \end{array}$ | Hardwood trees | \|Coniferous plants | \| Shrubs | \|Wetland plants | \|Shallow
 water
 areas | Open-
 land
 wild-
 life | Wood-
 land
 wild-
 life | $\begin{aligned} & \text { Wetland } \\ & \text { wild- } \\ & \text { life } \end{aligned}$ |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| 17A: | | | | | | | | | | | | |
| Hapludolls-------------- \| | \| 5 | \| Good | \| Good | \| Good | Good | \| Good | \| Fair | \| Poor | \mid Very\mid poor | \| Good | \| Good | \| Very |
| | | | | | | | | | | | | poor |
| | | | | | | | | | | | | |
| Water- | 5 | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| | | | | | | | | | | | | |
| 18A: | | \| Poor | | | | | | | | | | |
| Cathro | \| 80 | | \| Fair | \| Poor | \| Poor | \| Poor | \| Poor | \| Good | \| Good | Poor | \| Poor | \| Good |
| | | \| Poor | | | | | | | | | | |
| Hamre- | 8 | | \|Fair | Poor | Poor | \| Poor | \| Poor | \| Good | \| Good | \| Poor | \| Poor | Good |
| | | | | | | | | | | | | |
| Northwood---------------\| | 3 | Very poor | \|Very
 \| poor | Poor | \| Poor | \| Poor | | | \| Good | \|verypoor | \| Poor | \| Good |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| Roliss- | 3 | Fair | \| Good | Fair | Fair | \| Fair | \| Fair | \| Good | \| Fair | \| Good | Fair | Fair |
| | | | | | | | | | | | | |
| Berner----------------- \| | \| 2 | \| Very poor | \| Poor | Poor | \| Poor | \| Poor | \| Poor | \| Good | \| Good | \| Poor | \| Poor | \| Good |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| Kratka-----------------\| | \| 2 | Fair | \| Good | Fair | \|Fair | \| Fair | \| Fair | \| Good | Fair | Fair | Fair | Fair |
| | | | | | | | | | | | | |
| Seelyeville------------ | \| 2 | $\begin{aligned} & \text { \|very } \\ & \text { \| poor } \end{aligned}$ | \| Fair | \| Poor | \| Poor | \| Poor | \| Poor | Good | \| Good | \| Good | \| Poor | \| Good |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| I9A: | | \| Poor | \| Poor | Fair | \| Fair | \|Fair | \| Poor | Good | \| Good | Good | Fair | \| Good |
| Clearwater | 80 | | | | | | | | | | | |
| | | ${ }^{\text {Poor }}$ | | \|Fair | | | | Good | | | \| | Good |
| Clearwater, very cobbly \| | 5 | \| Poor | | | | \|Fair | \| Poor | | \| Good | \|Good | Fair | |
| | | | $\begin{aligned} & \text { \| Poor } \\ & \text { \| } \end{aligned}$ | Fair | \|Fair | | | \| Good | | | | |
| Reis- | 5 | \|Fair | \|Fair | \|Fair | \| Poor | \|Fair | \| Fair | \| Good | \| Good | Fair | \| Poor | \| Good |
| | | | | \| | | | | | | | | |
| Clearwater, depressional\| | 3 | \| Poor | \| Good | \| Good | \| Poor | \| Poor | \| Good |
| | | | | | | | | | | | | |
| Espelie----------------\| | 3 | \|Fair | \| Good | \|Fair | \|Fair | \|Fair | \| Fair | \| Good | \| Good | Fair | \|Fair | \| Good |
| | | | | | | | | | | | | |
| Foxlake--------------- \| | 2 | \|Fair | \| Fair | \| Fair | \|Fair | \| Fair | \| Poor | \| Poor | \| Good | \| Good | \| Fair | \| Fair |
| | | | | | | | | | | | | |
| Hattie-----------------\| | 1 | \|Fair | \| Good | \|Fair | \|Fair | \| Good | \| Fair | \| Very | \| Very | Fair | \| Good | \mid Very |
| | | | | | | | | poor | poor | | | \| poor |
| | | | | | | | | | | | | |
| Huot------------------- \| | 1 | \| Good | \| Good | \|Fair | \|Fair | \|Fair | \| Fair | \| Poor | \| Poor | \| Good | \|Fair | \|Fair |
| | | | | | | | | | | | | |
| I10A: | | | | | | | | | | | | |
| Clearwater, depressional\| | 85 | \| Poor | \| Good | \| Good | Poor | \| Poor | \| Good |
| | | | | | | | | | | | | |

| Map symbol
 and
 soil name | | Potential for habitat elements | | | | | | | | \| Potential as habitat for-- | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | Grain
 and
 seed
 crops | $\begin{aligned} & \text { \| Grasses } \\ & \text { \| and } \\ & \text { \| legumes } \end{aligned}$ | \mid Wild
 \mid herba-
 \mid ceous
 \mid plants | Hardwood trees | $\begin{aligned} & \text { \|Conif- } \\ & \mid \text { erous } \\ & \text { \|plants } \end{aligned}$ | \| Shrubs | \|Wetland |plants | Shallow
 water
 areas | Open-
 land
 wild-
 life | Wood-
 land
 wild-
 life | ```Wetland wild- life``` |
| | | \| | | | | | | | | | | |
| I10A: | | | | | | | | | | | | |
| Clearwater | 9 | \| Poor | \| Poor | \| Fair | \| Fair | \| Fair | \| Poor | \| Good | \| Good | \| Good | Fair | \| Good |
| | | | | | | | | | | | | |
| Augsburg, depressional--\| | 3 | \| Poor | \| Poor | \| Poor | \| Poor | Poor | \| Poor | \| Good | \| Good | \| Poor | Poor | \| Good |
| | | | | | | | | | | | | |
| Reis | 2 | \| Fair | \|Fair | \| Fair | \| Poor | \| Fair | \| Fair | \| Good | \| Good | \| Fair | Poor | \| Good |
| | | | | | | | | | | | | |
| Espelie---------------- \| | 1 | \|Fair | \| Good | \|Fair | \|Fair | \| Fair | \| Fair | \| Good | \| Good | Fair | Fair | \| Good |
| | | | | | | | | | | | | |
| I11A: | | | | | | | | | | | | |
| Deerwood--------------- | 85 | \| Very | \| Very | \| Poor | \| Poor | \| Poor | \| Poor | \| Good | \| Good | \| Very | Poor | \| Good |
| | | \| poor | \| poor | | | | | | | poor | | |
| | | | | | | | | | | | | |
| Rosewood--------------- | $6 \mid$ | Fair | \| Fair | \| Fair | \| Fair | \| Fair | Fair | \| Good | Good | Fair | \| Fair | \| Good |
| Markey----------------- \| | 3 | $\begin{aligned} & \text { \|very } \\ & \text { \| poor } \end{aligned}$ | \|Very
 \| poor | \| Good | \| Good | Poor | Poor | \| Good |
| | | | | | | | | | | | | |
| | | | | Fair | | | \| Fair | \| Good | | | | |
| Strathcona-------------\| | 2 | Fair | \| Good | | \| Fair | \|Fair | | | \| Good | Fair | \|Fair | \| Good |
| | | | | | | | | | | | | |
| Syrene----------------- \| | 2 \| | Fair | \| Fair | \| Fair | \| Fair | \| Poor | \| Fair | \| Good | \| Good | \| Fair | \|Fair | \| Good |
| | | | | | | | | | | | | |
| Venlo------------------ | 2 | \| Very
 poor | Poor | \| Good | \| Good | \| Poor | \| Poor | \| Good |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| I12A: | | | | | | | | | | | | |
| Eckvoll----------------- | 70 | \| Fair | \|Fair | \| Good | \| Good | \| Good | Fair | \| Poor | \| Poor | Fair | \| Good | \| Poor |
| | | | | | | | | | | | | |
| Kratka------------------ | \| | \| Fair | \| Good | \| Fair | \| Fair | Fair | \|Fair | \| Good | Fair | \|Fair | Fair | Fair |
| | | | | | | | | | | | | |
| Smiley- | 7 | \| Fair | \| Good | \| Fair | \| Fair | \| Fair | \| Fair | \| Good | | \| Fair | Fair | \| Fair | \| Fair |
| | | | | | | | | | | | | |
| Linveldt--------------- \| | 5 \| | \|Fair | \| Fair | \| Fair | \| Fair | \| Fair | Fair | \| Poor | \| Poor | Fair | Fair | \| Poor |
| | | | | | | | | | | | | |
| Reiner----------------- \| | 5 | \| Good | \| Poor | \| Poor | Fair | \| Fair | \| Poor |
| | | | | | | | | | | | | |
| Foldahl----------------- | $2 \mid$ | \| Fair | \| Good | \| Good | \| Good | \| Fair | Fair | \| Poor | Poor | \| Good | \| Fair | \| Poor |
| | | | | | | | | | | | | |
| Pelan------------------- \| | 2 \| | \| Poor | \| Fair | \| Fair | \| Fair | \|Fair | Fair | \| Poor | Poor | \|Fair | \|Fair | Poor |
| | | | | | | | | | | | | |
| Poppleton-------------- \| | 1 \| | \| Poor | \|Fair | \| Fair | \|Fair | \| Fair | \| Fair | \| Poor | \| Poor | Fair | \|Fair | \| Poor |
| | | | | | | | | | | | | |
| I13A: | | | | | | | | | | | | |
| Espelie----------------\| | 75 | \| Fair | \| Good | \| Fair | \| Fair | \| Fair | \| Fair | \| Good | \| Good | Fair | \|Fair | \| Good |
| | | | | | | | | | | | | |

Table 18.--Wildlife Habitat--Continued

| Map symbol
 and
 soil name | | Potential for habitat elements | | | | | | | | \| Potential as habitat for-- | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Grain
 and
 seed
 crops | $\begin{array}{\|l\|} \hline \text { \| Grasses } \\ \text { and } \\ \text { legumes } \end{array}$ | $\begin{array}{\|l} \mid \text { Wild } \\ \mid \text { herba- } \\ \text { \| ceous } \\ \mid \text { plants } \end{array}$ | Hardwood trees | \|Conif-
 erous \|plants | \| Shrubs | \|Wetland
 plants | Shallow water areas | Open-
 land
 wild-
 life | \| Wood- \mid land \mid wild- | $\begin{aligned} & \text { Wetland } \\ & \text { wild- } \\ & \text { life } \end{aligned}$ |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| I13A: | | | | | | | | | | | | |
| Foxlake | 8 | \|Fair | \|Fair | \| Fair | \|Fair | \|Fair | \| Poor | \| Poor | \| Good | \| Good | \|Fair | \| Fair |
| | | | | | | | | | | | | |
| Hilaire | 7 | \|Fair | \| Good | \| Good | \| Fair | \| Fair | \| Fair | \| Poor | \| Poor | \| Good | \| Fair | \| Poor |
| | | | | | | | | | | | | |
| Clearwater, depressional\| | 5 | \| Poor | \| Good | \| Good | \| Poor | \| Poor | \| Good |
| | | | | | | | | | | | | |
| Thiefriver-------------\| | 5 | \|Fair | \| Good | \| Fair | \|Fair | \| Fair | \| Fair | \| Good | \| Good | \| Fair | \| Fair | \| Good |
| | | | | | | | | | | | | |
| I14B: | | | | | | | | | | | | |
| Fairdale--------------- | 85 | \| Good | \| Fair | \| Poor | \| Very | \| Good | \| Good | \| Very |
| | | | | | | | | | poor | | | \| poor |
| Fluvaquents-------------\| | | | | | | | | | | | | |
| | 6 | | \| Poor | \| Good | \| Good | | \| Poor | \| Good |
| | | poor | | | | | | | | \| poor | | |
| Hapludolls------------\| | | | | | | | | | | | | |
| | 5 | \| Good | \| Fair | \| Poor | \| Very | \| Good | \| Good | \mid Very |
| | | | | | | | | | \| poor | | | \| poor |
| Hapludalfs-------------\| | | | | | | | | | | | | |
| | 2 | \| Poor | \| Good | \mid Very | \| Very | \| Fair | \| Good | \| Very |
| | | | | | | | | \| poor | \| poor | | | \| poor |
| Zell------------------\| | | | | | | | | | | | | |
| | 2 | \mid Very | \|Fair | \| Fair | \| Poor | \| Very | \| Fair | \mid Very | \mid Very | \|Very | \|Very | \|Very |
| | | \| poor | | | | poor | | poor | poor | \| poor | \| poor | poor |
| | | | | | | | | | | | | |
| I14D: | | | | | | | | | | | | |
| Fairdale--------------\| | 85 | \| Fair | \| Good | \| Good | \| Good | \| Good | \| Fair | \| Very | \| Very | \| Good | \| Good | \mid Very |
| | | | | | | | | poor | \| poor | | | \| poor |
| | | | | | | | | | | | | |
| Fluvaquents-------------\| | 6 | | \| Poor | \| Good | \| Good | | \| Poor | \| Good |
| | | \| poor | | | | | | | | \| poor | | |
| | | | | | | | | | | | | |
| Hapludolls-------------\| | 4 | \| Good | \| Fair | \| Poor | \mid Very | \| Good | \| Good | \| Very |
| | | | | | | | | | \| poor | | | \| poor |
| | | | | | | | | | | | | |
| Zell------------------- \| | 3 | \|Very poor | \|Fair | \| Fair | \| Poor | \|Very poor | \| Fair | \|Very poor | \|Very
 poor | \| Very poor | \|Very poor | \|Very poor |
| | | | | | | | | | | | | |
| Hapludalfs-------------\| | 2 | \| Poor | \| Good | \mid Very | \| Very | \| Fair | \| Good | \mid Very |
| | | | | | | | | poor | poor | | | \| poor |
| | | | | | | | | | | | | |
| I15A:Flaming | | | | | | | | | | | | |
| | 70 | \| Fair | \|Fair | \| Good | \|Fair | \|Fair | \| Fair | \|Fair | \| Poor | \| Fair | \|Fair | \| Poor |
| | | | | | | | | | | | | |

| | \| | | | Potenti | al for h | abitat el | lements | | | \| Potenti | al as hab | itat for-- | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Map symbol | Pct. | Grain | | Wild | | | | | | Open- | Wood- | Wetland |
| and | \| of map| | and | \|Grasses | \| herba- | Hard- | \| Conif - | \| Shrubs | \|Wetland| | \|Shallow| | land | land | wild- |
| soil name | unit | seed | and | ceous | wood | erous | | \|plants | water | wild- | wild- | life |
| | | crops | \| legumes | plants | trees | \|plants | | | areas | life | life | |
| | $\|\quad\|$ | | | | | | | | | | | |
| I15A: | | | | | | | | | | | | |
| Garborg- | 10 | \mid Poor | \| Fair | \| Good | \|Fair | \| Fair | \| Fair | \| Fair | \| Poor | \| Fair | \| Fair | \| Poor |
| | | | | | | | | | | | | |
| Hamar- | 5 | \| Poor | \| Good | Fair | \| Good | \|Fair | \| Fair | \|Fair | \|Fair | \| Fair | \|Fair | \mid Fair |
| | | | | | | | | | | | | |
| Ulen-- | 5 | \|Fair | \| Good | \| Good | \|Fair | \| Poor | \| Fair | \| Poor | \| Poor | \| Fair | \| Fair | \| Poor |
| | | | | | | | | | | | | |
| Poppleton- | 3 | \| Poor | \| Fair | Fair | \|Fair | \|Fair | \|Fair | \| Poor | \| Poor | \| Fair | \|Fair | \| Poor |
| | | | | | | | | | | | | |
| Sandberg- | 3 | \| Poor | \| Fair | \| Good | Fair | \|Fair | \|Fair | | | \| Fair | \|Fair | \| Very |
| | | | | | | | | \| poor | \| poor | | | \| poor |
| | \| | | | | | | | | | | | |
| Foldahl- | 2 | \|Fair | \| Good | \| Good | \| Good | \|Fair | \| Fair | \| Poor | \| Poor | \| Good | \|Fair | \| Poor |
| | | | | | | | | | | | | |
| Radium-- | 2 | \| Poor | \| Fair | \| Good | \|Fair | \| Fair | \| Fair | \| Poor | | Fair | Fair | |
| | | | | | | | | | \| poor | | | poor |
| | | | | | | | | | | | | |
| I16F: | | | | | | | | | | | | |
| Fluvaquents- | 55 | \| Very | \| Poor | \| Good | \| Good | \| Very | \| Poor | \| Good |
| | | \| poor | | | | | | | | \| poor | | |
| | 1 \| | | | | | | | | | | | |
| Hapludolls- | 25 | \| Good | \| Fair | \| Poor | | \| Good | \| Good | |
| | | | | | | | | | poor | | | poor |
| | \| | | | | | | | | | | | |
| Hapludalfs- | 7 | \| Poor | \| Good | \| Very | \mid Very | \|Fair | \| Good | \| Very |
| | | | | | | | | \| poor | \| poor | | | poor |
| | | | | | | | | | | | | |
| Fairdale- | 5 | \|Fair | \| Good | \| Good | \| Good | \| Good | \| Fair | \| Very | | \| Good | \| Good | |
| | | | | | | | | poor | poor | | | poor |
| | | | | | | | | | | | | |
| Water- | 5 | - | --- | -- | --- | --- | --- | -- | --- | --- | --- | --- |
| | | | | | | | | | | | | |
| Bowstring- | 2 | \mid very | \| Poor | \| Good | \| Good | \| Poor | \| Poor | \| Good |
| | | poor | | | | | | | | | | |
| | 1 \| | | | | | | | | | | | |
| Rauville---- | 1 | \| Very | \| Poor | \| Good | \| Good | \| Very | \| Poor | \| Good |
| | | \| poor | | | | | | | | poor | | |
| | | | | | | | | | | | | |
| I17A: | | \| Good | | | | | | | | | | |
| Foldahl. | 75 | | \| Good | ${ }^{\text {\| Good }}$ | \| Good | \|Fair | Fair | \| Poor | \mid Poor | \| Good | \|Fair | Poor |
| | | | | | | | | | | | | |
| Kratka- | 10 | \|Fair | \| Good | Fair | \|Fair | \| Fair | Fair | \| Good | \|Fair | Fair | \|Fair | \|Fair |
| | | | | | | | | | | | | |

Table 18.--Wildlife Habitat--Continued

| Map symbol
 and
 soil name | | Potential for habitat elements | | | | | | | | \| Potential as habitat for-- | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Grain and seed crops | Grasses and legumes | $\begin{array}{\|l} \left\lvert\, \begin{array}{c} \text { Wild } \\ \mid \text { herba- } \\ \text { ceous } \\ \mid \text { plants } \end{array}\right. \end{array}$ | Hardwood trees | $\begin{aligned} & \text { \|Conif- } \\ & \text { erous } \\ & \text { \|plants } \end{aligned}$ | \| Shrubs | \mid Wetland \mid Shallow
 $\|$Wer
 \mid plants water
 \mid areas | | Open-
 land
 wild-
 life | Woodland
 wild-
 life | $\begin{aligned} & \text { Wetland } \\ & \text { wild- } \\ & \text { life } \end{aligned}$ |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | \| | | | | |
| I17A: | | | | | | | | | | | | |
| Roliss | 5 | Fair | \| Good | \| Fair | \|Fair | \| Fair | \| Fair | \| Good | \| Fair | \| Good | \| Fair | \| Fair |
| | | | | | | | | | | | | |
| Flaming | 4 | Fair | \| Fair | \| Good | \|Fair | \|Fair | \| Fair | \|Fair | \| Poor | \| Fair | \|Fair | \| Poor |
| | | | | | | | | | | | | |
| Grimstad- | 2 | Good | \| Good | \| Fair | \| Fair | \| Fair | \| Fair | \| Poor | \| Poor | \| Fair | \| Fair | \| Fair |
| | | | | | | | | | | | | |
| Linveldt | 2 | \|Fair | \| Fair | \|Fair | \|Fair | \|Fair | \| Fair | \| Poor | \| Poor | \| Fair | \|Fair | \| Poor |
| | | | | | | | | | | | | |
| Eckvoll | 1 | \|Fair | \| Fair | \| Good | \| Good | \| Good | \| Fair | \| Poor | \| Poor | \|Fair | \| Good | \| Poor |
| | | | | | | | | | | | | |
| Strathcona | 1 | \|Fair | \| Good | \| Fair | \|Fair | \|Fair | \| Fair | \| Good | \| Good | \|Fair | \|Fair | \| Good |
| | | | | | | | | | | | | |
| I18A: | | | | | | | | | | | | |
| Foldahl | 75 | \|Fair | \| Good | \| Good | \| Good | \|Fair | \| Fair | \| Poor | \| Poor | \| Good | \|Fair | \| Poor |
| | | | | | | | | | | | | |
| Kratka | 10 | \| Fair | \| Good | \| Fair | \| Fair | \| Fair | \| Fair | \| Good | \| Fair | \| Fair | \| Fair | Fair |
| | | | | | | | | | | | | |
| Roliss- | 5 | \|Fair | \| Good | \|Fair | \|Fair | \|Fair | \| Fair | \| Good | \|Fair | \| Good | \|Fair | Fair |
| | | | | | | | | | | | | |
| Flaming- | 4 | \mid Fair | \| Fair | \| Good | \mid Fair | \|Fair | \| Fair | \|Fair | \| Poor | \mid Fair | \| Fair | \| Poor |
| | | | | | | | | | | | | |
| Grimstad- | 2 | \| Good | \| Good | \|Fair | \|Fair | \|Fair | Fair | \|Fair | \| Poor | \| Fair | \|Fair | \| Poor |
| | | | | | | | | | | | | |
| Linveldt | 2 | \| Fair | \| Poor | \| Poor | \| Fair | \| Fair | \| Poor |
| | | | | | | | | | | | | |
| Eckvoll- | 1 | \| Fair | \| Fair | \| Good | \| Good | \| Good | \| Fair | \| Poor | \| Poor | \| Fair | \| Good | \| Poor |
| | | | | | | | | | | | | |
| Strathcona- | 1 | \| Fair | \| Good | \| Fair | \| Fair | \| Fair | \| Fair | \| Good | \| Good | \| Fair | \| Fair | \| Good |
| | | | | | | | | | | | | |
| I19A: | | | | | | | | | | | | |
| Foxhome- | 65 | \| Good | \| Good | \| Good | \|Fair | \|Fair | \| Fair | \| Poor | \| Poor | \| Good | \|Fair | \| Poor |
| | | | | | | | | | | | | |
| Kittson | 10 | \| Good | \| Good | \| Good | \| Fair | \| Fair | \| Good | \| Poor | \| Poor | \| Good | \| Fair | \| Poor |
| | | | | | | | | | | | | |
| Strandquist | 10 | \| Fair | \| Fair | \| Fair | \|Fair | \| Poor | \| Fair | \| Good | \| Good | \| Good | \| Fair | \| Good |
| | | | | | | | | | | | | |
| Foldahl- | 5 | \| Good | \| Good | \| Good | \| Good | \|Fair | \| Fair | \| Poor | \| Poor | \| Good | \|Fair | \| Poor |
| | | | | | | | | | | | | |
| Grimstad---- | 5 | \| Good | \| Good | \| Fair | \| Poor | \| Fair | \| Fair | \| Poor |
| | 1 \| | | | | | | | | | | | |
| Roliss- | 3 | \|Fair | \| Good | \|Fair | \|Fair | \|Fair | \| Fair | \| Good | \|Fair | \| Good | \|Fair | \|Fair |
| | | | | | | | | | | | | |
| Mavie- | 2 | \|Fair | \| Fair | \|Fair | \|Fair | \| Poor | \| Fair | \| Good | \| Good | \| Fair | \|Fair | \| Good |
| | | | | | | | | | | | | |

| | | Potential for habitat elements | | | | | | | | \| Potential as habitat for-- | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Pct. unit | Grain and seed crops | $\begin{array}{\|l\|} \hline \text { \|Grasses } \\ \text { and } \\ \mid \text { legumes } \end{array}$ | $\begin{aligned} & \mid \text { Wild } \\ & \mid \text { herba- } \\ & \text { \| ceous } \\ & \mid \text { plants } \end{aligned}$ | Hardwood trees | | \|Shrubs | | | Open-
 land
 wild-
 life | Woodland
 wild-
 life | ```Wetland wild- life``` |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | \| | | | | | | | |
| I20A: | | | | | | | | | | | | |
| Foxlake---------------- \| | 75 | \| Fair | \| Poor | \| Poor | Good | \| Good | \| Fair | \|Fair |
| | | | | | | | | | | | | |
| Clearwater-------------- \| | 5 | \| Poor | \| Poor | \| Fair | \| Fair | \| Fair | \| Poor | \| Good | Good | \| Good | \| Fair | \| Good |
| | | | | | | | | | | | | |
| Foxlake, very cobbly--- | 5 | \|Fair | \| Fair | \| Fair | \|Fair | \|Fair | \| Poor | \| Poor | Good | \| Good | \|Fair | \|Fair |
| | | | | | | | | | | | | |
| Augsburg--------------- \| | 3 | \|Fair | \| Good | \| Fair | \| Fair | \| Poor | \| Fair | \|Fair | Fair | \| Good | \|Fair | \| Fair |
| | | | | | | | | | | | | |
| Clearwater, depressional | 3 | \| Poor | \| Poor | \| Poor | \| Poor | Poor | \| Poor | \| Good | Good | \| Poor | \| Poor | \| Good |
| Espelie | | | | | | | | | | | | |
| Espelie | 3 | Fair | \|Good | Fair | Fair | Fair | Fair | Good | Good | Fair | Fair | Good |
| Hilaire | 2 | \| Fair | \| Good | \| Good | \| Fair | \| Fair | \| Fair | \| Poor | Poor | \| Good | \| Fair | Poor |
| | | | | | | | | | | | | |
| Reis------------------- \| | 2 | \|Fair | \| Fair | \| Fair | \| Poor | \|Fair | \| Fair | \| Good | Good | \|Fair | \| Poor | \| Good |
| | | | | | | | | | | | | |
| Wheatville--------------\| | 2 | \| Good | \| Good | \| Good | \| Fair | \| Poor | \| Fair | \| Poor | Poor | \| Good | \|Fair | \| Poor |
| | | | | | | | | | | | | |
| 121A: | | | | | | | | | | | | |
| Fram- | 85 | \| Good | \|Fair | Poor | \| Good | \| Good | \| Poor |
| | | | | | | | | | | | | |
| Hedman------------------ \| | 12 | \| Good | \| Good | \| Fair | \| Fair | \| Poor | \| Fair | \| Good | Good | \| Good | \| Fair | \|Fair |
| | | | | | | | | | | | | |
| Strathcona-------------\| | 2 | \| Fair | \| Good | \| Fair | \| Fair | \| Fair | \| Fair | \| Good | Good | \| Fair | \| Fair | \| Good |
| | | | | | | | | | | | | |
| Foxhome---------------- \| | 1 | \| Good | \| Good | \| Good | \| Fair | \|Fair | \| Fair | \| Poor | Poor | \| Good | \|Fair | \| Poor |
| | | | | | | | | | | | | |
| 122A: | | | | | | | | | | | | |
| Glyndon----------------\| | 75 | \| Good | \| Good | \| Good | \| Fair | \| Fair | \| Fair | \| Poor | Poor | \| Good | \| Fair | \| Poor |
| | | | | | | | | | | | | |
| Borup------------------ \| | 10 | \|Fair | \| Fair | \| Good | Good | \| Fair | \| Fair | \| Good |
| | | | | | | | | | | | | |
| Augsburg--------------- \| | 5 | \|Fair | \| Good | \| Fair | \| Fair | \| Poor | \| Fair | \|Fair | Fair | \| Good | \| Fair | \| Fair |
| | | | | | | | | | | | | |
| Ulen-------------------- \| | 5 | \|Fair | \| Good | \| Good | \| Fair | \| Poor | \| Fair | \| Poor | Poor | \mid Fair | \| Fair | \| Poor |
| | | | | | | | | | | | | |
| Wheatville--------------\| | 3 | \| Good | \| Good | \| Good | \| Fair | \| Poor | \| Fair | \| Poor | Poor | \| Good | \| Fair | \| Poor |
| | | | | | | | | | | | | |
| Flaming---------------- \| | 2 | \mid Fair | \| Fair | \| Good | \| Fair | \|Fair | \| Fair | \|Fair | Poor | \mid Fair | \| Fair | \| Poor |
| | | | | | | | | | | | | |
| I23A: | | | | | | | | | | | | |
| Glyndon---------------- \| | 75 | \| Good | \| Good | \| Good | \|Fair | \|Fair | \| Fair | \| Poor | Poor | \| Good | \|Fair | \| Poor |
| | | | | | | | | | | | | |

Table 18.--Wildlife Habitat--Continued

Table 18.--Wildlife Habitat--Continued

| Map symbol
 and
 soil name | Pct. \|of map unit | Potential for habitat elements | | | | | | | | \| Potential as habitat for-- | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Grain
 and
 seed
 crops | $\begin{aligned} & \text { \| Grasses } \\ & \text { \| and } \\ & \text { \| legumes } \end{aligned}$ | Wild herbaceous plants | Hardwood trees | $\begin{aligned} & \text { \|Conif- } \\ & \mid \text { erous } \\ & \text { \|plants } \end{aligned}$ | \| Shrubs | $\begin{aligned} & \mid \text { Wetland } \mid \\ & \mid \text { plants \| } \end{aligned}$ | Shallow\| water areas | $\|$Open-
 land
 wild-
 life | Wood-
 land
 wild-
 life | $\begin{aligned} & \text { Wetland } \\ & \text { wild- } \\ & \text { life } \end{aligned}$ |
| | | | | | | | | | | | | |
| I31A: | | | | | | | | | | | | |
| Haug- | 3 | \| Very | \| Very | \| Poor | \| Poor | \| Poor | \| Poor | \| Good | Good | \mid Very | \| Poor | Good |
| | | poor | \| poor | | | | | | | poor | | |
| | | | | | | | | | | | | |
| Strandquist-- | 2 | \| Fair | \| Fair | Fair | \|Fair | \| Poor | \| Fair | \| Good | Good | \| Good | \| Fair | Good |
| | | | | | | | | | | | | |
| I32A: | | | | | | | | | | | | |
| Hilaire | 75 | \| Good | \| Good | \| Good | \|Fair | \| Fair | \|Fair | \| Poor | Poor | \| Fair | \| Fair | Poor |
| | | | | | | | | | | | | |
| Espelie | 12 | \|Fair | \| Good | Fair | \|Fair | \|Fair | \|Fair | \| Good | Good | \|Fair | Fair | Good |
| | | | | | | | | | | | | |
| Huot- | 5 | \| Good | \| Good | Fair | \|Fair | \| Fair | \|Fair | \| Poor | Poor | \| Good | Fair | Fair |
| | | | | | | | | | | | | |
| Flaming-- | 2 | \|Fair | \| Fair | \| Good | \|Fair | \| Fair | \| Fair | \|Fair | Poor | \| Fair | Fair | Poor |
| | 2 | | | | | | | | | | | |
| Foxlake- | 2 | \|Fair | Fair | Fair | Fair | \|Fair | Poor | Poor | | | | |
| Wheatville- | 2 | \| Good | \| Good | \| Good | \|Fair | \| Poor | \|Fair | \| Poor | Poor | \| Good | Fair | Poor |
| | | | | | | | | | | | | |
| Thiefriver- | 1 | \|Fair | \| Good | \|Fair | \| Fair | \| Fair | \|Fair | \| Good | Good | \| Fair | Fair | Good |
| Wyandotte | 1 | \|Fair | \| Fair | Fair | \| Fair | \| Poor | \| Fair | \| Good | Good | \| Fair | Fair | Good |
| | | | | | | | | | | | | |
| I33A: | | | | | | | | | | | | |
| Hilaire- | 75 | \|Fair | \| Good | \| Good | \| Fair | \| Fair | \| Fair | \| Poor | Poor | \| Good | Fair | Poor |
| | | | | | | | | | | | | |
| Espelie- | 12 | \|Fair | \| Good | Fair | \| Fair | \| Fair | \| Fair | \| Good | Good | \|Fair | Fair | Good |
| | | | | | | | | | | | | |
| Huot | 5 | \| Good | \| Good | Fair | \|Fair | \|Fair | \| Fair | \| Poor | Poor | \| Good | Fair | Fair |
| | | | | | | | | | | | | |
| Flaming- | 2 | \| Fair | \| Fair | \| Good | \| Fair | \| Fair | \| Fair | \| Fair | Poor | \| Fair | \| Fair | Poor |
| | | | | | | | | | | | | |
| Foxlake- | 2 | \| Fair | \| Fair | Fair | \| Fair | \| Fair | \| Poor | \| Poor | Good | \| Good | \| Fair | Fair |
| | | | | | | | | | | | | |
| Wheatville- | 2 | \| Good | \| Good | \| Good | \| Fair | \| Poor | \| Fair | \| Poor | Poor | \| Good | Fair | Poor |
| | | | | | | | | | | | | |
| Thiefriver---- | 1 | \| Fair | \| Good | Fair | \|Fair | \| Fair | \| Fair | \| Good | Good | \| Fair | \| Fair | Good |
| | | | | | | | | | | | | |
| Wyandotte---- | 1 | \|Fair | \|Fair | Fair | \|Fair | \| Poor | \| Fair | \| Good | Good | \|Fair | Fair | Good |
| | | | | | | | | | | | | |
| I34A: | | | | | | | | | | | | |
| Huot- | 75 | \| Good | \| Good | Fair | \|Fair | \|Fair | \|Fair | \| Poor | Poor | \| Good | \|Fair | Fair |
| | | | | | | | | | | | | |

Table 18.--Wildlife Habitat--Continued

| | | Potential for habitat elements | | | | | | | | \| Potential as habitat for-- | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Grain and seed crops | \mid Grasses
 and
 \mid legumes | $\begin{array}{\|c} \text { Wild } \\ \mid \text { herba- } \\ \text { ceous } \\ \text { plants } \\ \hline \end{array}$ | Hardwood trees | $\begin{array}{r} \text { Conif- } \\ \mid \text { erous } \\ \mid \text { plants } \end{array}$ | Shrubs | Wetland
 plants | \mid Shallow\midwaterareas | Open-
 land
 wild-
 life | Wood-
 land
 wild-
 life | $\begin{aligned} & \text { Wetland } \\ & \text { wild- } \\ & \text { life } \end{aligned}$ |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| I37A: | | | | | | | | | | | | |
| Strathcona, depressional | 45 | \| Poor | \| Good | \| Good | \| Poor | \| Poor | \| Good |
| | | | | | | | | | | | | |
| Northwood---------------\| | 5 | \| Very | \| Very | \| Poor | \| Poor | \| Poor | \| Poor | \| Good | \| Good | \| very | \| Poor | \| Good |
| | | poor | poor | | | | | | | \| poor | | |
| | | | | | | | | | | | | |
| Kratka | 2 | \| Fair | \| Good | \| Fair | \|Fair | \| Fair | \| Fair | \| Good | \|Fair | \| Fair | \| Fair | \| Fair |
| | | | | | | | | | | | | |
| Strathcona------------- \| | 2 | \| Fair | \| Good | \| Fair | \|Fair | \|Fair | \| Fair | \| Good | \| Good | \| Fair | \|Fair | \| Good |
| | | | | | | | | | | | | |
| Roliss-----------------\| | 1 | \| Good | \| Good | \| Fair | \| Fair | \| Fair | \| Fair | \| Good | \|Fair | \| Good | \| Fair | Fair |
| | | | | | | | | | | | | |
| I38A: | | | | | | | | | | | | |
| Kratka | 70 | \| Fair | \| Good | \| Fair | \| Fair | \| Fair | \| Fair | \| Good | Fair | \| Fair | \| Fair | \| Fair |
| | | | | | | | | | | | | |
| Smiley- | 7 | \| Fair | \| Good | \| Fair | \| Fair | \| Fair | \| Fair | \| Good | \|Fair | \| Fair | \| Fair | \| Fair |
| | | | | | | | | | | | | |
| Foldahl----------------- | 5 | \| Good | \| Good | \| Good | \| Good | \| Fair | \| Fair | \| Poor | \| Poor | \| Good | \| Fair | Poor |
| | | | | | | | | | | | | |
| Kratka, very cobbly-----\| | 5 | \| Fair | \| Good | \| Fair | \| Fair | \| Fair | \| Fair | \| Good | Fair | \| Fair | \|Fair | Fair |
| | | | | | | | | | | | | |
| Strathcona | 5 | \| Fair | \| Good | \| Fair | \| Fair | \| Fair | \| Fair | \| Good | \| Good | \| Fair | \|Fair | Good |
| Kratka, depressional---- | 3 | \| Poor | \| Good | \| Good | \| Poor | \| Poor | \| Good |
| | | | | | | | | | | | | |
| Strandquist-------------\| | 3 | \| Fair | \| Fair | \| Fair | \| Fair | \| Poor | \| Fair | \| Good | \| Good | \| Good | \| Fair | \| Good |
| | | | | | | | | | | | | |
| Linveldt----------------\| | 2 | \| Fair | \| Fair | \| Fair | \|Fair | \| Fair | \| Fair | \| Poor | \| Poor | \| Fair | \| Fair | \| Poor |
| | | | | | | | | | | | | |
| I39A: | | | | | | | | | | | | |
| Linveldt---------------\| | 65 | \| Fair | \|Fair | \| Fair | \| Fair | \| Fair | \| Fair | \| Poor | \| Poor | \| Fair | \| Fair | \| Poor |
| | | | | | | | | | | | | |
| Kratka------------------ | 14 | \| Fair | \| Good | \| Fair | \|Fair | \|Fair | \| Fair | \| Good | \|Fair | \| Fair | \|Fair | \| Fair |
| | | | | | | | | | | | | |
| Reiner------------------ | 10 | \| Good | \| Poor | \| Poor | \| Fair | \| Fair | \| Poor |
| | | | | | | | | | | | | |
| Smiley-----------------\| | 5 | \| Fair | \| Good | \| Fair | \| Fair | \| Fair | \| Fair | \| Good | \|Fair | \| Fair | \| Fair | \| Fair |
| | | | | | | | | | | | | |
| Eckvoll----------------- \| | 3 | \| Fair | \| Fair | \| Good | \| Good | \| Good | \| Fair | \| Poor | \| Poor | \| Fair | \| Good | \| Poor |
| | | | | | | | | | | | | |
| Foldahl---------------- \| | 2 | \| Good | \| Good | \| Good | \| Good | \|Fair | \|Fair | \| Poor | \| Poor | \| Good | \|Fair | \| Poor |
| | | | | | | | | | | | | |
| Pelan------------------ \| | 1 | \| Poor | \| Fair | \| Poor | \| Poor | \| Fair | \| Fair | \| Poor |
| | | | | | | | | | | | | |

Table 18.--Wildlife Habitat--Continued

| Map symbol
 and
 soil name | Pct. of map unit | Potential for habitat elements | | | | | | | | \| Potential as habitat for-- | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | Grain
 and
 seed
 crops | Grasses and legumes | \mid Wild\mid herba-\mid ceous\mid plants | Hardwood trees | $\begin{array}{\|} \text { Conif- } \\ \text { \| erous } \\ \text { \|plants } \end{array}$ | \| Shrubs | \|Wetland |plants | \| Shallow\| waterareas | Open-
 land
 wild-
 life | Wood-
 land
 wild-
 life | $\begin{aligned} & \text { Wetland } \\ & \text { wild- } \\ & \text { life } \end{aligned}$ |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | \| | \| | | | | | | |
| I40B: | | | | | | | | | | | | |
| Maddock--------- | 85 | \|Fair | Good | \| Good | \|Fair | \| Fair | Fair | \| Poor | \| Very
 poor | Fair | \|Fair | |
| | | | | | | | | | | | | $\begin{aligned} & \text { \|very } \\ & \text { \| poor } \end{aligned}$ |
| | | | | | | | | | | | | |
| Flaming---------Sandberg-------- | 5 \| | \|Fair | \|Fair | Good | \| Fair | \| Fair | Fair | \| Fair | \| Poor | Fair | Fair | \| Poor |
| | | | | | | | | | | | | |
| | 5 | \| Poor | Fair | \| Good | \| Fair | \|Fair | Fair | $\begin{aligned} & \text { \|very } \\ & \text { \| poor } \end{aligned}$ | $\begin{aligned} & \text { \|very } \\ & \text { \| poor } \end{aligned}$ | Fair | Fair | Very |
| | | | | | | | | | | | | \| poor |
| | | | | | | | | | | | | |
| Halverson- | 3 | \|Fair | \| Good | \| Good | \| Good | \| Good | --- | \| Very
 \| poor | \| Very
 \| poor | Good | Good | Very poor |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| Hamar- | 2 | \| Poor | \| Good | \| Fair | \| Good | \| Fair | Fair | \| Fair | \|Fair | Fair | \|Fair | Fair |
| | | | | | | | | | | | | |
| I40F: \| | | | | | | | | | | | | | |
| Maddock | 90 | \| Very
 poor | $\begin{aligned} & \text { \|very } \\ & \text { \| poor } \end{aligned}$ | \| Good | \| Fair | \| Fair | Fair | $\begin{aligned} & \mid \text { Very } \\ & \text { \| poor } \end{aligned}$ | Very poor | Poor | Fair | Very poor |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| Flaming- | 5 \| | \|Fair | \| Fair | \| Good | \| Fair | \| Fair | \|Fair | \| Fair | \| Poor | Fair | Fair | Poor |
| | | | | | | | | | | | | |
| Sandberg-------- | 5 | \| Poor | \| Fair | \| Good | \| Fair | \| Fair | \| Fair | $\begin{aligned} & \mid \text { Very } \\ & \text { \| poor } \end{aligned}$ | \| Very poor | Fair | \|Fair | Very poor |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| I41A: | | | | | | | | | | | | |
| Markey | 80 | $\begin{aligned} & \text { \|very } \\ & \text { \| poor } \end{aligned}$ | $\begin{aligned} & \text { \|very } \\ & \text { \| poor } \end{aligned}$ | \| Poor | \| Poor | \| Poor | \| Poor | \| Good | \| Good | \| Poor | \| Poor | Good |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| Deerwood-------- | 12 | $\begin{aligned} & \text { \|Very } \\ & \text { \| poor } \end{aligned}$ | \|Very
 poor | \mid Poor | \| Poor | \| Poor | \| Poor | \| Good | \| Good | Very poor | \| Poor | Good |
| | | | | | | | | | | | | |
| | | | | \| Poor | | | \| Poor | | | | | |
| Berner---------- | 2 | $\begin{aligned} & \mid \text { Very } \\ & \mid \text { poor } \end{aligned}$ | \| Poor | | \| Poor | \| Poor | | \| Good | \| Good | \mid Poor | \| Poor | Good |
| | | | | | | | | | | | | |
| | | | | | \| Good | | | | | | | |
| Hamar- | 2 \| | \| Poor | \| Good | \| Fair | | \| Fair | \| Fair | \| Fair | \| Fair | Fair | \|Fair | \|Fair |
| | | | | | | | | | | | | |
| Seelyeville- | 2 | \| Very | \| Fair | \| Poor | \| Poor | \| Poor | \| Poor | \| Good | \| Good | \| Good | \| Poor | \| Good |
| | | \| poor | | | | | | | | | | |
| | | | | | | | | | | | | |
| Syrene- | 2 | \| Fair | \| Fair | \|Fair | \|Fair | \| Poor | \| Fair | \| Good | \| Good | Fair | \|Fair | \| Good |
| | | | | | | | | | | | | |
| 142A: | | | | | | | | | | | | |
| Markey, ponded- | 85 | \| Very
 poor | \|Very
 poor | \| Very
 poor | \|Very
 poor | \|Very poor | \| Very
 poor | \| Good | \| Good | \| Very poor | \| Very
 poor | \| Good |
| | | | | | | | | | | | | |

Table 18.--Wildlife Habitat--Continued

| Map symbol
 and
 soil name | | Potential for habitat elements | | | | | | | | \| Potential as habitat for-- | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | Grain and seed crops | \mid Grasses
 and
 \mid
 legumes | | Hardwood trees | $\begin{aligned} & \text { \|Conif- } \\ & \text { \| erous } \\ & \text { \|plants } \end{aligned}$ | \| Shrubs | $\begin{aligned} & \mid \\ & \mid \text { Wetland } \mid \\ & \mid \text { plants } \mid \end{aligned}$ | \| Shallow\| water\| areas | Open-
 land
 wild-
 life | Wood-
 land
 wild-
 life | $\begin{aligned} & \text { Wetland } \\ & \text { wild- } \\ & \text { life } \end{aligned}$ |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | \| | | | \| | | | | | | |
| I45A: | | | | | | | | | | | | |
| Northwood-------- | 75 | $\begin{aligned} & \text { \|Very } \\ & \text { \| poor } \end{aligned}$ | \|Very poor | \| Poor | \| Poor | \| Poor | Poor | \| Good | \| Good | \| Very | Poor | Good |
| | | | | | | | | | | poor | | |
| | | | | | | | | | | | | |
| Hamre | 10 | \| Poor | \|Fair | \| Poor | \| Poor | \| Poor | \| Poor | \| Good | \| Good | Poor | \| Poor | Good |
| Berner---------- | | | | | | | | | | | | |
| | \| 5 | $\begin{aligned} & \mid \text { Very } \\ & \text { \| poor } \end{aligned}$ | \| Poor | \| Good | Good | Poor | Poor | \| Good |
| | | | | | | | | | | | | |
| | 5 | Fair | \| Good | \| Fair | \|Fair | \|Fair | \|Fair | \| Good | \| Fair | | | |
| Kratka- | | | | | | | | | | Fair | Fair | Fair |
| | | | | \| Fair | | \| Poor | \mid Fair | | | | | \mid Good |
| Strandquist | 3 \| | \| Fair | \| Fair | | \| Fair | | | \| Good | \| Good | \| Good | \|Fair | |
| | | | | | | | | | | | | |
| Roliss- | 2 | \| Fair | \| Good | \mid Fair | \| Fair | \| Fair | \| Fair | \| Good | \| Fair | \| Good | \| Fair | \| Fair |
| | | | | | | | | | | | | |
| I46A: \| | | | | | | | | | | | | | | | |
| Pits- | 85 | \| --- | \| --- | | \| --- | \| --- | --- | \| --- | --- \| | --- | --- | --- |
| | | | | | | | | | | | | |
| Udipsamments---- | \| 10 | \|Very
 poor | \| Very
 \| poor | \| Very
 poor | Poor | \| Poor | $\begin{aligned} & \text { \|very } \\ & \text { \| poor } \end{aligned}$ |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| Radium---------- | \| 2 | | \| Poor | \| Fair | \| Good | \| Fair | \| Fair | \| Fair | \| Poor | \| Very poor | Fair | Fair | \|Very
 poor |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| Maddock--------- | \| 1 | | \| Fair | \| Good | \| Good | \| Fair | \| Fair | \| Fair | \| Poor | very poor | Fair | \|Fair | \|Very |
| | | | | | | | | | | | | |
| | | | \| Fair | \| Fair | \| Fair | | \| Poor | $\begin{aligned} & \mid \text { Very } \\ & \text { \| poor } \end{aligned}$ | Very poor | Poor | \| Poor | |
| Marquette- | 1 \| | \| Poor | | | | \| Fair | | | | | | |
| | | | | | | | | | | | | \| poor |
| Sandberg-------- | \| 1 | \| Poor | \| Fair | \| Good | | | | | | | | |
| | | | | | \| Fair | \| Fair | \| Fair | | | Fair | \|Fair | \| Very |
| | | | | | | | | \| poor | poor | | | \| poor |
| | | | \| | | | \| | | | | | | |
| 147A: | | | | | | | | | | | | |
| Poppleton- | 75 | \| Poor | \| Fair | \| Fair | \|Fair | \| Fair | \| Fair | \| Poor | \| Poor | Fair | \|Fair | \| Poor |
| | | | | | | | | | | | | |
| Flaming | 12 | Fair | \|Fair | \| Good | \|Fair | \|Fair | \| Fair | \| Fair | \| Poor | Fair | \|Fair | \| Poor |
| | | | | | | | | | | | | |
| Garborg- | 5 | \| Poor | \|Fair | \| Good | \|Fair | \| Fair | \| Fair | \| Fair | \| Poor | Fair | \|Fair | \| Poor |
| | | | | | | | | | | | | |
| Hamar- | 3 | \| Poor | \| Good | \| Fair | \| Good | \| Fair | \| Fair | \| Fair | \| Fair | Fair | \| Fair | \| Fair |
| | | | | | | | | | | | | |
| Radium---- | \| 2 | \| Poor | \|Fair | \| Good | \|Fair | \| Fair | \| Fair | \| Poor | \| Very | Fair | \|Fair | \| Very |
| | | | | | | | | | | | | \| poor |
| | | | | | | | | | | | | |

Table 18.--Wildlife Habitat--Continued

| | | Potential for habitat elements | | | | | | | | \| Potential as habitat for-- | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Grain
 and
 seed
 crops | $\begin{array}{\|l\|} \hline \text { Grasses } \\ \text { \| and } \\ \text { \| legumes } \end{array}$ | $\begin{array}{\|} \mid \text { Wild } \\ \mid \text { herba- } \\ \text { \| ceous } \\ \text { plants } \end{array}$ | Hardwood trees | | \| Shrubs | $\begin{aligned} & \mid \\ & \mid \text { Wetland } \\ & \mid \text { plants } \end{aligned}$ | $\begin{aligned} & \text { \|Shallow } \\ & \text { \| water } \\ & \text { \| areas } \end{aligned}$ | Open-
 land
 wild-
 life | $\|$Wood-
 land
 wild-
 life | ```Wetland wild- life``` |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| I50A: | | | | | | | | | | | | |
| Linveldt--------------- \| | 5 | \|Fair | \| Fair | \|Fair | \| Fair | \|Fair | \| Fair | \| Poor | \| Poor | \mid Fair | \|Fair | \| Poor |
| | | | | | | | | | | | | |
| Eckvoll---------------- \| | 3 | \|Fair | \| Fair | \| Good | \| Good | \| Good | \| Fair | \| Poor | \| Poor | \| Fair | \| Good | \| Poor |
| | | | | | | | | | | | | |
| Kratka-----------------\| | 3 | \| Fair | \| Good | \| Fair | \| Fair | \| Fair | \| Fair | \| Good | \| Fair | \| Fair | \| Fair | \| Fair |
| | | | | | | | | | | | | |
| I51A: | | | | | | | | | | | | |
| Reiner----------------- \| | 65 | \| Good | \| Poor | \mid Poor | \| Fair | \| Fair | \| Poor |
| | | | | | | | | | | | | |
| Smiley- | 9 | \|Fair | \| Good | \|Fair | \|Fair | \|Fair | \|Fair | \| Good | \|Fair | \| Fair | \|Fair | \|Fair |
| | | | | | | | | | | | | |
| Reiner fine sandy loam--\| | 8 | \| Good | \| Poor | \| Poor | \| Fair | \| Fair | \| Poor |
| Linveldt--------------- | 7 | \|Fair | \|Fair | \|Fair | \| Fair | \|Fair | \|Fair | Poor | Poor | \| Fair | \|Fair | Poor |
| | | | | | | | | | | | | |
| Kratka------------------ \| | 5 | \|Fair | \| Good | \|Fair | \| Fair | \|Fair | \|Fair | \| Good | \|Fair | \|Fair | \|Fair | Fair |
| | | | | | | | | | | | | |
| Eckvoll---------------- \| | 3 | \|Fair | \| Fair | \| Good | \| Good | \| Good | \|Fair | \| Poor | \| Poor | \| Fair | \| Good | \| Poor |
| | | | | | | | | | | | | |
| Reiner, very cobbly-----\| | 3 | \| Good | \| Poor | \mid Poor | \| Fair | \| Fair | \| Poor |
| | | | | | | | | | | | | |
| I52A: | | | | | | | | | | | | |
| Reis | 55 | \|Fair | \| Fair | \|Fair | \| Poor | \|Fair | \|Fair | \| Good | \| Good | Fair | \| Poor | \| Good |
| | | | | | | | | | | | | |
| Clearwater------------- \| | 30 | \| Poor | \| Poor | \|Fair | \| Fair | \|Fair | \| Poor | \| Good | \| Good | \| Good | \|Fair | \| Good |
| | | | | | | | | | | | | |
| Clearwater, very cobbly | 5 | \| Poor | \| Poor | \|Fair | \|Fair | \|Fair | \| Poor | \| Good | \| Good | \| Good | \|Fair | \| Good |
| | | | | | | | | | | | | |
| Clearwater, depressional\| | 3 | \| Poor | \| Good | \| Good | \mid Poor | \| Poor | \| Good |
| | | | | | | | | | | | | |
| Espelie---------------\| | 3 | \|Fair | \| Good | \| Fair | \| Fair | \|Fair | \| Fair | \| Good | \| Good | \| Fair | \|Fair | \| Good |
| | | | | | | | | | | | | |
| Hattie----------------- \| | 3 | \|Fair | \| Good | \|Fair | \| Fair | \| Good | \| Fair | | | \| Fair | \| Good | |
| | | | | | | | | \| poor | poor | | | poor |
| | | | | | | | | | | | | |
| Wyandotte--------------\| | 1 | \| Fair | \| Fair | \| Fair | \| Fair | \| Poor | \| Fair | \| Good | \| Good | \| Fair | \| Fair | \| Good |
| | | | | | | | | | | | | |
| I53A: | | | | | | | | | | | | |
| Roliss----------------- | 75 | \|Fair | \| Good | \| Fair | \| Fair | \| Fair | \|Fair | \| Good | \|Fair | \| Good | \|Fair | \|Fair |
| | | | | | | | | | | | | |
| Kratka----------------- \| | 8 | \|Fair | \| Good | \|Fair | \| Fair | \|Fair | \| Fair | \| Good | \|Fair | \| Fair | \|Fair | \|Fair |
| | | | | | | | | | | | | |

| Map symbol
 and
 soil name | | Potential for habitat elements | | | | | | | | \| Potential as habitat for-- | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Grain and seed crops | $\begin{aligned} & \text { \| Grasses } \\ & \text { \| and } \\ & \mid \text { legumes } \end{aligned}$ | \mid Wild
 \mid herba-
 ceous
 \mid plants | Hardwood trees | $\begin{array}{r} \text { Conif- } \\ \mid \text { erous } \\ \mid \text { plants } \\ \hline \end{array}$ | \| Shrubs | \|Wetland plants | Shallow
 water
 areas | Open-
 land
 wild-
 life | Wood-
 land
 wild-
 life | $\begin{aligned} & \text { Wetland } \\ & \text { wild- } \\ & \text { life } \end{aligned}$ |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| I53A: | | | | | | | | | | | | |
| Roliss, very cobbly-----\| | 7 | \| Fair | \| Good | \| Fair | \| Fair | \| Fair | \| Fair | \| Good | \| Fair | \| Good | \| Fair | \| Fair |
| | | | | | | | | | | | | |
| Kittson----------------- | 5 | \| Good | \| Good | \| Good | \|Fair | \| Fair | \| Good | \| Poor | \| Poor | \| Good | \|Fair | \| Poor |
| | | | | | | | | | | | | |
| Roliss, depressional---- | 3 | \| Poor | Poor | \| Fair | \| Poor | \| Poor | \| Poor | \| Good | \| Good | \| Poor | \| Poor | \| Good |
| | | | | | | | | | | | | |
| Smiley | 2 | \| Fair | Good | \| Fair | \|Fair | \| Fair | \| Fair | \| Good | \|Fair | Fair | \|Fair | \mid Fair |
| | | | | | | | | | | | | |
| I54A: | | | | | | | | | | | | |
| Roliss, depressional---- | 80 | \| Poor | \| Poor | \| Fair | \| Poor | \| Poor | \| Poor | \| Good | \| Good | Poor | \| Poor | \| Good |
| | | | | | | | | | | | | |
| Roliss----------------- | 12 | \| Fair | \| Good | \| Fair | \|Fair | \| Fair | \| Fair | \| Good | \| Fair | \| Good | \| Fair | \mid Fair |
| | | | | | | | | | | | | |
| Hamre- | 5 | \| Poor | Fair | \| Poor | \| Poor | \| Poor | \| Poor | \| Good | \| Good | \| Poor | \| Poor | \| Good |
| | | | | | | | | | | | | |
| Kratka- | 3 | \|Fair | \| Good | \| Fair | \|Fair | \| Fair | \| Fair | \| Good | \|Fair | Fair | \|Fair | \|Fair |
| | | | | | | | | | | | | |
| I55A: | | | | | | | | | | | | |
| Rosewood--------------- \| | 75 | \| Fair | \|Fair | \| Fair | \| Fair | \| Fair | \| Fair | \| Good | \| Good | Fair | \|Fair | \| Good |
| | | | | | | | | | | | | |
| Ulen- | 10 | \| Fair | \| Good | \| Good | \| Fair | \| Poor | \| Fair | \| Poor | \| Poor | Fair | \| Fair | \| Poor |
| | | | | | | | | | | | | |
| Hamar------------------ \| | 6 | \| Poor | \| Good | \| Fair | \| Good | \| Fair | \| Fair | \| Fair | \| Fair | Fair | \| Fair | \| Fair |
| Rosewood, depressional-- | | | | | | | | | | | | |
| | 3 | | \|Very | \| Poor | \| Poor | \| Poor | \| Poor | \| Good | \| Good | \| Poor | \| Poor | \| Good |
| | | poor | poor | | | | | | | | | |
| | | | | | | | | | | | | |
| Syrene----------------- \| | \| 3 | \| Fair | \|Fair | \| Fair | \|Fair | \| Poor | \| Fair | \| Good | \| Good | Fair | \|Fair | \| Good |
| | | | | | | | | | | | | |
| Karlsruhe--------------\| | 1 | \| Fair | \| Good | \| Good | \| Fair | \| Fair | \| Fair | \| Fair | \| Poor | \| Good | \| Fair | \| Poor |
| | | | | | | | | | | | | |
| Strathcona-------------\| | 1 | \| Fair | \| Good | \| Fair | \| Fair | \| Fair | \| Fair | \| Good | \| Good | Fair | \| Fair | \| Good |
| | | | | | | | | | | | | |
| Thiefriver-------------- | 1 | \| Fair | \| Good | \| Fair | \|Fair | \| Fair | \| Fair | \| Good | \| Good | Fair | \| Fair | \| Good |
| | | | | | | | | | | | | |
| I56A: | | | | | | | | | | | | |
| Rosewood--------------- \| | 50 | \| Fair | \| Good | \| Good | Fair | \| Fair | \| Good |
| | | | | | | | | | | | | |
| Venlo-------------------\| | 40 | | \| Poor | \| Good | \| Good | \| Poor | \| Poor | \| Good |
| | | \| poor | | | | | | | | | | |
| | | | | | | | | | | | | |
| Deerwood--------------- \| | 3 | \| Very | \| Very | \| Poor | \| Poor | \| Poor | \| Poor | \| Good | \| Good | \| Very | \| Poor | \| Good |
| | | | \| poor | | | \| | | | | poor | | |
| | | | | | | | | | | | | |

Table 18.--Wildlife Habitat--Continued

| Map symbol
 and
 soil name | \| Pct. |of map unit | Potential for habitat elements | | | | | | | | \| Potential as habitat for-- | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Grain and seed crops | $\begin{array}{\|l\|} \hline \text { \| Grasses } \\ \text { and } \\ \text { legumes } \end{array}$ | $\begin{array}{\|} \mid \text { Wild } \\ \mid \text { herba- } \\ \text { \| ceous } \\ \text { plants } \end{array}$ | Hardwood trees | \|Conif-
 erous plants | \| Shrubs | \|Wetland plants | \|Shallow| | Open-
 land
 wild-
 life | Wood-
 land
 wild-
 life | ```Wetland wild- life``` |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | , | | | | | | | | |
| I56A: | | | | | | | | | | | | |
| Syrene----------------- \| | 3 | Fair | \|Fair | \| Fair | Fair | \| Poor | \| Fair | \| Good | \| Good | Fair | \|Fair | Good |
| | | | | | | | | | | | | |
| Ulen------------------\| | 2 | \| Fair | \| Good | \| Good | Fair | \| Poor | \| Fair | \| Poor | \mid Poor | \| Fair | \|Fair | Poor |
| | | | | | | | | | | | | |
| Strathcona------Thiefriver------ | \| 1 | \|Fair | \| Good | \| Fair | \|Fair | \|Fair | \| Fair | \| Good | \| Good | \| Fair | \| Fair | Good |
| | | | | | | | | | | | | |
| | 1 | \| Fair | \| Good | \| Fair | \|Fair | \| Fair | \|Fair | Good | \| Good | \| Fair | \| Fair | Good |
| | | | | | | | | | | | | |
| I57B: | | | | | | | | | | | | |
| Sandberg | 50 | \| Poor | \|Fair | \| Good | \|Fair | \| Fair | \| Fair | \|verypoor | $\begin{aligned} & \text { \|Very } \\ & \text { \| poor } \end{aligned}$ | \| Fair | \| Fair | Very poor |
| | | | | | | | | | | | | |
| | | | | | | \| Fair | | | | | | |
| Radium---------- | 25 | \| Poor | \| Fair | \| Good | Fair | | \| Fair | \| Poor | \|very
 poor | Fair | Fair | \| Very poor |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| Sioux----------- | \| 8 | \|Very poor | $\begin{aligned} & \text { \|very } \\ & \text { \| poor } \end{aligned}$ | \| Poor | \| Poor | \| Very
 \| poor | \| Poor | Very poor | $\begin{aligned} & \text { \|very } \\ & \text { \| poor } \end{aligned}$ | Very poor | Very poor | \|Very poor |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| Oylen--------------------- | 7 | Good | \| Fair | \| Poor | Poor | Good | \| Good | Poor |
| | | | | | | | | | | | | |
| | 5 | Fair | \| Fair | \| Good | \|Fair | \| Fair | \| Fair | Fair | \| Poor | \| Fair | \|Fair | \| Poor |
| Garborg---------------\| | | | | | | | | | | | | |
| | 5 | \| Poor | \| Fair | \| Good | \|Fair | \|Fair | \|Fair | Fair | \| Poor | \| Fair | Fair | \| Poor |
| | | | | | | | | | | | | |
| I58A: | | | | | | | | | | | | |
| Seelyeville- | 90 | $\begin{aligned} & \text { \|very } \\ & \text { \| poor } \end{aligned}$ | \| Fair | \| Poor | \| Poor | \| Poor | \| Poor | Good | \| Good | \| Good | Poor | \| Good |
| | | | | | | | | | | | | |
| | | | | \| Poor | | \| Poor | | | | | | |
| Cathro | 3 | \| Poor | \| Fair | | Poor | | \| Poor | \| Good | \| Good | \| Poor | \| Poor | \| Good |
| | | | | | | | | | | | | |
| Dora- | 3 | \| Very | \| Very | \| Very | \| Poor | \| Poor | \| Poor | \| Good | \| Good | Very | \| Poor | \| Good |
| | | poor | \| poor | \| poor | | | | | | poor | | |
| | | | | | | | | | | | | |
| Markey - | 3 | \| Very | \| Very | \| Poor | \| Poor | \| Poor | \| Poor | \| Good | \| Good | Poor | \| Poor | \| Good |
| | | | \| poor | | | | | | | | | |
| | | | | | | | | | | | | |
| Berner- | 1 | \| Very | \| Poor | \| Good | \| Good | Poor | \| Poor | \| Good |
| | | poor | | | | | | | | | | |
| | | | | | | | | | | | | |
| I59A: | | | | | | | | | | | | |
| Smiley-- | 65 | \| Fair | \| Good | \| Fair | \|Fair | \| Fair | \| Fair | \| Good | \|Fair | Fair | \|Fair | \| Fair |
| | | | | | | | | | | | | |

Table 18.--Wildlife Habitat--Continued

Table 18.--Wildlife Habitat--Continued

| Map symbol
 and
 soil name | \| Pct. |of map| unit | Potential for habitat elements | | | | | | | | \| Potential as habitat for-- | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Grain
 and
 seed
 crops | $\begin{array}{\|l\|} \hline \text { Grasses } \\ \left\lvert\, \begin{array}{c} \text { and } \end{array}\right. \\ \mid \text { legumes } \end{array}$ | $\begin{array}{\|} \mid \text { Wild } \\ \mid \text { herba- } \\ \text { \| ceous } \\ \text { plants } \end{array}$ | Hardwood trees | \|Conif| erous plants | \| Shrubs | Wetland \|plants | Shallow\mid water\midareas | Open-
 land
 wild-
 life | Wood-
 land
 wild-
 life | $\begin{aligned} & \text { Wetland } \\ & \text { wild- } \\ & \text { life } \end{aligned}$ |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| \| | | | | | | | | | | | | |
| I67A: | | | | | | | | | | | | |
| Wheatville | 70 | \| Good | \| Good | \| Good | \|Fair | \| Poor | \|Fair | \| Poor | \| Poor | \| Good | \|Fair | \| Poor |
| | | | | | | | | | | | | |
| Augsburg | 13 | \|Fair | \| Good | \|Fair | Fair | \| Poor | \|Fair | \| Fair | \|Fair | \| Good | \|Fair | \|Fair |
| | | | | | | | | | | | | |
| Glyndon----------------- \| | 8 | \| Good | \| Good | \| Good | \|Fair | \| Fair | \|Fair | \| Poor | \| Poor | \| Good | \|Fair | \| Poor |
| | | | | | | | | | | | | |
| Foxlake | 5 | \|Fair | \| Fair | \|Fair | \|Fair | \| Fair | \| Poor | \| Poor | \| Good | \| Good | \|Fair | \|Fair |
| | | | | | | | | | | | | |
| Hilaire----------------- \| | 2 | \|Fair | \| Good | \| Good | \|Fair | \| Fair | \|Fair | \| Poor | \| Poor | \| Good | \|Fair | \| Poor |
| | | | | | | | | | | | | |
| Ulen- | 2 | \|Fair | \| Good | \| Good | Fair | \| Poor | \|Fair | \| Poor | \| Poor | Fair | \|Fair | \| Poor |
| | | | | | | | | | | | | |
| I68A: | | | | | | | | | | | | |
| Wheatville--------------\| | 70 | \| Good | \| Good | \| Good | Fair | \| Poor | \| Fair | \| Poor | \| Poor | \| Good | \| Fair | \| Poor |
| | | | | | | | | | | | | |
| Augsburg | 13 | \|Fair | \| Good | \| Fair | \|Fair | \| Poor | \|Fair | \|Fair | \|Fair | \| Good | \|Fair | \|Fair |
| | | | | | | | | | | | | |
| Glyndon----------------- \| | 8 | \| Good | \| Good | \| Good | \|Fair | \| Fair | \|Fair | \| Poor | \| Poor | \| Good | \|Fair | \| Poor |
| | | | | | | | | | | | | |
| Foxlake- | 5 | \|Fair | \| Fair | \|Fair | \|Fair | \| Fair | \| Poor | \| Poor | \| Good | \| Good | Fair | \|Fair |
| | | | | | | | | | | | | |
| Hilaire----------------\| | 2 | \|Fair | \| Good | \| Good | Fair | \| Fair | \|Fair | \| Poor | \| Poor | \| Good | Fair | \| Poor |
| | | | | | | | | | | | | |
| Ulen-------------------- \| | 2 | \|Fair | \| Good | \| Good | \|Fair | \| Poor | \|Fair | \| Poor | \| Poor | \| Fair | \|Fair | \| Poor |
| | | | | | | | | | | | | |
| I69A: | | | | | | | | | | | | |
| Wyandotte---------------\| | 65 | \|Fair | \| Fair | \|Fair | Fair | \| Poor | \|Fair | \| Good | \| Good | Fair | \|Fair | \| Good |
| | | | | | | | | | | | | |
| Foxlake----------------- \| | 10 | \|Fair | \| Fair | \| Fair | \|Fair | \| Fair | \| Poor | \| Poor | \| Good | \| Good | \| Fair | \| Fair |
| | | | | | | | | | | | | |
| Espelie----------------\| | 8 | \|Fair | \| Good | \| Fair | Fair | \| Fair | \|Fair | \| Good | \| Good | Fair | \|Fair | \| Good |
| | | | | | | | | | | | | |
| Clearwater, depressional\| | 5 | \| Poor | \| Good | \| Good | \| Poor | \| Poor | \| Good |
| | | | | | | | | | | | | |
| Thiefriver--------------\| | 5 | \|Fair | \| Good | \|Fair | Fair | \|Fair | \|Fair | \| Good | \| Good | Fair | \|Fair | \| Good |
| | | | | | | | | | | | | |
| Karlsruhe---------------\| | 4 | \| Fair | \| Good | \| Good | \| Fair | \| Fair | \| Fair | \| Fair | \| Poor | \| Good | \| Fair | \| Poor |
| | | | | | | | | | | | | |
| Syrene----------------- \| | 3 | \|Fair | \|Fair | \|Fair | \|Fair | \| Poor | \|Fair | \| Good | \| Good | Fair | \|Fair | \| Good |
| | | | | | | | | | | | | |

Table 19a.--Building Site Development
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00 . The larger the value, the greater the limitation. See text for further explanation of ratings in this table)

Table 19a.--Building Site Development--Continued

Table 19a.--Building Site Development--Continued

Table 19a.--Building Site Development--Continued

| Map symbol and soil name | Pct.
 of map unit | Dwellings without basements | | Dwellings with basements | | Small commercial buildings | | |
|---|---|---|---|---|---|---|---|---|
| | | Rating class and limiting features | \|Value| | Rating class and limiting features | \| Value | Rating class and limiting features | $\mid \text { Value }$ |
| | | | | | | | |
| B204A: | | | | | | | |
| Chilgren----------- | \| 5 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to | 1.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | | Ponding | 11.00 | Ponding | 1.00 |
| | | | | | | | |
| Garnes------------- \| | 5 | \|Somewhat limited | | \mid Very limited | | \|Somewhat limited | |
| | | Depth to | 0.01 | Depth to | 11.00 | Depth to | 0.01 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Roliss, depressional\| | 5 | \|Very limited | | \|Very limited | | \| Very limited | |
| | | Ponding | 1.00 | \| Ponding | 11.00 | Ponding | 1.00 |
| | | Depth to | 1.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Hamre--------------\| | 2 | \| Very limited | | \|Very limited | | \|Very limited | |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | Depth to | 1.00 | Depth to | 11.00 | | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| B205A: | | | | | | | |
| Berner | 80 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | Depth to | 1.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Content of | 1.00 | | | Content of | 1.00 |
| | | organic matter | | | | organic matter | |
| | | | | | | | |
| Northwood-----------\| | 7 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | Depth to | 1.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Grygla-------------\| | 5 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to | 1.00 | | 11.00 | | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | | | | | | |
| Cathro-------------\| | 3 | \|Very limited | | \|Very limited | | \| Very limited | |
| | | Ponding | 1.00 | \| Ponding | 11.00 | \| Ponding | 1.00 |
| | | Depth to | 1.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Hamre--------------- \| | 3 | \|Very limited | | \|Very limited | | \| Very limited | |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | Depth to | 1.00 | Depth to | 11.00 | Depth to | 11.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Seelyeville--------- | 2 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Ponding | 1.00 | \| Ponding | 11.00 | \| Ponding | 11.00 |
| | | Depth to | 1.00 | Depth to | 11.00 | Depth to | 11.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Content of organic matter | 1.00 | Content of organic matter | 11.00 | Content of organic matter | 1.00 |
| | | | | | | | |
| B206A: | | | | | | | \| |
| Hamre | 80 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | Depth to | 1.00 | Depth to | 11.00 | Depth to | 11.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |

Table 19a.--Building Site Development--Continued

| Map symbol and soil name | $\begin{aligned} & \mid \text { Pct. } \\ & \mid \text { of } \\ & \mid \text { of } \\ & \mid \text { unit } \end{aligned}$ | Dwellings without basements | | Dwellings with basements | | Small commercial buildings | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | \|Value | Rating class and limiting features | \| Value | Rating class and limiting features | \|Value |
| | | | | | | | |
| B206A: | | | | | | | |
| Chilgren-------- | 8 | \|Very limited | | Very limited | | \|Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 11.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | | | | | | |
| Northwood-------- | 5 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 11.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Cathro---------- | 3 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | Depth to | \| 1.00 | Depth to | 11.00 | Depth to | \| 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Grygla---------- | 2 | \|Very limited | | Very limited | | \mid Very limited | |
| | | Depth to | 11.00 | Depth to | 1.00 | Depth to | 11.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | | | | | | |
| Roliss---------- | 2 | \|Very limited | | Very limited | | \|Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 11.00 |
| | | saturated zone | | saturated zone | | | |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | | | | | | |
| I1A: | | | | | | | |
| Augsburg | 75 | | | Very limited | | | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | \| 1.00 |
| | | Ponding | 11.00 | Shrink-swell | 11.00 | Ponding | 11.00 |
| | | | | Ponding | 11.00 | | |
| | | | | | | | |
| Borup | 10 \| | \|Very limited | | Very limited | | \|Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 11.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 11.00 | Ponding | 1.00 | Ponding | 11.00 |
| | | | | | | | |
| Foxlake--------- | 5 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | \| Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 | \| Depth to
 \| saturated zone | 11.00 |
| | | Shrink-swell | 11.00 | Shrink-swell | 1.00 | Shrink-swell | 11.00 |
| | | Ponding | \| 1.00 | Ponding | 1.00 | Ponding | 11.00 |
| | | | | | | | |
| Augsburg, | | | | | | | |
| depressional--- | 3 | | | \|Very limited | | \|Very limited | |
| | | \| Ponding | 1.00 | Ponding | 11.00 | \| Ponding | 11.00 |
| | | Depth to | 11.00 | Depth to | 1.00 | Depth to | 11.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | Shrink-swell | 1.00 | | |
| | | | | | | | |
| Wheatville------- | 3 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 | Depth to saturated zone | 11.00 |
| | | saturated zone | | saturated zone
 Shrink-swell | $\text { \| } 1.00$ | saturated zone | |
| | | | | | | | |
| Glyndon--------- | 2 | \|Very limited | | Very limited | | \mid Very limited | |
| | | Depth to | 1.00 | Depth to | 1.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |

Table 19a.--Building Site Development--Continued

| Map symbol and soil name | $\begin{array}{\|} \text { Pct. } \\ \mid \text { of } \\ \mid \text { map } \\ \mid \text { unit } \end{array}$ | Dwellings without basements | | Dwellings with basements | | Small commercial buildings | | | |
|---|---|---|---|---|---|---|---|---|---|
| | | Rating class and limiting features | \|Value| | Rating class and limiting features | \| Value| | Rating class and limiting features | Value |
| I1A: | | | | | | | |
| Espelie--------- | 1 | Very limited | | \| Very limited | | Very limited | |
| | | Depth to | 11.00 | Depth to | \| 1.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Shrink-swell | 1.00 | Shrink-swell | 11.00 | Shrink-swell | 1.00 |
| | | Ponding | 11.00 | Ponding | \| 1.00 | Ponding | 1.00 |
| | | | | | | | |
| Hattie---------- | 1 | Very limited | | \| Very limited | | \| Very limited | |
| | | Shrink-swell | 11.00 | Depth to | \| 1.00 | Shrink-swell | 1.00 |
| | | Depth to | 10.20 | saturated zone | | Depth to | 0.20 |
| | | saturated zone | | Shrink-swell | 11.00 | saturated zone | |
| | | | | | | | |
| I2A: | | | | | | | |
| Augsburg-------- | 75 | \|Very limited | | \|Very limited | | \| Very limited | |
| | | Depth to | 11.00 | Depth to | \| 1.00 | Depth to | 1.00 |
| | | \| saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 11.00 | Shrink-swell | 1.00 | Ponding | 11.00 |
| | | | | Ponding | 11.00 | | |
| | | | | | | | |
| Borup----------- | 10 | \| Very limited | | \| Very limited | | \|Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 11.00 | Ponding | 1.00 | Ponding | 1.00 |
| | | | | | | | |
| Foxlake--------- | 5 | \| Very limited | | \| Very limited | | \| Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 11.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Shrink-swell | 11.00 | Shrink-swell | 11.00 | Shrink-swell | 1.00 |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | | | | | | |
| | | \| | | | | \| | | | |
| depressional | 3 | Very limited \| | | | \| Very limited | | \| Very limited | |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | Depth to | 11.00 | Depth to | \| 1.00 | Depth to | 11.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | Shrink-swell | \| 1.00 | | |
| | | | | | | | |
| Wheatville------ | 3 | \|Very limited | | \| Very limited | | \| Very limited | |
| | | Depth to | 11.00 | Depth to | \| 1.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | Shrink-swell | 1.00 | | |
| | | | | | | | |
| Glyndon--------- | 2 | \|Very limited | | Very limited | | \| Very limited | |
| | | Depth to | 11.00 | Depth to | \| 1.00 | Depth to | 11.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Espelie--------- | 1 \| | Very limited | | \| Very limited | | \| Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Shrink-swell | 11.00 | Shrink-swell | \| 1.00 | Shrink-swell | 1.00 |
| | | Ponding | 11.00 | Ponding | \| 1.00 | Ponding | 1.00 |
| | | | | | | | |
| Hattie---------- | 1 | \| Very limited | | Very limited | | \| Very limited | |
| | | Shrink-swell | 11.00 | Depth to | \| 1.00 | Shrink-swell | 1.00 |
| | | Depth to | 10.20 | saturated zone | | Depth to | 0.20 |
| | | saturated zone | | Shrink-swell | \| 1.00 | saturated zone | |
| | | | | | | | |

Table 19a.--Building Site Development--Continued

Table 19a.--Building Site Development--Continued

| Map symbol and soil name | Pct.
 of \|map |unit | Dwellings without basements | | Dwellings with basements | | Small commercial buildings | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | \|Value| | Rating class and limiting features | \| Value | Rating class and
 \| limiting features | \|Value |
| | | | | | | | |
| I4A: | | | | | | | |
| Deerwood-------- | 2 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | Depth to | 1.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Mavie----------- | 2 | \|Very limited | | \|Very limited | | \mid Very limited | |
| | | Depth to | 1.00 | Depth to | 1.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | | | | | | |
| Strathcona------ | 2 | \|Very limited | | \|Very limited | | \mid Very limited | |
| | | Depth to | 1.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | Ponding | 1.00 | saturat | 11.00 | saturat | 11.00 |
| | | | | | | | |
| I5A: | | | | | | | |
| Borup | 75 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to | 1.00 | Depth to | 1.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 1.00 | Ponding | 1.00 | Ponding | 1.00 |
| | | | | | | | |
| Glyndon--------- | 9 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to | 1.00 | | 11.00 | Depth to | 11.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Rosewood--------- | 8 | | | \|Very limited | | \mid Very limited | |
| | | Depth to saturated zone | 1.00 | Depth to saturated zo | 11.00 | Depth to saturated zone | 11.00 |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | | | | | | |
| Augsburg-------- | 5 | \|Very limited | | \|Very limited | | \mid Very limited | |
| | | Depth to | 1.00 | Depth to | 1.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 1.00 | Shrink-swell | 1.00 | Ponding | 1.00 |
| | | | | Ponding | 11.00 | | |
| | | | | | | | |
| Augsburg, depressional | | | | | | | |
| | 3 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Ponding | 1.00 | Ponding | 1.00 | Ponding | 11.00 |
| | | Depth to | 1.00 | Depth to | \| 1.00 | Depth to | 11.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | Shrink-swell | 11.00 | | |
| | | | | | | | |
| I6A: | | | | | | | |
| Borup | 75 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to | 1.00 | Depth to | 1.00 | Depth to | 11.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 1.00 | Ponding | 1.00 | Ponding | 1.00 |
| | | | | | | | |
| Glyndon--------- | 9 | \|Very limited | | \|Very limited | | \|Very limited | 1 |
| | | Depth to saturated zone | 1.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| Rosewood--------- | 8 | \|Very limited | | \|Very limited | | \|Very limited | \| |
| | | Depth to saturated zone | 1.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | | | | | | |

Table 19a.--Building Site Development--Continued

Table 19a.--Building Site Development--Continued

| Map symbol and soil name | Pct.
 of
 map
 \|unit | Dwellings without basements | | Dwellings with basements | | Small commercial buildings | | |
|---|---|---|---|---|---|---|---|---|
| | | Rating class and limiting features | \|Value| | Rating class and limiting features | \| Value | Rating class and limiting features | |
| 18A: | | | | | | | |
| Berner---------- | 2 | \|Very limited | | \mid Very limited | | \|Very limited | |
| | | Ponding | 1.00 | Ponding | \| 1.00 | Ponding | \| 1.00 |
| | | Depth to | 1.00 | Depth to | 1.00 | Depth to | \| 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Content of | 1.00 | | | | 11.00 |
| | | organic matter | | | | organic matter | |
| | | | | | | | |
| Kratka---------- | 2 | \|Very limited | | \|Very limited | | \mid Very limited | |
| | | Depth to saturated zone | 1.00 | ```Depth to saturated zone``` | 11.00 | ```Depth to saturated zone``` | \| 1.00 |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | | | | | | |
| Seelyeville----- | 2 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | Depth to | 1.00 | Depth to | \| 1.00 | Depth to | \| 1.00 |
| | | saturated zon | | saturated zon | | saturated zone | |
| | | organic matter | | organic matter | 1.00 | organic matter | 1.00 |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | | |
| Clearwater | 80 | Depth to | 1.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Shrink-swell | 1.00 | Shrink-swell | \| 1.00 | Shrink-swell | \| 1.00 |
| | | Ponding | 1.00 | Ponding | \| 1.00 | Ponding | \| 1.00 |
| | | | | | | | |
| Clearwater, very cobbly--------- | | | | | | | |
| | (5 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 1.00 | Depth to saturated zone | 1.00 | Depth to saturated zone | \| 1.00 |
| | | Shrink-swell | 1.00 | Shrink-swell | 11.00 | Shrink-swell | 11.00 |
| | | Ponding | 1.00 | Ponding | 1.00 | Ponding | \| 1.00 |
| | | | | | | | |
| Reis----------- | 5 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 1.00 | Depth to saturated zone | \| 1.00 | Depth to saturated zone | 11.00 |
| | | Shrink-swell | 1.00 | Shrink-swell | 1.00 | Shrink-swell | 11.00 |
| | | | | | | | |
| Clearwater, depressional | | | | | | | |
| | 3 | \|Very limited | | \|Very limited | | \mid Very limited | |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | Depth to | 1.00 | Depth to | 11.00 | Depth to | 11.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Shrink-swell | 1.00 | Shrink-swell | 1.00 | Shrink-swell | 1.00 |
| | | | | | | | |
| Espelie--------- | 3 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 1.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 |
| | | Shrink-swell | 1.00 | Shrink-swell | 11.00 | Shrink-swell | 11.00 |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | | | | | | |
| Foxlake--------- | \| | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 1.00 | ```Depth to saturated zone``` | 11.00 | ```Depth to saturated zone``` | 11.00 |
| | | Shrink-swell | 1.00 | Shrink-swell | 11.00 | Shrink-swell | 11.00 |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | | | | | | |

Table 19a.--Building Site Development--Continued

Table 19a.--Building Site Development--Continued

Table 19a.--Building Site Development--Continued

Table 19a.--Building Site Development--Continued

Table 19a.--Building Site Development--Continued

| Map symbol and soil name | $\begin{aligned} & \mid \text { Pct. } \\ & \mid \text { of } \\ & \mid \text { map } \\ & \mid \text { unit } \mid \end{aligned}$ | Dwellings without basements | | Dwellings with basements | | Small commercial buildings | | |
|---|---|---|---|---|---|---|---|---|
| | 1 | Rating class and limiting features | \mid Value | Rating class and limiting features | \| Value | Rating class and limiting features | Value |
| I16F: | | | | | | | |
| Hapludolls------ | 25 | \| Very limited | | \| Very limited | | \| Very limited | |
| | | Flooding | \| 1.00 | Flooding | \| 1.00 | Flooding | 1.00 |
| | | Slope | 10.63 | Slope | 0.63 | Slope | 1.00 |
| | | | | | | | |
| Hapludalfs | 7 | Very limited | | \| Very limited | | \| Very limited | |
| | | Flooding | 11.00 | Flooding | 11.00 | Flooding | 1.00 |
| | | Slope | 11.00 | slope | 11.00 | slope | 1.00 |
| | | Shrink-swell | 10.50 | Depth to | 11.00 | Shrink-swell | 0.50 |
| | | Depth to | 10.01 | saturated zone | | Depth to | 0.01 |
| | | saturated zone | | | | saturated zone | |
| | | | | | | | |
| Fairdale-------- | 5 | Very limited | | \| Very limited | | \| Very limited | |
| | | Flooding | 11.00 | Flooding | 11.00 | Flooding | 1.00 |
| | | Shrink-swell | 10.50 | Depth to | \| 1.00 | Slope | 1.00 |
| | | Slope | 10.37 | saturated zone | | Shrink-swell | 0.50 |
| | | Depth to | 10.01 | Shrink-swell | 0.50 | Depth to | 0.01 |
| | | saturated zone | | Slope | 10.37 | saturated zone | |
| | | | | | | | |
| Water----------- | 5 | Not rated | | Not rated | | \| Not rated | |
| | | | | | | | |
| Bowstring------- | 2 | \| Very limited | | \| Very limited | | \| Very limited | |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | Flooding | \| 1.00 | Flooding | \| 1.00 | Flooding | 11.00 |
| | | Depth to | \| 1.00 | Depth to | \| 1.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Content of | 11.00 | Content of | 11.00 | Content of | 1.00 |
| | | organic matter | | organic matter | | organic matter | |
| | | | | | | | |
| Rauville-------- | 1 | \| Very limited | | \| Very limited | | \| Very limited | |
| | | Ponding | \| 1.00 | Ponding | \| 1.00 | Ponding | \| 1.00 |
| | | Flooding | \| 1.00 | Flooding | 11.00 | Flooding | 11.00 |
| | | Depth to | \| 1.00 | Depth to | \| 1.00 | Depth to | \| 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Shrink-swell | 10.50 | Shrink-swell | 0.50 | Shrink-swell | 0.50 |
| | | | | | | | |
| I17A: \| | | | | | | | |
| Foldahl | 75 | Somewhat limited | | \| Very limited | | Somewhat limited | |
| | | Depth to | 10.01 | Depth to | 11.00 | Depth to | 0.01 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Kratka---------- | 10 | \|Very limited | | | \| Very limited | | \| Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | \| 1.00 | Ponding | \| 1.00 | Ponding | \| 1.00 |
| | | | | | | | |
| Roliss---------- | 5 \| | \| Very limited | | \| Very limited | | \| Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | | | | | | |
| Flaming--------- | 4 | \|Somewhat limited | | \| Very limited | | \| Somewhat limited | |
| | | Depth to | 10.01 | Depth to | \| 1.00 | Depth to | 0.01 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Grimstad-------- | | ```\|Somewhat limited Depth to saturated zone``` | | \| Very limited | | \| Very limited | |
| | | | 10.99 | Depth to | 11.00 | Depth to | 0.99 |
| | | | | saturated zone | | saturated zone | |
| | | | | | | | |

Table 19a.--Building Site Development--Continued

| Map symbol and soil name | $\begin{aligned} & \mid \text { Pct. } \\ & \mid \text { of of } \\ & \mid \text { map } \\ & \mid \text { unit } \end{aligned}$ | Dwellings without basements | | Dwellings with basements | | Small commercial buildings | | |
|---|---|---|---|---|---|---|---|---|
| | | Rating class and limiting features | \|Value| | Rating class and
 \| limiting features | \| Value | Rating class and limiting features | \|Value |
| | | | | | | | |
| I17A: | | | | | | | |
| Linveldt-------- | \| 2 | \| Somewhat limited ${ }_{\text {\| }}^{\text {Depth to }}$ (saturated zone | | \|Very limited | | \| Somewhat limited | |
| | | | 0.01 | Depth to | \| 1.00 | Depth to | 0.01 |
| | | | | saturated zone | | saturated zone | |
| | | | | | | | |
| Eckvoll | 1 | Somewhat limited Depth to saturated zone | | \|Very limited | | Somewhat limited | |
| | | | 0.01 | Depth to | 1.00 | Depth to | 0.01 |
| | | | | saturated zone | | saturated zone | |
| | | | | | | | |
| Strathcona------ | 1 | \|Very limited | | \mid Very limited | | \| Very limited | |
| | | Depth to | 1.00 | \| Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | | | | | | |
| I18A: | | | | | | | |
| Foldahl | 75 | Somewhat limited | | \|Very limited | | \| Somewhat limited | |
| | | Depth to | 0.01 | Depth to | 11.00 | Depth to | 0.01 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Kratka | 10 | \|Very limited | | \|Very limited | | \|Very limited | \| |
| | | Depth to saturated zone | 1.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | | | | | | |
| Roliss---------- | \| 5 | | \|Very limited | | \|Very limited | | \|Very limited | \| |
| | | Depth to | 1.00 | Depth to | 1.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | | | | | | |
| Flaming--------- | 4 | \|Somewhat limited | | \|Very limited | | \|Somewhat limited | \| |
| | | Depth to | 0.01 | Depth to | 11.00 | Depth to | 0.01 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | 1 |
| Grimstad-------- | 2 | Somewhat limited | | \|Very limited | | \|Very limited | |
| | | Depth to | 0.99 | \| Depth to | 1.00 | Depth to | 0.99 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Linveldt-------- | 2 | | | | | \|Somewhat limited | |
| | | Depth to | 0.01 | \| Depth to | 11.00 | \| Depth to | 0.01 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Eckvoll | 1 | Somewhat limited | | \|Very limited | | \| Somewhat limited | |
| | | Depth to | 0.01 | Depth to | 11.00 | Depth to | 0.01 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Strathcona------ | 1 | \|Very limited | | \|Very limited | | \|Very limited | \| |
| | | Depth to | 1.00 | Depth to | 1.00 | Depth to | 11.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 1.00 | Ponding | 1.00 | Ponding | 1.00 |
| | | | | | | | |
| I19A: | | | | | | | |
| Foxhome | 65 | $\begin{aligned} & \text { Somewhat limited } \\ & \text { Depth to } \\ & \text { saturated zone } \end{aligned}$ | | | | \| Somewhat limited | 1 |
| | | | 0.01 | Depth to saturated zone | 11.00 | Depth to saturated zone | 0.01 |
| | | | | | | | |
| Kittson | 10 | $\begin{aligned} & \text { Somewhat limited } \\ & \text { Depth to } \\ & \text { saturated zone } \end{aligned}$ | | \mid Very limited | | \|Somewhat limited | |
| | | | 0.01 | Depth to | 11.00 | Depth to | 10.01 |
| | | | | saturated zone | | saturated zone | |
| | | | | | | | |

Table 19a.--Building Site Development--Continued

Table 19a.--Building Site Development--Continued

Table 19a.--Building Site Development--Continued

Table 19a.--Building Site Development--Continued

| Map symbol and soil name | $\left.\begin{array}{\|} \mid \text { Pct. } \\ \mid \text { of } \\ \mid \text { map } \end{array} \right\rvert\,$ | Dwellings without basements | | Dwellings with basements | | Small commercial buildings | | |
|---|---|---|---|---|---|---|---|---|
| | | Rating class and limiting features | \| Value | Rating class and limiting features | \| Value| | Rating class and limiting features | Value |
| | | | | | | | |
| Karlsruhe------- | 2 | Somewhat limited | | \| Very limited | | Somewhat limited | |
| | | Depth to | \| 0.44 | Depth to | 1.00 | Depth to | 0.44 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Mavie----------- | 2 | Very limited | | \| Very limited | | Very limited | |
| | | Depth to | 11.00 | Depth to | 1.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | | | | | | |
| Ulen------------ | 2 | \|Somewhat limited | | \| Very limited | | Somewhat limited | |
| | | Depth to | \| 0.44 | Depth to | 11.00 | Depth to | 0.44 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| I25A: | | | | | | | |
| Hamar---------- | 75 | Very limited | | \| Very limited | | Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | | | saturated zone | | saturated zone | |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | | | | | | |
| Garborg--------- | 10 | \| Somewhat limited | | \| Very limited | | Very limited | |
| | | Depth to | 0.99 | Depth to | 11.00 | Depth to | 0.99 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Rosewood-------- | 7 | \| Very limited | | \| Very limited | | Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | | | | | | |
| Venlo----------- | 3 | Very limited | | \| Very limited | | Very limited | |
| | | \| Ponding | 11.00 | \| Ponding | 1.00 | Ponding | 1.00 |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Flaming--------- | 2 | \|Somewhat limited | | \| Very limited | | \|Somewhat limited | |
| | | Depth to | 0.01 | Depth to | 11.00 | Depth to | 0.01 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Hangaard-------- | 2 | \| Very limited | | \|Very limited | | Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 11.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 11.00 | Ponding | 1.00 | Ponding | 1.00 |
| | | | | | | | |
| Kratka---------- | 1 | \| Very limited | | \| Very limited | | Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | | | | | | |
| I26A: | | | | | | | |
| Hamerly | 75 | \|Very limited | | \| Very limited | | Very limited | |
| | | Depth to saturated zone | 11.00 | \| Depth to | 11.00 | Depth to | 1.00 |
| | | | | saturated zone | | saturated zone | |
| | | | | | | | |
| Vallers-------------- \| | 12 | | | \| Very limited | | Very limited | |
| | | \| Depth to | 11.00 | Depth to | \| 1.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | | | | | | |

Table 19a.--Building Site Development--Continued

Table 19a.--Building Site Development--Continued

| Map symbol and soil name | $\begin{aligned} & \mid \text { Pct. } \\ & \mid \text { of } \\ & \mid \text { map } \\ & \mid \text { unit } \end{aligned}$ | Dwellings without basements | | Dwellings with basements | | Small commercial buildings | | | |
|---|---|---|---|---|---|---|---|---|---|
| | | Rating class and limiting features | \|Value| | Rating class and
 \| | \|Value| | Rating class and limiting features | Value |
| I36A: | | | | | | | |
| Kratka------------- \| | 5 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to | 1.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 1.00 | Ponding | 1.00 | Ponding | 1.00 |
| | | | | | | | |
| Grimstad------------ \| | 3 | \|Somewhat limited | | \mid Very limited | | \mid Very limited | |
| | | Depth to | 10.99 | Depth to | 11.00 | Depth to | 0.99 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Strandquist--------- \| | 3 | \| Very limited | | \|Very limited | | \mid Very limited | |
| | | Depth to saturated zone | 1.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | | | | | | |
| Foxhome------------ | 2 | \|Somewhat limited | | \|Very limited | | \| Somewhat limited | |
| | | Depth to | 0.01 | Depth to | 1.00 | Depth to | 0.01 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| I37A: | 45 | | | | | | |
| Kratka, depressional\| | | \| Very limited | | \|Very limited | | \|Very limited | |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | Depth to | 1.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Strathcona, depressional | 45 | | | | | | |
| | | \| Very limited | | \|Very limited | | \mid Very limited | |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | Depth to | 1.00 | Depth to | 1.00 | Depth to | 11.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Northwood----------- | 5 | \| Very limited | | \|Very limited | | \|Very limited | |
| | | Ponding | 1.00 | \| Ponding | 1.00 | \| Ponding | 1.00 |
| | | Depth to | 1.00 | Depth to | 1.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Kratka-------------- | 2 | \|Very limited | | \|Very limited | | \mid Very limited | |
| | | Depth to saturated zone | 1.00 | \| Depth to saturated zone | 1.00 | Depth to saturated zone | 1.00 |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | | | | | | |
| Strathcona---------- \| | 2 | \| Very limited | | \|Very limited | | \mid Very limited | |
| | | Depth to | 1.00 | Depth to | 1.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 1.00 | Ponding | 1.00 | Ponding | 1.00 |
| | | | | | | | |
| Roliss-------------- | 1 | | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 1.00 | ```Depth to saturated zone``` | 1.00 | Depth to saturated zone | 1.00 |
| | | Ponding | 1.00 | Ponding | 1.00 | Ponding | 1.00 |
| | | | | | | | |
| I38A: | | | | | | | |
| Kratka | 70 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 1.00 | Depth to saturated zone | 1.00 | Depth to saturated zone | 1.00 |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | | | | | | |

Table 19a.--Building Site Development--Continued

Table 19a.--Building Site Development--Continued

| Map symbol and soil name | $\left.\begin{array}{\|c\|} \mid \text { Pct } \\ \mid \text { of } \\ \mid \text { of } \end{array} \right\rvert\,$ | Dwellings without basements | | Dwellings with basements | | Small commercial buildings | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | \|Value | Rating class and
 \| limiting features | \|Value | Rating class and limiting features | Value |
| | | | | | | | |
| I51A: | | | | | | | |
| Linveldt----------- | 7 | \| Somewhat limited | | \|Very limited | | \|Somewhat limited | |
| | | Depth to | 0.01 | Depth to | 11.00 | Depth to | 0.01 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Kratka------------- | 5 | | | \|Very limited | | \|Very limited | |
| | | Depth to | $\text { \| } 1.00$ | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | | | | | | |
| Eckvoll------------- | 3 | \| Somewhat limited | | \|Very limited | | Somewhat limited | |
| | | Depth to | 0.01 | Depth to | 11.00 | Depth to | 0.01 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Reiner, very cobbly | 3 | \|Somewhat limited | | \|Very limited | | Somewhat limited | |
| | | Depth to | 0.01 | Depth to | 11.00 | | 0.01 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| I52A: | | | | | | | |
| Reis | 55 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 1.00 | Depth to saturated zone | 1.00 | Depth to saturated zone | 1.00 |
| | | Shrink-swell | 1.00 | Shrink-swell | 11.00 | Shrink-swell | 1.00 |
| | | | | | | | |
| Clearwater---------- | 30 | \| Very limited | | \|Very limited | | \mid Very limited | |
| | | Depth to | 1.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Shrink-swell | 1.00 | Shrink-swell | 1.00 | Shrink-swell | 1.00 |
| | | Ponding | 1.00 | Ponding | 1.00 | Ponding | 1.00 |
| | | | | | | | |
| Clearwater, very cobbly--------- | | | | | | | |
| | 5 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to | 1.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Shrink-swell | 1.00 | Shrink-swell | 1.00 | Shrink-swell | 1.00 |
| | | Ponding | 1.00 | Ponding | 1.00 | Ponding | 1.00 |
| | | | | | | | |
| Clearwater, depressional------ | | | | | | | |
| | 3 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | Depth to saturated zone | 1.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 |
| | | Shrink-swell | 11.00 | Shrink-swell | 11.00 | Shrink-swell | 1.00 |
| | | | | | | | |
| Espelie------------ | 3 | | | | | | |
| | | Depth to saturated zone | 1.00 | D Depth to saturated zone | 11.00 | \| Depth to
 \| saturated zone | 1.00 |
| | | Shrink-swell | 1.00 | Shrink-swell | 11.00 | Shrink-swell | 1.00 |
| | | Ponding | 1.00 | Ponding | 1.00 | Ponding | 11.00 |
| | | | | | | | |
| Hattie------------- | 3 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Shrink-swell | 1.00 | Depth to | 11.00 | Shrink-swell | 11.00 |
| | | Depth to | 10.20 | saturated zone | | Depth to | 10.20 |
| | | saturated zone | | Shrink-swell | 1.00 | saturated zone | |
| | | | | | | | |
| Wyandotte---------- | \| 1 | \|Very limited | | \|Very limited | | | |
| | | Depth to saturated zone | 1.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 |
| | | Ponding | 1.00 | Shrink-swell | 11.00 | Ponding | 1.00 |
| | | | | Ponding | 1.00 | | |
| | | | | | | | |

Table 19a.--Building Site Development--Continued

| Map symbol and soil name | $\begin{aligned} & \mid \text { Pct. } \\ & \mid \text { of } \\ & \mid \text { map } \mid \\ & \mid \text { unit } \mid \end{aligned}$ | Dwellings withoutbasements | | Dwellings with basements | | Small commercial buildings | | |
|---|---|---|---|---|---|---|---|---|
| | unit | Rating class and limiting features | \|Value | Rating class and limiting features | \| Value| | Rating class and limiting features | \|Value |
| | | | | | | | |
| I53A: | | | | | | | |
| Roliss------------- | 75 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 1.00 | \| Depth to | 11.00 | \| Depth to | 1.00 |
| | | | | saturated zone | | saturated zone | |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | | | | | | |
| Kratka-------------- \| | 8 | Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 1.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 |
| | | Ponding | 1.00 | saturated zone Ponding | 11.00 | Ponding | 1.00 |
| | | | | | | | |
| Roliss, very cobbly | \| | \|Very limited | | Very limited | | \|Very limited | |
| | | | 1.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 |
| | | | 1.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | | | | | | |
| Kittson------------- \| | 5 | Somewhat limited | | \|Very limited | | \|Somewhat limited | |
| | | Depth to saturated zone | 0.01 | Depth to saturated zone | 11.00 | Depth to saturated zone | 0.01 |
| | | | | | | | |
| Roliss, depressional\| | 3 | Very limited | | \|Very limited | | \|Very limited | |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | \| 1.00 |
| | | | 1.00 | Depth to | 11.00 | Depth to | 11.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Smiley-------------- \| | 2 | ```\|very limited Depth to saturated zone Ponding``` | | \| Very limited | | \|Very limited | |
| | | | 1.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | | | saturated zone | | saturated zone | |
| | | | 1.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | Ponding | | | | | |
| I54A: | | | | | | | |
| Roliss, depressional\| | 80 | \|Very limited | | Very limited | | \|Very limited | |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | \| 1.00 |
| | | Depth to saturated zone | 1.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 |
| | | | | | | | |
| | | | | | | | |
| Roliss-------------- \| | 12 | \|Very limited
 Depth to
 saturated zone
 Ponding | | \|Very limited | | \|Very limited | |
| | | | 1.00 | Depth to saturated zone | 11.00 | \| Depth to saturated zone | 1.00 |
| | | | 1.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | | | | | | |
| Hamre | 5 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | \| 1.00 |
| | | Depth to | 1.00 | Depth to | 11.00 | Depth to | 11.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Kratka | 3 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 1.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | | | | | | |
| I55A: | | | | | | | |
| Rosewood------------ \| | 75 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 1.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | | | | | | |

Table 19a.--Building Site Development--Continued

| Map symbol and soil name | $\begin{array}{\|c\|} \mid \text { Pct } \\ \mid \text { of } \\ \mid \text { of } \\ \mid \text { unit } \mid \end{array}$ | Dwellings without basements | | Dwellings with basements | | Small commercial buildings | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | Value | Rating class and limiting features | \| Value | Rating class and
 limiting features | \|Value |
| | | | | | | | |
| I55A: | | | | | | | |
| Ulen | 10 | \|Somewhat limited | | \|Very limited | | \|Somewhat limited | |
| | | Depth to | 0.44 | Depth to | 11.00 | Depth to | 0.44 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Hamar----------- | 6 | \|Very limited | | Very limited | | \|Very limited | |
| | | Depth to | 1.00 | Depth to | 11.00 | Depth to | 11.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | | Ponding | 11.00 | Ponding | 11.00 |
| | | | | | | | |
| Rosewood, | | | | | | | |
| depressional--- | 3 | \|Very limited | | Very limited | | \|Very limited | |
| | | \| Ponding | 1.00 | Ponding | 11.00 | \| Ponding | 1.00 |
| | | Depth to | 1.00 | Depth to | 11.00 | Depth to | 11.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Syrene---------- | 3 | \|Very limited | | Very limited | | \|Very limited | |
| | | Depth to saturated zone | 1.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | \| 1.00 |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | | | | | | |
| Karlsruhe------- | 1 | | | | | | |
| | | Depth to | 0.44 | Depth to | 1.00 | Depth to | 10.44 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Strathcona------ | 1 \| | | | Very limited | | | |
| | | Depth to | 1.00 | Depth to | 11.00 | Depth to | 11.00 |
| | | saturated zone Ponding | 1.00 | saturated zone Ponding | 11.00 | saturated zone Ponding | 11.00 |
| | | | | | | | |
| Thiefriver------ | 1 | \|Very limited | | Very limited | | \mid Very limited | |
| | | Depth to | 1.00 | Depth to | 11.00 | Depth to | 11.00 |
| | | saturated zone | | saturated zone | | \| saturated zone | |
| | | Ponding | 1.00 | Shrink-swell | 11.00 | \| Ponding | 11.00 |
| | | | | Ponding | 11.00 | | |
| | | | | | | | |
| I56A: | | | | | | | |
| Rosewood-------- | 50 | \|Very limited | | Very limited | | \|Very limited | |
| | | Depth to | 1.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 1.00 | Ponding | 11.00 | \| Ponding | 1.00 |
| | | | | | | | |
| Venlo------------ | 40 | \|Very limited | | Very limited | | \|Very limited | |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | Depth to | 1.00 | Depth to | 1.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Deerwood-------- | 3 | \|Very limited | | Very limited | | \|Very limited | |
| | | Ponding | 1.00 | Ponding | 11.00 | \| Ponding | 11.00 |
| | | Depth to
 saturated zone | 1.00 | Depth to
 saturated zone | \| 1.00 | Depth to
 saturated zone | \| 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Syrene---------- | 3 | \|Very limited | | Very limited | | \|Very limited | |
| | | Depth to saturated zone | 1.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | \| 1.00 |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | | | | | | |

Table 19a.--Building Site Development--Continued

| Map symbol and soil name | $\begin{aligned} & \mid \text { Pct. } \\ & \mid \text { of } \\ & \mid \text { map } \\ & \mid \text { unit } \end{aligned}$ | Dwellings without basements | | Dwellings with basements | | Small commercial buildings | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | \|Value | Rating class and limiting features | \| Value | Rating class and limiting features | Value |
| | | | | | | | |
| I56A: | | | | | | | |
| Ulen | 2 | \|Somewhat limited | | \|Very limited | | \|Somewhat limited | |
| | | Depth to | 10.44 | Depth to | 11.00 | Depth to | 0.44 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Strathcona------ | 1 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 11.00 | Ponding | 1.00 | Ponding | 1.00 |
| | | | | | | | |
| Thiefriver------ | 1 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to | 1.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | | |
| | | Ponding | 11.00 | Shrink-swell | 11.00 | \| Ponding | 1.00 |
| | | | | Ponding | \| 1.00 | | |
| | | | | | | | |
| I57B: | | | | | | | |
| Sandberg- | 50 | \| Not limited | | \| Not limited | | \| Not limited | |
| | | | | | | | |
| Radium- | 25 | \| Not limited | | | | \| Not limited | |
| | | | | Depth to | 10.96 | | |
| | | | | saturated zone | | | |
| | | | | | | | |
| Sioux------------------------OYlen---- | 8 | Not limited | | \| Not limited | | \| Not limited | |
| | | | | | | | |
| | \| | Not limited | | \|Somewhat limited | | \| Not limited | |
| Oylen----------- | | | | \| Depth to | 10.96 | | |
| | | | | saturated zone | | | |
| | | | | | | | |
| Flaming-------- | 5 | Somewhat limited | | | | | |
| | | Depth to | 0.01 | Depth to | 11.00 | Depth to | 0.01 |
| | | saturated zone | | saturated zone | | \| saturated zone | |
| | | | | | | | |
| Garborg--------- | 5 | | | | | | |
| | | Depth to | 10.99 | \| Depth to | 11.00 | \| Depth to | 10.99 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| I58A: | | | | | | | |
| Seelyeville----- | 90 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Ponding | 1.00 | \| Ponding | 11.00 | \| Ponding | 1.00 |
| | | Depth to saturated zone | 11.00 | Depth to | \| 1.00 | Depth to saturated zone | 11.00 |
| | | Content of | 11.00 | Content of | 11.00 | saturated zone | 1.00 |
| | | organic matter | | organic matter | | organic matter | |
| | | | | | | | |
| Cathro---------- | \| | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 11.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Dora------------ | 3 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | Depth to saturated zone | 1.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 |
| | | Content of | 1.00 | Shrink-swell | 11.00 | Content of | 1.00 |
| | | organic matter | | | | organic matter | |
| | | | | | | | |

Table 19a.--Building Site Development--Continued

Table 19a.--Building Site Development--Continued

Table 19a.--Building Site Development--Continued

Table 19a.--Building Site Development--Continued

| Map symbol and soil name | \mid Pct. \mid of \mid map \mid unit | Dwellings without basements | | Dwellings with basements | | Small commercial buildings | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | \|Value | Rating class and limiting features | \| Value | Rating class and limiting features | \|Value |
| | | | | | | | |
| I63A: | | | | | | | |
| Huot------------ | 5 | Somewhat limited | | \|Very limited | | Somewhat limited | |
| | | Depth to saturated zone | 0.01 | Shrink-swell | \| 1.00 | Depth to | 0.01 |
| | | | | Depth to | 11.00 | saturated zone | |
| | | | | saturated zone | | | |
| | | | | | | | |
| Clearwater, | | | | | | | |
| depressional---- | 3 | Very limited | | \|Very limited | | \mid Very limited | |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | Depth to saturated zone | 11.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | | | saturated zone | | saturated zone | |
| | | Shrink-swell | 11.00 | Shrink-swell | 11.00 | Shrink-swell | 1.00 |
| | | | | | | | |
| Rosewood | 3 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | | | | | | |
| Ulen | 1 | \|Somewhat limited | | \|Very limited | | \| Somewhat limited | |
| | | Depth to | 10.44 | | 11.00 | Depth to | 0.44 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Wyandotte-------- | 1 | \mid Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zon | 11.00 | Depth to saturated zone | 1.00 |
| | | Ponding | 11.00 | Shrink-swell | 11.00 | Ponding | 11.00 |
| | | | | Ponding | 1.00 | | |
| | | | | | | | |
| I64A: | | | | | | | |
| Ulen | 70 \| | \| Somewhat limited | | \|Very limited | | Somewhat limited | |
| | | Depth to saturated zone | 10.44 | Depth to saturated zone | 11.00 | Depth to | 0.44 |
| | | | | | | saturated zone | |
| | | | | | | | |
| Rosewood- | 10 \| | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zon | 11.00 | Depth to | 11.00 |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | | | | | | |
| Flaming--------- | 8 | \|Somewhat limited | | \|Very limited | | \| Somewhat limited | |
| | | ```Depth to saturated zone``` | 10.01 | Depth to saturated zone | 11.00 | Depth to saturated zone | 0.01 |
| | | | | | | | |
| Karlsruhe------- | 5 | \|Somewhat limited | | \|Very limited | | \|Somewhat limited | |
| | | Depth to | 10.44 | Depth to | 11.00 | Depth to | 0.44 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Radium---------- | 3 | Not limited | | Somewhat limited | | \| Not limited | |
| | | | | Depth to | 10.96 | | |
| | | | | saturated zone | | | |
| | | | | | | | |
| Strathcona------ | 2 | Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone Ponding | 11.00 | saturated zone Ponding | 11.00 | Depth to saturated zone | 11.00 |
| | | | 11.00 | | 11.00 | Ponding | 11.00 |
| | | | | | | | |
| Thiefriver------ | 2 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to
 saturated zone | 11.00 | Depth to
 saturated zone | 1.00 |
| | | Ponding | 11.00 | Shrink-swell | 11.00 | Ponding | 1.00 |
| | | | | Ponding | 11.00 | | |
| | | | | | | | |

Table 19a.--Building Site Development--Continued

Table 19a.--Building Site Development--Continued

| Map symbol and soil name | Pct.
 of map unit | Dwellings without basements | | Dwellings with basements | | Small commercial buildings | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | Value | Rating class and limiting features | \|Value | Rating class and limiting features | Value |
| | | | | | | | |
| I66A: | | | | | | | |
| Mavie-------------- | I | Very limitedDepth tosaturated zonePonding | | \|Very limited | | \|Very limited | |
| | | | 1.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | | | saturated zone | | saturated zone | |
| | | | 1.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | | | | | | |
| Roliss, depressional\| | 3 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | Depth to | 1.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Strathcona---------\| | 3 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to | 1.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | | | | | | |
| 167A: | | | | | | | |
| Wheatville---------\| | 70 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 1.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | | | saturated zone | | saturated zone | |
| | | | | Shrink-swell | 11.00 | | |
| | | | | | | | |
| Augsburg------------ | 13 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 1.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 |
| | | Ponding | 1.00 | Shrink-swell | 11.00 | Ponding | 1.00 |
| | | | | Ponding | 11.00 | | |
| | | | | | | | |
| Glyndon------------\| | 8 | \|Very limited | | \mid Very limited | | \|Very limited | |
| | | Depth to | 1.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| Foxlake------------\| | 5 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 1.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 |
| | | Shrink-swell | 1.00 | Shrink-swell | 11.00 | Shrink-swell | 1.00 |
| | | Ponding | 1.00 | Ponding | \| 1.00 | Ponding | 1.00 |
| | | | | | | | |
| Hilaire------------\| | 2 | \|Somewhat limited | | \|Very limited | | \|Somewhat limited | |
| | | Depth to | 0.01 | Shrink-swell | 11.00 | Depth to | 0.01 |
| | | saturated zone | | Depth to | 11.00 | saturated zone | |
| | | | | saturated zone | | | |
| | | | | | | | |
| Ulen--------------- \| | 2 | \|Somewhat limited | | \|Very limited | | \|Somewhat limited | |
| | | Depth to | 0.44 | Depth to | 11.00 | Depth to | 0.44 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | | | | | | |
| 168A: | | | | | | | |
| Wheatville---------\| | 70 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 1.00 | \| Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 |
| | | | | Shrink-swell | 11.00 | | |
| | | | | | | | |
| Augsburg-----------\| | 13 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to | 1.00 | Depth to | 11.00 | Depth to | \| 1.00 |
| | | saturated zone | 1.00 | saturated zone Shrink-swell | | saturated zone | 1.00 |
| | | Ponding | 1.00 | Ponding | \| 1.00 | Ponding | 1.00 |
| | | | | | | | |

Table 19a.--Building Site Development--Continued

Table 19a.--Building Site Development--Continued

Table 19b.--Building Site Development
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00 . The larger the value, the greater the limitation. See text for further explanation of ratings in this table)

Table 19b.--Building Site Development--Continued

Table 19b.--Building Site Development--Continued

Table 19b.--Building Site Development--Continued

Table 19b.--Building Site Development--Continued

Table 19b.--Building Site Development--Continued

| Map symbol and soil name | $\begin{aligned} & \mid \\ & \mid \text { Pct. } \\ & \mid \text { of } \\ & \mid \text { map } \\ & \mid \text { unit } \mid \end{aligned}$ | Local roads and streets | | Shallow excavations | | Lawns and landscaping | | | |
|---|---|---|---|---|---|---|---|---|---|
| | \| | | Rating class and limiting features | \| Value | Rating class and limiting features | \| Value| | Rating class and limiting features | \|Value |
| | | | | | | | |
| B206A: | | | | | | | |
| Hamre | 80 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | Depth to | 11.00 | Depth to | \| 1.00 | Content of | 1.00 |
| | | saturated zone | | saturated zone | | organic matter | |
| | | Frost action | 1.00 | Cutbanks cave | 0.10 | Depth to | 1.00 |
| | | Low strength | 10.78 | | | saturated zone | |
| | | | | | | | |
| Chilgren-------- | \| | \|Very limited | | \|Very limited | | \mid Very limited | |
| | | Depth to saturated zone | 1.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 |
| | | Frost action | 1.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | Ponding | 1.00 | Cutbanks cave | 0.10 | | |
| | | Low strength | 10.78 | | | | |
| | | | | | | | |
| Northwood-------- | 5 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | Depth to saturated zone | 1.00 | Depth to saturated zon | 11.00 | Depth to saturated zone | 1.00 |
| | | Frost action | 1.00 | Cutbanks cave | 11.00 | saturated zone | |
| | | Low strength | 10.78 | | | | |
| | | | | | | | |
| Cathro---------- | 3 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | \| 1.00 |
| | | Depth to saturated zone | \| 1.00 | Depth to saturated zone | \| 1.00 | Content of organic matter | 1.00 |
| | | Frost action | 11.00 | Content of | 1.00 | Depth to | 1.00 |
| | | Low strength | 10.78 | organic matter | | saturated zone | |
| | | | | Cutbanks cave | 0.10 | | |
| | | | | | | | |
| Grygla---------- | 2 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 |
| | | Frost action | 11.00 | Cutbanks cave | 11.00 | Ponding | 1.00 |
| | | Ponding | 1.00 | Ponding | 11.00 | | |
| | | | | | | | |
| Roliss---------- | 2 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 |
| | | Frost action | 11.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | Ponding | 11.00 | Cutbanks cave | 0.10 | | |
| | | Low strength | 10.78 | | | | |
| | | | | | | | |
| I1A: | | | | | | | |
| Augsburg | 75 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 1.00 | \| Depth to saturated zone | 11.00 | \| Depth to
 \| saturated zone | 1.00 |
| | | Frost action | 11.00 | Cutbanks cave | 11.00 | Ponding | 1.00 |
| | | Ponding | 1.00 | Ponding | 11.00 | | |
| | | | | Too clayey | 10.50 | | |
| | | | | | | | |
| Borup | 10 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 1.00 | Depth to saturated zone | 11.00 | \| Depth to saturated zone | 1.00 |
| | | Frost action | 11.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | Ponding | 11.00 | Cutbanks cave | 10.10 | | |
| | | | | | | | |

Table 19b.--Building Site Development--Continued

Table 19b.--Building Site Development--Continued

Table 19b.--Building Site Development--Continued

Table 19b.--Building Site Development--Continued

| Map symbol and soil name | $\begin{aligned} & \text { \| Pct. } \\ & \mid \text { of } \\ & \text { \|map } \\ & \text { \| unit } \end{aligned}$ | Local roads and streets | | Shallow excavations | | Lawns and landscaping | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | \mid | Rating class and limiting features | \| Value | Rating class and limiting features | \| Value | Rating class and limiting features | \|Value |
| | | | | | | | |
| I4A: | | | | | | | |
| Deerwood--------- | 2 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | Depth to | 11.00 | Depth to | \| 1.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Frost action | 11.00 | Cutbanks cave | 11.00 | | |
| | | | | | | | |
| Mavie | 2 | \|Very limited | | \|Very limited | | \mid Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 |
| | | Frost action | 11.00 | Cutbanks cave | 11.00 | Ponding | 1.00 |
| | | Ponding | 11.00 | Ponding | 11.00 | Droughty | 0.01 |
| | | | | | | | |
| Strathcona------ | 2 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 | Depth to saturated zon | 1.00 |
| | | Frost action | 11.00 | Cutbanks cave | 11.00 | Ponding | 1.00 |
| | | Ponding | 11.00 | Ponding | 11.00 | | |
| | | Low strength | 10.78 | | | | |
| | | | | | | | |
| I5A: | | | | | | | |
| Borup---------- | 75 | \|Very limited | | \|Very limited | | \| Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | \| saturated zone | | saturated zone | | saturated zone | |
| | | Frost action | 1.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | Ponding | 11.00 | Cutbanks cave | 10.10 | | |
| | | | | | | | |
| Glyndon | 9 | | | \|Very limited | | | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | \| 1.00 |
| | | Frost action | 11.00 | Cutbanks cave | \| 1.00 | | |
| | | | | | | | |
| Rosewood--------- | 8 | \|Very limited | | \|Very limited | | \| Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 1.00 | Cutbanks cave | 11.00 | Ponding | 1.00 |
| | | Frost action | 10.50 | Ponding | 11.00 | | |
| | | | | | | | |
| Augsburg--------- | 5 | \|Very limited | | \|Very limited | | \| Very limited | |
| | | \| Depth to saturated zone | 11.00 | \| Depth to saturated zone | 11.00 | Depth to
 saturated zone | 11.00 |
| | | Frost action | 11.00 | Cutbanks cave | 11.00 | Ponding | 1.00 |
| | | Ponding | \| 1.00 | Ponding | 11.00 | | |
| | | | | Too clayey | 10.50 | | |
| | | | | | | | |
| Augsburg, depressional | 1 | | | | | | |
| | 3 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | \| 1.00 | Depth to saturated zone | 11.00 |
| | | Frost action | 11.00 | Too clayey | 10.50 | | |
| | | | | Cutbanks cave | 10.10 | | |
| | | | | | | | |
| I6A: | | | | | | | |
| Borup | 75 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 |
| | | Frost action | 1.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | Ponding | 11.00 | Cutbanks cave | 10.10 | | |
| | | | | | | | |

Table 19b.--Building Site Development--Continued

Table 19b.--Building Site Development--Continued

Table 19b.--Building Site Development--Continued

Table 19b.--Building Site Development--Continued

| Map symbol and soil name | \mid \mid Pct. \mid of \mid map \mid unit | Local roads and streets | | Shallow excavations | | Lawns and landscaping | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | \| Value | Rating class and limiting features | \|Value | Rating class and limiting features | |
| | | | | | | | |
| I10A: | | | | | | | |
| Clearwater, | | | | | | | |
| depressional--- | \| 85 | \| Very limited | | \|Very limited | | \|Very limited | |
| | | Ponding | 11.00 | Ponding | \| 1.00 | Ponding | \| 1.00 |
| | | Depth to | 11.00 | Depth to | \| 1.00 | Depth to | 11.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Frost action | 11.00 | Cutbanks cave | 11.00 | | |
| | | Low strength | 11.00 | Too clayey | 10.50 | | |
| | | Shrink-swell | 11.00 | | | | |
| | | | | | | | |
| Clearwater------- | 9 | \|Very limited | | \|Very limited | | \| Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 11.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Frost action | 11.00 | Cutbanks cave | 11.00 | Too clayey | 11.00 |
| | | Low strength | 11.00 | Ponding | \| 1.00 | Ponding | \| 1.00 |
| | | Shrink-swell | 11.00 | Too clayey | 10.50 | | |
| | | Ponding | 11.00 | | | | |
| | | | | | | | |
| Augsburg, | | | | | | | |
| depressional--- | \| 3 | \|Very limited | | \|Very limited | | \mid Very limited | |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | Depth to | 11.00 | Depth to | \| 1.00 | Depth to | 11.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Frost action | 11.00 | Too clayey | 10.50 | | |
| | | | | Cutbanks cave | 0.10 | | |
| | | | | | | | |
| Reis------------ | 2 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | \| 1.00 | Depth to saturated zone | \| 1.00 |
| | | Frost action | 11.00 | Cutbanks cave | \| 1.00 | Too clayey | 11.00 |
| | | Low strength | 11.00 | Too clayey | 10.88 | | |
| | | Shrink-swell | 11.00 | | | | |
| | | | | | | | |
| Espelie--------- | 1 | \|Very limited | | \|Very limited | | \| Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | \| 1.00 | Depth to saturated zone | 1.00 |
| | | Frost action | 11.00 | Cutbanks cave | \| 1.00 | Ponding | \| 1.00 |
| | | Low strength | 11.00 | Ponding | \| 1.00 | | |
| | | Shrink-swell | 11.00 | Too clayey | 10.50 | | |
| | | Ponding | 11.00 | | | | |
| | | | | | | | |
| I11A: | | | | | | | |
| Deerwood-------- | \| 85 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | Depth to saturated zone | 11.00 | Depth to | \| 1.00 | Depth to | \| 1.00 |
| | | Frost action | \| 1.00 | Cutbanks cave | \| 1.00 | saturated zone | |
| | | | | | | | |
| Rosewood | 6 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | ```Depth to saturated zone``` | 11.00 | Depth to saturated zone | \| 1.00 | Depth to saturated zone | \| 1.00 |
| | | Ponding | 11.00 | Cutbanks cave | \| 1.00 | Ponding | 11.00 |
| | | Frost action | 10.50 | Ponding | 11.00 | | |
| | | | | | | | |

Table 19b.--Building Site Development--Continued

Table 19b.--Building Site Development--Continued

| Map symbol and soil name | $\begin{aligned} & \mid \text { Pct. } \\ & \mid \text { of } \\ & \mid \text { map } \\ & \mid \text { unit } \end{aligned}$ | Local roads and streets | | Shallow excavations | | Lawns and landscaping | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | \|Value | $\left\lvert\, \begin{aligned} & \text { Rating class and } \\ & \text { limiting features }\end{aligned}\right.$ | \| Value | \| Rating class and
 \| limiting features | \|Value |
| I18A: | | | | | | | |
| Strathcona------ | 1 | \|Very limited | | \mid Very limited | | \mid Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 11.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Frost action | 11.00 | Cutbanks cave | 1.00 | Ponding | 1.00 |
| | | Ponding | 11.00 | Ponding | 1.00 | | |
| | | Low strength | 10.78 | | | | |
| | | | | | | | |
| I19A: | | | | | | | |
| Foxhome | 65 | \| Somewhat limited | | \|Very limited | | \| Not limited | |
| | | Low strength | 10.78 | Cutbanks cave | 11.00 | | |
| | | Frost action | 10.50 | Depth to | 11.00 | | |
| | | | | saturated zone | | | |
| | | | | | | | |
| Kittson--------- | 10 | \|Somewhat limited | | \|Very limited | | \| Not limited | |
| | | Low strength | 10.78 | \| Depth to | 11.00 | | |
| | | Frost action | 10.50 | saturated zone | | | |
| | | | | Cutbanks cave | 0.10 | | |
| | | | | | | | |
| Strandquist------ | 10 | \| Very limited | | \|Very limited | | \mid Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Frost action | 11.00 | Cutbanks cave | 11.00 | Ponding | 11.00 |
| | | Ponding | 11.00 | Ponding | 11.00 | | |
| | | Low strength | 10.78 | | | | |
| | | | | | | | |
| Foldahl--------- | 5 | Somewhat limited | | \|Very limited | | Not limited | |
| | | Frost action | 10.50 | Cutbanks cave | 11.00 | | |
| | | | | Depth to | 11.00 | | |
| | | | | saturated zone | | | |
| | | | | | | | |
| Grimstad------- | 5 | \|Very limited | | \mid Very limited | | Somewhat limited | |
| | | Frost action | 11.00 | Depth to | 11.00 | Depth to | 10.78 |
| | | Depth to | 10.78 | saturated zone | | saturated zone | |
| | | saturated zone | | Cutbanks cave | 11.00 | | |
| | | | | | | | |
| Roliss--------- | 3 | \|Very limited | | \|Very limited | | \mid Very limited | |
| | | Depth to saturated zone | \| 1.00 | Depth to saturated zone | \| 1.00 | Depth to saturated zone | 11.00 |
| | | Frost action | 11.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | Ponding | \| 1.00 | Cutbanks cave | 10.10 | | |
| | | Low strength | 10.78 | | | | |
| | | | | | | | |
| Mavie---------- | 2 | \|Very limited | | \|Very limited | | \mid Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 11.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Frost action | 11.00 | Cutbanks cave | 11.00 | Ponding | 1.00 |
| | | Ponding | 11.00 | Ponding | 11.00 | Droughty | 10.01 |
| | | | | | | | |
| I20A: | | | | | | | |
| Foxlak | 75 | \|Very limited | | \mid Very limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 |
| | | Frost action | \| 1.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | Low strength | 11.00 | Too clayey | 10.50 | | |
| | | Shrink-swell | 11.00 | Cutbanks cave | 10.10 | | |
| | | Ponding | 11.00 | | | | |
| | | | | | | | |

Table 19b.--Building Site Development--Continued

| Map symbol and soil name | Pct.
 of map unit | Local roads and streets | | Shallow excavations | | Lawns and landscaping | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | \|Value | Rating class and
 limiting features | \| Value | Rating class and limiting features | \|Value |
| | | | \| | | | | |
| I20A: | | | | | | | |
| Clearwater---------\| | \| 5 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 11.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Frost action | 11.00 | Cutbanks cave | 11.00 | Too clayey | \| 1.00 |
| | | Low strength | 11.00 | Ponding | 11.00 | Ponding | \| 1.00 |
| | | Shrink-swell | 11.00 | Too clayey | 10.50 | | |
| | | Ponding | 11.00 | | | | |
| | | | | | | | |
| Foxlake, very cobbly | 5 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to ${ }^{\text {saturated zon }}$ | 11.00 | Depth to | 11.00 | Depth to saturated zon | \| 1.00 |
| | | Frost action | 11.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | Low strength | 11.00 | Too clayey | 10.50 | | |
| | | Shrink-swell | \| 1.00 | Cutbanks cave | 10.10 | | |
| | | Ponding | 11.00 | | | | |
| | | | | | | | |
| Augsburg------------ \| | 3 | \|Very limited | | \|Very limited | | \mid Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 11.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Frost action | 11.00 | Cutbanks cave | 11.00 | Ponding | 1.00 |
| | | Ponding | 11.00 | Ponding | 11.00 | | |
| | | | | Too clayey | 0.50 | | |
| | | | | | | | |
| Clearwater, depressional | - | | | | | | |
| | | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | \| 1.00 | Depth to saturated zone | \| 1.00 |
| | | Frost action | \| 1.00 | Cutbanks cave | 11.00 | | |
| | | Low strength | 11.00 | Too clayey | 10.50 | | |
| | | Shrink-swell | 11.00 | | | | |
| | | | | | | | |
| Espelie------------\| | 3 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone Frost action | 11.00 | saturated zone Cutbanks cave | 1.00 | saturated zone Ponding | |
| | | Low strength | 1.00 | Ponding | 11.00 | Ponding | |
| | | Shrink-swell | 11.00 | Too clayey | 10.50 | | |
| | | Ponding | 11.00 | | | | |
| | | | | | | | |
| Hilaire------------\| | 2 | | | | | | |
| | | Frost action | 10.50 | \| Cutbanks cave | 11.00 | \| Droughty | 0.01 |
| | | | | Depth to | 11.00 | | |
| | | | | saturated zone | | | |
| | | | | Too clayey | 0.50 | | |
| | | | | | | | |
| Reis---------------- | 2 | \|Very limited | | \mid Very limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | \| 1.00 |
| | | Frost action | 11.00 | Cutbanks cave | 11.00 | Too clayey | 11.00 |
| | | Low strength | 11.00 | Too clayey | 10.88 | | |
| | | Shrink-swell | 11.00 | | | | |
| | | | | | | | |
| Wheatville----------\| | 2 | \|Very limited | | \mid Very limited | | \|Somewhat limited | |
| | | Frost action | 11.00 | Depth to | 11.00 | Depth to | 10.90 |
| | | Depth to | 10.90 | saturated zone | | saturated zone | |
| | | saturated zone | | Too clayey | 10.50 | | |
| | | | | Cutbanks cave | 10.10 | | |
| | | | | | | | |

Table 19b.--Building Site Development--Continued

| Map symbol and soil name | $\begin{array}{\|l\|} \text { Pct. } \\ \mid \text { of } \\ \mid \text { map } \\ \mid \text { unit } \end{array}$ | Local roads and streets | | Shallow excavations | | Lawns and landscaping | | |
|---|---|---|---|---|---|---|---|---|
| | | Rating class and limiting features | \|Value| | Rating class and limiting features | \|Value | Rating class and limiting features | \|Value |
| | | | | | | | |
| I21A: | | | | | | | |
| Fram | 85 | Very limited | | \|Very limited | | Not limited | |
| | | Frost action | 1.00 | Depth to saturated zone | 1.00 | | |
| | | | | | | | |
| | | | | Cutbanks cave | 10.10 | | |
| | | | | | | | |
| Hedman---------- | 12 | Very limited | | Very limited | | \|Very limited | |
| | | Depth to
 saturated zone 1.00 | | Depth to | 11.00 | Depth to | 11.00 |
| | | | | saturated zone | | saturated zone | |
| | | Frost action | 11.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | Ponding | \| 1.00 | Cutbanks cave | 10.10 | | |
| | | | | | | | |
| Strathcona------- | 2 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | \| 1.00 |
| | | Frost action | 11.00 | Cutbanks cave | 11.00 | Ponding | 11.00 |
| | | Ponding | 11.00 | Ponding | 11.00 | | |
| | | | | | | | |
| Foxhome--------- | 1 | \|Somewhat limited | | \|Very limited | | \| Not limited | |
| | | Frost action | 10.50 | Cutbanks cave | 11.00 | | |
| | | | | Depth to | 11.00 | | |
| | | | | saturated zone | | | |
| | | | | | | | |
| I22A: | | | | | | | |
| Glyndon | 75 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | \| 1.00 |
| | | Frost action | 11.00 | Cutbanks cave | 11.00 | | |
| | | | | | | | |
| Borup----------- | 10 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | \| Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | \| 1.00 |
| | | Frost action | 11.00 | Ponding | 1.00 | Ponding | \| 1.00 |
| | | Ponding | 11.00 | Cutbanks cave | 10.10 | | |
| | | | | | | | |
| Augsburg--------- | 5 | \|Very limited | | Very limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | \| 1.00 |
| | | Frost action | 11.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | Ponding | 11.00 | Too clayey | 10.50 | | |
| | | | | Cutbanks cave | 10.10 | | |
| | | | | | | | |
| Ulen------------ | 5 | \|Somewhat limited | | \mid Very limited | | Somewhat limited | |
| | | Frost action | 10.50 | Depth to saturated zone Cutbanks cave | 11.00 | Depth tosaturated zone | \| 0.22 |
| | | Depth to | 10.22 | | | | |
| | | saturated zone | | | 11.00 | | |
| | | | | | | | |
| Wheatville------ | 3 | \|Very limited | | \|Very limited | | Somewhat limited | 10.90 |
| | | Frost action | 11.00 | Depth to | 11.00 | Depth to | |
| | | Depth to | 10.90 | saturated zone | | saturated zone | |
| | | saturated zone | | Too clayey | 10.50 | | |
| | | | | Cutbanks cave | 10.10 | | |
| | | | | | | | |
| Flaming--------- | 2 | \| Not limited | | Very limited Cutbanks cave Depth to saturated zone | | Somewhat limited Droughty | |
| | | | | | 11.00 | | 10.15 |
| | | | 1 | | \| 1.00 | | |
| | | | 1 | | | | |
| | | | | | | | |

Table 19b.--Building Site Development--Continued

| Map symbol and soil name | \mid \mid Pct. $\left\|\begin{array}{l}\text { of }\end{array}\right\|$ \mid map \mid unit \mid | Local roads and streets | | Shallow excavations | | Lawns and landscaping | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | \| Value | Rating class and limiting features | \| Value | Rating class and limiting features | \|Value |
| | | | | | | | |
| I23A: | | | | | | | |
| Glyndon--------- | \| 75 | \|Very limited | | \|Very limited | | \| Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | | | saturated zone | | saturated zone | |
| | | Frost action | 11.00 | Cutbanks cave | 11.00 | | |
| | | | | | | | |
| Borup---------- | 10 | \|Very limited | | \|Very limited | | \| Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 |
| | | Frost action | 11.00 | Ponding | 1.00 | Ponding | 1.00 |
| | | Ponding | 11.00 | Cutbanks cave | 10.10 | | |
| | | | | | | | |
| Augsburg | 5 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 |
| | | Frost action | 11.00 | Cutbanks cave | 11.00 | Ponding | 1.00 |
| | | Ponding | 11.00 | Ponding | 11.00 | | |
| | | | | Too clayey | 10.50 | | |
| | | | | | | | |
| Ulen | 5 | \|Somewhat limited | | \|Very limited | | \|Somewhat limited | |
| | | Frost action | 10.50 | Depth to saturated zone Cutbanks cave | 11.00 | Depth to | 0.22 |
| | | Depth to | 10.22 | | | saturated zone | |
| | | saturated zone | | | \| 1.00 | | |
| | | | | | | | |
| Wheatville------- | 3 | \|Very limited | | \|Very limited | | Somewhat limited | |
| | | \| Frost action | 11.00 | Depth to saturated zone | 11.00 | \| Depth to | 0.90 |
| | | Depth to saturated zone | 10.90 | | | saturated zone | |
| | | | | Too clayey | 10.50 | | |
| | | | | Cutbanks cave | 10.10 | | |
| | | | | | | | |
| Flaming--------- | 2 | \| Not limited | | \|Very limited | | \| Somewhat limited | |
| | | | | Cutbanks cave | 11.00 | Droughty | 10.15 |
| | | | | Depth to saturated zone | 11.00 | | |
| | | | | | | | |
| | | | | | | | |
| I24A: | | | | | | | |
| Grimsta | 70 | \|Very limited | | \|Very limited | | \| Somewhat limited | |
| | | Frost action Depth to | | Depth to | 11.00 | Depth to | 0.78 |
| | | | 10.78 | saturated zone | | saturated zone | |
| | | saturated zone | | Cutbanks cave | 11.00 | | |
| | | | | | | | |
| Strathcona------ | 12 | | | \|Very limited | | \| Very limited | |
| | | Depth to saturated zone | 1.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 |
| | | | 11.00 | Cutbanks cave | 11.00 | Ponding | 11.00 |
| | | Ponding | 1.00 | Ponding | 1.00 | | |
| | | Low strength | 10.78 | | | | |
| | | | | | | | |
| Foldahl---------- | 5 | \|Somewhat limited | | \|Very limited | | \| Not limited | |
| | | Frost action | 10.50 | \| Cutbanks cave | 11.00 | | |
| | | | | Depth to | 11.00 | | |
| | | | | saturated zone | | | |
| | | | | | | | |
| Hamerly--------- | 5 | \|Very limited
 Frost action
 Depth to saturated zone
 Low strength | | \|Very limited | | \|Somewhat limited | |
| | | | 11.00 | Depth to | 11.00 | Depth to | 0.90 |
| | | | 10.90 | saturated zone | | saturated zone | |
| | | | | Cutbanks cave | 10.10 | | |
| | | | 10.78 | | | | |
| | | | | | | | |

Table 19b.--Building Site Development--Continued

Table 19b.--Building Site Development--Continued

Table 19b.--Building Site Development--Continued

| Map symbol and soil name | Pct.
 of
 map
 unit\| | Local roads and streets | | Shallow excavations | | Lawns and landscaping | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | \|Value | Rating class and limiting features | \| Value | Rating class and limiting features | \|Value |
| I27A: | | | | | | | |
| Northwood-------- | 5 | Very limited | | Very limited | | Very limited | |
| | | Ponding | 11.00 | Ponding | \| 1.00 | Ponding | 1.00 |
| | | Depth to saturated zone | 11.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | | | saturated zone | | saturated zone | |
| | | Frost action | 11.00 | Cutbanks cave | 1.00 | | |
| | | Low strength | 10.78 | | | | |
| | | | | | | | |
| Roliss---------- | 5 | Very limited | | Very limited | | \| Very limited | |
| | | Depth to saturated zone | \| 1.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 |
| | | Frost action | 11.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | Ponding | \| 1.00 | Cutbanks cave | 0.10 | | |
| | | Low strength | 10.78 | | | | |
| | | | | | | | |
| Smiley---------- | 5 | \|Very limited | | \|Very limited | | \| Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 |
| | | Frost action | \| 1.00 | Ponding | 1.00 | Ponding | 1.00 |
| | | Ponding | \| 1.00 | Cutbanks cave | 0.10 | | |
| | | Low strength | 10.78 | | | | |
| | | | | | | | |
| Cathro | 3 | \| Very limited | | \| Very limited | | \| Very limited | |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | Depth to saturated zone | \| 1.00 | Depth to saturated zone | \| 1.00 | Content of organic matter | 1.00 |
| | | Frost action | 1.00 | Content of | 1.00 | Depth to | 1.00 |
| | | Low strength | 10.78 | organic matter | | saturated zone | |
| | | | | Cutbanks cave | 10.10 | | |
| | | | | | | | |
| Kratka---------- | 2 | \|Very limited | | Very limited | | \| Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 |
| | | Frost action | 11.00 | Cutbanks cave | 11.00 | Ponding | 1.00 |
| | | Ponding | \| 1.00 | Ponding | 11.00 | | |
| | | Low strength | 10.78 | | | | |
| | | | | | | | |
| I28A: | | | | | | | |
| Hangaard-------- | 75 | \|Very limited | | Very limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 |
| | | Ponding | 11.00 | Cutbanks cave | 11.00 | Ponding | 1.00 |
| | | Frost action | 10.50 | Ponding | 11.00 | Droughty | 0.92 |
| | | | | | | | |
| Hamar------------ | 7 | \|Very limited | | Very limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 |
| | | Ponding | 11.00 | Cutbanks cave | 11.00 | Ponding | 11.00 |
| | | \| Frost action | 10.50 | Ponding | 11.00 | Droughty | 10.21 |
| | | | | | | | |
| Syrene---------- | 7 | \|Very limited | | Very limited | | \| Very limited | |
| | | Depth to saturated zone | 11.00 | \| Depth to saturated zone | 11.00 | \| Depth to saturated zone | 1.00 |
| | | Ponding | 11.00 | Cutbanks cave | 11.00 | Ponding | 11.00 |
| | | Frost action | 10.50 | Ponding | 11.00 | Droughty | 10.30 |
| | | | | | | | |
| Karlsruhe------- | 3 | Somewhat limited
 Frost action
 Depth to
 saturated zone | | Very limited | | Somewhat limited | |
| | | | 10.50 | Depth to | 11.00 | Depth to | 0.22 |
| | | | 10.22 | saturated zone | | saturated zone | |
| | | | | Cutbanks cave | 11.00 | | |
| | | | | | | | |

Table 19b.--Building Site Development--Continued

Table 19b.--Building Site Development--Continued

Table 19b.--Building Site Development--Continued

| Map symbol and soil name | Pct.
 of map unit | Local roads andstreets | | Shallow excavations | | Lawns and landscaping | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | Rating class and limiting features | Value | Rating class and limiting features | \| Value | Rating class and limiting features | Value |
| | | | | | | | |
| I31A: | | | | | | | |
| Hedman | 50 | \|Very limited ${ }^{\text {\| }}$ Depth to ${ }^{\text {saturated zone }}$ (${ }^{\text {Frost action }}$ (Ponding | | \mid Very limited | | \|Very limited | |
| | | | 1.00 | \| Depth to | 1.00 | Depth to | 1.00 |
| | | | | saturated zone | | saturated zone | |
| | | | 1.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | | 1.00 | Cutbanks cave | 10.10 | | |
| | | | | | | | |
| Fram- | 40 | \|Very limited Frost action | | \|Very limited | | \| Not limited | |
| | | | 1.00 | Depth to | 11.00 | | |
| | | | | saturated zone | | | |
| | | | | Cutbanks cave | 10.10 | | |
| | | | | | | | |
| Strathcona------ | 5 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 1.00 | Depth to saturated zone | 11.00 | Depth to saturated zone Ponding | \| 1.00 |
| | | Frost action | 1.00 | Cutbanks cave | 11.00 | | 11.00 |
| | | Ponding | 1.00 | Ponding | \| 1.00 | | |
| | | | | | | | |
| Haug | 3 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Ponding | 1.00 | Ponding | 11.00 | \| Ponding | 1.00 |
| | | Depth to saturated zone | 1.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | \| 1.00 |
| | | Frost action | 1.00 | Cutbanks cave | 10.10 | | |
| | | | | | | | |
| Strandquist----- | 2 | Very limited Depth to saturated zone Frost action Ponding | | \|Very limited | | \|Very limited | |
| | | | 1.00 | Depth to | 1.00 | Depth to saturated zone | 11.00 |
| | | | | saturated zone | | | |
| | | | 1.00 | Cutbanks cave | 11.00 | Ponding | \| 1.00 |
| | | | 1.00 | Ponding | 11.00 | | |
| | | | | | | | |
| I32A: \| | | | | | | | | | | | | |
| Hilaire--------- | 75 | \|Somewhat limited
 \| Frost action | | \|Very limited | | \| Not limited | , |
| | | | 0.50 | Cutbanks cave | 11.00 | | |
| | | | | Depth to | 11.00 | | |
| | | | | saturated zone | | | |
| | | | | Too clayey | 10.50 | | |
| | | | | | | | |
| Espelie | 12 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | \| Depth to saturated zone | 1.00 | \| Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 |
| | | Frost action | 1.00 | Cutbanks cave | 1.00 | Ponding | 11.00 |
| | | Low strength | 1.00 | Ponding | 11.00 | | |
| | | Shrink-swell | 1.00 | Too clayey | 10.50 | | |
| | | Ponding | 1.00 | | | | |
| | | | | | | | |
| Huot------------ | 5 | $\begin{aligned} & \text { \|Somewhat limited } \\ & \text { Frost action } \end{aligned}$ | | \|Very limited | | \| N ot limited | 1 |
| | | | 0.50 | Cutbanks cave | 11.00 | | |
| | | | | Depth to | 11.00 | | |
| | | | | saturated zone | | | |
| | | | | Too clayey | 0.50 | | |
| | | | | | | | |
| Flaming- | 2 | \| Not limited | | \mid Very limited
 Cutbanks cave
 Depth to
 saturated zone | | Somewhat limited Droughty | |
| | | | | | 11.00 | | 10.15 |
| | | | | | 11.00 | | |
| | | | | | | | |
| | | | | | | | |

Table 19b.--Building Site Development--Continued

| Map symbol and soil name | | Local roads and streets | | Shallow excavations | | Lawns and landscaping | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | \|Value | Rating class and limiting features | \|Value | Rating class and limiting features | Value |
| I32A: | | | | | | | |
| Foxlake--------- | \| 2 | \| Very limited | | Very limited | | \| Very limited | |
| | | Depth to | 1.00 | Depth to | \| 1.00 | Depth to | 1.00 |
| | 1 | saturated zone | | saturated zone | | saturated zone | |
| | 1 | Frost action | 1.00 | Ponding | 11.00 | Ponding | 1.00 |
| | 1 | Low strength | $\text { \| } 1.00$ | Too clayey | 10.50 | | |
| | 1 | Shrink-swell | 1.00 | Cutbanks cave | 0.10 | | |
| | | Ponding | 11.00 | | | | |
| | | | | | | | |
| Wheatville------ | \| 2 | \| Very limited | | Very limited | | \| Somewhat limited | |
| | | Frost action | 11.00 | Depth to | \| 1.00 | Depth to | 0.90 |
| | 1 | Depth to | 0.90 | saturated zone | | saturated zone | |
| | 1 | saturated zone | | Too clayey | 10.50 | | |
| | | | | Cutbanks cave | \| 0.10 | | |
| | | | \| | | | | |
| Thiefriver------ | \| 1 | \| Very limited | | Very limited | | \| Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 1.00 |
| | 1 | saturated zone | | saturated zone | | saturated zone | |
| | 1 | Frost action | \| 1.00 | Cutbanks cave | \| 1.00 | Ponding | 1.00 |
| | 1 | Ponding | \| 1.00 | Ponding | 11.00 | | |
| | 1 | | | Too clayey | 10.50 | | |
| | | | | | | | |
| Wyandotte------- | \| 1 | \| Very limited | | Very limited | | \| Very limited | |
| | | \| Depth to | 11.00 | Depth to | 11.00 | \| Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Frost action | 11.00 | Cutbanks cave | \| 1.00 | Ponding | 1.00 |
| | 1 | Ponding | \| 1.00 | Ponding | 11.00 | | |
| | | | , | Too clayey | 10.50 | | |
| | 1 | | | | | | |
| I33A: | | | 1 | | | | |
| Hilaire--------- | 75 | \| Somewhat limited | | Very limited | | Not limited | |
| | | Frost action | 0.50 | Cutbanks cave | 11.00 | | |
| | 1 | | | Depth to | \| 1.00 | | |
| | | | | saturated zone | | | |
| | 1 | | | Too clayey | 0.50 | | |
| | | | , | | | | |
| Espelie--------- | \| 12 | \| Very limited | 1 | Very limited | | \| Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 1.00 |
| | 1 | saturated zone | \| | saturated zone | | saturated zone | |
| | 1 | Frost action | 11.00 | Cutbanks cave | 11.00 | Ponding | 1.00 |
| | 1 | Low strength | \| 1.00 | Ponding | 11.00 | | |
| | | Shrink-swell | \| 1.00 | Too clayey | 10.50 | | |
| | 1 | Ponding | \| 1.00 | | | | |
| | | | \| | | | | |
| Huot------------ | \| 5 | \| Somewhat limited | 1 | Very limited | | Not limited | |
| | | Frost action | 10.50 | Cutbanks cave | 11.00 | | |
| | 1 | | \| | Depth to | \| 1.00 | | |
| | 1 | | \| | saturated zone | | | |
| | 1 | | \| | Too clayey | 0.50 | | |
| | | | \| | | | | |
| Flaming--------- | \| 2 | \| Not limited | \| | Very limited | | \| Somewhat limited | |
| | | | \| | Cutbanks cave | 11.00 | Droughty | 0.15 |
| | | | \| | Depth to | 11.00 | | |
| | | | \| | saturated zone | | | |
| | | | | | | | |

Table 19b.--Building Site Development--Continued

Table 19b.--Building Site Development--Continued

Table 19b.--Building Site Development--Continued

Table 19b.--Building Site Development--Continued

Table 19b.--Building Site Development--Continued

| Map symbol and soil name | Pct.
 of map unit | Local roads and streets | | Shallow excavations | | Lawns and landscaping | | |
|---|---|---|---|---|---|---|---|---|
| | | Rating class and limiting features | \|Value | Rating class and limiting features | \|Value| | Rating class and limiting features | |
| | | | | | | | |
| I38A: | | | | | | | |
| Kratka, depressional\| | 3 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Frost action | 11.00 | Cutbanks cave | 11.00 | | |
| | | Low strength | 10.78 | | | | |
| | | | | | | | |
| Strandquist---------\| | 3 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | \| 1.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | \| 1.00 |
| | | Frost action | 11.00 | Cutbanks cave | 11.00 | Ponding | 1.00 |
| | | Ponding | 11.00 | Ponding | 11.00 | | |
| | | Low strength | 10.78 | | | | |
| | | | | | | | |
| Linveldt------------\| | 2 | \|Somewhat limited | | \|Very limited | | \| Not limited | |
| | | Frost action | 10.50 | Cutbanks cave | 11.00 | | |
| | | | | Depth to | 11.00 | | |
| | | | | saturated zone | | | |
| | | | | | | | |
| I39A: | | | | | | | |
| Linveldt----------- | 65 | \| Somewhat limited | | \|Very limited | | \| Not limited | |
| | | Frost action | 10.50 | Cutbanks cave | 11.00 | | |
| | | | | Depth to | 11.00 | | |
| | | | | saturated zone | | | |
| | | | | | | | |
| Kratka-------------- \| | 14 | | | \|Very limited | | | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | \| 1.00 |
| | | Frost action | 11.00 | Cutbanks cave | 11.00 | Ponding | 1.00 |
| | | Ponding | 1.00 | Ponding | 11.00 | | |
| | | Low strength | 10.78 | | | | |
| | | | | | | | |
| Reiner------------- \| | 10 | \|Somewhat limited | | \|Very limited | | \| Not limited | |
| | | Low strength | 10.78 | Depth to | 11.00 | | |
| | | Frost action | 10.50 | saturated zone | | | |
| | | | | Cutbanks cave | 10.10 | | |
| | | | | | | | |
| Smiley-------------\| | 5 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 |
| | | Frost action | 11.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | Ponding | 11.00 | Cutbanks cave | 10.10 | | |
| | | Low strength | 10.78 | | | | |
| | | | | | | | |
| Eckvoll------------- \| | 3 | \|Somewhat limited | | \|Very limited | | \| Not limited | |
| | | Frost action | 10.50 | Cutbanks cave | 11.00 | | \| |
| | | | | Depth to | 11.00 | | \| |
| | | | | saturated zone | | | |
| | | | | | | | |
| Foldahl------------- \| | 2 | \|Somewhat limited | | \|Very limited | | \| Not limited | \| |
| | | Frost action | 10.50 | Cutbanks cave | 11.00 | | \| |
| | | | | Depth to | 11.00 | | \| |
| | | | | saturated zone | | | |
| | | | | | | | |
| Pelan--------------\| | 1 | \|Somewhat limited | | \|Very limited | | \| Not limited | \| |
| | | Low strength | 10.78 | \| Cutbanks cave | 11.00 | | \| |
| | | Frost action | 10.50 | Depth to | 11.00 | | \| |
| | | | | saturated zone | | | |
| | | | | | | | |

Table 19b.--Building Site Development--Continued

Table 19b.--Building Site Development--Continued

| Map symbol and soil name | \mid Pct.$\|$of\mid map\mid unit \mid | Local roads and streets | | Shallow excavations | | Lawns and landscaping | | |
|---|---|---|---|---|---|---|---|---|
| | | Rating class and limiting features | \|Value| | Rating class and limiting features | \|Value | Rating class and limiting features | Value |
| I41A: | | | | | | | |
| Hamar------------- \| | 2 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to | 11.00 | Depth to | 1.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 11.00 | Cutbanks cave | 11.00 | Ponding | 11.00 |
| | | Frost action | 10.50 | Ponding | \| 1.00 | Droughty | \| 0.21 |
| | | | | | | | |
| Seelyeville-------- \| | 2 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | \| 1.00 |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | \| 1.00 |
| | | Frost action | 11.00 | Content of | 11.00 | | |
| | | | | organic matter | | | |
| | | | | Cutbanks cave | 10.10 | | |
| | | | | | | | |
| Syrene------------- \| | 2 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zon | 11.00 | Depth to | 11.00 | Depth to saturated zon | \| 1.00 |
| | | Ponding | 11.00 | Cutbanks cave | 11.00 | Ponding | \| 1.00 |
| | | Frost action | 10.50 | Ponding | 11.00 | Droughty | 10.30 |
| | | | | | | | |
| I42A: | | | | | | | |
| Markey, ponded------\| | 85 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | \| 1.00 |
| | | Depth to saturated zone | \| 1.00 | Depth to saturated zone | \| 1.00 | Content of organic matter | \| 1.00 |
| | | Frost action | 11.00 | Cutbanks cave | 11.00 | Depth to | \| 1.00 |
| | | | | Content of | 11.00 | saturated zone | |
| | | | | organic matter | | | |
| | | | | | | | |
| Markey-------------- \| | 5 | \|Very limited | | \|Very limited | | \| Very limited | |
| | | \| Ponding | 11.00 | Ponding | 11.00 | Ponding | \| 1.00 |
| | | Depth to | 11.00 | Depth to | 11.00 | Content of | 11.00 |
| | | saturated zone | | saturated zone | | organic matter | |
| | | Frost action | 1.00 | Cutbanks cave | 1.00 | Depth to | 1.00 |
| | | | | Content of | 11.00 | saturated zone | |
| | | | | organic matter | | | |
| | | | | | | | |
| Deerwood------------ \| | 4 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Ponding | 11.00 | Ponding | 1.00 | Ponding | 11.00 |
| | | Depth to saturated zone | \| 1.00 | Depth to saturated zone | \| 1.00 | Depth to saturated zone | \| 1.00 |
| | | Frost action | 11.00 | Cutbanks cave | 11.00 | | |
| | | | | | | | |
| Seelyeville, ponded | 4 | | | \|Very limited | | | |
| | | \| Ponding | 1.00 | Ponding | 11.00 | Ponding | \| 1.00 |
| | | Depth to | 1.00 | Depth to | 1.00 | Depth to | 11.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Frost action | 1.00 | Content of | 11.00 | | |
| | | | | organic matter | | | |
| | | | | Cutbanks cave | 10.10 | | |
| | | | | | | | |
| Hamar--------------- \| | 1 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | \| Depth to
 \| saturated zone | 1.00 | ```Depth to saturated zone``` | 11.00 | ```Depth to saturated zone``` | \| 1.00 |
| | | Ponding | 11.00 | Cutbanks cave | 11.00 | Ponding | 11.00 |
| | | Frost action | 10.50 | Ponding | 1.00 | Droughty | 10.21 |
| | | | | | | | |

Table 19b.--Building Site Development--Continued

| Map symbol and soil name | $\begin{aligned} & \mid \text { Pct. } \\ & \mid \text { of } \\ & \mid \text { map } \\ & \mid \text { unit } \mid \end{aligned}$ | Local roads and streets | | Shallow excavations | | Lawns and landscaping | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | \| Value | Rating class and limiting features | \| Value | Rating class and
 limiting features | \|Value |
| I42A: | | | | | | | |
| Hangaard-------- | 1 | Very limited | | \| Very limited | | \| Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 11.00 | Cutbanks cave | 11.00 | Ponding | 1.00 |
| | | Frost action | 0.50 | Ponding | 11.00 | Droughty | 0.92 |
| | | | | | | | |
| I43A: | | | | | | | |
| Mavie---------- | 70 | Very limited | | \| Very limited | | \| Very limited | |
| | | Depth to | 1.00 | Depth to | 11.00 | Depth to | 11.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Frost action | 11.00 | Cutbanks cave | \| 1.00 | Ponding | 11.00 |
| | | Ponding | 1.00 | Ponding | 1.00 | Droughty | 10.01 |
| | | | | | | | |
| Vallers--------- | 10 | Very limited | | \|Very limited | | Very limited | |
| | | Depth to | 1.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Frost action | 11.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | Ponding | 11.00 | Cutbanks cave | 10.10 | | |
| | | Low strength | 0.78 | | | | |
| | | | | | | | |
| Strandquist----- | 7 | Very limited | | \| Very limited | | \| Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Frost action | 11.00 | Cutbanks cave | 11.00 | Ponding | 11.00 |
| | | Ponding | $\text { \| } 1.00$ | Ponding | \| 1.00 | | |
| | | Low strength | 0.78 | | | | |
| | | | | | | | |
| Strathcona------ | 5 | Very limited | | \| Very limited | | \|Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Frost action | 11.00 | Cutbanks cave | 11.00 | Ponding | 1.00 |
| | | Ponding | 1.00 | Ponding | 11.00 | | |
| | | Low strength | 10.78 | | | | |
| | | | | | | | |
| Strathcona, | | | | | | | |
| depressional--- | 3 | Very limited | | \| Very limited | | \|Very limited | |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | Depth to | 11.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Frost action | 11.00 | Cutbanks cave | 11.00 | | |
| | | Low strength | \| 0.78 | | | | |
| | | | | | | | |
| Foxhome--------- | 2 | Somewhat limited | | \|Very limited | | Not limited | |
| | | Low strength | 0.78 | \| Cutbanks cave | 11.00 | | |
| | | Frost action | 0.50 | Depth to | \| 1.00 | | |
| | | | | saturated zone | | | |
| | | | | | | | |
| Karlsruhe------- | 2 | Somewhat limited | | \| Very limited | | Somewhat limited | |
| | | Frost action | 0.50 | Depth to | 11.00 | Depth to | 0.22 |
| | | Depth to | 0.22 | saturated zone | | saturated zone | |
| | | saturated zone | | Cutbanks cave | 11.00 | | |
| | | | | | | | |
| Grimstad-------- | 1 | Very limited | | \| Very limited | | Somewhat limited | |
| | | Frost action | 11.00 | Depth to | 11.00 | Depth to | 10.78 |
| | | Depth to | 10.78 | saturated zone | | saturated zone | |
| | | saturated zone | | Cutbanks cave | \| 1.00 | | |
| | | | | | | | |

Table 19b.--Building Site Development--Continued

Table 19b.--Building Site Development--Continued

Table 19b.--Building Site Development--Continued

| Map symbol and soil name | Pct.
 of map unit | Local roads and streets | | Shallow excavations | | Lawns and landscaping | | |
|---|---|---|---|---|---|---|---|---|
| | | Rating class and limiting features | \|Value| | Rating class and limiting features | \| Value | Rating class and limiting features | \|Value |
| | | | | | | | |
| I47A: | | | | | | | |
| Radium | 2 | \| Not limited | | \|Very limited | | \| Somewhat limited | |
| | | | | Cutbanks cave | 11.00 | Droughty | 10.76 |
| | | | | Depth to | 0.96 | | |
| | | | | saturated zone | | | |
| | | | | | | | |
| Ulen- | 2 | Somewhat limited | | Very limited | | \|Somewhat limited | |
| | | Frost action | 0.50 | Depth to saturated zone Cutbanks cave | 11.00 | Depth to saturated zone | 10.22 |
| | | Depth to | 10.22 | | | | |
| | | saturated zone | | | 11.00 | | |
| | | | | | | | |
| Maddock--------- | 1 | Not limited | | \|Very limited\mid Cutbanks cave | 1.00 | \|Somewhat limited | | |
| | | | | | | Droughty | 0.27 |
| | | | | | | | |
| I48A: | | | | | | | |
| Radium | 75 | \| Not limited | | \|Very limited | | Somewhat limitedDroughty | |
| | | | | Cutbanks cave | 11.00 | | 10.76 |
| | | | | Depth to saturated zone | 10.96 | | |
| | | | | | | | |
| | | | | | | | |
| Sandberg-------- | 7 | \| Not limited | | \|Very limited\mid Cutbanks cave | | Droughty | \|Somewhat limited |
| | | | | | 11.00 | Droughty
 Gravel content | $\left\lvert\, \begin{aligned} & 0.85 \\ & \mid 0.01 \end{aligned}\right.$ |
| | | | | | | | |
| | | | | | | | |
| Oylen----------- | 5 | Somewhat limited\mid Frost action | | Very limited | | \| Somewhat limited | |
| | | | 10.50 | \| Cutbanks cave | 11.00 | Droughty | 0.01 |
| | | | | Depth to | 10.96 | | |
| | | | | saturated zone | | | |
| | | | | | | | |
| Flaming--------- | 4 | Not limited | | \|Very limited | | \| Somewhat limited | |
| | | | | Cutbanks cave | 11.00 | | 0.15 |
| | | | | Depth to | 11.00 | | |
| | | | | saturated zone | | | |
| | | | | | | | |
| Garborg | 3 | \|Somewhat limited
 Depth to saturated zone
 Frost action | | \|Very limited ${ }_{\text {Depth to }}^{\text {saturated zone }}$ (${ }^{\text {a }}$ (utbanks cave | | \|Somewhat limited | 10.78 |
| | | | 10.78 | | 11.00 | Depth to saturated zone | |
| | | | 10.50 | | 11.00 | Droughty | 0.02 |
| | | | | | | | |
| Hangaard-------- | 3 | Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone Ponding | 11.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | \| 1.00 |
| | | | 11.00 | Cutbanks cave | 11.00 | Ponding | 1.00 |
| | | \| Frost action | 10.50 | Ponding | 11.00 | Droughty | 10.92 |
| | | | | | | | |
| Hamar----------- | 2 | \|Very limited
 \| Depth to
 \| saturated zone
 \| Ponding
 \| Frost action | | \|Very limited | | \|Very limited | 1 |
| | | | 11.00 | \| Depth to saturated zone | 11.00 | \| Depth to saturated zone | \| 1.00 |
| | | | 1.00 | Cutbanks cave | 1.00 | Ponding | 1.00 |
| | | | 10.50 | Ponding | 11.00 | Droughty | 0.21 |
| | | | | | | | |
| Poppleton | 1 | \| Not limited | | \|Very limited Cutbanks cave Depth to saturated zone | | Somewhat limited Droughty | |
| | | | | | 11.00 | | 10.09 |
| | | | | | 11.00 | | |
| | | | | | | | |
| | | | | | | | |

Table 19b.--Building Site Development--Continued

| Map symbol and soil name | \mid \mid Pct. \mid of \mid \mid map \mid unit | Local roads and streets | | Shallow excavations | | Lawns and landscaping | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | \|Value | Rating class and limiting features | \| Value | Rating class and limiting features | \|Value |
| I49A: | | | | | | | |
| Rauville----------- \| | 80 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Ponding | \| 1.00 | Ponding | \| 1.00 | Ponding | \| 1.00 |
| | | Depth to | \| 1.00 | Flooding | \| 1.00 | Flooding | \| 1.00 |
| | | saturated zone | | Depth to | 11.00 | Depth to | 11.00 |
| | | Frost action | 11.00 | saturated zone | | saturated zone | |
| | | Flooding | 11.00 | Cutbanks cave | 11.00 | | |
| | | Low strength | 11.00 | | | | |
| | | | | | | | |
| Fluvaquents--------\| | 12 | \|Very limited | | \|Very limited | | \| Very limited | |
| | | Ponding | \| 1.00 | Ponding | \| 1.00 | Ponding | \| 1.00 |
| | | Depth to | 11.00 | Flooding | 11.00 | Flooding | 11.00 |
| | | saturated zone | | Depth to | 11.00 | Depth to | \| 1.00 |
| | | Frost action | 11.00 | saturated zone | | saturated zone | |
| | | Flooding | \| 1.00 | Cutbanks cave | 11.00 | | |
| | | | | | | | |
| Water--------------- | 5 | Not rated | | Not rated | | \| Not rated | |
| | | | | | | | |
| Lamoure------------ \| | 3 | \|Very limited | | \|Very limited | | \| Very limited | |
| | | Depth to | 11.00 | Depth to | 11.00 | Flooding | 1.00 |
| | | saturated zone | | saturated zone | | Depth to | 1.00 |
| | | Frost action | \| 1.00 | Cutbanks cave | 11.00 | saturated zone | |
| | | Flooding | 11.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | Low strength | \| 1.00 | Flooding | 10.80 | | |
| | | Ponding | \| 1.00 | | | | |
| | | | | | | | |
| I50A: | | | | | | | |
| Reiner-------------- | 70 | \|Somewhat limited | | \|Very limited | | \| Not limited | |
| | | Low strength | 10.78 | Depth to | 11.00 | | |
| | | Frost action | 10.50 | saturated zone | | | |
| | | | | Cutbanks cave | 10.10 | | |
| | | | | | | | |
| Smiley------------- | 12 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | \| 1.00 |
| | | Frost action | 11.00 | Ponding | 11.00 | Ponding | \| 1.00 |
| | | Ponding | \| 1.00 | Cutbanks cave | 10.10 | | |
| | | Low strength | 10.78 | | | | |
| | | | | | | | |
| Reiner, very cobbly | 7 | \|Somewhat limited | | \|Very limited | | \| Not limited | |
| | | Low strength | 10.78 | Depth to | 11.00 | | |
| | | Frost action | 10.50 | saturated zone | | | |
| | | | | Cutbanks cave | 10.10 | | |
| | | | | | | | |
| Linveldt------------ | 5 | | | Very limited | | \| Not limited | |
| | | Frost action | 10.50 | \| Cutbanks cave | 11.00 | | |
| | | | | Depth to | 11.00 | | |
| | | | | \| saturated zone | | | |
| | | | | | | | |
| Eckvoll------------- | 3 | \|Somewhat limited | | \|Very limited | | \| Not limited | |
| | | Frost action | 10.50 | \| Cutbanks cave | 11.00 | | |
| | | | | Depth to | 11.00 | | |
| | | | | \| saturated zone | | | |
| | | | | | | | |
| Kratka------------- \| | \| 3 | | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | \| 1.00 |
| | | Frost action | 11.00 | Cutbanks cave | 11.00 | Ponding | \| 1.00 |
| | | Ponding | \| 1.00 | Ponding | 11.00 | | |
| | | Low strength | 10.78 | | | | |
| | | | | | | | |

Table 19b.--Building Site Development--Continued

Table 19b.--Building Site Development--Continued

Table 19b.--Building Site Development--Continued

| Map symbol and soil name | \mid Pct. \mid \mid of \mid map \mid unit \mid | Local roads and streets | | Shallow excavations | | Lawns and landscaping | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | \|Value | Rating class and limiting features | \|Value | Rating class and limiting features | Value |
| | | | | | | | |
| I53A: | | | | | | | |
| Roliss, very cobbly | 7 | \|Very limited | | \|Very limited | | Very limited | |
| | | Depth to | 11.00 | Depth to | \| 1.00 | Depth to | \| 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Frost action | 1.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | Ponding | 11.00 | Cutbanks cave | 10.10 | | |
| | | Low strength | 10.78 | | | | |
| | | | | | | | |
| Kittson------------- \| | 5 | \|Somewhat limited | | \mid Very limited | | Not limited | |
| | | Low strength | 10.78 | Depth to | 11.00 | | |
| | | Frost action | 10.50 | saturated zone | | | |
| | | | | Cutbanks cave | 10.10 | | |
| | | | | | | | |
| Roliss, depressional\| | 3 | \|Very limited | | \|Very limited | | Very limited | |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | Depth to | 1.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Frost action | 1.00 | Cutbanks cave | 10.10 | | |
| | | Low strength | 10.78 | | | | |
| | | | | | | | |
| Smiley-------------\| | 2 | \|Very limited | | \|Very limited | | Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | \| 1.00 |
| | | Frost action | 1.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | Ponding | 1.00 | Cutbanks cave | 10.10 | | |
| | | Low strength | 10.78 | | | | |
| | | | | | | | |
| I54A: | | | | | | | |
| Roliss, depressional\| | 80 | \|Very limited | | \|Very limited | | Very limited | |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | Depth to | 1.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Frost action | 1.00 | Cutbanks cave | 0.10 | | |
| | | Low strength | 10.78 | | | | |
| | | | | | | | |
| Roliss------------- | 12 | \|Very limited | | \|Very limited | | Very limited | |
| | | Depth to saturated zone | 1.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 |
| | | Frost action | 1.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | Ponding | 1.00 | Cutbanks cave | 10.10 | | |
| | | Low strength | 10.78 | | | | |
| | | | | | | | |
| Hamre-------------- \| | 5 | \|Very limited | | \|Very limited | | Very limited | |
| | | Ponding | 11.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | Depth to saturated zone | 1.00 | Depth to saturated zone | \| 1.00 | Content of organic matter | 1.00 |
| | | Frost action | 11.00 | Cutbanks cave | 0.10 | Depth to | 11.00 |
| | | Low strength | 10.78 | | | saturated zone | |
| | | | | | | | |
| Kratka-------------- \| | 3 | \|Very limited | | \|Very limited | | Very limited | |
| | | Depth to saturated zone | 1.00 | ```Depth to saturated zone``` | 11.00 | Depth to saturated zone | 11.00 |
| | | Frost action | 1.00 | Cutbanks cave | 11.00 | Ponding | 11.00 |
| | | Ponding | 1.00 | Ponding | 11.00 | | |
| | | Low strength | 10.78 | | | | |
| | | | | | | | |

Table 19b.--Building Site Development--Continued

Table 19b.--Building Site Development--Continued

| Map symbol and soil name | Pct.
 of map unit | Local roads and streets | | Shallow excavations | | Lawns and landscaping | | |
|---|---|---|---|---|---|---|---|---|
| | | Rating class and limiting features | \|Value | Rating class and limiting features | \|Value| | Rating class and limiting features | Value |
| I56A: \| | | | | | | | |
| Venlo----------- | 40 | \|Very limited | | Very limited | | \|Very limited | |
| | | \| Ponding | 11.00 | Ponding | 11.00 | \| Ponding | 1.00 |
| | | Depth to saturated zone Frost action | 11.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | | | saturated zone | | saturated zone | |
| | | | 10.50 | Cutbanks cave | 11.00 | Droughty | 0.01 |
| | | | | | | | |
| Deerwood-------- | 3 | Very limitedPondingDepth tosaturated zoneFrost action | | Very limited | | \| Very limited | |
| | | | 11.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | | 1.00 | Depth to saturated zone | \| 1.00 | Depth to saturated zone | 1.00 |
| | | | 11.00 | Cutbanks cave | 11.00 | | |
| | | | | | | | |
| Syrene---------- | 3 | \mid Very limited | | Very limited | | Very limited | |
| | | Depth to | 1.00 | Depth to | 11.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Ponding | 11.00 | Cutbanks cave | 11.00 | Ponding | 1.00 |
| | | Frost action | 10.50 | Ponding | 11.00 | Droughty | 0.30 |
| | | | | | | | |
| Ulen------------- | 2 | \| Somewhat limited | | Very limited | | Somewhat limited | |
| | | Frost action | 10.50 | \| Depth to | 1.00 | \| Depth to | 0.22 |
| | | Depth to | 10.22 | saturated zone | | saturated zone | |
| | | saturated zone | | Cutbanks cave | 11.00 | | |
| | | | | | | | |
| Strathcona------ | 1 | \|Very limited | | Very limited | | \|Very limited | |
| | | Depth to saturated zone | 1.00 | Depth to saturated zone | 11.00 | ```Depth to saturated zone``` | 1.00 |
| | | Frost action | 1.00 | Cutbanks cave | 11.00 | Ponding | 1.00 |
| | | Ponding | 1.00 | Ponding | \| 1.00 | | |
| | | Low strength | 10.78 | | | | |
| | | | | | | | |
| Thiefriver------ | 1 | | | \|Very limited | | \|Very limited | |
| | | | 1.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 |
| | | Frost action Ponding | 11.00 | Cutbanks cave | 11.00 | Ponding | \| 1.00 |
| | | | \| 1.00 | Ponding | \| 1.00 | | |
| | | Ponding | | Too clayey | 10.50 | | |
| | | | | | | | |
| I57B: | | | | | | | |
| Sandberg-------- | 50 | \| Not limited | | Very limitedCutbanks cave | | Somewhat limited | |
| | | | | | 1.00 | Droughty | 0.85 |
| | | | | | | Gravel content | 0.01 |
| | | | | | | | |
| Radium---------- | 25 | \| Not limited | | Very limited | | Somewhat limited | |
| | | | | \| Cutbanks cave | 11.00 | Droughty | 0.76 |
| | | | | Depth to | 10.96 | | |
| | | | | saturated zone | | | |
| | | | | | | | |
| Sioux----------- | 8 | \| Not limited | | Very limited | | Somewhat limited | |
| | | | | \| Cutbanks cave | 11.00 | Droughty | 0.80 |
| | | | | | | | |
| Oylen----------- | 7 | Somewhat limited
 Frost action | | Very limitedCutbanks caveDepth tosaturated zone | | | |
| | | | 10.50 | | 11.00 | Droughty | 0.01 |
| | | | | | 10.96 | | |
| | | | | | | | |
| | | | | | | | |

Table 19b.--Building Site Development--Continued

Table 19b.--Building Site Development--Continued

| Map symbol and soil name | \mid Pct. \mid \mid of \mid map \mid unit \mid | Local roads and streets | | Shallow excavations | | Lawns and landscaping | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | \| Value | Rating class and limiting features | \| Value | Rating class and limiting features | ${ }^{\text {\| Value }}$ |
| | | | | | | | |
| I59A: | | | | | | | |
| Smiley, very cobbly | 10 | \|Very limited | | \mid Very limited | | \|Very limited | |
| | | Depth to | 1.00 | Depth to | \| 1.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Frost action | 1.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | Ponding | 1.00 | Cutbanks cave | 10.10 | | |
| | | Low strength | 10.78 | | | | |
| | | | | | | | |
| Kratka------------- \| | 9 | \|Very limited | | \|Very limited | | \mid Very limited | |
| | | Depth to saturated zone | 1.00 | Depth to saturated zone | 11.00 | ```Depth to saturated zone``` | 1.00 |
| | | Frost action | 1.00 | Cutbanks cave | 11.00 | Ponding | 1.00 |
| | | Ponding | 1.00 | Ponding | 11.00 | | |
| | | Low strength | 0.78 | | | | |
| | | | | | | | |
| Roliss-------------- | 5 | \|Very limited | | \|Very limited | | \mid Very limited | |
| | | Depth to saturated zone | 1.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 |
| | | Frost action | 1.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | Ponding | 1.00 | Cutbanks cave | 10.10 | | |
| | | Low strength | 0.78 | | | | |
| | | | | | | | |
| Reiner------------- \| | 4 | \| Somewhat limited | | \mid Very limited | | \| Not limited | |
| | | Low strength | 10.78 | | 11.00 | | |
| | | Frost action | 10.50 | saturated zone | | | |
| | | | | Cutbanks cave | 10.10 | | |
| | | | | | | | |
| Linveldt-----------\| | 3 | \|Somewhat limited | | \|Very limited | | \| Not limited | |
| | | Frost action | 0.50 | \| Cutbanks cave | 11.00 | | |
| | | | | Depth to | 11.00 | | |
| | | | | saturated zone | | | |
| | | | | | | | |
| Smiley, depressional | 3 | \|Very limited | | \|Very limited | | \| Very limited | |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | 11.00 |
| | | Depth to saturated zone | 1.00 | Depth to saturated zone | \| 1.00 | Depth to saturated zone | 11.00 |
| | | Frost action | 1.00 | Cutbanks cave | 10.10 | saturated zone | |
| | | Low strength | 10.78 | | | | |
| | | | | | | | |
| Strandquist--------- \| | 1 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 1.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 |
| | | Frost action | 1.00 | Cutbanks cave | 11.00 | Ponding | 1.00 |
| | | Ponding | 1.00 | Ponding | \| 1.00 | | |
| | | Low strength | 0.78 | | | | |
| | | | | | | | |
| I60A: | | | | | | | |
| Smiley, depressional\| | 80 | \|Very limited | | \|Very limited | | \mid Very limited | |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | Depth to saturated zone | 1.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 |
| | | Frost action | 1.00 | Cutbanks cave | 10.10 | | |
| | | Low strength | 0.78 | | | | |
| | | | | | | | |
| Smiley-------------\| | 10 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 1.00 | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 |
| | | Frost action | 1.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | Ponding | 11.00 | Cutbanks cave | 10.10 | | |
| | | Low strength | 10.78 | | | | |
| | | | | | | | |

Table 19b.--Building Site Development--Continued

Table 19b.--Building Site Development--Continued

| Map symbol and soil name | \mid Pct. \| of \mid map \mid unit | Local roads and streets | | Shallow excavations | | Lawns and landscaping | | | |
|---|---|---|---|---|---|---|---|---|---|
| | | Rating class and limiting features | Value | Rating class and
 limiting features | Value | Rating class and
 limiting features | Value |
| I70A: | | | | | | | |
| Grimstad----------- | 5 | Very limited | | Very limited | | Somewhat limited | |
| | | Frost action | 1.00 | Depth to | 1.00 | Depth to | 0.78 |
| | | Depth to | 0.78 | saturated zone | | saturated zone | \| |
| | | saturated zone | | Cutbanks cave | 1.00 | | |
| | | | | | | | |
| Mavie--------------- \| | 3 | \| Very limited | | Very limited | | Very limited | |
| | | Depth to | 1.00 | Depth to | 11.00 | Depth to saturated zone | 11.00 |
| | | saturated zone | | saturated zone | | | |
| | | Frost action | 1.00 | Cutbanks cave | 1.00 | Ponding | 1.00 |
| | | Ponding | 1.00 | Ponding | 1.00 | Droughty | \| 0.01 |
| | | | | | | | |
| Rosewood------------ \| | 3 | \| Very limited | | \| Very limited | | Very limited | |
| | | Depth to | 1.00 | Depth to | 1.00 | Depth to saturated zone | \| 1.00 |
| | | saturated zone | | saturated zone | | | |
| | | Ponding | 1.00 | Cutbanks cave | 11.00 | Ponding | 11.00 |
| | | Frost action | 0.50 | Ponding | 1.00 | | |
| | | | | | | | |
| Strathcona, | | | | | | | |
| depressional------- | 3 | \| Very limited | | \| Very limited | | Very limited | |
| | | Ponding | 1.00 | Ponding | 11.00 | Ponding | 1.00 |
| | | Depth to | 1.00 | Depth to | 1.00 | Depth to saturated zone | 1.00 |
| | | saturated zone | | saturated zone | | | |
| | | Frost action | 1.00 | Cutbanks cave | 11.00 | | |
| | | Low strength | 0.78 | | | | |
| | | | | | | | |
| M-W: \| | | | \mid \| | \| | \| | | 1 | 1 |
| Miscellaneous water | 100 | Not rated | | \| Not rated | | Not rated | 1 |
| | | | | | | | |
| W : | | \mid \| | \| | \| | | | \| | | \| |
| Water | \| 100 | | \| Not rated | | | \| Not rated | | Not rated | |
| | | | | | | | |

(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The ratings given for the thickest layer are for the thickest layer above and excluding the bottom layer. The numbers in the value columns range from 0.00 to 0.99 . The greater the value, the greater the likelihood that the bottom layer or thickest layer of the soil is a source of sand or gravel. "Not rated" indicates that data are not available or that no rating is applicable. See text for further explanation of ratings in this table)

| Map symbol and soil name | Pct.
 of map unit | Potential as source of gravel | | Potential as source of sand | | |
|---|---|---|---|---|---|---|
| | | Rating class | Value | Rating class | Value |
| | | | \| | | | |
| B109A: | | | | | |
| Bowstring----------- \| | 45 | Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| Fluvaquents--------- \| | 40 | Poor | | Fair | |
| | | Bottom layer | 0.00 | Thickest layer | 0.01 |
| | | Thickest layer | 0.00 | Bottom layer | 0.03 |
| | | | | | |
| Hapludalfs--------- \| | 5 | Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| Seelyeville--------- | 5 | Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| Water---------------- \| | 5 | Not rated | | Not rated | |
| | | | | | |
| B200A: | | | | | |
| Garnes------------- \| | 70 | Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| Chilgren------------ \| | 13 | Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| Eckvoll------------- \| | 5 | Poor | | Fair | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.33 |
| | | | | | |
| Garnes, very stony--\| | 5 | Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| Grygla------------- \| | 4 | Poor | | Fair | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.16 |
| | | | | | |
| Pelan--------------- \| | 3 | Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| B201A: | | | | | |
| Chilgren------------ \| | 75 | Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |

Table 20a.--Construction Materials--Continued

| Map symbol and soil name | Pct. of map unit | Potential as source of gravel | | Potential as source of sand | | |
|---|---|---|---|---|---|---|
| | | Rating class | \| Value| | Rating class | Value |
| | | | | | |
| B201A: | | | | | |
| | 9 | Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| Grygla------------- | 5 | \| Poor | | Fair | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.16 |
| | | | | | |
| Grygla, depressional | 5 | \|Poor | | Fair | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.16 |
| | | | | | |
| Hamre-------------- | 5 | \| Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| Pelan-------------- | 1 | Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| B202A: | | | | | |
| Cathro------------- | 80 | \| Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| Hamre-------------- | 8 | Poor | | Poor | |
| | | \| Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| Chilgren----------- | 3 | Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| Northwood---------- | 3 | Poor | | Fair | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.16 |
| | | | | | |
| Berner------------- | 2 | \| Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| Grygla------------- | 2 | \|Poor | | Fair | |
| | | \| Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.16 |
| | | | | | |
| Seelyeville--------\| | 2 | \| Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| B203A: | | | | | |
| Northwood---------- | 75 | \| Poor | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.16 |
| | | | | | |
| Hamre-------------- | 10 | Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |

Table 20a.--Construction Materials--Continued

Table 20a.--Construction Materials--Continued

Table 20a.--Construction Materials--Continued

Table 20a.--Construction Materials--Continued

| Map symbol and soil name | $\begin{aligned} & \mid \text { Pct. } \\ & \mid \text { of } \\ & \mid \text { map } \\ & \mid \text { unit } \end{aligned}$ | Potential as source of gravel | | Potential as source of sand | | |
|---|---|---|---|---|---|---|
| | | Rating class | \| Value| | Rating class | \|Value |
| | | | | | |
| | | | 1 | | |
| | 75 | \| Poor | | \| Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 10.00 |
| | | Thickest layer | 0.00 | Thickest layer | 10.00 |
| | | | | | |
| Glyndon--------- | 9 | Poor | | \| Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.00 |
| | | | | | |
| Rosewood--------- | 8 | Poor | | \|Fair | |
| | | Bottom layer | 0.00 | Thickest layer | 0.02 |
| | | Thickest layer | 0.00 | Bottom layer | 0.25 |
| | | | | | |
| Augsburg-------- | 5 | | | \| Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.00 |
| | | | | | |
| Augsburg, depressional | | | | | |
| | 3 | Poor | | \| Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 10.00 |
| | | Thickest layer | 0.00 | Thickest layer | 10.00 |
| | | | | | |
| 17A: | | | | | |
| Bowstring | 45 | Poor | | Not rated | |
| | | Bottom layer | 10.00 | | |
| | | Thickest layer | 10.00 | | |
| | | | | | |
| Fluvaquents------ | 45 | | | \|Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 10.00 |
| | | Thickest layer | 10.00 | Bottom layer | 10.03 |
| | | | | | |
| Hapludolls------- | 5 | | | \| Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 10.00 |
| | | Thickest layer | 0.00 | Thickest layer | 10.00 |
| | | | | | |
| Water-----------I8A: | 5 | Not rated | | Not rated | |
| | | | | | |
| | | | | | |
| I8A: | 80 | | | Not rated | |
| | | Bottom layer | 10.00 | | |
| | | Thickest layer | 10.00 | | |
| | | | | | |
| Hamre------------ | 8 | Poor | | \| Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 0.00 | Thickest layer | 10.00 |
| | | | | | |
| Northwood-------- | \| 3 | Poor | | \mid Fair | |
| | | Bottom layer | 10.00 | \| Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.13 |
| | | | | | |
| Roliss---------- | \| 3 | Poor | | \| Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.00 |
| | | | | | |
| Berner---------- | \| 2 | Poor | | Not rated | |
| | | Bottom layer | 10.00 | | |
| | | Thickest layer | 10.00 | | \| |
| | | | | | |

Table 20a.--Construction Materials--Continued

| Map symbol and soil name | Pct.
 of map unit | Potential as source of gravel | | Potential as source of sand | | |
|---|---|---|---|---|---|---|
| | | Rating class | \| Value| | Rating class | \| Value |
| | | | | | |
| I8A: | | | | | |
| | 2 | \| Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| Seelyeville----- | 2 | \| Poor | | Not rated | |
| | | Bottom layer | 10.00 | | |
| | | Thickest layer | 10.00 | | |
| | | | | | |
| I9A:Clearwate | | | | | |
| | 80 | Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| Clearwater, very cobbly | | | | | |
| | 5 | \| Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| Reis------------ | 5 | Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| Clearwater, depressional---- | | | | | |
| | 3 | \| Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.00 |
| | | | | | |
| Espelie--------- | 3 | \| Poor | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 10.13 |
| | | | | | |
| Foxlake--------- | 2 | Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 10.00 |
| | | | | | |
| Hattie---------- | 1 | Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.00 |
| | | | | | |
| Huot------------ | 1 | \| Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.00 |
| | | | | | |
| I10A: | | | | | |
| Clearwater, | | | | | |
| depressional---- | 85 | \| Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.00 |
| | | | | | |
| Clearwater------ | 9 | \| Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.00 |
| | | | | | |
| Augsburg,depressional | | | | | |
| | 3 | Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.00 |
| | | | | | |

| Map symbol and soil name | $\begin{aligned} & \mid \text { Pct. } \\ & \mid \text { of } \\ & \mid \text { map } \\ & \mid \text { unit } \mid \end{aligned}$ | Potential as source of gravel | | Potential as source of sand | | |
|---|---|---|---|---|---|---|
| | | Rating class | \| Value| | Rating class | \|Value |
| | | | | | |
| I10A: | | | | | |
| Reis------------ | 2 | Poor | | \| Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| Espelie--------- | 1 | Poor | | Fair | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.13 |
| | | | | | |
| I11A: | | | | | |
| Deerwood-------- | 85 | Poor | | Not rated | |
| | | Bottom layer | 0.00 | | |
| | | Thickest layer | 0.00 | | |
| | | | | | |
| Rosewood--------- | 6 | Poor | | Fair | |
| | | Bottom layer | 0.00 | \| Thickest layer | 10.02 |
| | | Thickest layer | 0.00 | Bottom layer | 10.25 |
| | | | | | |
| Markey----------- | 3 | \| Poor | | Not rated | |
| | | Bottom layer | 0.00 | | |
| | | Thickest layer | 0.00 | | |
| | | | | | |
| Strathcona------ | 2 | Poor | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.25 |
| | | | | | |
| Syrene---------- | 2 | | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 10.22 |
| | | Thickest layer | 10.00 | Thickest layer | 10.22 |
| | | | | | |
| Venlo----------- | 2 | | | Fair | |
| | | Bottom layer | 0.00 | Thickest layer | 10.00 |
| | | Thickest layer | 0.00 | Bottom layer | 10.25 |
| | | | | | |
| I12A: | | | | | |
| Eckvol | 70 | Poor | | Fair | |
| | | Bottom layer | 0.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.25 |
| | | | | | |
| Kratka---------- | 8 | Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 10.00 |
| | | Thickest layer | 0.00 | Thickest layer | 10.00 |
| | | | | | |
| Smiley---------- | 7 | Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.00 |
| | | | | | |
| Linveldt--------- | 5 | Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.00 |
| | | | | | |
| Reiner---------- | 5 | | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.00 |
| | | | | | |
| Foldahl---------- | \| 2 | \mid Poor
 \mid Bottom layer
 Thickest layer | | \| Fair | |
| | | | 10.00 | Bottom layer | 10.00 |
| | | | 0.00 | Thickest layer | 10.25 |
| | | | | | |

Table 20a.--Construction Materials--Continued

Table 20a.--Construction Materials--Continued

| Map symbol and soil name | Pct. \mid
 of map \|unit| | Potential as source of gravel | | Potential as source of sand | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class | \| Value| | Rating class | Value |
| | | | | | |
| I14D: | | | | | |
| Fluvaquents----- | 6 | \| Poor | | Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 0.00 |
| | | Thickest layer | 0.00 | Bottom layer | 0.03 |
| | | | | | |
| Hapludolls------ | 4 | Poor | | Poor | |
| | | \| Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| Zell------------ | 3 | \| Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| Hapludalfs------ | \| 2 | \| Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| I15A: | | | | | |
| Flaming | 70 | \| Poor | | Fair | |
| | | Bottom layer | 0.00 | Thickest layer | 0.02 |
| | | Thickest layer | 0.00 | Bottom layer | 0.25 |
| | | | | | |
| Garborg--------- | 10 | \| Poor | | \| Fair | |
| | | Bottom layer | 0.00 | Thickest layer | 0.02 |
| | | Thickest layer | 0.00 | Bottom layer | 0.25 |
| | | | | | |
| Hamar----------- | 5 | \| Poor | | \| Fair | |
| | | Bottom layer | 0.00 | Bottom layer | 0.25 |
| | | Thickest layer | 0.00 | Thickest layer | 0.25 |
| | | | | | |
| Ulen------------ | 5 | \| Poor | | Fair | |
| | | Bottom layer | 0.00 | Thickest layer | 0.05 |
| | | Thickest layer | 0.00 | Bottom layer | 0.25 |
| | | | | | |
| Poppleton------- | 3 | \| Poor | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 0.25 |
| | | Thickest layer | 0.00 | Thickest layer | 0.25 |
| | | | | | |
| Sandberg-------- | 3 | \| Poor | | \| Fair | |
| | | Bottom layer | 0.00 | Thickest layer | 0.07 |
| | | Thickest layer | 0.00 | Bottom layer | 0.51 |
| | | | | | |
| Foldahl--------- | 2 | \| Poor | | \| Fair | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.25 |
| | | | | | |
| Radium---------- | 2 | \| Poor | | Fair | |
| | | Bottom layer | 10.00 | Thickest layer | \| 0.72 |
| | | Thickest layer | 10.00 | Bottom layer | \| 0.79 |
| | | | | | |
| I16F: | | | | | |
| Fluvaquents----- | 55 | \| Poor | | Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 0.00 |
| | | Thickest layer | 10.00 | Bottom layer | 10.03 |
| | | | | | |
| Hapludolls------ | 25 | \| Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |

Table 20a.--Construction Materials--Continued

Table 20a.--Construction Materials--Continued

| Map symbol and soil name | \|Pct.
 of map unit | Potential as source of gravel | | Potential as source of sand | | |
|---|---|---|---|---|---|---|
| | | Rating class | \| Value| | Rating class | Value |
| I18A: | | | | | |
| Roliss--------- | 5 | Poor | | Poor | |
| | | \| Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| Flaming--------- | 4 | Poor | | Fair | |
| | | Bottom layer | 0.00 | Thickest layer | 0.02 |
| | | Thickest layer | 0.00 | Bottom layer | 0.25 |
| | | | | | |
| Grimstad-------- | 2 | Poor | | Fair | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.05 |
| | | | | | |
| Linveldt-------- | 2 | Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| Eckvoll--------- | 1 | \| Poor | | Fair | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.25 |
| | | | | | |
| Strathcona------ | 1 | Poor | | Fair | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.25 |
| | | | | | |
| I19A: | | | | | |
| Foxhome | 65 | Poor | | Fair | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.03 |
| | | | | | |
| Kittson--------- | 10 | \| Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| Strandquist----- | 10 | Fair | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.12 | Thickest layer | 0.68 |
| | | | | | |
| Foldahl--------- | 5 | \| Poor | | Fair | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.25 |
| | | | | | |
| Grimstad-------- | 5 | Poor | | Fair | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.05 |
| | | | | | |
| Roliss---------- | 3 | Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.00 |
| | | | | | |
| Mavie----------- | 2 | Fair | | Fair | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | \| 0.12 | Thickest layer | 0.61 |
| | | | | | |
| I20A: | | | | | |
| Foxlake | 75 | Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |

Table 20a.--Construction Materials--Continued

| Map symbol and soil name | $\begin{aligned} & \mid \text { Pct. } \\ & \mid \text { of } \\ & \mid \text { map } \\ & \mid \text { unit } \end{aligned}$ | \| Potential as source of gravel | | Potential as source of sand | | |
|---|---|---|---|---|---|---|
| | | Rating class | \|Value| | Rating class | \|Value |
| | | \| | | | |
| I22A: | | | | | |
| Augsburg-------- | 5 | \| Poor | | \| Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 10.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| Ulen------------ | 5 | \| Poor | | Fair | |
| | | Bottom layer | 0.00 | Thickest layer | 10.05 |
| | | Thickest layer | 10.00 | Bottom layer | 10.25 |
| | | | | | |
| Wheatville------- | 3 | \| Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 10.00 |
| | | | | | |
| Flaming--------- | 2 | \| Poor | | Fair | |
| | | Bottom layer | 0.00 | Thickest layer | 10.02 |
| | | Thickest layer | 0.00 | Bottom layer | 10.25 |
| | | | | | |
| I23A:Glyndo | | | | | |
| | 75 | \| Poor | | \| Poor | |
| | | Bottom layer | 0.00 | \| Bottom layer | 10.00 |
| | | Thickest layer | 0.00 | Thickest layer | 10.00 |
| | | | | | |
| Borup----------- | 10 | \| Poor | | Poor | |
| | | Bottom layer | 0.00 | \| Bottom layer | 10.00 |
| | | Thickest layer | 0.00 | Thickest layer | 10.00 |
| | | | | | |
| Augsburg-------- | 5 | \| Bottom layer | 0.00 | Poor ${ }^{\text {Pottom layer }}$ | 10.00 |
| | | Thickest layer | 0.00 | Thickest layer | 10.00 |
| | | | | | |
| Ulen------------ | 5 | | | Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 0.05 |
| | | Thickest layer | 10.00 | Bottom layer | 10.25 |
| | | | | | |
| Wheatville------ | 3 | | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 10.00 |
| | | Thickest layer | 0.00 | Thickest layer | 10.00 |
| | | | | | |
| Flaming--------- | 2 | \| Poor | | Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 10.02 |
| | | Thickest layer | 0.00 | Bottom layer | 10.25 |
| | | | | | |
| 124A: | | | | | |
| Grimsta | 70 | \| Poor | | Fair | |
| | | Bottom layer | 0.00 | Bottom layer | 10.00 |
| | | Thickest layer | 0.00 | Thickest layer | 10.05 |
| | | | | | |
| Strathcona------ | 12 | \| Poor | | Fair | |
| | | \| Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.25 |
| Foldahl--------- | 5 | \| Poor | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 0.00 | Thickest layer | 10.25 |
| | | | | | |
| Hamerly--------- | 5 | \| Poor | | PoorBottom layerThickest layer | |
| | | Bottom layer | 10.00 | | 10.00 |
| | | Thickest layer | 0.00 | | 10.00 |
| | | | | | |

Table 20a.--Construction Materials--Continued

| Map symbol and soil name | $\begin{aligned} & \text { Pct. } \\ & \text { of } \\ & \text { map } \\ & \text { \|unit } \end{aligned}$ | Potential as source of gravel | | Potential as source of sand | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class | \| Value | Rating class | \|Value |
| | | | | | |
| | | | | | |
| Foxhome-------- | 2 | \| Poor | | Fair | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.03 |
| | | | | | |
| Karlsruhe------- | 2 | Poor | | \|Fair | |
| | | Thickest layer | 10.00 | Thickest layer | 0.07 |
| | | Bottom layer | 10.00 | Bottom layer | 0.54 |
| | | | | | |
| Mavie----------- | 2 | \| Fair | | Fair | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | \| 0.12 | Thickest layer | 0.61 |
| | | | | | |
| Ulen------------ | 2 | Poor | | Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 0.05 |
| | | Thickest layer | 0.00 | Bottom layer | 0.25 |
| | | | | | |
| 125A: | | | | | |
| Hamar | 75 | Poor | | Fair | |
| | | Bottom layer | 0.00 | Bottom layer | 0.25 |
| | | Thickest layer | 10.00 | Thickest layer | 0.25 |
| | | | | | |
| Garborg--------- | 10 | \| Poor | | \| Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 0.02 |
| | | Thickest layer | 10.00 | Bottom layer | 0.25 |
| | | | | | |
| Rosewood-------- | 7 | \| Poor | | \|Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 0.02 |
| | | Thickest layer | 10.00 | Bottom layer | \| 0.25 |
| | | | | | |
| Venlo----------- | 3 | \| Poor | | \|Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 0.00 |
| | | Thickest layer | 10.00 | Bottom layer | 0.25 |
| | | | | | |
| Flaming--------- | 2 | \|Poor | | Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 0.02 |
| | | Thickest layer | 10.00 | Bottom layer | 0.25 |
| | | | | | |
| Hangaard-------- | 2 | Poor | | Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 0.04 |
| | | Thickest layer | 10.00 | Bottom layer | \| 0.51 |
| | | | | | |
| Kratka---------- | 1 | \| Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.00 |
| | | | | | |
| I26A: | | | \| | | |
| Hamerly | 75 | \| Poor | 1 | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.00 |
| | | | | | |
| Vallers | 12 | \| Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.00 |
| | | | | | |
| Foxhome--------- | 3 | Poor | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.03 |
| | | | | | |

| Map symbol and soil name | Pct.
 of
 map
 unit | Potential as source of gravel | | Potential as source of sand | | |
|---|---|---|---|---|---|---|
| | | Rating class | \| Value| | Rating class | \| Value |
| | | | | | |
| I26A: | | | | | |
| Grimstad-----------\| | 3 | Poor | | \| Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.05 |
| | | | | | |
| Hamerly, very cobbly | 3 | \| Poor | | \| Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.00 |
| | | | | | |
| Strathcona---------\| | 3 | \| Poor | | \| Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.25 |
| | | | | | |
| Roliss, depressional\| | 1 | \| Poor | | \| Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.00 |
| | | | | | |
| I27A: | | | | | |
| Hamre------------- | 80 | | | \| Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.00 |
| | | | | | |
| Northwood---------- \| | 5 | | | \|Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.13 |
| | | | | | |
| Roliss-------------\| | 5 | \| Poor | | \| Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.00 |
| | | | | | |
| Smiley-------------\| | 5 | \| Poor | | \| Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.00 |
| | | | | | |
| Cathro------------- | 3 | \| Poor | | Not rated | |
| | | Bottom layer | 10.00 | | |
| | | Thickest layer | 10.00 | | |
| | | | | | |
| Kratka-------------- \| | 2 | \| Poor | | \| Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.00 |
| | | | | | |
| I28A: | | | | | |
| Hangaard------------ \| | 75 | | | \|Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 10.04 |
| | | Thickest layer | 10.00 | Bottom layer | 10.51 |
| | | | | | |
| Hamar--------------- \| | 7 | \| Poor | | \|Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 10.25 |
| | | Thickest layer | 10.00 | Thickest layer | 10.25 |
| | | | | | |
| Syrene------------- \| | 7 | \| Poor | | \|Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 10.22 |
| | | Thickest layer | 10.00 | Thickest layer | 10.22 |
| | | | | | |
| Karlsruhe---------- \| | 3 | \| Poor | | \| Fair | |
| | | Thickest layer | 10.00 | Thickest layer | 10.07 |
| | | Bottom layer | 10.00 | Bottom layer | 10.54 |
| | | | | | |

Table 20a.--Construction Materials--Continued

| Map symbol and soil name | Pct.
 of map unit | Potential as source of gravel | | Potential as source of sand | | |
|---|---|---|---|---|---|---|
| | | Rating class | \| Value| | Rating class | \| Value |
| | | | | | |
| I28A:Rosewood | | | | | |
| | 3 | Poor | | Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 0.02 |
| | | Thickest layer | 0.00 | Bottom layer | 0.25 |
| | | | | | |
| Strandquist-------- | 3 | Fair | | Fair | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.12 | Thickest layer | 0.68 |
| | | | | | |
| Deerwood----------- | 2 | Poor | | Not rated | |
| | | Bottom layer | 10.00 | | |
| | | Thickest layer | 0.00 | | |
| | | | | | |
| I29A: | | | | | |
| Hattie------------ | 75 | Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| Clearwater--------- | 12 | Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| Reis--------------- | 6 | Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| Hattie, very cobbly | 5 | Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| Hilaire------------ | 2 | Poor | | Fair | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.25 |
| | | | | | |
| I29D: | | | | | |
| Hattie------------ | 85 | Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| Clearwater--------- | 6 | Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| Hattie, level------- | 5 | Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| Boyerlake---------- | 4 | Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| I30A: | | | | | |
| Hedman | 85 | Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| Fram--------------- | 5 | Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.00 |
| | | | | | |

Table 20a.--Construction Materials--Continued

| Map symbol and soil name | \|Pct.
 of map unit | Potential as source of gravel | | Potential as source of sand | | |
|---|---|---|---|---|---|---|
| | | Rating class | \| Value| | Rating class | Value |
| | | | | | |
| | | | | | |
| Strathcona------ | 5 | \| Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.25 |
| | | | | | |
| Haug------------ | 3 | Poor | | Not rated | |
| | | Bottom layer | 0.00 | | |
| | | Thickest layer | 0.00 | | |
| | | | | | |
| Strandquist----- | 2 | Fair | | Fair | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.12 | Thickest layer | 0.68 |
| | | | | | |
| I31A: | | | | | |
| Hedman---------- | 50 | \| Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| Fram------------ | 40 | Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| Strathcona------ | 5 | Poor | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.25 |
| | | | | | |
| Haug------------- | 3 | Poor | | Not rated | |
| | | Bottom layer | 10.00 | | |
| | | Thickest layer | 10.00 | | |
| | | | | | |
| Strandquist----- | 2 | Fair | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.12 | Thickest layer | 0.68 |
| | | | | | |
| I32A: | | | | | |
| Hilaire | 75 | Poor | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.25 |
| | | | | | |
| Espelie--------- | 12 | Poor | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.13 |
| | | | | | |
| Huot------------ | 5 | Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| Flaming--------- | 2 | \| Poor | | Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 0.02 |
| | | Thickest layer | 10.00 | Bottom layer | 10.25 |
| | | | | | |
| Foxlake--------- | 2 | Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.00 |
| | | | | | |
| Wheatville------ | 2 | Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |

Table 20a.--Construction Materials--Continued

| Map symbol and soil name | $\begin{aligned} & \mid \text { Pct. } \\ & \mid \text { of } \\ & \mid \text { map } \\ & \mid \text { unit } \end{aligned}$ | Potential as source of gravel | | Potential as source of sand | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class | \| Value | Rating class | Value |
| | | | | | |
| I32A: | | | | | |
| Thiefriver------ | \| 1 | Poor | Fair | | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.01 |
| | | | | | |
| Wyandotte------- | 1 | Fair | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.25 | Thickest layer | 0.10 |
| | | | | | |
| I33A: | | | | | |
| Hilaire--------- | 75 | Poor | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.25 |
| | | | | | |
| Espelie--------- | 12 | Poor | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.13 |
| | | | | | |
| Huot------------ | 5 | Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| Flaming--------- | 2 | Poor | | Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 0.02 |
| | | Thickest layer | 10.00 | Bottom layer | 0.25 |
| | | | | | |
| Foxlake--------- | 2 | Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| Wheatville------ | 2 | Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| Thiefriver------ | 1 | | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.01 |
| | | | | | |
| Wyandotte------- | 1 | Fair | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.25 | Thickest layer | 0.10 |
| | | | | | |
| I34A: | | | | | |
| Huot | 75 | Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| Thiefriver------ | 12 | Poor | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.01 |
| | | | | | |
| Hilaire--------- | 5 | Poor | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.25 |
| | | | | | |
| Flaming--------- | \| 3 | Poor | | Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 0.02 |
| | | Thickest layer | 10.00 | Bottom layer | \| 0.25 |
| | | | | | |

Table 20a.--Construction Materials--Continued

| Map symbol and soil name | $\begin{array}{\|c\|} \mid \text { Pct. } \\ \mid \text { of } \\ \mid \text { map } \\ \mid \text { unit } \end{array}$ | Potential as source of gravel | | Potential as source of sand | | |
|---|---|---|---|---|---|---|
| | | Rating class | \| Value| | Rating class | \| Value |
| | | | | | |
| I34A: | | | | | |
| Foxlake--------- | 3 | \| Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| Ulen------------ | 2 | \| Poor | | Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 0.05 |
| | | Thickest layer | 0.00 | Bottom layer | 0.25 |
| | | | | | |
| I35A: | | | | | |
| Karlsruhe------- | 70 | \| Poor | | Fair | |
| | | Thickest layer | 0.00 | Thickest layer | 0.07 |
| | | Bottom layer | 10.00 | Bottom layer | 0.54 |
| | | | | | |
| Syrene---------- | 10 | \| Poor | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 0.22 |
| | | Thickest layer | 10.00 | Thickest layer | 0.22 |
| | | | | | |
| Ulen------------ | 10 | \| Poor | | Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 0.05 |
| | | Thickest layer | 0.00 | Bottom layer | 0.25 |
| | | | | | |
| Radium---------- | 5 | \| Poor | | Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 0.72 |
| | | Thickest layer | 0.00 | Bottom layer | 0.79 |
| | | | | | |
| Rosewood-------- | 3 | \| Poor | | Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 0.02 |
| | | Thickest layer | 10.00 | Bottom layer | 0.25 |
| | | | | | |
| Sandberg-------- | 2 | \| Poor | | Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 0.07 |
| | | Thickest layer | 10.00 | Bottom layer | 0.51 |
| | | | | | |
| 136A: | | | | | |
| Kittson- | 70 | \| Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| Roliss---------- | 12 | \| Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.00 |
| | | | | | |
| Hamerly--------- | 5 | \| Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| Kratka---------- | 5 | \| Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.00 |
| | | | | | |
| Grimstad-------- | 3 | \| Poor | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.05 |
| | | | | | |
| Strandquist----- | \| 3 | \| Fair | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.12 | Thickest layer | 0.68 |
| | | | | | |

Table 20a.--Construction Materials--Continued

| Map symbol and soil name | $\begin{aligned} & \mid \text { Pct. } \\ & \mid \text { of } \\ & \mid \text { map } \\ & \mid \text { unit } \mid \end{aligned}$ | Potential as source of gravel | | Potential as source of sand | | |
|---|---|---|---|---|---|---|
| | | Rating class | \|Value| | Rating class | \| Value |
| | | | \| | | | |
| I36A:Foxhome | | | | | |
| | 2 | Poor | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.03 |
| | | | | | |
| I37A: | | | | | |
| Kratka, depressional\| | 45 | Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| Strathcona, depressional | | | | | |
| | 45 | Poor | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.25 |
| | | | | | |
| Northwood---------- \| | 5 | Poor | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.13 |
| | | | | | |
| Kratka-------------- \| | 2 | Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| Strathcona--------- | 2 | Poor | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.25 |
| | | | | | |
| Roliss-------------- \| | 1 | Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| I38A: | | | | | |
| Kratka-------------- \| | 70 | Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.00 |
| | | | | | |
| Smiley------------- \| | 7 | Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.00 |
| | | | | | |
| Foldahl------------- \| | 5 | Poor | 1 | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.25 |
| | | | | | |
| Kratka, very cobbly | 5 | Poor | 1 | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.00 |
| | | | | | |
| Strathcona--------- \| | \| 5 | Poor | 1 | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.25 |
| | | | | | |
| Kratka, depressional\| | 3 | Poor | 1 | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.00 |
| | | | | | |
| Strandquist--------\| | \| 3 | Fair | 1 | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | \| 0.12 | Thickest layer | 10.68 |
| | | | | | |

| Map symbol and soil name | $\begin{aligned} & \mid \text { Pct. } \\ & \mid \text { of } \\ & \mid \text { map } \\ & \mid \text { unit } \mid \end{aligned}$ | Potential as source of gravel | | Potential as source of sand | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class | \|Value | Rating class | \|Value |
| | | | | | |
| I38A:Linvel | | | \| | | |
| | 2 | \| Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.00 |
| | \| | | | | |
| I39A: | | | | | |
| Linveldt-------- | \| 65 | \| Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| Kratka---------- | 14 | \| Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | \| | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| Reiner----------- | 10 | \| Poor | | Poor | |
| | \| | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | \| | Thickest layer | 10.00 | Thickest layer | 10.00 |
| | | | | | |
| Smiley---------- | \| 5 | \| Poor | | Poor | |
| | \| | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.00 |
| | 3 | | | | |
| Eckvoll--------- | | \| Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.25 |
| | | | | | |
| Foldahl---------- | \| 2 | | | | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | $\mid 1$ | Thickest layer | 10.00 | Thickest layer | 10.25 |
| | | | | | |
| Pelan----------- | \| 1 | | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | \| | Thickest layer | 10.00 | Thickest layer | 10.51 |
| | | | | | |
| I40B: | | | | | |
| Maddoc | 85 | \| Poor | | Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 10.05 |
| | I | Thickest layer | 10.00 | Bottom layer | 10.25 |
| | | | | | |
| Flaming--------- | \| 5 | \| Poor | | Fair | |
| | $\mid 1$ | Bottom layer | 10.00 | Thickest layer | 0.02 |
| | I | Thickest layer | 10.00 | Bottom layer | 10.25 |
| | | | | | |
| Sandberg--------- | \| 5 | \| Poor | 1 | Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 0.07 |
| | \| | Thickest layer | 10.00 | Bottom layer | 10.51 |
| | | | | | |
| Halverson------- | \| 3 | | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 10.02 |
| | | Thickest layer | 10.00 | Thickest layer | 10.02 |
| | | | | | |
| Hamar------------ | \| 2 | \| Poor | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 10.25 |
| | | Thickest layer | 10.00 | Thickest layer | 10.25 |
| | | | | | |
| I40F: | \| | | \| | | |
| Maddoc | 90 | \| Poor | 1 | Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 10.02 |
| | \| | Thickest layer | 10.00 | Bottom layer | 10.25 |
| | | | | | |

Table 20a.--Construction Materials--Continued

| Map symbol and soil name | Pct.
 of map unit | Potential as source of gravel | | Potential as source of sand | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class | \| Value | Rating class | \| Value |
| | | | \| | | |
| I40F:Flaming | | | \mid \| | | |
| | 5 | \| Poor | | Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 0.02 |
| | | Thickest layer | 10.00 | Bottom layer | 0.25 |
| | | | | | |
| Sandberg------------ | 5 | \| Poor | | Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 0.07 |
| | | Thickest layer | 10.00 | Bottom layer | 0.51 |
| | | | 1 | | |
| I41A: | | | | | |
| Markey------------ | 80 | \| Poor | | Not rated | |
| | | Bottom layer | 10.00 | | |
| | | Thickest layer | 10.00 | | |
| | | | | | |
| Deerwood----------- | 12 | \| Poor | | Not rated | |
| | | Bottom layer | 10.00 | | |
| | | Thickest layer | 10.00 | | |
| | | | | | |
| Berner------------- | 2 | \| Poor | | Not rated | |
| | | Bottom layer | 10.00 | | |
| | | Thickest layer | 10.00 | | |
| | | | | | |
| Hamar-------------- | 2 | \| Poor | | Fair | |
| | | \| Bottom layer | 10.00 | Bottom layer | 0.25 |
| | | Thickest layer | 10.00 | Thickest layer | 0.25 |
| | | | | | |
| Seelyeville-------- | 2 | \| Poor | | Not rated | |
| | | Bottom layer | 10.00 | | |
| | | Thickest layer | 10.00 | | |
| | | | | | |
| Syrene------------- | 2 | \| Poor | 1 | \| Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 0.22 |
| | | Thickest layer | 10.00 | Thickest layer | 0.22 |
| | | | \| | | |
| I42A: | | | \| | | |
| Markey, ponded----- | 85 | \| Poor | | Not rated | |
| | | Bottom layer | 10.00 | | |
| | | Thickest layer | 10.00 | | |
| | | | | | |
| Markey------------- | 5 | \| Poor | | Not rated | |
| | | Bottom layer | 10.00 | | |
| | | Thickest layer | 10.00 | | |
| | | | | | |
| Deerwood------------ | 4 | Poor | \| | Not rated | |
| | | Bottom layer | 10.00 | | |
| | | Thickest layer | 10.00 | | |
| | | | \| | | |
| Seelyeville, ponded | 4 | Poor | , | Not rated | |
| | | Bottom layer | 10.00 | | |
| | | Thickest layer | 10.00 | | |
| | | | | | |
| Hamar--------------- | 1 | Poor | I | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | \| 0.25 |
| | | Thickest layer | 10.00 | Thickest layer | \| 0.25 |
| | | | | | |
| Hangaard----------- | 1 | Poor | 1 | Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 0.04 |
| | | Thickest layer | 10.00 | \| Bottom layer | \| 0.51 |
| | | | | | |

Table 20a.--Construction Materials--Continued

| Map symbol and soil name | | Potential as source of gravel | | Potential as source of sand | | |
|---|---|---|---|---|---|---|
| | | Rating class | \| Value| | Rating class | \|Value |
| | | | | | |
| I43A: | | | | | |
| Mavie----------- | 70 | \| Fair | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.12 | Thickest layer | 0.61 |
| | | | | | |
| Vallers--------- | 10 | \| Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| Strandquist----- | 7 | \| Fair | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.12 | Thickest layer | 0.68 |
| | | | | | |
| Strathcona------ | 5 | \| Poor | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.25 |
| | | | | | |
| Strathcona, | | | | | |
| depressional---- | 3 | \| Poor | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.25 |
| | | | | | |
| Foxhome--------- | 2 | \| Poor | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.03 |
| | | | | | |
| Karlsruhe------- | 2 | \| Poor | | Fair | |
| | | Thickest layer | 10.00 | Thickest layer | 0.07 |
| | | Bottom layer | 10.00 | Bottom layer | 10.54 |
| | | | | | |
| Grimstad-------- | 1 | \| Poor | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.05 |
| | | | | | |
| I44A: | | | | | |
| Newfolden------- | 75 | \| Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.00 |
| | | | | | |
| Smiley---------- | 12 | \| Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.00 |
| | | | | | |
| Boash----------- | 8 | \| Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.00 |
| | | | | | |
| Linveldt-------- | 4 | \| Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.00 |
| | | | | | |
| Hapludolls------ | 1 | \| Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.00 |
| | | | | | |
| I45A: | | | | | |
| Northwood | 75 | \| Poor | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.13 |
| | | | | | |

Table 20a.--Construction Materials--Continued

| Map symbol and soil name | Pct.
 of
 map
 unit | Potential as source of gravel | | Potential as source of sand | | |
|---|---|---|---|---|---|---|
| | | Rating class | \| Value| | Rating class | Value |
| | | | \| | | |
| I45A: | | | | | |
| Hamre---------- | 10 | \| Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| Berner---------- | 5 | \| Poor | | Not rated | |
| | | Bottom layer | 0.00 | | |
| | | Thickest layer | 0.00 | | |
| | | | | | |
| Kratka---------- | 5 | \| Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| Strandquist----- | 3 | \| Fair | | Fair | |
| | | \| Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.12 | Thickest layer | 0.68 |
| | | | | | |
| Roliss---------- | 2 | \| Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| I46A: | | | | | |
| | 85 | \| Not rated | | Not rated | |
| | | | \| | | |
| Udipsamments---- | 10 | \| Poor | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 10.51 |
| | | Thickest layer | 10.00 | Thickest layer | 0.79 |
| | | | | | |
| Radium---------- | 2 | \| Poor | | Fair | |
| | | Bottom layer | 0.00 | Thickest layer | 0.72 |
| | | Thickest layer | 10.00 | Bottom layer | 0.79 |
| | | | | | |
| Maddock--------- | \| 1 | \| Poor | | Fair | |
| | | Bottom layer | 0.00 | Thickest layer | 0.02 |
| | | Thickest layer | 0.00 | Bottom layer | 0.25 |
| | | | | | |
| Marquette------- | \| 1 | \| Poor | | Fair | |
| | | Thickest layer | 10.00 | Bottom layer | 0.00 |
| | | Bottom layer | 10.00 | Thickest layer | 0.07 |
| | | | | | |
| Sandberg-------- | 1 | \| Poor | | Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 0.07 |
| | | Thickest layer | 10.00 | Bottom layer | 0.51 |
| | | | | | |
| 147A: | | | | | |
| Poppleton------- | 75 | \| Poor | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | \| 0.25 |
| | | Thickest layer | 10.00 | Thickest layer | 10.25 |
| | | | \| | | |
| Flaming--------- | 12 | \| Poor | 1 | Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 0.02 |
| | | Thickest layer | 10.00 | Bottom layer | 0.25 |
| | | | | | |
| Garborg--------- | 5 | \| Poor | | Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 0.02 |
| | | Thickest layer | 10.00 | Bottom layer | 10.25 |
| | | | \| | | |
| Hamar----------- | \| 3 | \| Poor | 1 | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | \| 0.25 |
| | | Thickest layer | 10.00 | Thickest layer | 10.25 |
| | | | | | |

Table 20a.--Construction Materials--Continued

| Map symbol and soil name | Pct. of map \|unit | Potential as source of gravel | | Potential as source of sand | | |
|---|---|---|---|---|---|---|
| | | Rating class | \| Value| | Rating class | \| Value |
| I47A: | | | | | |
| | | | | | |
| Radium--------- | 2 | Poor | | Fair | |
| | | Bottom layer | 0.00 | Thickest layer | 0.72 |
| | | Thickest layer | 0.00 | Bottom layer | 10.79 |
| | | | | | |
| Ulen------------ | 2 | Poor | | Fair | |
| | | Bottom layer | 0.00 | Thickest layer | 10.05 |
| | | Thickest layer | 0.00 | Bottom layer | 0.25 |
| | | | | | |
| Maddock--------- | 1 | Poor | | Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 0.02 |
| | | Thickest layer | 0.00 | Bottom layer | 10.25 |
| | | | | | |
| I48A: | | | | | |
| Radium | 75 | Poor | | Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 10.72 |
| | | Thickest layer | 0.00 | Bottom layer | 10.79 |
| | | | | | |
| Sandberg-------- | 7 | Poor | | Fair | |
| | | Bottom layer | 0.00 | Thickest layer | 0.07 |
| | | Thickest layer | 10.00 | Bottom layer | 0.51 |
| | | | | | |
| Oylen------------ | \| 5 | Poor | | Fair | |
| | | Bottom layer | 0.00 | Bottom layer | 0.58 |
| | | Thickest layer | 0.00 | Thickest layer | 0.72 |
| | | | | | |
| Flaming--------- | 4 | Poor | | Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 10.02 |
| | | Thickest layer | 10.00 | Bottom layer | 10.25 |
| | | | | | |
| Garborg--------- | 3 | \| Poor | | Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 10.02 |
| | | Thickest layer | 10.00 | Bottom layer | 10.25 |
| | | | | | |
| Hangaard-------- | 3 | Poor | | Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 0.04 |
| | | Thickest layer | 10.00 | Bottom layer | 0.51 |
| | | | | | |
| Hamar----------- | 2 | Poor | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 10.25 |
| | | Thickest layer | 10.00 | Thickest layer | 10.25 |
| | | | | | |
| Poppleton------- | \| 1 | Poor | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 10.25 |
| | | Thickest layer | 10.00 | Thickest layer | \| 0.25 |
| | | | | | |
| I49A: | | | | | |
| Rauville-------- | 80 | Poor | | Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 10.00 |
| | | Thickest layer | 10.00 | Bottom layer | 10.01 |
| | | | | | |
| Fluvaquents------ | 12 | Poor | | Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 10.00 |
| | | Thickest layer | 10.00 | Bottom layer | 10.03 |
| | | | | | |
| Water------------ | 5 | Not rated | | Not rated | |
| | | | | | |
| Lamoure--------- | \| 3 | Poor | | \|Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 10.00 |
| | | Thickest layer | 10.00 | Bottom layer | 10.03 |
| | | | | | |

Table 20a.--Construction Materials--Continued

| Map symbol and soil name | Pct.
 of map unit | Potential as source of gravel | | Potential as source of sand | | |
|---|---|---|---|---|---|---|
| | | Rating class | \|Value| | Rating class | \| Value |
| | | | | | |
| I50A:
 Reine | | | | | |
| | 70 | Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| Smiley | 12 | Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| Reiner, very cobbly | 7 | Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| Linveldt----------- | 5 | Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| Eckvoll------------ | 3 | Poor | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.25 |
| | | | | | |
| Kratka------------- | 3 | Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| I51A: | | | | | |
| Reiner | 65 | Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| Smiley------------ | 9 | Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| Reiner fine sandy loam | | | | | |
| | 8 | Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| Linveldt----------- | 7 | Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| Kratka------------- | 5 | Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| Eckvoll------------ | 3 | Poor | | Fair | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.25 |
| | | | | | |
| Reiner, very cobbly | 3 | Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| I52A: | | | | | |
| | 55 | Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.00 |
| | | | | | |

Table 20a.--Construction Materials--Continued

| Map symbol and soil name | Pct. of map unit | Potential as source of gravel | | Potential as source of sand | | |
|---|---|---|---|---|---|---|
| | | Rating class | \| Value| | Rating class | Value |
| | | | | | |
| | | | | | |
| Clearwater--------- \| | 30 | Poor | | \| Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| Clearwater, very cobbly--------- | | | | | |
| | 5 | Poor | | \| Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| Clearwater, depressional | | | | | |
| | 3 | Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| Espelie------------ \| | 3 | \| Poor | | \| Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.13 |
| | | | | | |
| Hattie------------ \| | 3 | Poor | | \| Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| Wyandotte----------\| | 1 | Fair | | \| Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | \| 0.25 | Thickest layer | 0.10 |
| | | | | | |
| I53A: | | | | | |
| Roliss------------- | 75 | \| Poor | | \| Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| Kratka-------------- \| | 8 | \| Poor | | \| Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| Roliss, very cobbly | 7 | Poor | | \| Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| Kittson------------ \| | 5 | Poor | | \| Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| Roliss, depressional\| | 3 | | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 10.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| Smiley------------- \| | 2 | Poor | | \| Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| I54A: | | | | | |
| Roliss, depressional\| | 80 | Poor | | \| Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| Roliss------------- \| | 12 | Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |

Table 20a.--Construction Materials--Continued

| Map symbol and soil name | $\left\|\begin{array}{l}\text { Pct. } \\ \mid \text { of } \\ \mid \\ \mid \text { map } \\ \mid \text { unit } \mid\end{array}\right\|$ | Potential as source of gravel | | Potential as source of sand | | |
|---|---|---|---|---|---|---|
| | | Rating class | \| Value| | Rating class | \|Value |
| | | | , | | \| |
| I56A: | | | | | |
| Ulen------------ | 2 | \| Poor | | \| Fair | |
| | | \| Bottom layer | 10.00 | Thickest layer | 0.05 |
| | | Thickest layer | 10.00 | Bottom layer | 10.25 |
| | | | | | |
| Strathcona------- | 1 | \| Poor | | \| Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.25 |
| | | | | | |
| Thiefriver------ | \| 1 | \| Poor | | \| Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | \| Thickest layer | 10.01 |
| | | | | | |
| I57B: | | | | | |
| Sandberg | 50 | | | \|Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 10.07 |
| | | Thickest layer | 10.00 | Bottom layer | 0.51 |
| | | | | | |
| Radium | 25 | \| Poor | 1 | \| Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 10.72 |
| | | Thickest layer | 10.00 | Bottom layer | 10.79 |
| | | | | | |
| Sioux----------- | \| 8 | \| Poor | | \| Fair | |
| | | Thickest layer | 10.00 | \| Thickest layer | 10.03 |
| | | Bottom layer | 10.00 | Bottom layer | 10.64 |
| | | | | | |
| Oylen----------- | \| 7 | Poor | | \|Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 10.58 |
| | | \| Thickest layer | 10.00 | Thickest layer | 10.72 |
| | | | | | |
| Flaming--------- | 5 | \| Poor | | \| Fair | |
| | | Bottom layer | 10.00 | \| Thickest layer | 10.02 |
| | | Thickest layer | 10.00 | Bottom layer | 10.25 |
| | | | | | |
| Garborg--------- | 5 | \| Poor | 1 | \| Fair | |
| | | \| Bottom layer | 10.00 | \| Thickest layer | 10.02 |
| | | Thickest layer | 10.00 | Bottom layer | 10.25 |
| | | | | | |
| I58A: | | | | | |
| Seelyeville | 90 | Poor | | Not rated | |
| | | Bottom layer | 10.00 | | \| |
| | | Thickest layer | 10.00 | | \| |
| | | | | | |
| Cathro---------- | 3 | \| Poor | | Not rated | \| |
| | | Bottom layer | 10.00 | | \| |
| | | Thickest layer | 10.00 | | \| |
| | | | | | \| |
| Dora------------- | \| 3 | \mid Poor | \| | Not rated | \| |
| | | Bottom layer | 10.00 | | \| |
| | | Thickest layer | 10.00 | | \| |
| | | | 1 | | \| |
| Markey---------- | 3 | \| Poor | 1 | Not rated | \| |
| | | Bottom layer | 10.00 | | \| |
| | | Thickest layer | 10.00 | | \| |
| | | | 1 | | \| |
| Berner---------- | \| 1 | \| Poor | 1 | Not rated | \| |
| | | Bottom layer | 10.00 | | \| |
| | | Thickest layer | 10.00 | | \| |
| | | | | | 1 |

Table 20a.--Construction Materials--Continued

| Map symbol and soil name | $\left.\begin{array}{\|} \mid \text { Pct. } \\ \mid \text { of } \\ \mid \text { map } \end{array} \right\rvert\,$ | Potential as source of gravel | | Potential as source of sand | | |
|---|---|---|---|---|---|---|
| | | Rating class | \| Value| | Rating class | Value |
| | | | | | |
| I59A: | | | | | |
| Smiley------------- \| | 65 | Poor | | \| Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| Smiley, very cobbly | 10 | Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| Kratka-------------\| | 9 | Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| Roliss------------ | 5 | Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| Reiner----------- \| | 4 | Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| Linveldt----------- \| | 3 | Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| Smiley, depressional | 3 | Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| Strandquist--------\| | 1 | Fair | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.12 | Thickest layer | 0.68 |
| | | | | | |
| I60A: | | | | | |
| Smiley, depressional\| | 80 | Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| Smiley------------- \| | 10 | Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| Hamre-------------- \| | 5 | Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| Kratka------------- \| | 5 | Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| I61A: | | | | | |
| Strandquist-------- \| | 70 | Fair | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | \| 0.12 | Thickest layer | 0.68 |
| | | | | | |
| Mavie-------------- \| | \| 8 | Fair | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | \| 0.12 | Thickest layer | 0.61 |
| | | | | | |

Table 20a.--Construction Materials--Continued

| Map symbol and soil name | $\begin{aligned} & \mid \text { Pct. } \\ & \mid \text { of } \\ & \mid \text { map } \\ & \mid \text { unit } \mid \end{aligned}$ | Potential as source of gravel | | Potential as source of sand | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class | \| Value | Rating class | \|Value |
| | | | | | |
| | | | | | |
| Roliss---------- | 7 | \| Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 10.00 |
| | | Thickest layer | 0.00 | Thickest layer | 10.00 |
| | | | | | |
| Kratka---------- | 5 | \| Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| Foxhome--------- | 4 | \| Poor | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.03 |
| | | | | | |
| Hangaard-------- | 3 | \| Poor | | Fair | |
| | | Bottom layer | 10.00 | Thickest layer | \| 0.04 |
| | | Thickest layer | 10.00 | Bottom layer | \| 0.51 |
| | | | | | |
| Northwood------- | 3 | \| Poor | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.13 |
| | | | | | |
| I62A: | | | | | |
| Syrene---------- | 70 | \| Poor | | Fair | |
| | | Bottom layer | 0.00 | Bottom layer | 0.22 |
| | | Thickest layer | 10.00 | Thickest layer | \| 0.22 |
| | | | | | |
| Rosewood-------- | 11 | \| Poor | | Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 10.02 |
| | | Thickest layer | 10.00 | Bottom layer | \| 0.25 |
| | | | | | |
| Hangaard-------- | 5 | \| Poor | | Fair | |
| | | Bottom layer | 0.00 | Thickest layer | 0.04 |
| | | Thickest layer | 10.00 | Bottom layer | \| 0.51 |
| | | | | | |
| Karlsruhe------- | 4 | \| Poor | | Fair | |
| | | Thickest layer | 10.00 | Thickest layer | 0.07 |
| | | Bottom layer | 10.00 | Bottom layer | \| 0.54 |
| | | | | | |
| Deerwood-------- | 3 | \| Poor | \mid | Not rated | |
| | | Bottom layer | 10.00 | | |
| | | Thickest layer | 10.00 | | |
| | | | | | |
| Hamar----------- | 3 | \| Poor | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 10.25 |
| | | Thickest layer | 10.00 | Thickest layer | \| 0.25 |
| | | | | | |
| Strandquist----- | 2 | \| Fair | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.12 | Thickest layer | 10.68 |
| | | | | | |
| Radium--------- | 1 | \| Poor | | Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 10.72 |
| | | Thickest layer | 10.00 | Bottom layer | \| 0.79 |
| | | | | | |
| Wyandotte------- | 1 | \| Fair | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.25 | Thickest layer | 10.10 |
| | | | | | |

Table 20a.--Construction Materials--Continued

| Map symbol and soil name | $\begin{aligned} & \mid \text { Pct. } \\ & \mid \text { of } \\ & \mid \text { map } \\ & \mid \text { unit } \end{aligned}$ | Potential as source of gravel | | Potential as source of sand | | |
|---|---|---|---|---|---|---|
| | | Rating class | \| Value| | Rating class | \| Value |
| | | | | | |
| | | | | | |
| Thiefriver------ | 70 | \| Poor | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 0.00 | Thickest layer | 10.01 |
| | | | | | |
| Espelie--------- | 10 | \| Poor | | Fair | |
| | | Bottom layer | 0.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.13 |
| | | | | | |
| Foxlake--------- | 7 | \| Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.00 |
| | | | | | |
| Huot------------ | 5 | \| Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 0.00 | Thickest layer | 10.00 |
| | | | | | |
| Clearwater, depressional---- | | | | | |
| | \| 3 | \| Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.00 |
| | | | | | |
| Rosewood-------- | 3 | \| Poor | | Fair | |
| | | Bottom layer | 0.00 | Thickest layer | 0.02 |
| | | Thickest layer | 10.00 | Bottom layer | 10.25 |
| | | | | | |
| Ulen------------ | 1 | \| Poor | | Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 10.05 |
| | | Thickest layer | 0.00 | Bottom layer | 0.25 |
| | | | | | |
| Wyandotte------- | 1 | \| Fair | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 0.25 | Thickest layer | 10.10 |
| | | | | | |
| I64A: | | | | | |
| Ulen------------ | \| 70 | \| Poor | | Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 10.05 |
| | | Thickest layer | 10.00 | Bottom layer | 10.25 |
| | | | | | |
| Rosewood-------- | 10 | \| Poor | | Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 0.02 |
| | | Thickest layer | 10.00 | Bottom layer | 10.25 |
| | | | | | |
| Flaming--------- | \| 8 | \| Poor | | Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 10.02 |
| | | Thickest layer | 10.00 | Bottom layer | 10.25 |
| | | | | | |
| Karlsruhe------- | \| 5 | Poor | | Fair | |
| | | \| Thickest layer | 10.00 | Thickest layer | 10.07 |
| | | Bottom layer | 10.00 | Bottom layer | 10.54 |
| | | | | | |
| Radium---------- | \| 3 | \| Poor | | Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 10.72 |
| | | Thickest layer | 10.00 | Bottom layer | 10.79 |
| | | | | | |
| Strathcona------ | \| 2 | Poor | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.25 |
| | | | | | |

Table 20a.--Construction Materials--Continued

| Map symbol and soil name | $\left.\begin{array}{\|l\|} \mid \text { Pct. } \\ \mid \text { of } \\ \mid \text { map } \end{array} \right\rvert\,$ | Potential as source of gravel | | Potential as source of sand | | |
|---|---|---|---|---|---|---|
| | | Rating class | \| Value| | Rating class | Value |
| I64A:Thiefri | | | | | |
| | 2 | Poor | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.01 |
| | | | | | |
| I65A: | | | | | |
| Ulen--------------- \| | 70 | Poor | | Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 0.05 |
| | | Thickest layer | 10.00 | Bottom layer | 0.25 |
| | | | | | |
| Rosewood----------- \| | 10 | Poor | | Fair | |
| | | Bottom layer | 0.00 | Thickest layer | 0.02 |
| | | Thickest layer | 10.00 | Bottom layer | 0.25 |
| | | | | | |
| Flaming------------ \| | 6 | Poor | | Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 0.02 |
| | | Thickest layer | 0.00 | Bottom layer | 0.25 |
| | | | | | |
| Poppleton---------- \| | 4 | Poor | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 0.25 |
| | | Thickest layer | 0.00 | Thickest layer | 0.25 |
| | | | | | |
| Karlsruhe---------- \| | 3 | \| Poor | | Fair | |
| | | Thickest layer | 0.00 | Thickest layer | 0.07 |
| | | Bottom layer | 10.00 | Bottom layer | 0.54 |
| | | | | | |
| Radium------------ \| | 3 | Poor | | Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 0.72 |
| | | Thickest layer | 10.00 | Bottom layer | 0.79 |
| | | | | | |
| Strathcona--------- \| | 2 | Poor | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.25 |
| | | | | | |
| Thiefriver--------- \| | \| 2 | Poor | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.01 |
| | | | | | |
| I66A: | | | | | |
| Vallers | \| 75 | Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.00 |
| | | | | | |
| Vallers, very cobbly | 7 | Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| Hamerly------------ \| | \| 6 | Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.00 |
| | | | | | |
| Grimstad----------- \| | \| 3 | Poor | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.05 |
| | | | | | |
| Mavie-------------- \| | \| 3 | Fair | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | \| 0.12 | Thickest layer | 0.61 |
| | | | | | |

Table 20a.--Construction Materials--Continued

| Map symbol and soil name | $\begin{array}{\|} \mid \text { Pct. } \\ \mid \text { of } \\ \mid \text { map } \\ \mid \text { unit } \mid \end{array}$ | Potential as source of gravel | | Potential as source of sand | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class | \| Value | Rating class | Value |
| | | | \| | | |
| I66A: | | | | | |
| Roliss, depressional | \| 3 | \| Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | $\mid 1$ | | | | |
| Strathcona--------- \| | \| 3 | \| Poor | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.25 |
| | | | | | |
| 167A: | | | | | |
| Wheatville---------- | \| 70 | \| Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| Augsburg----------- | \| 13 | \| Poor | | Poor | |
| | | \| Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | $\|\quad\|$ | | | | |
| Glyndon------------ - \| | \| 8 | \| Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| Foxlake------------\| | \| 5 | \| Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| Hilaire------------- | \| 2 | \| Poor | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.25 |
| | | | | | |
| Ulen---------------- | \| 2 | \| Poor | | Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 0.05 |
| | | Thickest layer | 10.00 | Bottom layer | 0.25 |
| | | | | | |
| I68A: | | | | | |
| Wheatville--------- | \| 70 | \| Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| Augsburg------------ \| | \| 13 | \| Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | , | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| Glyndon------------- \| | \| 8 | \| Poor | I | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | \| | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| Foxlake------------ \| | \| 5 | \| Poor | \| | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 0.00 |
| | | | | | |
| Hilaire------------ | \| 2 | \| Poor | \| | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | 1 | Thickest layer | 10.00 | Thickest layer | 0.25 |
| | | | | | |
| Ulen--------------- | \| 2 | \| Poor | , | Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 0.05 |
| | | Thickest layer | 10.00 | Bottom layer | 0.25 |
| | | | | | |

Table 20a.--Construction Materials--Continued

| Map symbol and soil name | Pct.
 of map unit | Potential as source of gravel | | Potential as source of sand | | |
|---|---|---|---|---|---|---|
| | | Rating class | \|Value| | Rating class | \| Value |
| | | | | | |
| | | | | | |
| Wyandotte------- | 65 | Fair | | \| Fair | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.25 | Thickest layer | 0.10 |
| | | | | | |
| Foxlake--------- | 10 | Poor | | \| Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | | | | | |
| Espelie--------- | 8 | Poor | | \| Fair | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 0.00 | Thickest layer | 0.13 |
| | | | | | |
| Clearwater, | | | | | |
| depressional--- | 5 | Poor | | Poor | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.00 |
| | | | | | |
| Thiefriver------ | 5 | Poor | | Fair | |
| | | Bottom layer | 0.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.01 |
| | | | | | |
| Karlsruhe------- | 4 | Poor | | Fair | |
| | | Thickest layer | 0.00 | Thickest layer | 10.07 |
| | | Bottom layer | 10.00 | Bottom layer | 10.54 |
| | | | | | |
| Syrene---------- | 3 | Poor | | Fair | |
| | | Bottom layer | 0.00 | Bottom layer | 10.22 |
| | | Thickest layer | 10.00 | Thickest layer | 10.22 |
| | | | | | |
| I70A: | | | | | |
| Strathcona------ | 70 | Poor | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.25 |
| | | | | | |
| Kratka---------- | 10 | Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 0.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.00 |
| | | | | | |
| Roliss---------- | 6 | \| Poor | | Poor | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.00 |
| | | | | | |
| Grimstad-------- | 5 | Poor | 1 | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | Thickest layer | 10.05 |
| | | | | | |
| Mavie---------- | 3 | \| Fair | 1 | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | \| 0.12 | Thickest layer | 10.61 |
| | | | | | |
| Rosewood-------- | 3 | Poor | 1 | \| Fair | |
| | | Bottom layer | 10.00 | Thickest layer | 10.02 |
| | | Thickest layer | 10.00 | Bottom layer | 10.25 |
| | | | | | |
| Strathcona, depressional--- | | | \| | | |
| | 3 | Poor | | Fair | |
| | | Bottom layer | 10.00 | Bottom layer | 10.00 |
| | | Thickest layer | 10.00 | \| Thickest layer | 10.25 |
| | | | | | |

Table 20a.--Construction Materials--Continued

Table 20b.--Construction Materials
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.00 to 0.99 . The smaller the value, the greater the limitation. "Not rated" indicates that data are not available or that no rating is applicable. See text for further explanation of ratings in this table)

Table 20b.--Construction Materials--Continued

Table 20b.--Construction Materials--Continued

| Map symbol and soil name | Pct.
 of map unit | Potential as source of reclamation material | | Potential as source of roadfill | | Potential as source of topsoil | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | Value | Rating class and limiting features | \|Value | Rating class and limiting features | Value |
| B2 02A: | | | | | | | |
| Hamre----------- | \| 8 | \| Poor | | Poor | | Poor | |
| | | Wind erosion | 0.00 | Depth to | 10.00 | Depth to | 0.00 |
| | | Low content of | 0.12 | saturated zone | | saturated zone | |
| | | organic matter | | Low strength | \| 0.22 | | |
| | | Water erosion | 0.99 | | | | |
| | | | | | | | |
| Chilgren-------- | 3 | Fair | | Poor | | \| Poor | |
| | | Low content of | 0.12 | Depth to | 0.00 | Depth to | 0.00 |
| | | organic matter | | saturated zone | | saturated zone | |
| | | Carbonate content | 0.97 | Low strength | \| 0.22 | Carbonate content | 0.97 |
| | | Water erosion | 0.99 | | | | |
| | | | | | | | |
| Northwood------- | 3 | \| Poor | | Poor | | Poor | |
| | | Wind erosion | 0.00 | Depth to | 10.00 | Depth to | 0.00 |
| | | Low content of $\mid 0$ | 0.12 | saturated zone | | saturated zone | |
| | | organic matter | | Low strength | \| 0.22 | | |
| | | Water erosion | 0.99 | | | | |
| | | | | | | | |
| Berner---------- | 2 | \| Poor | | Poor | | Poor | |
| | | Wind erosion | 0.00 | Depth to | 10.00 | Depth to | 10.00 |
| | | | | saturated zone | | saturated zone | |
| | | | | Low strength | 0.22 | Content of | 0.00 |
| | | | | | | organic matter | |
| | | | | | | | |
| Grygla---------- | 2 | \| Poor | | Poor | | Poor | |
| | | Wind erosion | 0.00 | Depth to | 10.00 | Depth to | 10.00 |
| | | Low content of | 0.12 | saturated zone | | saturated zone | |
| | | organic matter | | Low strength | 0.22 | Too sandy | 0.50 |
| | | Too sandy | 0.50 | | | | |
| | | Water erosion | 0.99 | | | | |
| | | \| | | | | | |
| Seelyeville----- | 2 | Poor | | Poor | | Poor | |
| | | Wind erosion | | Depth to | 10.00 | Depth to | 10.00 |
| | | Too acid | 0.88 | saturated zone | | saturated zone | |
| | | | | | | Content of | 10.00 |
| | | | | | | organic matter | |
| | | | | | | | |
| B203A: | | | | | | | |
| Northwood------- | 75 | | | Poor | | Poor | |
| | | Wind erosion 0 | 0.00 | Depth to | 10.00 | Depth to | 10.00 |
| | | Low content of 0 | 0.12 | saturated zone | | saturated zone | |
| | | organic matter | | Low strength | \| 0.22 | | |
| | | Water erosion | 0.99 | | | | |
| | | | | | | | |
| Hamre----------- | 10 | \| Poor | | Poor | | Poor | |
| | | Wind erosion \|0 | 0.00 | Depth to | 10.00 | Depth to | 10.00 |
| | | Low content of $\mid 0$ | 0.12 | saturated zone | | saturated zone | |
| | | organic matter | | Low strength | 0.22 | | |
| | | Water erosion \|0 | 0.99 | | | | |
| | | | | | | | |
| Grygla---------- | 7 \| | \| Poor | | Poor | | Poor | |
| | | Wind erosion \|0 | 0.00 | Depth to | 10.00 | Depth to | 10.00 |
| | | Low content of 0 | 0.12 | saturated zone | | saturated zone | |
| | | organic matter | | Low strength | \| 0.22 | Too sandy | 10.50 |
| | | Too sandy \|0 | 0.50 | | | | |
| | | Water erosion \|0 | 0.99 | | | | |
| | | | | | | | |

Table 20b.--Construction Materials--Continued

Table 20b.--Construction Materials--Continued

| Map symbol and soil name | $\begin{aligned} & \text { \| Pct. } \\ & \mid \text { of } \\ & \text { \|map } \\ & \text { \| unit } \end{aligned}$ | Potential as source of reclamation material | | Potential as source of roadfill | | Potential as source of topsoil | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | Value | Rating class and limiting features | \| Value | Rating class and limiting features | ${ }^{\text {\| Value }}$ |
| B205A: | | | | | | | |
| Northwood------- | \| 7 | \| Poor | | Poor | | Poor | |
| | | Wind erosion | 0.00 | Depth to | 10.00 | Depth to | 0.00 |
| | | Low content of | 0.12 | saturated zone | | saturated zone | |
| | | organic matter | | Low strength | 10.22 | | |
| | | Water erosion | 0.99 | | | | |
| | | | | | | | |
| Grygla---------- | \| 5 | \| Poor | | Poor | | Poor | |
| | | Wind erosion | | Depth to | 10.00 | Depth to | 0.00 |
| | | Low content of | 0.12 | saturated zone | | saturated zone | |
| | | organic matter | | Low strength | 10.22 | Too sandy | 0.50 |
| | | Too sandy | 0.50 | | | | |
| | | Water erosion | 0.99 | | | | |
| | | | | | | | |
| Cathro----------- | \| 3 | \mid Poor | | Poor | | Poor | |
| | | Wind erosion | 0.00 | Depth to | 10.00 | Depth to | 0.00 |
| | | Low content of | 0.12 | saturated zone | | saturated zone | |
| | | organic matter | | Low strength | 10.22 | | |
| | | Water erosion | 0.99 | | | | |
| | | | | | | | |
| Hamre----------- | \| 3 | \| Poor | | Poor | | Poor | |
| | | Wind erosion | 0.00 | Depth to | 10.00 | Depth to | 0.00 |
| | | Low content of | 0.12 | saturated zone | | saturated zone | |
| | | organic matter | | Low strength | 10.22 | | |
| | | Water erosion | 0.99 | | | | |
| | | | | | | | |
| Seelyeville----- | \| 2 | | | Poor | | | |
| | | Wind erosion | 0.00 | Depth to | 10.00 | Depth to | 10.00 |
| | | Too acid | 0.88 | saturated zone | | saturated zone | |
| | | | | | | Content of | 0.00 |
| | | | | | | organic matter | |
| | | | | | | | |
| B206A: | | | | | | | |
| Hamre | 80 | | | | | | |
| | | Wind erosion | 0.00 | Depth to | 10.00 | Depth to | 0.00 |
| | | Low content of | 0.12 | saturated zone | | saturated zone | |
| | | organic matter | | Low strength | 10.22 | | |
| | | Water erosion | 0.99 | | | | |
| | | | | | | | |
| Chilgren-------- | \| 8 | \|Fair | | Poor | | Poor | |
| | | Low content of organic matter | 0.12 | Depth to saturated zone | 10.00 | Depth to saturated zone | 0.00 |
| | | Carbonate content\|0. | 0.97 | Low strength | 10.22 | Carbonate content | 0.97 |
| | | Water erosion | 0.99 | | | | |
| | | | | | | | |
| Northwood-------- | \| 5 | \| Poor | | Poor | | Poor | |
| | | Wind erosion | 0.00 | Depth to | 10.00 | Depth to | 0.00 |
| | | Low content of | 0.12 | saturated zone | | saturated zone | |
| | | organic matter | | Low strength | 10.22 | | |
| | | Water erosion | 0.99 | | | | |
| | | | | | | | |
| Cathro----------- | \| 3 | Poor | | | | | |
| | | Wind erosion | 0.00 | Depth to | 10.00 | Depth to | 0.00 |
| | | Low content of | 0.12 | saturated zone | | saturated zone | |
| | | organic matter | | Low strength | 10.22 | | |
| | | Water erosion | 0.99 | | | | |
| | | | | | | | |

Table 20b.--Construction Materials--Continued

Table 20b.--Construction Materials--Continued

| Map symbol and soil name | $\begin{aligned} & \mid \text { Pct. } \\ & \mid \text { of } \\ & \mid \text { map } \\ & \mid \text { unit } \mid \end{aligned}$ | Potential as source of reclamation material | | Potential as source of roadfill | | Potential as source of topsoil | | |
|---|---|---|---|---|---|---|---|---|
| | | Rating class and limiting features | Value | Rating class and limiting features | \|Value| | Rating class and limiting features | Value |
| I2A: | | | | | | | |
| Augsburg-------- | 75 | Fair | | Poor | | Poor | |
| | | Low content of organic matter | 0.12 | Depth to saturated zone | 0.00 | Depth to saturated zone | 0.00 |
| | | Too sandy | 0.13 | Low strength | 0.00 | Too sandy | 0.13 |
| | | Carbonate content | 0.32 | Shrink-swell | 10.84 | | |
| | | | | | | | |
| Borup----------- | 10 | \|Fair | | Poor | | Poor | |
| | | Low content of organic matter | 0.12 | Depth to saturated zone | 0.00 | Depth to saturated zone | 10.00 |
| | | Carbonate content | 0.32 | | | Carbonate content\|0 | 0.32 |
| | | | | Poor | | | |
| Foxlake--------- | 5 | \| Poor | | | | Poor | |
| | | Too clayey | 0.00 | Depth to | 10.00 | Depth to | 10.00 |
| | | Low content of | 0.12 | saturated zone | | saturated zone | |
| | | organic matter | | Low strength | 0.00 | Too clayey | 10.00 |
| | | | | Shrink-swell | 10.38 | | |
| | | | | | | | |
| Augsburg, | | | | | | | |
| depressional--- | 3 | \| Fair | | Poor | | Poor | |
| | | Low content of organic matter | 0.12 | Depth to saturated zone | 10.00 | Depth to saturated zone | 10.00 |
| | | Carbonate content | 0.16 | Low strength | 0.00 | Carbonate content\| | 0.16 |
| | | | | Shrink-swell | 0.84 | | |
| | | | | | | | |
| Wheatville------ | 3 | \| Fair | | Poor | | Fair | |
| | | Low content of | 0.12 | Low strength | 0.00 | Depth to | 10.06 |
| | | organic matter | | Depth to | 0.06 | saturated zone | |
| | | Carbonate content\|0 | 0.32 | saturated zone | | Carbonate content\| | 0.32 |
| | | Water erosion \|0 | 0.90 | Shrink-swell | 0.80 | | |
| | | | | | | | |
| Glyndon--------- | 2 | \| Fair | | Poor | | \| Poor | |
| | | Low content of organic matter | 0.12 | Depth to saturated zone | 0.00 | Depth to saturated zone | 10.00 |
| | | Carbonate content\|0 | 0.32 | | | Carbonate content\| | 0.32 |
| | | | | | | | |
| Espelie--------- | 1 | \| Poor | | Poor | | \| Poor | |
| | | Too clayey | 0.00 | Depth to | 10.00 | Depth to | 10.00 |
| | | Low content of | 0.12 | saturated zone | | saturated zone | |
| | | organic matter | | Low strength | 0.00 | Too clayey | 10.00 |
| | | | | Shrink-swell | 0.57 | | |
| | | | | | | | |
| Hattie---------- | 1 | \| Poor | | Poor | | \| Poor | |
| | | Too clayey | 0.00 | Low strength | 0.00 | Too clayey | 10.00 |
| | | Low content of | 0.12 | Shrink-swell | 0.12 | Depth to | 10.65 |
| | | organic matter | | Depth to | 0.65 | saturated zone | |
| | | | | saturated zone | | | |
| | | | | | | | |
| I3A: | | | | | | | |
| Berner | 80 | \| Not rated | | Poor | | \| Not rated | |
| | | | | Depth to | 0.00 | | |
| | | | | saturated zone | | | |
| | | | | Low strength | 0.22 | | |
| | | | | | | | |
| Northwood------- | 7 | \| Poor | | Poor | | \| Poor | |
| | | Wind erosion | 0.00 | Depth to | 10.00 | Depth to | 10.00 |
| | | Low content of | 0.12 | saturated zone | | saturated zone | |
| | | organic matter | | Low strength | 0.22 | | |
| | | Water erosion | 0.99 | | | | |
| | | | | | | | |

Table 20b.--Construction Materials--Continued

Table 20b.--Construction Materials--Continued

Table 20b.--Construction Materials--Continued

Table 20b.--Construction Materials--Continued

| Map symbol and soil name | | Potential as source of reclamation material | | Potential as source of roadfill | | Potential as source of topsoil | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | Value | Rating class and limiting features | Value | Rating class and limiting features | \|Value |
| | | | | | | | |
| Kratka---------- | \| 2 | Fair | | Poor | | Poor | |
| | | Low content of | 0.12 | Depth to | 0.00 | Depth to | 10.00 |
| | | organic matter | | saturated zone | | saturated zone | |
| | | Water erosion | 0.99 | Low strength | 0.22 | | |
| | | | | | | | |
| Seelyeville----- | 2 | Not rated | | \| Poor | | Not rated | |
| | | | | Depth to | 0.00 | | |
| | | | | saturated zone | | | |
| | | | | | | | |
| I9A: | | | | | | | |
| Clearwater------ | 80 | Poor | | \| Poor | | Poor | |
| | | Too clayey | 0.00 | Depth to | 0.00 | Depth to | 0.00 |
| | | Low content of | 0.12 | saturated zone | | saturated zone | |
| | | organic matter | | Low strength | 0.00 | Too clayey | 0.00 |
| | | | | Shrink-swell | 0.12 | | |
| | | | | | | | |
| Clearwater, very cobbly | 5 | | | | | | |
| | | Poor | | Poor | | Poor | |
| | | Too clayey | 0.00 | Depth to | 0.00 | Depth to | 10.00 |
| | | Low content of | 0.12 | saturated zone | | saturated zone | |
| | | organic matter | | Low strength | 0.00 | Too clayey | 0.00 |
| | | | | Shrink-swell | 0.12 | | |
| | | | | | | | |
| Reis------------ | 5 | Poor | | \| Poor | | Poor | |
| | | Too clayey | 0.00 | Depth to | 0.00 | Too clayey | 0.00 |
| | | Low content of | 0.12 | saturated zone | | Depth to | 10.00 |
| | | organic matter | | Low strength | 0.00 | saturated zone | |
| | | Carbonate content | 0.68 | Shrink-swell | 0.12 | Carbonate content | 0.68 |
| | | | | | | | |
| Clearwater, depressional--- | 3 | | | | | | |
| | | \| Poor | | \| Poor | | Poor | |
| | | Too clayey | 0.00 | Depth to | 0.00 | Depth to | 10.00 |
| | | Low content of | 0.12 | saturated zone | | saturated zone | |
| | \| | organic matter | | Low strength | 0.00 | Too clayey | 10.00 |
| | \| | | | Shrink-swell | 0.12 | | |
| | | | | | | | |
| Espelie--------- | 3 | \| Poor | | Poor | | Poor | |
| | | Too clayey | 0.00 | Depth to | 0.00 | Depth to | 10.00 |
| | | Low content of | 0.12 | saturated zone | | saturated zone | |
| | | organic matter | | Low strength | 0.00 | Too clayey | 10.00 |
| | | | | Shrink-swell | 0.57 | | |
| | | | | | | | |
| Foxlake--------- | 2 | \| Poor | | Poor | | Poor | |
| | | Too clayey | 0.00 | Depth to | 0.00 | Depth to | 10.00 |
| | | Low content of | 0.12 | saturated zone | | saturated zone | |
| | | organic matter | | Low strength | 0.00 | Too clayey | 10.00 |
| | | | | Shrink-swell | 0.38 | | |
| | | | | | | | |
| Hattie--------- | 1 | Poor | | Poor | | Poor | |
| | | Too clayey | 0.00 | Low strength | 0.00 | Too clayey | 10.00 |
| | | Low content of | 0.12 | Shrink-swell | 0.12 | Depth to | 10.65 |
| | | organic matter | | Depth to | 0.65 | saturated zone | |
| | | | | saturated zone | | | |
| | | | | | | | |
| Huot------------ | 1 | \| Fair | | \| Poor | | Fair | |
| | | Low content of | 0.12 | Low strength | 0.00 | Depth to | 10.88 |
| | | organic matter | | Shrink-swell | 0.86 | saturated zone | |
| | | Carbonate content\| | 0.68 | Depth to | 0.88 | Rock fragments | 10.97 |
| | | | | saturated zone | | | |
| | | | | | | | |

Table 20b.--Construction Materials--Continued

Table 20b.--Construction Materials--Continued

| Map symbol and soil name | Pct.
 of \|map |unit | Potential as source of reclamation material | | Potential as source of roadfill | | Potential as source of topsoil | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | Value | Rating class and limiting features | Value | Rating class and limiting features | Value |
| I11A: | | | | | | | |
| Syrene---------- | 2 | \|Fair | | Poor | | Poor | |
| | | Low content of organic matter | 0.12 | Depth to saturated zone | 0.00 | ```Depth to saturated zone``` | 0.00 |
| | | Droughty | 0.17 | | | Rock fragments | 0.00 |
| | | Too sandy | 0.22 | | | Too sandy | 0.22 |
| | | Carbonate content | 0.68 | | | Hard to reclaim | 0.68 |
| | | | | Poor | | | |
| Venlo----------- | 2 | \| Poor | | | | Poor | |
| | | Too sandy | 0.00 | Depth to | 0.00 | Too sandy | 0.00 |
| | | Low content of | 0.12 | saturated zone | | Depth to | 0.00 |
| | | organic matter | | | | saturated zone | |
| | | Droughty | 0.93 | | | | |
| | | | | | | | |
| I12A: | | | | | | | |
| Eckvoll--------- | 70 | \| Poor | | Fair | | Poor | |
| | | Too sandy | 0.00 | Low strength | 0.22 | Too sandy | 0.00 |
| | | Wind erosion | 0.00 | Depth to | 0.88 | Depth to | 0.88 |
| | | Low content of | 0.12 | saturated zone | | saturated zone | |
| | | organic matter | | | | | |
| | | Water erosion | 0.99 | | | | |
| | | | | | | | |
| Kratka---------- | 8 | \|Fair | | Poor | | Poor | |
| | | Low content of organic matter | 0.12 | Depth to saturated zone | 0.00 | Depth to saturated zone | 0.00 |
| | | Water erosion | 0.99 | Low strength | 0.22 | | |
| | | | | | | | |
| Smiley---------- | 7 | \|Fair | | Poor | | Poor | |
| | | Low content of organic matter | 0.12 | Depth to saturated zone | 0.00 | Depth to saturated zone | 0.00 |
| | | Carbonate content | 0.92 | Low strength | 0.22 | Carbonate content | 0.92 |
| | | Water erosion | 0.99 | | | | |
| | | | | | | | |
| Linveldt-------- | 5 | \| Poor | | Fair | | Poor | |
| | | Too sandy | 0.00 | Low strength | 0.22 | Too sandy | 0.00 |
| | | Low content of | 0.12 | Depth to | 0.88 | Rock fragments | 0.50 |
| | | organic matter | | saturated zone | | Depth to | 0.88 |
| | | Carbonate content | 0.97 | | | saturated zone | |
| | | Water erosion | 0.99 | | | | |
| | | | | | | | |
| Reiner---------- | 5 | \|Fair | | \|Fair | | Fair | |
| | | Low content of | 0.12 | Low strength | 0.22 | Depth to | 0.88 |
| | | organic matter | | Depth to | 0.88 | saturated zone | |
| | | Carbonate content\| | 0.97 | saturated zone | | Carbonate content | 0.97 |
| | | Water erosion | 0.99 | | | | |
| | | | | | | | |
| Foldahl--------- | 2 | \| Poor | | Fair | | Poor | |
| | | Too sandy | 0.00 | Low strength | 0.22 | Too sandy | 0.00 |
| | | Wind erosion | 0.00 | Depth to | 0.88 | Depth to | 0.88 |
| | | Low content of organic matter | 0.12 | saturated zone | | saturated zone | |
| | | Water erosion | 0.99 | | | | |
| | | | | | | | |
| Pelan | 2 | \|Fair | | \| Fair | | Fair | |
| | | Low content of | 0.12 | Low strength | 0.22 | Depth to | 0.88 |
| | | organic matter | | Depth to | 0.88 | saturated zone | |
| | | Water erosion | 0.99 | saturated zone | | | |
| | | | | | | | |

Table 20b.--Construction Materials--Continued

Table 20b.--Construction Materials--Continued

Table 20b.--Construction Materials--Continued

| Map symbol and soil name | $\begin{aligned} & \text { \|Pct. } \\ & \text { of } \\ & \text { \|map } \\ & \text { \|unit } \end{aligned}$ | Potential as source of reclamation material | | Potential as source of roadfill | | Potential as source of topsoil | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | Value | Rating class and
 limiting features | \|Value | Rating class and limiting features | \| Value |
| I15A: | | | | | | | |
| Poppleton------- | 3 | Poor | | \|Fair | | \| Poor | |
| | | Too sandy | 0.00 | Depth to | 10.88 | Too sandy | 0.00 |
| | | Wind erosion | 0.00 | saturated zone | | Depth to | 0.88 |
| | | Low content of | 0.12 | | | saturated zone | |
| | | organic matter | | | | | |
| | | Droughty | 0.81 | | | | |
| | | | | | | | |
| Sandberg-------- | 3 | Poor | | \| Good | | \| Fair | |
| | | Wind erosion | 0.00 | | | Rock fragments | 0.12 |
| | | Low content of | 0.12 | | | Too sandy | 0.47 |
| | | organic matter | | | | Hard to reclaim | \| 0.92 |
| | | Droughty | 0.14 | | | | |
| | | Too sandy | 0.47 | | | | |
| | | | | | | | |
| Foldahl--------- | 2 | Poor | | \| Fair | | \| Poor | |
| | | Too sandy | 0.00 | Low strength | 10.22 | Too sandy | 0.00 |
| | | Wind erosion | 0.00 | Depth to | 10.88 | Depth to | 0.88 |
| | | Low content of | 0.12 | saturated zone | | saturated zone | |
| | | organic matter | | | | | |
| | | Water erosion | 0.99 | | | | |
| | | | | | | | |
| Radium---------- | 2 | Poor | | \| Good | | \| Poor | |
| | | Too sandy | 0.00 | | | Too sandy | 10.00 |
| | | Wind erosion | 0.00 | | | Rock fragments | 0.50 |
| | | Low content of | 0.12 | | | | |
| | \| | organic matter | | | | | |
| | | Droughty | 0.82 | | | | |
| | | | | | | | |
| I16F: | | | | | | | |
| Fluvaquents------ | 55 | Good | | \| Poor | | \| Poor | |
| | | | | Depth to | 10.00 | Depth to | 0.00 |
| | | | | saturated zone | | saturated zone | |
| | | | | | | Rock fragments | 0.88 |
| | | | | | | | |
| Hapludolls------ | \| 25 | Fair | | \| Good | | \| Fair | |
| | | Low content of | 0.12 | | | slope | 0.37 |
| | | organic matter | | | | | |
| | | | | | | | |
| Hapludalfs------ | \| 7 | Fair | | \| Poor | | \| Poor | |
| | | Low content of | 0.12 | Slope | 10.00 | Slope | 10.00 |
| | \| | organic matter | | Depth to | 10.88 | Depth to | 10.88 |
| | | Water erosion | 0.99 | saturated zone | | saturated zone | |
| | | | | | | | |
| Fairdale-------- | \| 5 | Good | | \| Fair | | \|Fair | |
| | | | | Depth to | 10.88 | Slope | 0.63 |
| | | | | saturated zone | | Depth to | \| 0.88 |
| | | | | Shrink-swell | 10.96 | saturated zone | |
| | | | | | | | |
| Water------------ | \| 5 | Not rated | | \| Not rated | | \| Not rated | |
| | | | | | | | |
| | \| 2 | Not rated | | \| Poor | | \| Not rated | |
| Bowstring-------- | | | | Depth to | 10.00 | | |
| | | | | saturated zone | | | |
| | | | | | | | |
| Rauville-------- | \| 1 | Good | | \| Poor | | \| Poor | |
| | | | | Depth to | 10.00 | Depth to | 10.00 |
| | | | | saturated zone | | saturated zone | |
| | | | | Low strength | 10.00 | | |
| | | | | Shrink-swell | 10.98 | | |
| | | | | | | | |

Table 20b.--Construction Materials--Continued

Table 20b.--Construction Materials--Continued

| Map symbol and soil name | Pct.
 of map unit | Potential as source of reclamation material | | Potential as source of roadfill | | Potential as source of topsoil | | |
|---|---|---|---|---|---|---|---|---|
| | | Rating class and limiting features | Value | Rating class and limiting features | \|Value | Rating class and limiting features | \|Value |
| | | | | | | | |
| | | | | | | | | |
| Mavie---------- | \| 2 | Too sandy | 0.00 | Depth to | 0.00 | Too sandy | 10.00 |
| | | Low content of | 0.12 | saturated zone | | Depth to | 0.00 |
| | | organic matter | | Low strength | 10.22 | saturated zone | |
| | | Carbonate content | 0.68 | | | Rock fragments | 0.00 |
| | | Water erosion | 0.99 | | | Carbonate content | 0.97 |
| | | | | | | | |
| Ulen------------ | 2 | \|Fair | | Fair | | \|Fair | |
| | | Too sandy | 0.16 | Depth to | 0.50 | Too sandy | 0.16 |
| | | Low content of | 0.50 | saturated zone | | Depth to | 0.50 |
| | | organic matter | | | | saturated zone | |
| | | Carbonate content\|0 | 0.68 | | | Carbonate content\|0 | 0.68 |
| | | Droughty \|0 | 0.99 | | | | |
| | | | | | | | |
| I25A: | | | | | | | |
| Hamar----------- | 75 | \| Poor | | Poor | | Poor | |
| | | Too sandy | 0.00 | Depth to | 0.00 | Too sandy | 0.00 |
| | | Wind erosion | 0.00 | saturated zone | | Depth to | 0.00 |
| | | Low content of | 0.12 | | | saturated zone | |
| | | organic matter | | | | | |
| | | Droughty | 0.83 | | | | |
| | | | | | | | |
| Garborg--------- | 10 | \| Poor | | Fair | | Fair | |
| | | Wind erosion | 0.00 | Depth to | 0.12 | Depth to | 0.12 |
| | | Too sandy | 0.45 | saturated zone | | saturated zone | |
| | | | | | | Too sandy | 0.45 |
| | | | | | | | |
| Rosewood-------- | 7 | \| Poor | | Poor | | Poor | |
| | | \| Too sandy | 0.00 | Depth to | 0.00 | Too sandy | 0.00 |
| | | Low content of | 0.12 | saturated zone | | Depth to | 0.00 |
| | | organic matter | | | | saturated zone | |
| | | Carbonate content\|0 | 0.68 | | | Rock fragments | 10.88 |
| | | \| | | | | | |
| Venlo----------- | 3 | \| Poor | | Poor | | Poor | |
| | | Too sandy | 0.00 | Depth to | 10.00 | Too sandy | 10.00 |
| | | Low content of | 0.12 | saturated zone | | Depth to | 10.00 |
| | | organic matter | | | | saturated zone | |
| | | Droughty | 0.93 | | | | |
| | | | | | | | |
| Flaming--------- | \| 2 | \| Poor | | | | | |
| | | \| Too sandy | 0.00 | Depth to | 0.88 | Too sandy | 10.00 |
| | | Wind erosion | 0.00 | saturated zone | | Depth to | 10.88 |
| | | Low content of | 0.12 | | | saturated zone | |
| | | organic matter | | | | | |
| | | Droughty | 0.75 | | | | |
| | | | | | | | |
| Hangaard-------- | 2 | \| Poor | | Poor | | Poor | |
| | | Too sandy 10 | 0.00 | Depth to | 0.00 | Too sandy | 10.00 |
| | | \| Droughty | 0.09 | saturated zone | | Depth to | 10.00 |
| | | Low content of | 0.12 | | | saturated zone | |
| | | organic matter | | | | Rock fragments | 10.03 |
| | | | | | | Hard to reclaim | 10.98 |
| | | | | | | | |
| Kratka--------- | \| 1 | \|Fair | | Poor | | Poor | |
| | | Low content of 0 | 0.12 | Depth to | 0.00 | Depth to | 0.00 |
| | | organic matter | | saturated zone | | saturated zone | |
| | | Water erosion \|0 | 0.99 | Low strength | 0.22 | | |
| | | | | | | | |

Table 20b.--Construction Materials--Continued

Table 20b.--Construction Materials--Continued

| Map symbol and soil name | $\begin{array}{\|l} \mid \text { Pct } . \\ \left\lvert\, \begin{array}{c} \text { of } \end{array}\right. \\ \mid \text { map } \\ \mid \text { unit } \end{array}$ | Potential as source of reclamation material | | Potential as source of roadfill | | Potential as source of topsoil | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | Value | Rating class and limiting features | \|Value | Rating class and limiting features | \| Value |
| | | | | | | | |
| I34A: | | | | | | | |
| Huot | 75 | \| Fair | | Poor | | \| Fair | |
| | | Low content of | 0.12 | Low strength | 10.00 | Depth to | 10.88 |
| | | organic matter | | Shrink-swell | 10.86 | saturated zone | |
| | | Carbonate content\|0 | 0.68 | Depth to | 10.88 | Rock fragments | 10.97 |
| | | | | saturated zone | | | |
| | | | | | | | |
| Thiefriver------ | 12 | \|Fair | | Poor | | \| Poor | |
| | | Low content of | 0.12 | Depth to | 10.00 | Depth to | 10.00 |
| | | organic matter | | saturated zone | | saturated zone | |
| | | Carbonate content\|0. | 0.68 | Low strength | 10.00 | | |
| | | | | Shrink-swell | 10.82 | | |
| | | | | | | | |
| Hilaire--------- | 5 | \| Poor | | Poor | | Poor | |
| | | Too sandy | 0.00 | Low strength | 10.00 | Too sandy | 10.00 |
| | | Low content of | 0.12 | Shrink-swell | | Depth to | 10.88 |
| | | organic matter | | Depth to | 10.88 | saturated zone | |
| | | | | saturated zone | | Rock fragments | 0.97 |
| | | | | | | | |
| Flaming--------- | \| 3 | | | \|Fair | | \| Poor | |
| | | Too sandy | 0.00 | Depth to | 10.88 | Too sandy | 10.00 |
| | | Wind erosion | 0.00 | saturated zone | | Depth to | 10.88 |
| | | Low content of | 0.12 | | | saturated zone | |
| | | organic matter | | | | | |
| | | Droughty | 0.75 | | | | |
| | | | | | | | |
| Foxlake--------- | \| 3 | | | \| Poor | | Poor | |
| | | Too clayey | 10.00 | Depth to | 10.00 | Depth to | 10.00 |
| | | Low content of | 0.12 | saturated zone | | saturated zone | |
| | | organic matter | | Low strength | 10.00 | Too clayey | 0.00 |
| | | | | Shrink-swell | 10.38 | | |
| | | | | | | | |
| Ulen----------- | 2 | \| Fair | | Fair | | Fair | |
| | | Too sandy | | Depth to | 10.50 | Too sandy | 10.16 |
| | | Low content of | 0.50 | saturated zone | | Depth to | 10.50 |
| | | organic matter | | | | saturated zone | |
| | | Carbonate content\|0 | 0.68 | | | Carbonate content\| | 0.68 |
| | | Droughty \|0. | 0.99 | | | | |
| | | | | | | | |
| I35A: | | | | | | | |
| Karlsruhe | 70 | | | Fair | | Fair | |
| | | Low content of organic matter | 0.12 | Depth to saturated zone | 10.50 | Depth to saturated zone | 10.50 |
| | | Carbonate content\| | 0.68 | | | Hard to reclaim | 10.68 |
| | | Droughty \| | 0.90 | | | | |
| | | | | | | | |
| Syrene---------- | 10 | \| Fair | | \| Poor | | \| Poor | |
| | | Low content of organic matter | 0.12 | Depth to saturated zone | 10.00 | Depth to saturated zone | 10.00 |
| | | Droughty | 0.17 | | | Rock fragments | 10.00 |
| | | Too sandy | 0.22 | | | Too sandy | 10.22 |
| | | Carbonate content\| | 0.68 | | | Hard to reclaim | 10.68 |
| | | | | | | | |

Table 20b.--Construction Materials--Continued

| Map symbol and soil name | \mid \mid Pct. \mid of \mid map \mid unit | Potential as source of reclamation material | | Potential as source of roadfill | | Potential as source of topsoil | | |
|---|---|---|---|---|---|---|---|---|
| | | Rating class and limiting features | Value | Rating class and limiting features | \|Value| | Rating class and limiting features | \|Value |
| | | | | | | | |
| I35A: | | | | | | | |
| Ulen | 10 | \| Poor | | Fair | | Fair | |
| | | Wind erosion | 0.00 | Depth to | 10.50 | Too sandy | 0.16 |
| | | Too sandy | 0.16 | saturated zone | | Depth to | 0.50 |
| | | Low content of | 0.50 | | | saturated zone | |
| | | organic matter | | | | Carbonate content\| | 0.68 |
| | | Carbonate content\|0. | 0.68 | | | | |
| | | Droughty \|o. | 0.93 | | | | |
| | | | | | | | |
| Radium | 5 | \| Poor | | Good | | Poor | |
| | | Too sandy | 0.00 | | | Too sandy | 10.00 |
| | | Wind erosion | 0.00 | | | Rock fragments | 0.50 |
| | | Low content of | 0.12 | | | | |
| | | organic matter | | | | | |
| | | Droughty | 0.82 | | | | |
| | | | | | | | |
| Rosewood--------- | \| 3 | \| Poor | | Poor | | Poor | |
| | | Too sandy | 0.00 | Depth to | 10.00 | Too sandy | 10.00 |
| | | Low content of | 0.12 | saturated zone | | Depth to | 10.00 |
| | | organic matter | | | | saturated zone | |
| | | Carbonate content\| | 0.68 | | | Rock fragments | 10.88 |
| | | | | | | | |
| Sandberg-------- | \| 2 | \| Poor | | Good | | Fair | |
| | | Wind erosion | 0.00 | | | Rock fragments | 10.12 |
| | | Low content of | 0.12 | | | Too sandy | 10.47 |
| | | organic matter | | | | Hard to reclaim | 10.92 |
| | | Droughty | 0.14 | | | | |
| | | Too sandy | 0.47 | | | | |
| | | | | | | | |
| I36A: | | | | | | | |
| Kittson | 70 | | | | | Fair | |
| | | Low content of | 0.12 | Low strength | 0.22 | Depth to | 10.88 |
| | | organic matter | | Depth to | 0.88 | saturated zone | |
| | \| | Carbonate content\| | 0.92 | saturated zone | | Carbonate content\| | 0.92 |
| | | Water erosion \|o | 0.99 | | | | |
| | | | | | | | |
| Roliss---------- | 12 | \|Fair | | Poor | | Poor | |
| | | Low content of organic matter | 0.12 | Depth to saturated zone | 10.00 | Depth to saturated zone | 10.00 |
| | \| | Water erosion | 0.99 | Low strength | 10.22 | | |
| | | | | | | | |
| Hamerly--------- | - 5 | \|Fair | | Fair | | Fair | |
| | \| | Low content of organic matter | 0.12 | Depth to saturated zone | 10.06 | Depth to saturated zone | 10.06 |
| | \| | Carbonate content\| | 0.68 | Low strength | 10.22 | Carbonate content | 0.68 |
| | \| | Water erosion \| | 0.99 | | | | |
| | | | | | | | |
| Kratka---------- | \| 5 | \| Fair | | Poor | | Poor | |
| | | Low content of organic matter | 0.12 | Depth to saturated zone | 10.00 | Depth to saturated zone | 10.00 |
| | | Water erosion | 0.99 | Low strength | 10.22 | | |
| | | | | | | | |
| Grimstad-------- | \| 3 | \| Fair | | Fair | | Fair | |
| | | Low content of organic matter | 0.12 | Depth to saturated zone | $\mid 0.12$ | Depth to saturated zone | 10.12 |
| | | Too sandy \|o. | 0.16 | Low strength | 10.22 | Too sandy | 10.16 |
| | | Carbonate content\| | 0.92 | | | Carbonate content | 0.92 |
| | | Water erosion \| | 0.99 | | | | |
| | | | | | | | |

Table 20b.--Construction Materials--Continued

| Map symbol and soil name | $\begin{aligned} & \mid \text { Pct. } \\ & \mid \text { of } \\ & \mid \text { map } \\ & \mid \text { unit } \end{aligned}$ | Potential as source of reclamation material | | Potential as source of roadfill | | Potential as source of topsoil | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | Value | Rating class and limiting features | \| Value | Rating class and limiting features | Value |
| 136A: | | | | | | | |
| | | | | | | | |
| Strandquist--------\| | 3 | Fair | | \| Poor | | \| Poor | |
| | | Low content of | 0.12 | Depth to | 10.00 | Depth to | 10.00 |
| | | organic matter | | saturated zone | | saturated zone | |
| | | Water erosion | 0.99 | Low strength | 10.22 | | |
| | | | | | | | |
| Foxhome------------\| | 2 | Fair | | \| Fair | | \| Fair | |
| | | Low content of | 0.12 | Low strength | 10.22 | Depth to | 10.88 |
| | | organic matter | | Depth to | 10.88 | saturated zone | |
| | | Water erosion | 0.99 | saturated zone | | | |
| | | | | | | | |
| I37A: | | | | | | | |
| Kratka, depressional | 45 | Poor | | \| Poor | | \| Poor | |
| | | Wind erosion | 0.00 | Depth to | 10.00 | Depth to | 10.00 |
| | | Low content of | 0.12 | saturated zone | | saturated zone | |
| | | organic matter | | Low strength | 10.22 | | |
| | | Water erosion | 0.99 | | | | |
| | | | | | | | |
| Strathcona, depressional | | | | | | | |
| | 45 | \| Fair | | Poor | | Poor | |
| | | Low content of organic matter | 0.12 | Depth to saturated zone | 10.00 | Depth to saturated zone | 10.00 |
| | | Carbonate content | 0.92 | Low strength | 10.22 | | |
| | | Water erosion \|0 | 0.99 | | | | |
| | | | | | | | |
| Northwood---------- \| | 5 | \| Poor | | Poor | | Poor | |
| | | Wind erosion | | | 10.00 | Depth to | 10.00 |
| | | Low content of | 0.12 | saturated zone | | saturated zone | |
| | | organic matter | | Low strength | 10.22 | | |
| | | Water erosion | 0.99 | | | | |
| | | \| | | | | | |
| Kratka------------- | 2 | Fair | | Poor | | Poor | |
| | | Low content of organic matter | 0.12 | Depth to saturated zone | 10.00 | Depth to saturated zone | 10.00 |
| | | Water erosion | 0.99 | Low strength | 10.22 | | |
| | | | | | | | |
| Strathcona---------- \| | 2 | | | | | Poor | |
| | | Low content of organic matter | 0.12 | ```Depth to saturated zone``` | 10.00 | Depth to saturated zone | 10.00 |
| | | Carbonate content | 0.92 | Low strength | 10.22 | | |
| | | Water erosion \|0 | 0.99 | | | | |
| | | \| | | | | | |
| Roliss-------------- | 1 | \|Fair | | Poor | | Poor | |
| | | Low content of organic matter | 0.12 | Depth to saturated zone | 10.00 | Depth to saturated zone | 10.00 |
| | | Water erosion | 0.99 | Low strength | 10.22 | | |
| | | | | | | | |
| I38A: | | | | | | | |
| Kratka------------- \| | 70 | | | \| Poor | | Poor | |
| | | Low content of organic matter | 0.12 | ```Depth to saturated zone``` | 10.00 | Depth to saturated zone | 10.00 |
| | | Water erosion | 0.99 | Low strength | 10.22 | | |
| | | | | | | | |
| Smiley------------- | 7 | \|Fair | | Poor | | Poor | |
| | | Low content of organic matter | 0.12 | Depth to saturated zone | 10.00 | Depth to saturated zone | 10.00 |
| | | Carbonate content\| | 0.92 | Low strength | 10.22 | Carbonate content | 10.92 |
| | | Water erosion | 0.99 | | | | |
| | | | | | | | |

Table 20b.--Construction Materials--Continued

| Map symbol and soil name | Pct.
 of map unit | Potential as source of reclamation material | | Potential as source of roadfill | | Potential as source of topsoil | | |
|---|---|---|---|---|---|---|---|---|
| | | Rating class and limiting features | Value | Rating class and limiting features | Value | Rating class and limiting features | \| Value |
| I38A: | | | | | | | |
| Foldahl------------- \| | 5 | \| Poor | | Fair | | Poor | |
| | | Too sandy | 0.00 | Low strength | 0.22 | Too sandy | 10.00 |
| | | Low content of | 0.12 | Depth to | 0.88 | Depth to | 0.88 |
| | | organic matter | | saturated zone | | saturated zone | |
| | | Water erosion | 0.99 | | | | |
| | | | | | | | |
| Kratka, very cobbly | 5 | \| Fair | | Poor | | Poor | |
| | | Low content of | 0.12 | Depth to | 0.00 | Depth to | 0.00 |
| | | organic matter | | saturated zone | | saturated zone | |
| | | Water erosion | 0.99 | Low strength | 0.22 | | |
| | | | | | | | |
| Strathcona---------- \| | 5 | \| Fair | | Poor | | Poor | |
| | | Low content of | 0.12 | Depth to | 0.00 | Depth to | 0.00 |
| | | organic matter | | saturated zone | | saturated zone | |
| | | Carbonate content | 0.92 | Low strength | 0.22 | | |
| | | Water erosion | 0.99 | | | | |
| | | | | | | | |
| Kratka, depressional\| | 3 | \| Poor | | Poor | | Poor | |
| | | Wind erosion | 0.00 | Depth to | 0.00 | Depth to | 0.00 |
| | | Low content of | 0.12 | saturated zone | | saturated zone | |
| | | organic matter | | Low strength | 0.22 | | |
| | | Water erosion | 0.99 | | | | |
| | | | | | | | |
| Strandquist--------\| | 3 | \| Fair | | Poor | | Poor | |
| | | Low content of | 0.12 | Depth to | 0.00 | Depth to | 0.00 |
| | | organic matter | | saturated zone | | saturated zone | |
| | | Water erosion | 0.99 | Low strength | 0.22 | | |
| | | | | | | | |
| Linveldt------------ \| | 2 | \| Poor | | Fair | | Poor | |
| | | Too sandy | 0.00 | Low strength | 0.22 | Too sandy | 10.00 |
| | | Low content of | 0.12 | Depth to | 0.88 | Rock fragments | 10.50 |
| | | organic matter | | saturated zone | | Depth to | 0.88 |
| | | Carbonate content\| | 0.97 | | | saturated zone | |
| | | Water erosion | 0.99 | | | | |
| | | | | | | | |
| I39A: | | | | | | | |
| Linveldt------------ \| | 65 | \| Poor | | Fair | | Poor | |
| | | Too sandy | 0.00 | Low strength | 0.22 | Too sandy | 10.00 |
| | | Low content of | 0.12 | Depth to | 0.88 | Rock fragments | 10.50 |
| | | organic matter | | saturated zone | | Depth to | 0.88 |
| | | Carbonate content\| | 0.97 | | | saturated zone | |
| | | Water erosion | 0.99 | | | | |
| | | | | | | | |
| Kratka-------------- \| | 14 | \| Fair | | Poor | | Poor | |
| | | Low content of | 0.12 | Depth to | 0.00 | Depth to | 10.00 |
| | | organic matter | | saturated zone | | saturated zone | |
| | | Water erosion | 0.99 | Low strength | 0.22 | | |
| | | | | | | | |
| Reiner-------------- \| | 10 | \| Fair | | Fair | | Fair | |
| | | Low content of | 0.12 | Low strength | 0.22 | Depth to | 0.88 |
| | | organic matter | | Depth to | 0.88 | saturated zone | |
| | | \| Carbonate content| | 0.97 | saturated zone | | Carbonate content | 0.97 |
| | | Water erosion | 0.99 | | | | |
| | | | | | | | |

Table 20b.--Construction Materials--Continued

Table 20b.--Construction Materials--Continued

Table 20b.--Construction Materials--Continued

Table 20b.--Construction Materials--Continued

Table 20b.--Construction Materials--Continued

| Map symbol and soil name | Pct. of \mid map \|unit | Potential as source of reclamation material | | Potential as source of roadfill | | Potential as source of topsoil | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | \|Value | Rating class and limiting features | Value | Rating class and
 limiting features | \|Value |
| I44A: | | | | | | | |
| Hapludolls------ | 1 | \| Fair | | \| Good | | \|Fair | |
| | | Low content of | 0.12 | | | Slope | 0.37 |
| | | organic matter | | | | | |
| | | | | | | | |
| I45A: | | | | | | | |
| Northwood------- | 75 | \| Poor | | Poor | | Poor | |
| | | Wind erosion | 0.00 | Depth to | 0.00 | Depth to | 0.00 |
| | | Low content of | 0.12 | saturated zone | | saturated zone | |
| | | organic matter | | Low strength | 0.22 | | |
| | | Water erosion | 0.99 | | | | |
| | | | | | | | |
| Hamre----------- | 10 | \| Poor | | \| Poor | | \| Poor | |
| | | Wind erosion | 0.00 | Depth to | 0.00 | Depth to | 0.00 |
| | | Low content of | 10.12 | saturated zone | | saturated zone | |
| | | organic matter | | Low strength | 0.22 | | |
| | | Water erosion | 0.99 | | | | |
| | | | | | | | |
| Berner----------- | 5 | \| Not rated | | \| Poor | | Not rated | |
| | | | | Depth to | 0.00 | | |
| | | | | saturated zone | | | |
| | | | | Low strength | 0.22 | | |
| | | | | | | | |
| Kratka---------- | 5 | \| Fair | | \| Poor | | \| Poor | |
| | | Low content of | 0.12 | Depth to | 0.00 | Depth to | 0.00 |
| | | organic matter | | saturated zone | | saturated zone | |
| | | Water erosion | 10.99 | Low strength | 0.22 | | |
| | | | | | | | |
| Strandquist----- | 3 | \| Fair | | Poor | | \| Poor | |
| | | Low content of organic matter | 0.12 | Depth to saturated zone | 0.00 | Depth to saturated zone | 0.00 |
| | | Water erosion | 0.99 | Low strength | 0.22 | | |
| | | | | | | | |
| Roliss---------- | 2 | \| Fair | | \| Poor | | \| Poor | |
| | | Low content of | 0.12 | Depth to | 0.00 | Depth to | 10.00 |
| | | organic matter | | saturated zone | | saturated zone | |
| | | Water erosion | 0.99 | Low strength | 0.22 | | |
| | | | | | | | |
| I46A: | | | | | | | |
| Pits------------ | 85 | \| Not rated | | Not rated | | Not rated | |
| | | | | | | | |
| | 10 | \| Poor | | \| Poor | | \| Poor | |
| Udipsamments---- | | Too sandy | 0.00 | Slope | 0.00 | Too sandy | 10.00 |
| | | Wind erosion | 0.00 | | | Slope | 10.00 |
| | | Low content of | 0.02 | | | | |
| | | organic matter | | | | | |
| | | Droughty | 0.86 | | | | |
| | | | | | | | |
| Radium---------- | 2 | \| Poor | | \| Good | | \| Poor | |
| | | Too sandy | 0.00 | | | Too sandy | 10.00 |
| | | Wind erosion | 0.00 | | | Rock fragments | 10.50 |
| | | Low content of | 0.12 | | | | |
| | | organic matter | | | | | |
| | | Droughty | 0.82 | | | | |
| | | | | | | | |
| Maddock--------- | 1 | \| Poor | | \| Good | | \| Poor | |
| | | Too sandy | 0.00 | | | Too sandy | 0.00 |
| | | Wind erosion | 0.00 | | | | |
| | | Low content of | 0.12 | | | | |
| | | organic matter | | | | | |
| | | Droughty | 0.65 | | | | |
| | | | | | | | |

Table 20b.--Construction Materials--Continued

| Map symbol and soil name | $\left.\begin{array}{\|} \mid \text { Pct. } \\ \mid \text { of } \\ \mid \text { map } \end{array} \right\rvert\,$ | Potential as source of reclamation material | | Potential as source of roadfill | Potential as source of topsoil | | | |
|---|---|---|---|---|---|---|---|---|
| | | Rating class and limiting features | Value | Rating class and \|Value limiting features | Rating class and
 limiting features | Value |
| | | | | | | |
| | | | | | | |
| Marquette------- | | Wind erosion | 0.00 | \| | | | Rock fragments | 0.00 |
| | | Droughty | 0.01 | \| | Hard to reclaim | 0.02 |
| | | Low content of | 0.12 | \| | | | |
| | | organic matter | | \| | | |
| | | | | \| | | | |
| Sandberg-------- | 1 | \| Poor | | Good | Fair | |
| | | Wind erosion | 0.00 | \| | | | Rock fragments | 0.12 |
| | | Low content of | 0.12 | \| | Too sandy | \| 0.47 |
| | | organic matter | | \| | Hard to reclaim | 0.92 |
| | | Droughty | 0.14 | \| | | |
| | | Too sandy | \| 0.47 | \| | | |
| | | \| | | \| | | |
| 147A: | | | | | | |
| Poppleton------- | 75 | Poor | | Fair | Poor | |
| | | \| Too sandy | 0.00 | Depth to \|0.88 | Too sandy | 10.00 |
| | | Wind erosion | 0.00 | saturated zone | Depth to | 0.88 |
| | | Low content of | 0.12 | \| | saturated zone | |
| | | organic matter | | \| | | |
| | | \| Droughty | 0.81 | \| | | |
| | | | | \| | | | |
| Flaming--------- | 12 | Poor | | Fair | Poor | |
| | | \| Too sandy | 0.00 | Depth to 0.88 | Too sandy | 10.00 |
| | | Wind erosion | 0.00 | saturated zone | Depth to | 0.88 |
| | | Low content of | 0.12 | \| | saturated zone | |
| | | \| organic matter | | \| | | |
| | | Droughty | 0.75 | \| | | |
| | | | | \| | | | |
| Garborg--------- | 5 | Poor | | Fair | Fair | |
| | | Wind erosion | 0.00 | Depth to \|0.12 | Depth to | \| 0.12 |
| | | Too sandy | 0.45 | saturated zone | saturated zone | |
| | | | | \| | Too sandy | 0.45 |
| | | | | \| | | | | |
| Hamar----------- | 3 | \| Poor | | Poor | Poor | |
| | | Too sandy | 0.00 | Depth to \|0.00 | Too sandy | 10.00 |
| | | Wind erosion | 0.00 | saturated zone | Depth to | 0.00 |
| | | Low content of | 0.12 | \| | | saturated zone | |
| | | organic matter | | \| | | | |
| | | Droughty | 0.83 | \| | | | |
| | | | | \| | | | |
| Radium---------- | 2 | Poor | | Good | Poor | |
| | | Too sandy | 10.00 | \| | | | Too sandy | 10.00 |
| | | Wind erosion | 0.00 | \| | | Rock fragments | 10.50 |
| | | \| Low content of | 0.12 | \| | | | |
| | | organic matter | | , | | |
| | | Droughty | 10.82 | \| | | | |
| | | | | \| | | | | |
| Ulen------------ | 2 \| | Poor | | Fair | Fair | |
| | | Wind erosion | 0.00 | Depth to 0.50 | Too sandy | 10.16 |
| | | Too sandy | 10.16 | saturated zone | Depth to | 10.50 |
| | | \| Low content of | 0.50 | \| | | saturated zone | |
| | | organic matter | | \| | | Carbonate content | 0.68 |
| | | Carbonate content\| | 0.68 | \| | | | |
| | | Droughty \| | 10.93 | , | | |
| | | | | , | | |

Table 20b.--Construction Materials--Continued

| Map symbol and soil name | Pct.
 of map unit | Potential as source of reclamation material | | Potential as source of roadfill | | Potential as source of topsoil | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | Value | Rating class and limiting features | Value | Rating class and
 limiting features | Value |
| I47A: | | | | | | | |
| Maddock--------- | 1 | Poor | | Good | | \| Poor | |
| | | Too sandy | 0.00 | | | Too sandy | 0.00 |
| | | Wind erosion | 0.00 | | | | |
| | | Low content of | 0.12 | | | | |
| | | organic matter | | | | | |
| | | Droughty | 0.65 | | | | |
| | | | | | | | |
| I48A: \| | | | | | | | |
| Radium | 75 | Poor | | \| Good | | \| Poor | |
| | | Too sandy | 0.00 | | | Too sandy | 0.00 |
| | | \| Wind erosion | 0.00 | | | Rock fragments | 0.50 |
| | | Low content of | 0.12 | | | | |
| | | organic matter | | | | | |
| | | Droughty | 0.82 | | | | |
| | | | | | | | |
| Sandberg-------- | 7 | Poor | | \| Good | | Fair | |
| | | Wind erosion | 0.00 | | | Rock fragments | 0.12 |
| | | Low content of | 0.12 | | | Too sandy | 0.47 |
| | | \| organic matter | | | | Hard to reclaim | 0.92 |
| | | Droughty | 0.14 | | | | |
| | | Too sandy | 0.47 | | | | |
| | | | | | | | |
| Oylen----------- | 5 | Poor | | \| Good | | Poor | |
| | | Too sandy | 0.00 | | | Too sandy | 0.00 |
| | | Low content of | 0.12 | | | Rock fragments | 0.88 |
| | | organic matter | | | | | |
| | | | | | | | |
| Flaming--------- | 4 | Poor | | \| Fair | | Poor | |
| | | Too sandy | 0.00 | Depth to | 0.88 | Too sandy | 0.00 |
| | | Wind erosion | 0.00 | saturated zone | | Depth to | 0.88 |
| | | Low content of | 0.12 | | | saturated zone | |
| | | organic matter | | | | | |
| | | Droughty | 0.75 | | | | |
| | | | | | | | |
| Garborg | 3 | \| Poor | | Fair | | \| Fair | |
| | | Wind erosion | 0.00 | Depth to | 0.12 | Depth to | 0.12 |
| | | Too sandy | 0.45 | saturated zone | | saturated zone | |
| | | | | | | Too sandy | 0.45 |
| | | | | | | | |
| Hangaard-------- | 3 | \| Poor | | Poor | | Poor | |
| | | Too sandy | 0.00 | Depth to | 0.00 | Too sandy | 0.00 |
| | | Droughty | 0.09 | saturated zone | | Depth to | 0.00 |
| | | Low content of | 0.12 | | | saturated zone | |
| | | organic matter | | | | Rock fragments | 0.03 |
| | | | | | | Hard to reclaim | 0.98 |
| | | | | | | | |
| Hamar----------- | 2 | Poor | | \| Poor | | Poor | |
| | | Too sandy | 0.00 | Depth to | 0.00 | Too sandy | 0.00 |
| | | Wind erosion | 0.00 | saturated zone | | Depth to | 0.00 |
| | | Low content of | 0.12 | | | saturated zone | |
| | | organic matter | | | | | |
| | | Droughty | 0.83 | | | | |
| | | | | | | | |
| Poppleton------- | 1 | \| Poor | | Fair | | Poor | |
| | | Too sandy | 0.00 | Depth to | 0.88 | Too sandy | 0.00 |
| | | Wind erosion | 0.00 | saturated zone | | Depth to | 0.88 |
| | | Low content of | 0.12 | | | saturated zone | |
| | | organic matter | | | | | |
| | | Droughty | 0.81 | | | | |
| | | | | | | | |

Table 20b.--Construction Materials--Continued

Table 20b.--Construction Materials--Continued

| Map symbol and soil name | \mid Pct. \mid \mid of \mid map \mid unit \mid | Potential as source of reclamation material | | Potential as source of roadfill | | Potential as source of topsoil | | |
|---|---|---|---|---|---|---|---|---|
| | | Rating class and ${ }^{\text {limiting features }}$ | Value | Rating class and limiting features | \|Value| | Rating class and limiting features | \| Value |
| I51A: | | | | | | | |
| Reiner------------- \| | 65 | \| Poor | | Fair | | Fair | |
| | | Wind erosion | 0.00 | Low strength | 10.22 | Depth to | 0.88 |
| | | Low content of | 0.12 | Depth to | 10.88 | saturated zone | |
| | | organic matter | | saturated zone | | Carbonate content\| | 0.97 |
| | | Carbonate content\|0. | 0.97 | | | | |
| | | Water erosion \|0. | 0.99 | | | | |
| | | | | | | | |
| Smiley------------- \| | 9 | \| Fair | | Poor | | Poor | |
| | | Low content of organic matter | 0.12 | Depth to saturated zone | 10.00 | Depth to saturated zone | 0.00 |
| | | Carbonate content | 0.92 | Low strength | 10.22 | Carbonate content\| | 0.92 |
| | | Water erosion \|0 | 0.99 | | | | |
| | | | | | | | |
| Reiner fine sandyloam---------- | | | | | | | |
| | 8 | \|Fair | | Fair | | Fair | |
| | | Low content of | 0.12 | Low strength | 10.22 | Depth to | 0.88 |
| | | organic matter | | Depth to | 10.88 | saturated zone | |
| | | Carbonate content\|0. | 0.97 | saturated zone | | Carbonate content\| | 0.97 |
| | | Water erosion \|0. | 0.99 | | | | |
| | | | | | | | |
| Linveldt------------ | 7 | \| Poor | | Fair | | Poor | |
| | | Too sandy | 0.00 | Low strength | 10.22 | Too sandy | 0.00 |
| | | Low content of | 0.12 | Depth to | 10.88 | Rock fragments | 10.50 |
| | | organic matter | | saturated zone | | Depth to | 0.88 |
| | | Carbonate content\|0. | 0.97 | | | saturated zone | |
| | | Water erosion \|0 | 0.99 | | | | |
| | | | | | | | |
| Kratka-------------\| | 5 | \| Fair | | Poor | | Poor | |
| | | Low content of organic matter | 0.12 | Depth to saturated zone | 10.00 | Depth to saturated zone | 0.00 |
| | | Water erosion | 0.99 | Low strength | 10.22 | | |
| | | | | | | | |
| Eckvoll------------- \| | 3 | | | | | | |
| | | Too sandy | 0.00 | Low strength | 10.22 | Too sandy | 0.00 |
| | | Wind erosion | 0.00 | Depth to | 10.88 | Depth to | 0.88 |
| | | Low content of organic matter | 0.12 | saturated zone | | saturated zone | |
| | | Water erosion | 0.99 | | | | |
| | | | | | | | |
| Reiner, very cobbly | 3 | | | Fair | | Fair | |
| | | Low content of | 0.12 | Low strength | 0.22 | Depth to | 0.88 |
| | | organic matter | | Depth to | 10.88 | saturated zone | |
| | | Carbonate content\|0 | 0.97 | saturated zone | | Carbonate content\| | 0.97 |
| | | Water erosion \|0 | 0.99 | | | | |
| | | | | | | | |
| I52A: | | | | | | | |
| Reis | 55 | | | Poor | | Poor | |
| | | Too clayey | 0.00 | Depth to | 10.00 | Too clayey | 0.00 |
| | | Low content of | 0.12 | saturated zone | | Depth to | 0.00 |
| | | organic matter | | Low strength | 10.00 | saturated zone | |
| | | Carbonate content\|0. | 0.68 | Shrink-swell | 10.12 | Carbonate content\| | 0.68 |
| | | | | | | | |
| Clearwater---------\| | \| 30 | \| Poor | | Poor | | Poor | |
| | | Too clayey | 0.00 | Depth to | 10.00 | Depth to | 0.00 |
| | | | 0.12 | saturated zone | | | |
| | | organic matter | | Low strength | 10.00 | Too clayey | 0.00 |
| | | | | Shrink-swell | 10.12 | | |
| | | | | | | | |

Table 20b.--Construction Materials--Continued

Table 20b.--Construction Materials--Continued

Table 20b.--Construction Materials--Continued

| Map symbol and soil name | $\begin{array}{\|} \mid \text { Pct. } \\ \mid \text { of } \\ \mid \text { map } \\ \mid \text { unit } \end{array}$ | Potential as source of reclamation material | | Potential as source of roadfill | | Potential as source of topsoil | | |
|---|---|---|---|---|---|---|---|---|
| | \| | | Rating class and
 limiting features | Value | Rating class and limiting features | \|Value | Rating class and limiting features | \| Value |
| I55A: | | | | | | | |
| Syrene---------- | \| 3 | \|Fair | | Poor | | Poor | |
| | | Low content of | 0.12 | Depth to | 0.00 | Depth to | 0.00 |
| | | organic matter | | saturated zone | | saturated zone | |
| | | Droughty | 0.17 | | | Rock fragments | 10.00 |
| | | Too sandy | 0.22 | | | Too sandy | 10.22 |
| | | Carbonate content\|0 | 0.68 | | | Hard to reclaim | 10.68 |
| | | | | | | | |
| Karlsruhe------- | 1 | \|Fair | | Fair | | Fair | |
| | | Low content of | 0.12 | Depth to | 0.50 | Depth to | 0.50 |
| | | organic matter | | saturated zone | | saturated zone | |
| | | Carbonate content\| | 0.68 | | | Hard to reclaim | 10.68 |
| | | Droughty \|0 | 0.90 | | | | |
| | | | | | | | |
| Strathcona------ | 1 | \|Fair | | Poor | | Poor | |
| | | Low content of | 0.12 | Depth to | 0.00 | Depth to | 10.00 |
| | | organic matter | | saturated zone | | saturated zone | |
| | | Carbonate content | 0.92 | Low strength | 0.22 | | |
| | | Water erosion | 0.99 | | | | |
| | | | | | | | |
| Thiefriver------ | 1 \| | \|Fair | | Poor | | Poor | |
| | | Low content of | 0.12 | Depth to | 0.00 | Depth to | 10.00 |
| | | organic matter | | saturated zone | | saturated zone | |
| | | Carbonate content\|0 | 0.68 | Low strength | 0.00 | | |
| | | | | Shrink-swell | 0.82 | | |
| | | | | | | | |
| I56A: | | | | | | | |
| Rosewood-------- | 50 | \| Poor | | Poor | | Poor | |
| | | Too sandy | 0.00 | Depth to | 0.00 | Too sandy | 10.00 |
| | | Low content of | 0.12 | saturated zone | | Depth to | 10.00 |
| | | organic matter | | | | saturated zone | |
| | | Carbonate content\|0 | 0.68 | | | Rock fragments | 10.88 |
| | | | | | | | |
| Venlo------------ | 40 | \| Poor | | Poor | | Poor | |
| | | Too sandy | 0.00 | Depth to | 0.00 | Too sandy | 10.00 |
| | | Low content of | 0.12 | saturated zone | | Depth to | 0.00 |
| | | organic matter | | | | saturated zone | |
| | | Droughty | 0.93 | | | | |
| | | | | | | | |
| Deerwood-------- | 3 | \| Poor | | Poor | | Poor | |
| | | Too sandy | 0.00 | Depth to | 0.00 | Too sandy | 10.00 |
| | | Wind erosion | 0.00 | saturated zone | | Depth to | 10.00 |
| | | Low content of | 0.12 | | | saturated zone | |
| | | organic matter | | | | Rock fragments | 10.28 |
| | | | | | | | |
| Syrene---------- | 3 | \|Fair | | Poor | | Poor | |
| | | Low content of | 0.12 | Depth to | 0.00 | Depth to | 10.00 |
| | | organic matter | | saturated zone | | saturated zone | |
| | | Droughty | 0.17 | | | Rock fragments | 10.00 |
| | | Too sandy | 0.22 | | | Too sandy | 10.22 |
| | | Carbonate content\|0 | 0.68 | | | Hard to reclaim | 10.68 |
| | | | | | | | |
| Ulen------------ | 2 | \| Poor | | Fair | | \| Fair | |
| | | Wind erosion | 0.00 | Depth to | 0.50 | Too sandy | 10.16 |
| | | Too sandy | 0.16 | saturated zone | | Depth to | 0.50 |
| | | Low content of | 0.50 | | | saturated zone | |
| | | organic matter | | | | Carbonate content | 0.68 |
| | | Carbonate content\|0 | 0.68 | | | | |
| | | Droughty \|0 | 0.93 | | I | | |
| | | | | | | | |

Table 20b.--Construction Materials--Continued

Table 20b.--Construction Materials--Continued

| Map symbol and soil name | Pct.
 of map unit | Potential as source of reclamation material | Potential as source of roadfill | | Potential as source of topsoil | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | Rating class and \mid Value limiting features | Rating class and limiting features | Value | Rating class and
 limiting features | Value |
| I58A: | | \| | | | | | | | | | | | | |
| | 3 | Not rated | Poor | | Not rated | |
| | | \| | | Depth to | 0.00 | | |
| | | \| | | saturated zone | | | |
| | | \| | | Low strength | 0.00 | | |
| | | \| | | Shrink-swell | 0.95 | | |
| | | \| | | | | | |
| Markey------------- \| | 3 | Not rated | Poor | | Not rated | |
| | | \| | | Depth to | 0.00 | | |
| | | \| | | | saturated zone | | | |
| | | \| | | | | | | |
| Berner------------- \| | 1 | Not rated | Poor | | Not rated | |
| | | \| | | Depth to | 0.00 | | |
| | | \| | | saturated zone | | | |
| | | \| | | | Low strength | 0.22 | | |
| | | \| | | | | | | |
| I59A: | | \| | | | | | | |
| Smiley------------- \| | \| 65 | \|Fair | | Poor | | Poor | |
| | | Low content of 0.12 | Depth to | 0.00 | Depth to | 0.00 |
| | | organic matter | saturated zone | | saturated zone | |
| | | Carbonate content\|0.92 | Low strength | 0.22 | Carbonate content | 0.92 |
| | | Water erosion \|0.99 | | | | |
| | | , | | | | |
| Smiley, very cobbly | 10 | Fair | Poor | | Poor | |
| | | Low content of \|0.12 | Depth to | 0.00 | Depth to | 0.00 |
| | | organic matter | saturated zone | | saturated zone | |
| | | Carbonate content\|0.92 | Low strength | 0.22 | Carbonate content | 0.92 |
| | | Water erosion \|0.99 | | | | |
| | | | | | | |
| Kratka------------- \| | \| 9 | | Poor | | Poor | |
| | | Low content of 0.12 | Depth to | 0.00 | Depth to | 0.00 |
| | | organic matter | saturated zone | | saturated zone | |
| | | Water erosion \|0.99 | Low strength | 0.22 | | |
| | | \| | | | | | |
| Roliss------------ \| | \| 5 | Fair | Poor | | Poor | |
| | | Low content of $\quad 0.12$ | Depth to | 0.00 | Depth to | 0.00 |
| | | organic matter | saturated zone | | saturated zone | |
| | | Water erosion \|0.99 | Low strength | 0.22 | | |
| | | \| | | | | | |
| Reiner-------------- \| | \| 4 | Fair | Fair | | Fair | |
| | | Low content of \|0.12 | Low strength | 0.22 | Depth to | 0.88 |
| | | organic matter | Depth to | 0.88 | saturated zone | |
| | | Carbonate content\|0.97 | saturated zone | | Carbonate content | 0.97 |
| | | Water erosion \|0.99 | | | | |
| | | | | | | |
| Linveldt----------- \| | \| 3 | Poor | Fair | | Poor | |
| | | Too sandy \|0.00 | Low strength | 0.22 | Too sandy | 0.00 |
| | | Low content of 0.12 | Depth to | 0.88 | Rock fragments | 0.50 |
| | | organic matter | saturated zone | | Depth to | 0.88 |
| | | Carbonate content\|0.97 | | | saturated zone | |
| | | Water erosion \|0.99 | | | | |
| | | | | | | |
| Smiley, depressional\| | 3 | Fair | Poor | | Poor | |
| | | Low content of \|0.12 | Depth to | 0.00 | Depth to | 0.00 |
| | | organic matter | saturated zone | | saturated zone | |
| | | Carbonate content\|0.92 | Low strength | 0.22 | Carbonate content | 0.92 |
| | | Water erosion \|0.99 | | | | |
| | | | | | | |

Table 20b.--Construction Materials--Continued

Table 20b.--Construction Materials--Continued

| Map symbol and soil name | Pct. of map \|unit | Potential as source of reclamation material | | Potential as source of roadfill | | Potential as source of topsoil | | |
|---|---|---|---|---|---|---|---|---|
| | | Rating class and \| | Value | Rating class and limiting features | \|Value | Rating class and limiting features | Value |
| | | | | | | | |
| | | | | | | | | |
| Hangaard | 3 | Too sandy | 0.00 | Depth to | 0.00 | Too sandy | 0.00 |
| | | Droughty | 0.09 | saturated zone | | Depth to | 0.00 |
| | | Low content of | 0.12 | | | saturated zone | |
| | | organic matter | | | | Rock fragments | 0.03 |
| | | | | | | Hard to reclaim | 0.98 |
| | | | | | | | |
| Northwood------- | 3 | Poor | | Poor | | Poor | |
| | | Wind erosion | 0.00 | Depth to | 10.00 | Depth to | 0.00 |
| | | Low content of | 0.12 | saturated zone | | saturated zone | |
| | | organic matter | | Low strength | 0.22 | | |
| | | Water erosion | 0.99 | | | | |
| | | | | | | | |
| 162A: | | | | | | | |
| Syrene---------- | 70 | Fair | | Poor | | Poor | |
| | | Low content of | 0.12 | Depth to | 10.00 | Depth to | 0.00 |
| | | organic matter | | saturated zone | | saturated zone | |
| | | Droughty | 0.17 | | | Rock fragments | 0.00 |
| | | Too sandy | 0.22 | | | Too sandy | 0.22 |
| | | Carbonate content\|0 | 0.68 | | | Hard to reclaim | 0.68 |
| | | | | | | | |
| Rosewood-------- | 11 | \| Poor | | Poor | | Poor | |
| | | Too sandy | 0.00 | Depth to | 10.00 | Too sandy | 0.00 |
| | | Low content of | 0.12 | saturated zone | | Depth to | 0.00 |
| | | organic matter | | | | saturated zone | |
| | | Carbonate content | 0.68 | | | Rock fragments | 0.88 |
| | | | | | | | |
| Hangaard-------- | 5 | \| Poor | | Poor | | Poor | |
| | | \| Too sandy | 0.00 | Depth to | 0.00 | Too sandy | 0.00 |
| | | Droughty | 0.09 | saturated zone | | Depth to | 0.00 |
| | | Low content of | 0.12 | | | saturated zone | |
| | | organic matter | | | | Rock fragments | 0.03 |
| | | | | | | Hard to reclaim | 0.98 |
| | | | | | | | |
| Karlsruhe------- | 4 | \|Fair | | Fair | | Fair | |
| | | Low content of | 0.12 | Depth to | 0.50 | Depth to | 0.50 |
| | | organic matter | | saturated zone | | saturated zone | |
| | | Carbonate content\|0 | 0.68 | | | Hard to reclaim | 0.68 |
| | | Droughty \|0 | 0.90 | | | | |
| | | | | | | | |
| Deerwood-------- | 3 | \| Poor | | Poor | | Poor | |
| | | Too sandy | 0.00 | Depth to | 0.00 | Too sandy | 0.00 |
| | | Wind erosion \|0. | 0.00 | saturated zone | | Depth to | 0.00 |
| | | Low content of | 0.12 | | | saturated zone | |
| | | organic matter | | | | Rock fragments | 0.28 |
| | | | | | | | |
| Hamar----------- | 3 | \| Poor | | Poor | | Poor | |
| | | Too sandy 10 | 0.00 | Depth to | 0.00 | Too sandy | 0.00 |
| | | Wind erosion 0 | 0.00 | saturated zone | | Depth to | 0.00 |
| | | \| Low content of |0. | 0.12 | | | saturated zone | |
| | | organic matter | | | | | |
| | | Droughty \|0 | 0.83 | | | | |
| | | | | | | | |
| Strandquist----- | \| 2 | \| Fair | | Poor | | Poor | |
| | | Low content of 0 | 0.12 | Depth to | 0.00 | Depth to | 0.00 |
| | | organic matter | | saturated zone | | saturated zone | |
| | | Water erosion 0 | 0.99 | Low strength | 0.22 | | |
| | | | | | | | |

Table 20b.--Construction Materials--Continued

| Map symbol and soil name | Pct.
 of map \|unit | Potential as source of reclamation material | | Potential as source of roadfill | | Potential as source of topsoil | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | Value | Rating class and limiting features | \|Value | Rating class and limiting features | \|Value |
| | | | | | | | |
| I62A: | | | | | | | |
| Radium---------- | 1 | \| Poor | | \| Good | | \| Poor | |
| | | Too sandy | 0.00 | | | Too sandy | 10.00 |
| | | Wind erosion | 0.00 | | | Rock fragments | 10.50 |
| | | Low content of | 0.12 | | | | |
| | | organic matter | | | | | |
| | | Droughty | 0.82 | | | | |
| | | | | | | | |
| Wyandotte------- | 1 | \| Fair | | Poor | | Poor | |
| | | Low content of organic matter | 0.12 | Depth to saturated zone | 10.00 | Depth to saturated zone | 10.00 |
| | | Too sandy | 0.32 | Low strength | 10.00 | Rock fragments | 10.00 |
| | | Carbonate content\| | 0.92 | Shrink-swell | 10.86 | Too sandy | 10.32 |
| | | | | | | | |
| I63A: | | | | | | | |
| Thiefriver | 70 | \| Fair | | Poor | | \| Poor | |
| | | Low content of organic matter | 0.12 | Depth to saturated zone | 10.00 | Depth to saturated zone | 10.00 |
| | | Carbonate content\| | 0.68 | Low strength | 10.00 | | |
| | | | | Shrink-swell | 10.82 | | |
| | | | | | | | |
| Espelie--------- | 10 | \| Poor | | Poor | | Poor | |
| | | Too clayey | 0.00 | Depth to | 10.00 | Depth to | 10.00 |
| | | Low content of | 0.12 | saturated zone | | saturated zone | |
| | | organic matter | | Low strength | 10.00 | Too clayey | 10.00 |
| | | | | Shrink-swell | 10.57 | | |
| | | | | | | | |
| Foxlake-------- | 7 | \| Poor | | Poor | | Poor | |
| | | Too clayey | | Depth to | 10.00 | | 10.00 |
| | | Low content of | 0.12 | saturated zone | | saturated zone | |
| | | organic matter | | Low strength | 10.00 | Too clayey | 10.00 |
| | | | | Shrink-swell | 10.38 | | |
| | | | | | | | |
| Huot------------- | 5 | \| Fair | | \| Poor | | \| Fair | |
| | | Low content of | 0.12 | Low strength | 10.00 | Depth to | 0.88 |
| | | organic matter | | Shrink-swell | 10.86 | saturated zone | |
| | | Carbonate content\| | 0.68 | Depth to | 10.88 | Rock fragments | 10.97 |
| | | | | saturated zone | | | |
| | | | | | | | |
| Clearwater, depressional--- | | | | | | | |
| | 3 | \| Poor | | Poor | | \| Poor | |
| | | Too clayey | 0.00 | Depth to | 10.00 | Depth to | 10.00 |
| | | Low content of | 0.12 | saturated zone | | saturated zone | |
| | | organic matter | | Low strength | 10.00 | Too clayey | 10.00 |
| | | | | Shrink-swell | 10.12 | | |
| | | | | | | | |
| Rosewood--------- | 3 | \| Poor | | \| Poor | | Poor | |
| | | Too sandy | 0.00 | Depth to | 10.00 | Too sandy | 10.00 |
| | | Low content of | 0.12 | saturated zone | | Depth to | 10.00 |
| | | organic matter \| | | | | saturated zone | |
| | | Carbonate content\| | 0.68 | | | Rock fragments | 10.88 |
| | | | | | | | |
| Ulen------------ | 1 | \| Fair | | \|Fair | | Fair | |
| | | Too sandy | $\mid 0.16$ | Depth to | 10.50 | Too sandy | 10.16 |
| | | Low content of | 0.50 | saturated zone | | Depth to | 10.50 |
| | | organic matter | | | | saturated zone | |
| | | Carbonate content\| | 0.68 | | | Carbonate content\| | 0.68 |
| | | Droughty \| | 0.99 | | | | |
| | | | | | | | |

Table 20b.--Construction Materials--Continued

Table 20b.--Construction Materials--Continued

Table 20b.--Construction Materials--Continued

Table 20b.--Construction Materials--Continued

| Map symbol and soil name | $\begin{aligned} & \mid \text { Pct. } \\ & \mid \text { of } \\ & \mid \text { map } \\ & \mid \text { unit } \end{aligned}$ | Potential as source of reclamation material | | Potential as source of roadfill | | Potential as source of topsoil | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | Value | Rating class and limiting features | \| Value | Rating class and limiting features | \| Value |
| | | | | | | | |
| I67A: | | | | | | | |
| Glyndon--------- | \| 8 | Fair | | Poor | | Poor | |
| | | Low content of | 0.12 | Depth to saturated zone | 10.00 | Depth to | 10.00 |
| | | organic matter | | | | saturated zone | |
| | | Carbonate content | 0.32 | | | Carbonate content | 0.32 |
| | | | | | | | |
| Foxlake--------- | 5 | Poor | | Poor | | Poor | |
| | | Too clayey | 0.00 | Depth to saturated zone | 10.00 | Depth to | 10.00 |
| | | Low content of | 0.12 | | | saturated zone | |
| | | organic matter | | Low strength | 10.00 | Too clayey | 10.00 |
| | | | | Shrink-swell | 10.38 | | |
| | | | | | | | |
| Hilaire--------- | 2 | | | Poor | | Poor | |
| | | Too sandy | 0.00 | Low strength | 10.00 | Too sandy | 10.00 |
| | | Wind erosion | 0.00 | Shrink-swell | 10.86 | Depth to | 10.88 |
| | | Low content of | 0.12 | Depth to | 10.88 | saturated zone | |
| | | organic matter | | saturated zone | | Rock fragments | 10.97 |
| | | | | | | | |
| Ulen------------ | 2 | Poor | | Fair | | Fair | |
| | | Wind erosion | 0.00 | Depth to saturated zone | 10.50 | Too sandy | 10.16 |
| | | Too sandy | 0.16 | | | Depth to | 10.50 |
| | | Low content of | 0.50 | | | saturated zone | |
| | | organic matter | | | | Carbonate content | 0.68 |
| | | Carbonate content\| | 0.68 | | | | |
| | | Droughty | | | | | |
| | | | | | | | |
| 168A: | | | | | | | |
| Wheatville | 70 | \|Fair | | Poor | | Fair | |
| | | Low content of | 0.12 | Low strength | 10.00 | Depth to | 10.06 |
| | | organic matter | | Depth to | 10.06 | saturated zone | |
| | | Carbonate content\| | 0.32 | saturated zone | | Carbonate content | 0.32 |
| | | Water erosion | 0.90 | Shrink-swell | 10.80 | | |
| | | | | | | | |
| Augsburg-------- | 13 | Fair | | Poor | | Poor | |
| | | Low content of organic matter | 0.12 | Depth to | 10.00 | Depth to | 10.00 |
| | | Too sandy | 0.13 | Low strength | 10.00 | Too sandy | \| 0.13 |
| | | Carbonate content\| | 0.32 | Shrink-swell | 10.84 | | |
| | | | | | | | |
| Glyndon--------- | 8 | \| Fair | | Poor | | Poor | |
| | | Low content of organic matter | 0.12 | Depth to saturated zone | 10.00 | Depth to saturated zone | 10.00 |
| | | Carbonate content | 0.32 | | | Carbonate content | 0.32 |
| | | | | | | | |
| Foxlake--------- | 5 | \| Poor | | Poor | | Poor | |
| | | Too clayey | 0.00 | Depth to | 10.00 | Depth to | 10.00 |
| | | Low content of | 0.12 | saturated zone | | saturated zone | |
| | | organic matter | | Low strength | 10.00 | Too clayey | 10.00 |
| | | | | Shrink-swell | 10.38 | | |
| | | | | | | | |
| Hilaire--------- | 2 | \| Poor | | Poor | | Poor | |
| | | Too sandy | 0.00 | Low strength | 10.00 | Too sandy | 10.00 |
| | | Wind erosion | 0.00 | Shrink-swell | 10.86 | Depth to | 10.88 |
| | | Low content of | 0.12 | Depth to | 10.88 | saturated zone | |
| | | organic matter | | saturated zone | | Rock fragments | 10.97 |
| | | | | | | | |

Table 20b.--Construction Materials--Continued

Table 20b.--Construction Materials--Continued

Table 21.--Water Management
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00 . The larger the value, the greater the limitation. "Not rated" indicates that data are not available or that no rating is applicable. See text for further explanation of ratings in this table)

Table 21.--Water Management--Continued

| Map symbol and soil name | Pct.
 of map unit | Pond reservoir areas | | Embankments, dikes, and levees | | Aquifer-fed excavated ponds | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | \| Value | Rating class and limiting features | \| Value | Rating class and
 limiting features | Value |
| $\begin{aligned} & \mathrm{B} 200 \mathrm{~A}: \\ & \text { Pelan } \end{aligned}$ | | | | | | | |
| | 3 | Very limited | | \|Somewhat limited | | \| Very limited | |
| | | Seepage | 11.00 | Piping | 0.98 | Cutbanks cave | 1.00 |
| | | | | Depth to | \| 0.87 | Slow refill | 0.28 |
| | | | | saturated zone | | Depth to water | 0.06 |
| | | | | Seepage | 0.01 | | |
| | | | | | | | |
| B201A: | | | | | | | |
| Chilgren----------- \| | 75 | Somewhat limited | | \| Very limited | | \|Somewhat limited | |
| | | Seepage | 0.72 | Depth to | 1.00 | Cutbanks cave | 0.10 |
| | | | | saturated zone | | | |
| | | | | Ponding | 1.00 | | |
| | | | | Piping | \| 0.78 | | |
| | | | | | | | |
| Garnes------------- \| | 9 | Somewhat limited | | \|Somewhat limited | | \|Somewhat limited | |
| | | Seepage | 0.72 | Depth to | 0.87 | Slow refill | 0.28 |
| | | | | saturated zone | | Cutbanks cave | 0.10 |
| | | | | Piping | \| 0.74 | Depth to water | 0.06 |
| | | | | | | | |
| Grygla-------------- | 5 | Very limited | | \| Very limited | | \| Very limited | |
| | | Seepage | 11.00 | \| Depth to | 1.00 | \| Cutbanks cave | 1.00 |
| | | | | saturated zone | | | |
| | | | | Ponding | 1.00 | | |
| | | | | Piping | 10.98 | | |
| | | | | Seepage | \| 0.16 | | |
| | | | | | | | |
| Grygla, depressional\| | 5 | Very limited | | \| Very limited | | \|Very limited | |
| | | Seepage | 11.00 | Ponding | 1.00 | Cutbanks cave | 1.00 |
| | | | | Depth to | 1.00 | | |
| | | | | saturated zone | | | |
| | | | | Piping | 0.98 | | |
| | | | | Seepage | \| 0.16 | | |
| | | | | | | | |
| Hamre-------------- \| | 5 | | | \| Very limited | | \|Somewhat limited | |
| | | Seepage | 0.72 | \| Ponding | 1.00 | Cutbanks cave | 0.10 |
| | | | | Depth to | 1.00 | | |
| | | | | saturated zone | | | |
| | | | | Piping | 0.87 | | |
| | | | | | | | |
| Pelan--------------- | 1 | Very limited | | \|Somewhat limited | | \|Very limited | |
| | | Seepage | 11.00 | Piping | 0.98 | Cutbanks cave | \| 1.00 |
| | | | | Depth to | \| 0.87 | Slow refill | 0.28 |
| | | | | saturated zone | | Depth to water | 0.06 |
| | | | | Seepage | 0.01 | | |
| | | | | | | | |
| B202A: | | | | | | | |
| Cathro------------- \| | 80 | Very limited | | \| Very limited | | \|Somewhat limited | |
| | | Seepage | 11.00 | Ponding | 1.00 | Cutbanks cave | 0.10 |
| | | | | Depth to | 1.00 | | |
| | | | | saturated zone | | | |
| | | | | | | | |
| Hamre-------------- \| | 8 | Somewhat limited | | \| Very limited | | \|Somewhat limited | |
| | | Seepage | 0.72 | Ponding | 1.00 | Cutbanks cave | 0.10 |
| | \| | | | Depth to | 1.00 | | |
| | | | 1 | saturated zone | | | |
| | | | | Piping | \| 0.87 | | |
| | | | | | | | |

Table 21.--Water Management--Continued

Table 21.--Water Management--Continued

| Map symbol and soil name | \mid Pct. $\left\|\begin{array}{l}\text { of }\end{array}\right\|$ \mid map \mid unit \mid | Pond reservoir areas | | Embankments, dikes levees | and | Aquifer-fed excavated ponds | | | |
|---|---|---|---|---|---|---|---|---|---|
| | \| 1 | Rating class and limiting features | \| Value | Rating class and
 \mid
 limiting features | \| Value | Rating class and limiting features | \|Value |
| | | | | | | | |
| I9A: | | | | | | | |
| Clearwater, | | | | | | | |
| depressional---- | 31 | \| Not limited | | \|Very limited | | \|Somewhat limited | |
| | | | | Ponding | 11.00 | Slow refill | 0.46 |
| | | | | Depth to | 11.00 | Cutbanks cave | 0.10 |
| | | | | saturated zone | | | |
| | | | | Hard to pack | 10.76 | | |
| | | | | | | | |
| Espelie--------- | 3 | \|Very limited
 Seepage | | \mid Very limited | | \|Very limited | |
| | | | 1.00 | Depth to | 1.00 | Cutbanks cave | 1.00 |
| | | | | \| saturated zone | | | |
| | | | | \| Ponding | 1.00 | | |
| | | | | Seepage | 10.13 | | \| |
| | | | | | | | |
| Foxlake--------- | 2 | \| Not limited | | \|Very limited | | \|Somewhat limited | |
| | | | | Depth to | 11.00 | Cutbanks cave | 0.10 |
| | | | | saturated zone | | | |
| | | | | Ponding | 1.00 | | |
| | | | | Hard to pack | 10.41 | | |
| | | | | | | | |
| Hattie---------- | 1 | \| Not limited | | \|Somewhat limited | | \|Very limited | |
| | | | | \| Depth to | 10.99 | Slow refill | 1.00 |
| | | | | saturated zone | | Cutbanks cave | 0.10 |
| | | | | Hard to pack | 10.88 | Depth to water | 0.01 |
| | | | | | | | |
| Huot------------ | 1 | \|Very limited Seepage | | \|Somewhat limited | | \|Very limited | |
| | | | 1.00 | Depth to | 10.87 | Cutbanks cave | 11.00 |
| | | | | saturated zone | | Depth to water | 10.06 |
| | | | | Seepage | 10.01 | | |
| | | | | | | | |
| I10A: | | | | | | | |
| | | | | | | | |
| | | | | | | | | | |
| depressional | 85 | \| Not limited | | Ponding | 11.00 | Slow refill | 0.46 |
| | | | | Depth to | \| 1.00 | Cutbanks cave | 10.10 |
| | | | | saturated zone | | | |
| | | | | \| Hard to pack | 10.76 | | |
| | | | | | | | |
| Clearwater------ | 9 | \| Not limited | | \mid Very limited | | | |
| | | | | \| Depth to | 1.00 | Slow refill | \| 1.00 |
| | | | | saturated zone | | Cutbanks cave | 0.10 |
| | | | | Ponding | 11.00 | | |
| | | | | Hard to pack | 10.88 | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | | | |
| depressional---- | 3 | Seepage | 1.00 | \| Ponding | 1.00 | Cutbanks cave | 10.10 |
| | | | | Depth to | 11.00 | | \| |
| | | | | saturated zone | | | \| |
| | | | | Piping | 10.05 | | |
| | | | | | | | \| |
| Reis------------ | \| 2 | Not limited | | \|Very limited | | \|Very limited | 1 |
| | | | | \| Depth to | 1.00 | Slow refill | \| 1.00 |
| | | | | saturated zone | | Cutbanks cave | 10.10 |
| | | | | Hard to pack | 10.88 | | |
| | | | | | | | |

Table 21.--Water Management--Continued

Table 21.--Water Management--Continued

| Map symbol and soil name | Pct. of map unit | Pond reservoir areas | | Embankments, dikes levees | and | Aquifer-fed excavated ponds | | |
|---|---|---|---|---|---|---|---|---|
| | | Rating class and limiting features | Value | Rating class and limiting features | \|Value| | Rating class and limiting features | |
| | | | | | | | |
| I32A: | | | | | | | |
| Thiefriver------ | 1 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Seepage | 1.00 | Depth to | 11.00 | Cutbanks cave | 11.00 |
| | | | | saturated zone | | | |
| | | | | Ponding | 11.00 | | |
| | | | | Seepage | 10.01 | | |
| | | | | | | | |
| Wyandotte------- | 1 | \|Very limited | | \mid Very limited | | \|Very limited | |
| | | Seepage | 1.00 | Depth to | 1.00 | Cutbanks cave | 11.00 |
| | | | | saturated zone | | | |
| | | | | Ponding | 11.00 | | |
| | | | | Seepage | 10.25 | | |
| | | | | Piping | 10.10 | | |
| | | | | | | | |
| I33A: | | | | | | | |
| Hilaire-------- | 75 | \|Very limited | | \|Somewhat limited | | \| Very limited | |
| | | Seepage | 1.00 | Depth to | 10.87 | Cutbanks cave | |
| | | | | saturated zone | | Depth to water | 10.06 |
| | | | | Seepage | 10.25 | | |
| | | | | | | | |
| Espelie--------- | 12 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Seepage | 1.00 | Depth to | 1.00 | Cutbanks cave | 11.00 |
| | | | | saturated zone | | | |
| | | | | Ponding | 11.00 | | |
| | | | | Seepage | 10.13 | | |
| | | | | | | | |
| Huot--------- | 5 | | | Somewhat limited | | \|Very limited | |
| | | Seepage | 1.00 | Depth to | 10.87 | Cutbanks cave | 1.00 |
| | | | | saturated zone | | Depth to water | 10.06 |
| | | | | Seepage | 10.01 | | |
| | | | | | | | |
| Flaming--------- | 2 | \|Very limited | | \|Somewhat limited | | \|Very limited | |
| | | Seepage | 1.00 | Depth to | 10.87 | Cutbanks cave | 11.00 |
| | | | | saturated zone | | Depth to water | 10.06 |
| | | | | Seepage | 10.25 | | |
| | | | | | | | |
| Foxlake-------- | 2 | \| Not limited | | \|Very limited | | \| Somewhat limited | |
| | | | | Depth to | 11.00 | Cutbanks cave | 10.10 |
| | | | | saturated zone | | | |
| | | | | Ponding | 11.00 | | |
| | | | | Hard to pack | 10.41 | | |
| | | | | | | | |
| Wheatville------ | 2 | \|Very limited | | \|Very limited | | \| Somewhat limited | |
| | | Seepage | 1.00 | Depth to | 11.00 | Cutbanks cave | 10.10 |
| | | | | saturated zone | | | |
| | | | | | | | |
| Thiefriver------ | 1 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Seepage | 1.00 | Depth to | 11.00 | Cutbanks cave | 11.00 |
| | | | | saturated zone | | | |
| | | | | \| Ponding | 1.00 | | |
| | | | | Seepage | 10.01 | | |
| | | | | | | | |
| Wyandotte-------- | 1 | | | | | | |
| | | Seepage | 1.00 | Depth to saturated zone | 11.00 | Cutbanks cave | \| 1.00 |
| | | | | Ponding | 11.00 | | \| |
| | | | | Seepage | 10.25 | | |
| | | | | Piping | \| 0.10 | | |
| | | | | | | | |

Table 21.--Water Management--Continued

Table 21.--Water Management--Continued

Table 21.--Water Management--Continued

Table 21.--Water Management--Continued

| Map symbol and soil name | | Pond reservoir areas | | Embankments, dikes, and levees | | Aquifer-fed excavated ponds | | |
|---|---|---|---|---|---|---|---|---|
| | | Rating class and limiting features | Value | Rating class and limiting features | \|Value| | Rating class and limiting features | Value |
| | | | | | | | |
| I38A: | | | | | | | |
| Foldahl------------ \| | 5 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Seepage | 1.00 | Piping | 11.00 | Cutbanks cave | 1.00 |
| | | | | Depth to | 10.87 | Depth to water | 0.06 |
| | | | | saturated zone | | | |
| | | | | Seepage | 10.25 | | |
| | | | | | | | |
| Kratka, very cobbly | 5 | \|Very limited Seepage | | \|Very limited | | \|Very limited | |
| | | | 1.00 | Depth to | 1.00 | Cutbanks cave | 11.00 |
| | | | | saturated zone | | | |
| | | | | Ponding | 11.00 | | |
| | | | | Piping | 10.97 | | |
| | | | | Seepage | 10.01 | | |
| | | | | | | | |
| Strathcona---------\| | 5 | \mid Very limited\mid Seepage | | \|Very limited | | \|Very limited | |
| | | | 1.00 | Depth to | 1.00 | Cutbanks cave | 1.00 |
| | | | | saturated zone | | | |
| | | | | Ponding | 11.00 | | |
| | | | | Piping | 10.98 | | |
| | | | | Seepage | 10.25 | | |
| | | | | | | | |
| Kratka, depressional\| | 3 | \|Very limited\mid Seepage | | \|Very limited | | \|Very limited | |
| | | | 1.00 | Ponding | 11.00 | Cutbanks cave | 1.00 |
| | | | | Depth to | 11.00 | | |
| | | | | saturated zone | | | |
| | | | | Piping | 0.97 | | |
| | | | | Seepage | 10.01 | | |
| | | | | | | | |
| Strandquist---------\| | 3 | $\begin{aligned} & \text { \|Very limited } \\ & \mid \quad \text { Seepage } \end{aligned}$ | | \|Very limited | | \|Very limited | |
| | | | 1.00 | Depth to | 1.00 | Cutbanks cave | 1.00 |
| | | | | \| saturated zone | | | |
| | | | | Ponding | 11.00 | | |
| | | | | Piping | 10.97 | | |
| | | | | Seepage | 10.68 | | |
| | | | | | | | |
| Linveldt------------ \| | 2 | $\begin{aligned} & \mid \text { Very limited } \\ & \mid \quad \text { Seepage } \end{aligned}$ | | \|Somewhat limited | | \|Very limited | |
| | | | 1.00 | Piping | 10.99 | Cutbanks cave | 11.00 |
| | | | | Depth to | 10.87 | Slow refill | 10.28 |
| | | | | saturated zone | | Depth to water | 10.06 |
| | | | | | | | |
| I39A: | | | | | | | |
| Linveldt----------- \| | 65 | \|Very limited | | Somewhat limited | | \|Very limited | |
| | | Seepage | 1.00 | Piping | 10.99 | Cutbanks cave | 11.00 |
| | | | | Depth to | 10.87 | Slow refill | 10.28 |
| | | | | saturated zone | | Depth to water | 10.06 |
| | | | | | | | |
| Kratka-------------- | 14 | \|Very limited Seepage | | \|Very limited | | \|Very limited | |
| | | | 1.00 | Depth to | 11.00 | Cutbanks cave | 11.00 |
| | | | | saturated zone | | | |
| | | | | Ponding | 11.00 | | |
| | | | | Piping | 10.97 | | |
| | | | | Seepage | 10.01 | | |
| | | | | | | | |
| Reiner------------- \| | 10 | $\begin{aligned} & \text { Somewhat limited } \\ & \text { Seepage } \end{aligned}$ | | \|Somewhat limited | | \|Somewhat limited | |
| | | | 0.72 | Depth to | 10.87 | slow refill | 10.28 |
| | | | | saturated zone | | Cutbanks cave | 10.10 |
| | | | | Piping | 10.66 | Depth to water | 10.06 |
| | | | | | | | |

Table 21.--Water Management--Continued

Table 21.--Water Management--Continued

Table 21.--Water Management--Continued

Table 21.--Water Management--Continued

Table 21.--Water Management--Continued

| Map symbol and soil name | Pct. of map unit | Pond reservoir areas | | Embankments, dikes, and levees | | Aquifer-fed excavated ponds | | |
|---|---|---|---|---|---|---|---|---|
| | | Rating class and limiting features | \|Value| | Rating class and limiting features | Value | Rating class and limiting features | Value |
| | | | | | | | |
| Radium---------- | 2 | Very limited | | \|Somewhat limited | | Very limited | |
| | | Seepage | 1.00 | Seepage | 0.79 | Cutbanks cave | 1.00 |
| | | | | Depth to | 0.50 | Depth to water | 0.22 |
| | | | | saturated zone | | | |
| | | | | | | | |
| Maddock--------- | 1 | Very limited | | \|Somewhat limited | | Very limited | |
| | | Seepage | 1.00 | Seepage | 0.25 | Depth to water | 1.00 |
| | | | | | | | |
| Marquette------- | 1 | Very limited | | Somewhat limited | | Very limited | |
| | | Seepage | 1.00 | Seepage | 0.07 | Depth to water | 1.00 |
| | | | | | | | |
| Sandberg-------- | 1 | Very limited | | Somewhat limited | | Very limited | |
| | | Seepage | 1.00 | Seepage | 0.51 | Depth to water | 1.00 |
| | | | | | | | |
| 147A: | | | | | | | |
| Poppleton------- | 75 | \| Very limited | | \|Somewhat limited | | \| Very limited | |
| | | Seepage | 1.00 | D Depth to | 0.87 | Cutbanks cave | 1.00 |
| | | | | saturated zone | | Depth to water | 0.06 |
| | | | | Seepage | 0.25 | | |
| | | | | | | | |
| Flaming--------- | 12 | \| Very limited | | \|Somewhat limited | | Very limited | |
| | | Seepage | 1.00 | Depth to | 0.87 | Cutbanks cave | 1.00 |
| | | | | saturated zone | | Depth to water | 0.06 |
| | | | | Seepage | 0.25 | | |
| | | | | | | | |
| Garborg--------- | 5 | \| Very limited | | Very limited | | Very limited | |
| | | Seepage | 11.00 | Depth to | 1.00 | Cutbanks cave | 1.00 |
| | | | | saturated zone | | | |
| | | | | Seepage | 0.25 | | |
| | | | | | | | |
| Hamar----------- | 3 | Very limited | | Very limited | | Very limited | |
| | | Seepage | 11.00 | Depth to | 1.00 | Cutbanks cave | 1.00 |
| | | | | saturated zone | | | |
| | | | | Ponding | 1.00 | | |
| | | | | Seepage | 0.25 | | |
| | | | | | | | |
| Radium---------- | 2 | \| Very limited | | | Somewhat limited \| | | \|Very limited | |
| | | Seepage | 11.00 | Seepage | 0.79 | Cutbanks cave | 11.00 |
| | | | | Depth to | 0.50 | Depth to water | 0.22 |
| | | | \| | saturated zone | | | |
| | | | | | | | |
| Ulen------------ | 2 | Very limited | | Very limited | | Very limited | |
| | | Seepage | 11.00 | Depth to | 1.00 | Cutbanks cave | \| 1.00 |
| | | | | saturated zone | | | |
| | | | 1 | Seepage | 0.25 | | |
| | | | \| | | | | |
| Maddock--------- | 1 | Very limited | | Somewhat limited | | Very limited | |
| | | Seepage | 11.00 | Seepage | 0.25 | Depth to water | 1.00 |
| | | | | | | | |
| I48A: \| | | | \| | 1 \| | | | | |
| Radium---------- | 75 | $\begin{aligned} & \mid \text { Very limited } \\ & \text { Seepage } \end{aligned}$ | - | Somewhat limited | | Very limited | |
| | | | 11.00 | Seepage | 0.79 | Cutbanks cave | 11.00 |
| | | | | Depth to | 0.50 | Depth to water | \| 0.22 |
| | | | , | saturated zone | | | |
| | | | | | | | |

Table 21.--Water Management--Continued

| Map symbol and soil name | \mid Pct. \mid of \mid map \mid unit | Pond reservoir areas | | Embankments, dikes, and levees | | Aquifer-fed excavated ponds | | |
|---|---|---|---|---|---|---|---|---|
| | | Rating class and limiting features | \|Value | Rating class and limiting features | Value | Rating class and limiting features | \|Value |
| | | | | | | | |
| I48A: | | | | | | | |
| Sandberg-------- | \| 7 | \|Very limited | | | | Very limited | |
| | | Seepage | 11.00 | Seepage | 0.51 | Depth to water | 1.00 |
| | | | | | | | |
| Oylen------------ | \| 5 | Very limited Seepage | | \| Somewhat limited | | Very limited | |
| | | | 11.00 | Seepage | 0.72 | Cutbanks cave | 11.00 |
| | | | | Depth to | 0.50 | Depth to water | 10.22 |
| | | | | saturated zone | | | |
| | | | | | | | |
| Flaming--------- | 4 | Very limited Seepage | | \|Somewhat limited | | \|Very limited | |
| | | | 1.00 | Depth to | 0.87 | Cutbanks cave | 1.00 |
| | | | | saturated zone | | Depth to water | 0.06 |
| | | | | Seepage | 0.25 | | |
| | | | | | | | |
| Garborg--------- | 3 | Very limited Seepage | | \|Very limited | | \|Very limited | \| |
| | | | 1.00 | Depth to | 1.00 | Cutbanks cave | 1.00 |
| | | | | saturated zone | | | |
| | | | | Seepage | 0.25 | | |
| | | | | | | | |
| Hangaard-------- | 3 | $\begin{aligned} & \mid \text { Very limited } \\ & \mid \quad \text { Seepage } \end{aligned}$ | | \|Very limited | | \|Very limited | |
| | | | 1.00 | Depth to | 1.00 | Cutbanks cave | 1.00 |
| | | | | saturated zone | | | |
| | | | | Ponding | 1.00 | | |
| | | | | Seepage | 0.51 | | |
| | | | | | | | |
| Hamar---------- | 2 | $\begin{aligned} & \text { \|Very limited } \\ & \mid \text { Seepage } \end{aligned}$ | | \|Very limited | | \|Very limited | |
| | | | 1.00 | | 1.00 | \| Cutbanks cave | 11.00 |
| | | | | saturated zone | | | |
| | | | | Ponding | 1.00 | | |
| | | | | Seepage | 0.25 | | |
| | | | | | | | |
| Poppleton------- | 1 | Very limited | | | | | |
| | | Seepage | 1.00 | Somewhat limited
 Depth to saturated zone | 10.87 | Very limited Cutbanks cave | 11.00 |
| | | | | | | Depth to water | 10.06 |
| | | | | Seepage | 0.25 | | |
| | | | | | | | |
| I49A: | | | | | | | |
| Rauville-------- | 80 | \|Very limited
 Seepage | | \|Very limited | | \|Very limited | |
| | | | 1.00 | Ponding | 1.00 | Cutbanks cave | 1.00 |
| | | | | Depth to | 1.00 | | |
| | | | | saturated zone | | | |
| | | | | Piping | 0.80 | | |
| | | | | Seepage | 0.01 | | |
| | | | | | | | |
| Fluvaquents----- | 12 | \|Very limited Seepage | | \|Very limited | | \|Very limited | |
| | | | 1.00 | Ponding | 1.00 | Cutbanks cave | 11.00 |
| | | \| Seepage | | Depth to | 1.00 | | |
| | | | | saturated zone | | | |
| | | | | Seepage | 0.03 | | |
| | | | | | | | |
| Water------------Lamoure---------- | 5 | \| Not rated | | \| Not rated | | \| Not rated | |
| | | | | | | | |
| | \|l| 3 | \|Very limited
 Seepage | | \|Very limited | | \|Very limited | |
| Lamoure--------- | | | 11.00 | Depth to saturated zone | 1.00 | Cutbanks cave | \| 1.00 |
| | | | | Ponding | 1.00 | | |
| | | | | Piping | 0.62 | | \| |
| | | | | Seepage | 0.03 | | \| |
| | | | | | | | |

Table 21.--Water Management--Continued

Table 21.--Water Management--Continued

| Map symbol and soil name | \mid \mid Pct. \mid of \mid map \mid unit | Pond reservoir areas | | Embankments, dikes levees | and | Aquifer-fed excavated ponds | | |
|---|---|---|---|---|---|---|---|---|
| | | Rating class and limiting features | Value | Rating class and limiting features | \| Value| | Rating class and limiting features | \|Value |
| | | | | | | | |
| I57B: | | | | | | | |
| Oylen-------------- \| | 7 | $\begin{aligned} & \text { \|Very limited } \\ & \mid \text { Seepage } \end{aligned}$ | 11.00 | \|Somewhat limited | | \mid Very limited | |
| | | | | Seepage | 10.72 | Cutbanks cave | 1.00 |
| | | | | Depth to saturated zone | 10.50 | Depth to water | 10.22 |
| | | | | | | | |
| | | | | | | | |
| Flaming------------\| | 5 | Very limitedSeepage | | \|Somewhat limited | | Very limited | |
| | | | 1.00 | Depth to saturated zone | 10.87 | Cutbanks cave | 1.00 |
| | | | | | | Depth to water | 10.06 |
| | | | | Seepage | 10.25 | | |
| | | | | | | | |
| Garborg------------- \| | 5 | \|Very limited | | \|Very limited | | Very limited | |
| | | Seepage | 1.00 | Depth to saturated zone | 11.00 | \| Cutbanks cave | 1.00 |
| | | | | | | Cutbanks cave | |
| | | | | Seepage | 10.25 | | |
| | | | | | | | |
| I58A: | | | | | | | |
| Seelyeville | 90 | \|Very limited
 \| Seepage | | Not rated | | \| Somewhat limited ${ }^{\text {\| Cutbanks cave }}$ | |
| | | | 1.00 | | | | 10.10 |
| | | | | | | | |
| Cathro------------- \| | 31 | \|Very limited Seepage | | Not rated | | \|Somewhat limited Cutbanks cave | 10.10 |
| | | | 1.00 | | | | |
| | | | | | | | |
| Dora---------------- \| | 31 | \|Very limited | Seepage | | \| Not rated | | \|Somewhat limited
 \| Cutbanks cave | |
| | | | 1.00 | | | | 10.10 |
| | | | | | | | |
| Markey------------- \| | 3 | \|Very limited
 \| Seepage | | \| Not rated | | $\begin{aligned} & \mid \text { Very limited } \\ & \text { Cutbanks cave } \end{aligned}$ | |
| | | | 1.00 | | | | \| 1.00 |
| | | | | | | | |
| Berner------------- \| | 1 | | | \| Not rated | | \| Very limited Cutbanks cave | |
| | | Seepage | 1.00 | | | | 11.00 |
| | | | | | | | |
| I59A: | | | | | | | |
| Smiley-------------\| | 65 | $\begin{aligned} & \mid \text { Somewhat limited } \\ & \mid \text { Seepage } \end{aligned}$ | | \mid Very limited
 \mid Depth to$\| 1.00$ | | Somewhat limited | |
| | | | 0.72 | | | Slow refill | 10.28 |
| | | | | saturated zone | | Cutbanks cave | 0.10 |
| | | | | Ponding | 11.00 | | |
| | | | | Piping | 10.71 | | |
| | | | | | | | |
| Smiley, very cobbly | 10 | $\begin{aligned} & \mid \text { Somewhat limited } \\ & \mid \text { Seepage } \end{aligned}$ | | \mid Very limited | | \| Somewhat limited | |
| | | | 0.72 | Depth to | 11.00 | \| Slow refill | |
| | | | | saturated zone | | Cutbanks cave | 0.10 |
| | | | | Ponding | \| 1.00 | | |
| | | | | Piping | 10.71 | | |
| | | | | | | | |
| Kratka-------------- \| | 9 \| | $\begin{aligned} & \text { \|Very limited } \\ & \mid \quad \text { Seepage } \end{aligned}$ | | \|Very limited | | \|Very limited | |
| | | | 1.00 | Depth to | 11.00 | Cutbanks cave | 1.00 |
| | | | | saturated zone | | | |
| | | | | Ponding | 11.00 | | |
| | | | | Piping | 10.97 | | |
| | | | | Seepage | 10.01 | | |
| | | | | | | | |
| Roliss------------- | 5 | $\begin{aligned} & \mid \text { Somewhat limited } \\ & \mid \text { Seepage } \end{aligned}$ | | \|Very limited | | \|Somewhat limited | |
| | | | 0.72 | Depth to | 11.00 | Slow refill | 10.28 |
| | | | | saturated zone | | Cutbanks cave | 10.10 |
| | | | | Ponding | 11.00 | | |
| | | | | Piping | 10.50 | | \| |
| | | | | | | | |

Table 21.--Water Management--Continued

Table 21.--Water Management--Continued

Table 21.--Water Management--Continued

| Map symbol and soil name | Pct. of map \|unit | Pond reservoir areas | | Embankments, dikes, and levees | | Aquifer-fed excavated ponds | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | \|Value | Rating class and limiting features | \| Value | Rating class and
 limiting features | \|Value |
| I62A: | | | | | | | |
| Karlsruhe------- | 4 | \|Very limited | | Very limited | | \|Very limited | |
| | | Seepage | $\text { \| } 1.00$ | Depth to | 1.00 | Cutbanks cave | 1.00 |
| | | | | saturated zone | | | |
| | | | | Seepage | 0.54 | | |
| | | | | | | | |
| Deerwood-------- | 3 | \| Very limited | | Not rated | | \|Very limited | |
| | | Seepage | 11.00 | | | Cutbanks cave | 1.00 |
| | | | | | | | |
| Hamar----------- | 3 | \| Very limited | | Very limited | | \| Very limited | |
| | | Seepage | 11.00 | Depth to | 1.00 | Cutbanks cave | 1.00 |
| | | | | saturated zone | | | |
| | | | | Ponding | 1.00 | | |
| | | | | Seepage | 10.25 | | |
| | | | | | | | |
| Strandquist----- | 2 | \| Very limited | | Very limited | | \|Very limited | |
| | | Seepage | 11.00 | Depth to | 11.00 | Cutbanks cave | 1.00 |
| | | | | saturated zone | | | |
| | | | | Ponding | 1.00 | | |
| | | | | Piping | 10.97 | | |
| | | | | Seepage | 0.68 | | |
| | | | | | | | |
| Radium--------- | 1 | \| Very limited | | Somewhat limited | | \| Very limited | |
| | | Seepage | 11.00 | Seepage | 0.79 | Cutbanks cave | 1.00 |
| | | | | Depth to | 10.50 | Depth to water | 0.22 |
| | | | | saturated zone | | | |
| | | | | | | | |
| Wyandotte------- | 1 | \| Very limited | | Very limited | | \|Very limited | |
| | | Seepage | \| 1.00 | Depth to | 1.00 | Cutbanks cave | 1.00 |
| | | | | saturated zone | | | |
| | | | | Ponding | 1.00 | | |
| | | | | Seepage | 10.25 | | |
| | | | | Piping | 0.10 | | |
| | | | | | | | |
| I63A: | | | | | | | |
| Thiefriver------ | 70 | \| Very limited | | \| Very limited | | \| Very limited | |
| | | \| Seepage | \| 1.00 | Depth to | 1.00 | Cutbanks cave | 1.00 |
| | | | | saturated zone | | | |
| | | | | Ponding | 1.00 | | |
| | | | | Seepage | 0.01 | | |
| | | | | | | | |
| Espelie--------- | 10 | \| Very limited | - | \|Very limited | | \| Very limited | |
| | | Seepage | \| 1.00 | Depth to | 1.00 | Cutbanks cave | 11.00 |
| | | | | saturated zone | | | |
| | | | | Ponding | 1.00 | | |
| | | | | Seepage | 10.13 | | |
| | | | | | | | |
| Foxlake--------- | 7 | \| Not limited | | \| Very limited | | Somewhat limited | |
| | | | | Depth to | 1.00 | Cutbanks cave | 10.10 |
| | | | | saturated zone | | | |
| | | | \| | Ponding | 1.00 | | |
| | | | 1 \| | Hard to pack | 10.41 | | |
| | | | \| | | | | |
| Huot------------ | 5 | \| Very limited | | Somewhat limited | | \| Very limited | |
| | | Seepage | \| 1.00 | Depth to | 0.87 | Cutbanks cave | 1.00 |
| | | | , | saturated zone | | Depth to water | 10.06 |
| | | | 1 \| | Seepage | 0.01 | | |
| | | | | | | | |

Table 21.--Water Management--Continued

Table 21.--Water Management--Continued

Table 21.--Water Management--Continued

Table 21.--Water Management--Continued

| Map symbol and soil name | | Pond reservoir areas | | Embankments, dikes, and levees | | Aquifer-fed excavated ponds | | |
|---|---|---|---|---|---|---|---|---|
| | | Rating class and limiting features | \|Value | Rating class and limiting features | Value | Rating class and limiting features | \|Value |
| I67A | | | | | | | |
| Hilaire--------- | 2 | Very limited | | Somewhat limited | | \| Very limited | |
| | | Seepage | \| 1.00 | Depth to | 0.87 | Cutbanks cave | 11.00 |
| | | | | saturated zone | | Depth to water | 10.06 |
| | | | | Seepage | 0.25 | | |
| | | | | | | | |
| Ulen------------ | 2 | Very limited | | Very limited | | Very limited | |
| | | Seepage | 11.00 | Depth to | 1.00 | Cutbanks cave | 11.00 |
| | | | | saturated zone | | | |
| | | | | Seepage | 0.25 | | |
| | | | | | | | |
| I68A: | | | | | | | |
| Wheatville------ | 70 | Very limited | | Very limited | | Somewhat limited | |
| | | Seepage | \| 1.00 | \| Depth to | 1.00 | Cutbanks cave | 0.10 |
| | | | | saturated zone | | | |
| | | | | | | | |
| Augsburg-------- | 13 | Very limited | | \| Very limited | | \| Very limited | |
| | | Seepage | \| 1.00 | Depth to | 1.00 | Cutbanks cave | \| 1.00 |
| | | | | saturated zone | | | |
| | | | | Ponding | 1.00 | | |
| | | | | Piping | 0.05 | | |
| | | | | | | | |
| Glyndon--------- | 8 \| | \| Very limited | | \| Very limited | | Very limited | |
| | | Seepage | \| 1.00 | Depth to | 1.00 | Cutbanks cave | 1.00 |
| | | | | saturated zone | | | |
| | | | | Piping | 1.00 | | |
| | | | | | | | |
| Foxlake--------- | 5 | \| Not limited | | \| Very limited | | Somewhat limited | |
| | | | | Depth to | 1.00 | Cutbanks cave | 0.10 |
| | | | | saturated zone | | | |
| | | | | Ponding | 1.00 | | |
| | | | | Hard to pack | 0.41 | | |
| | | | | | | | |
| Hilaire--------- | 2 | $\left\lvert\, \begin{aligned} & \text { Very limited } \\ & \text { Seepage }\end{aligned}\right.$ | | \|Somewhat limited | | Very limited | |
| | | | 11.00 | Depth to | 0.87 | Cutbanks cave | 11.00 |
| | | | | saturated zone | | Depth to water | 10.06 |
| | | | | Seepage | 0.25 | | |
| | | | | | | | |
| Ulen------------ | 2 | \| Very limited | | \| Very limited | | Very limited | |
| | | Seepage | 11.00 | Depth to | 1.00 | Cutbanks cave | 1.00 |
| | | | | saturated zone | | | |
| | | | \| | Seepage | 0.25 | | |
| | | | \| | \| | | | | |
| I69A: \| | | | \mid | \| | | | | |
| Wyandotte------- | 65 | $\begin{aligned} & \text { Very limited } \\ & \text { Seepage } \end{aligned}$ | | \| Very limited | | \| Very limited | |
| | | | 11.00 | Depth to | 1.00 | Cutbanks cave | 1.00 |
| | | | | saturated zone | | | |
| | | | \| | Ponding | 1.00 | | |
| | | | | Seepage | 0.25 | | |
| | | | \| | Piping | 0.10 | | |
| | | | | | | | |
| Foxlake- | 10 | \| Not limited | | \| Very limited | | Somewhat limited | |
| | | | | Depth to | 1.00 | Cutbanks cave | \| 0.10 |
| | | | | saturated zone | | | |
| | | | 1 | \| Ponding | 1.00 | | |
| | | | | Hard to pack | 0.41 | | \| |
| | | | | | | | |

Table 21.--Water Management--Continued

Table 21.--Water Management--Continued

Soil Properties

Data relating to soil properties are collected during the course of the soil survey. The data and the estimates of soil and water features, listed in tables, are explained on the following pages.

Soil properties are determined by field examination of the soils and by laboratory index testing of some benchmark soils. Established standard procedures are followed. During the survey, many shallow borings are made and examined to identify and classify the soils and to delineate them on the soil maps. Samples are taken from some typical profiles and tested in the laboratory to determine grain-size distribution, plasticity, and compaction characteristics.

Estimates of soil properties are based on field examinations, on laboratory tests of samples from the survey area, and on laboratory tests of samples of similar soils in nearby areas. Tests verify field observations, verify properties that cannot be estimated accurately by field observation, and help to characterize key soils.

The estimates of soil properties shown in the tables include the range of grain-size distribution and Atterberg limits, the engineering classification, and the physical and chemical properties of the major horizons of each soil. Pertinent soil and water features also are given.

Engineering Index Properties

Table 22 gives estimates of the engineering classification and of the range of index properties for the major horizons of each soil. Most soils have horizons of contrasting properties within the upper 5 or 6 feet.

Depth to the upper and lower boundaries of each horizon is indicated.
Texture is given in the standard terms used by the U.S. Department of Agriculture. These terms are defined according to percentages of sand, silt, and clay in the fraction of the soil that is less than 2 millimeters in diameter. "Loam," for example, is soil that is 7 to 27 percent clay, 28 to 50 percent silt, and less than 52 percent sand. If the content of particles coarser than sand is as much as 15 percent, an appropriate modifier is added, for example, "gravelly." Textural terms are defined in the Glossary.

Classification of the soils is determined according to the Unified soil classification system (ASTM, 2001) and the system adopted by the American Association of State Highway and Transportation Officials (AASHTO, 2000).

The Unified system classifies soils according to properties that affect their use as construction material. Soils are classified according to grain-size distribution of the fraction less than 3 inches in diameter and according to plasticity index, liquid limit, and organic matter content. Sandy and gravelly soils are identified as GW, GP, GM, GC, SW, SP, SM, and SC; silty and clayey soils as ML, CL, OL, MH, CH, and OH; and highly organic soils as PT. Soils exhibiting engineering properties of two groups can have a dual classification, for example, SP-SM.

The AASHTO system classifies soils according to those properties that affect roadway construction and maintenance. In this system, the fraction of a mineral soil that is less than 3 inches in diameter is classified in one of seven groups from A-1 through A-7 on the basis of grain-size distribution, liquid limit, and plasticity index. Soils in group A-1 are coarse grained and low in content of fines (silt and clay). At the other
extreme, soils in group A-7 are fine grained. Highly organic soils are classified in group A-8 on the basis of visual inspection.

If laboratory data are available, the A-1, A-2, and A-7 groups are further classified as A-1-a, A-1-b, A-2-4, A-2-5, A-2-6, A-2-7, A-7-5, or A-7-6. As an additional refinement, the suitability of a soil as subgrade material can be indicated by a group index number. Group index numbers range from 0 for the best subgrade material to 20 or higher for the poorest.

Rock fragments larger than 10 inches in diameter and 3 to 10 inches in diameter are indicated as a percentage of the total soil on a dry-weight basis. The percentages are estimates determined mainly by converting volume percentage in the field to weight percentage.

Percentage (of soil particles) passing designated sieves is the percentage of the soil fraction less than 3 inches in diameter based on an ovendry weight. The sieves, numbers 4, 10, 40, and 200 (USA Standard Series), have openings of 4.76, 2.00, 0.420 , and 0.074 millimeters, respectively. Estimates are based on laboratory tests of soils sampled in the survey area and in nearby areas and on estimates made in the field.

Liquid limit and plasticity index (Atterberg limits) indicate the plasticity characteristics of a soil. The estimates are based on test data from the survey area or from nearby areas and on field examination.

The estimates of grain-size distribution, liquid limit, and plasticity index are generally rounded to the nearest 5 percent. Thus, if the ranges of gradation and Atterberg limits extend a marginal amount (1 or 2 percentage points) across classification boundaries, the classification in the marginal zone is omitted in the table.

Physical and Chemical Properties

Tables 23 and 24 show estimates of some characteristics and features that affect soil behavior. These estimates are given for the major horizons of each soil in the survey area. The estimates are based on field observations and on test data for these and similar soils.

Depth to the upper and lower boundaries of each horizon is indicated.
In table 23, clay as a soil separate, or component, consists of mineral soil particles that are less than 0.002 millimeter in diameter. The estimated clay content of each major soil horizon is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

The amount and kind of clay greatly affect the fertility and physical condition of the soil. They determine the ability of the soil to adsorb cations and to retain moisture. They influence linear extensibility, permeability, plasticity, the ease of soil dispersion, and other soil properties. The amount and kind of clay in a soil also affect tillage and earth-moving operations.

Moist bulk density is the weight of soil (ovendry) per unit volume. Volume is measured when the soil is at field moisture capacity, that is, the moisture content at $1 / 3$-bar moisture tension. Weight is determined after drying the soil at 105 degrees C. In table 23, the estimated moist bulk density of each major soil horizon is expressed in grams per cubic centimeter of soil material that is less than 2 millimeters in diameter. Bulk density data are used to compute linear extensibility, available water capacity, total pore space, and other soil properties. The moist bulk density of a soil indicates the pore space available for water and roots. A bulk density of more than 1.6 can restrict water storage and root penetration. Moist bulk density is influenced by texture, kind of clay, content of organic matter, and soil structure.

Permeability refers to the ability of a soil to transmit water or air. The term "permeability," as used in soil surveys, indicates saturated hydraulic conductivity $\left(\mathrm{K}_{\text {sat }}\right)$.

The estimates in the table indicate the rate of water movement, in inches per hour, when the soil is saturated. They are based on soil characteristics observed in the field, particularly structure, porosity, and texture. Permeability is considered in the design of soil drainage systems and septic tank absorption fields.

Available water capacity refers to the quantity of water that the soil is capable of storing for use by plants. The capacity for water storage is given in inches of water per inch of soil for each major soil horizon. The capacity varies, depending on soil properties that affect the retention of water and the depth of the root zone. The most important properties are the content of organic matter, soil texture, bulk density, and soil structure. Available water capacity is an important factor in the choice of plants or crops to be grown and in the design and management of irrigation systems. Available water capacity is not an estimate of the quantity of water actually available to plants at any given time.

Linear extensibility percent is the linear expression of the volume difference of natural soil fabric at $1 / 3$-bar or $1 / 10$-bar water content and oven dryness. The volume change is reported as percent change for the whole soil. Volume change occurs mainly because of the interaction of clay minerals with water and varies with the amount and type of clay minerals in the soil. The size of the load on the soil and the magnitude of the change in soil moisture content influence the amount of swelling of soils in place. Laboratory measurements of swelling of undisturbed clods were made for many soils. For others, swelling was estimated on the basis of the kind and amount of clay minerals in the soil and on measurements of similar soils.

Linear extensibility of 3 percent or more can cause damage to buildings, roads, and other structures. Special design is often needed.

Organic matter is the plant and animal residue in the soil at various stages of decomposition. In table 23, the estimated content of organic matter is expressed as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

The content of organic matter in a soil can be maintained or increased by returning crop residue to the soil. Organic matter affects the available water capacity, infiltration rate, and tilth. It is a source of nitrogen and other nutrients for crops.

Erosion factors are shown in table 23 as the K factor (Kw and Kf) and the T factor. Erosion factor K indicates the susceptibility of a soil to sheet and rill erosion by water. Factor K is one of several factors used in the Universal Soil Loss Equation (USLE) and the Revised Universal Soil Loss Equation (RUSLE) to predict the average annual rate of soil loss by sheet and rill erosion in tons per acre per year. The estimates are based primarily on percentage of silt, sand, and organic matter and on soil structure and permeability. Values of K range from 0.02 to 0.69 . Other factors being equal, the higher the value, the more susceptible the soil is to sheet and rill erosion by water.

Erosion factor Kw indicates the erodibility of the whole soil. The estimates are modified by the presence of rock fragments.

Erosion factor $K f$ indicates the erodibility of the fine-earth fraction, or the material less than 2 millimeters in size.

Erosion factor T is an estimate of the maximum average annual rate of soil erosion by wind or water that can occur without affecting crop productivity over a sustained period. The rate is in tons per acre per year.

Wind erodibility groups are made up of soils that have similar properties affecting their susceptibility to wind erosion in cultivated areas. The soils assigned to group 1 are the most susceptible to wind erosion, and those assigned to group 8 are the least susceptible. Descriptions of these groups are available in the National Soil Survey Handbook (USDA, 2003).

Wind erodibility index is a numerical value indicating the susceptibility of soil to wind erosion, or the tons per acre per year that can be expected to be lost to wind erosion. There is a close correlation between wind erosion and the texture of the surface layer,
the size and durability of surface clods, rock fragments, organic matter, and a calcareous reaction. Soil moisture and frozen soil layers also influence wind erosion.

In table 24, cation-exchange capacity is the total amount of extractable bases that can be held by the soil, expressed in terms of milliequivalents per 100 grams of soil at neutrality (pH 7.0) or at some other stated pH value. Soils having a low cationexchange capacity hold fewer cations and may require more frequent applications of fertilizer than soils having a high cation-exchange capacity. The ability to retain cations reduces the hazard of ground-water pollution.

Soil reaction is a measure of acidity or alkalinity and is expressed as a range in pH values. The range in pH of each major horizon is based on many field tests. For many soils, values have been verified by laboratory analyses. Soil reaction is important in selecting crops and other plants, in evaluating soil amendments for fertility and stabilization, and in determining the risk of corrosion.

Calcium carbonate equivalent is the percent of carbonates, by weight, in the fraction of the soil less than 2 millimeters in size. The availability of plant nutrients is influenced by the amount of carbonates in the soil. Incorporating nitrogen fertilizer into calcareous soils helps to prevent nitrite accumulation and ammonium-N volatilization.

Gypsum is expressed as a percent, by weight, of hydrated calcium sulfates in the fraction of the soil less than 20 millimeters in size. Gypsum is partially soluble in water. Soils that have a high content of gypsum may collapse if the gypsum is removed by percolating water.

Salinity is a measure of soluble salts in the soil at saturation. It is expressed as the electrical conductivity of the saturation extract, in millimhos per centimeter at 25 degrees C. Estimates are based on field and laboratory measurements at representative sites of nonirrigated soils. The salinity of irrigated soils is affected by the quality of the irrigation water and by the frequency of water application. Hence, the salinity of soils in individual fields can differ greatly from the value given in the table. Salinity affects the suitability of a soil for crop production, the stability of soil if used as construction material, and the potential of the soil to corrode metal and concrete.

Water Features

Table 25 provides information about various water features. This information can be used in land use planning that involves engineering considerations.

Soil moisture status is an estimate of the fluctuating water content in a soil. It greatly influences vegetation type and plant growth; physical properties of soils, such as permeability, workability, strength, linear extensibility, and frost action; and chemical interactions and transport. Many other properties, qualities, and interpretations also are affected. Soil moisture status is important in the classification of soils, wetland, and habitat.

Table 25 gives estimates of soil moisture for each component of a map unit at various depths for every month of the year. The depths displayed are low, representative, and high values. High and low values represent the normally expected range of values. Representative values are indicative of conditions that occur most commonly. Dry indicates a moisture condition under which most plants (especially crops) cannot extract water for growth. Moist indicates a moisture condition under which soil water is most readily available for plant growth. Wet indicates a condition under which water will stand in an unlined hole or at least a condition under which the soil is too wet for the growth of most agricultural species. A moisture status of 4.0-6.7 (wet) indicates that most of the time the component is saturated at some depth between 4.0 feet and 6.7 feet during the month designated. In some years the soil may be saturated at a depth of less than 4.0 feet or more than 6.7 feet; however, field observations indicate that the soil will be saturated between these depths in most
years. In the summer, the soil may show the effects of drying plus intermittent rains that result in a moist or wet layer over a dry layer that gets moist or wet again.

Flooding, the temporary covering of the soil surface by flowing water, is caused by overflow from streams or by runoff from adjacent slopes. Shallow water standing or flowing for short periods after rainfall or snowmelt is not considered flooding. Standing water in marshes and swamps or in closed depressions is considered to be ponding.

Table 25 gives estimates of the frequency and duration of flooding for every month of the year. Flooding frequency is the annual probability of a flood event expressed as a class. None indicates no reasonable possibility of flooding (the chance of flooding is nearly 0 percent in any year, or flooding is likely less than once in 500 years). Very rare indicates that flooding is very unlikely but possible under extremely unusual weather conditions (the chance of flooding is less than 1 percent in any year, or flooding is likely less than once in 100 years but more than once in 500 years). Rare indicates that flooding is unlikely but possible under unusual weather conditions (the chance of flooding is 1 to 5 percent in any year, or flooding is likely 1 to 5 times in 100 years). Occasional indicates that flooding occurs infrequently under usual weather conditions (the chance of flooding is 5 to 50 percent in any year, or flooding is likely 5 to 50 times in 100 years). Frequent indicates that flooding is likely to occur often under usual weather conditions (the chance of flooding is more than 50 percent in any year, or flooding is likely more than 50 times in 100 years; but the chance of flooding is less than 50 percent in all months in any year). Very frequent indicates that flooding is likely to occur very often under usual weather conditions (the chance of flooding is more than 50 percent in all months of any year).

Flooding duration is the average duration of inundation per flood occurrence expressed as a class. Extremely brief is 0.1 hour to 4.0 hours; very brief is 4 to 48 hours; brief is 2 to 7 days; long is 7 to 30 days; and very long is more than 30 days. About two-thirds to three-fourths of all flooding occurs during the stated period.

The information on flooding is based on evidence in the soil profile, namely thin strata of gravel, sand, silt, or clay deposited by floodwater; irregular decrease in organic matter content with increasing depth; and little or no horizon development.

Also considered are local information about the extent and level of flooding and the relation of each soil on the landscape to historic floods. Information on the extent of flooding based on soil data is less specific than that provided by detailed engineering surveys that delineate flood-prone areas at specific flood frequency levels.

Ponding is standing water in a closed depression. Unless a drainage system is installed, the water is removed only by percolation, transpiration, or evaporation.

Table 25 gives estimates of the frequency, duration, and depth of ponding for every month of the year. The depths displayed are low, representative, and high values. Low and high values represent the normally expected range of values. Representative values are indicative of conditions that occur most commonly.

Ponding frequency is the number of times ponding occurs over a period of time. None indicates no reasonable possibility of ponding (the chance of ponding is nearly 0 percent in any year). Rare indicates that ponding is unlikely but possible under unusual weather conditions (the chance of ponding ranges from nearly 0 percent to 5 percent in any year, or ponding is likely 0 to 5 times in 100 years). Occasional indicates that ponding is expected infrequently under usual weather conditions (the chance of ponding ranges from 5 to 50 percent in any one year, or ponding is likely 5 to 50 times in 100 years). Frequent indicates that ponding is likely to occur under usual weather conditions (the chance of ponding is more than 50 percent in any year, or ponding is likely more than 50 times in 100 years).

Ponding duration is the average length of time of the ponding occurrence. It is expressed as very brief (less than 2 days), brief (2 to 7 days), long (7 to 30 days), and very long (more than 30 days).

Soil Features

Table 26 gives estimates of various soil features. The estimates are used in land use planning that involves engineering considerations.

A restrictive layer is a nearly continuous layer that has one or more physical, chemical, or thermal properties that significantly impede the movement of water and air through the soil or that restrict roots or otherwise provide an unfavorable root environment. Examples are bedrock, cemented layers, dense layers, and frozen layers.

Subsidence is the settlement of organic soils or of saturated mineral soils of very low density. Subsidence generally results from either desiccation and shrinkage or oxidation of organic material, or both, following drainage. Subsidence takes place gradually, usually over a period of several years. The table shows the expected initial subsidence, which usually is a result of drainage, and total subsidence, which results from a combination of factors.

Potential for frost action is the likelihood of upward or lateral expansion of the soil caused by the formation of segregated ice lenses (frost heave) and the subsequent collapse of the soil and loss of strength on thawing. Frost action occurs when moisture moves into the freezing zone of the soil. Temperature, texture, density, permeability, content of organic matter, and depth to a zone in which the soil moisture status is wet are the most important factors considered in evaluating the potential for frost action. It is assumed that the soil is not insulated by vegetation or snow and is not artificially drained. Silty and highly structured, clayey soils that have a saturated zone high in the profile during the winter are the most susceptible to frost action. Well drained, very gravelly, or very sandy soils are the least susceptible. Frost heave and low soil strength during thawing cause damage to pavements and other rigid structures.

Risk of corrosion pertains to potential soil-induced electrochemical or chemical action that corrodes or weakens uncoated steel or concrete. The rate of corrosion of uncoated steel is related to such factors as soil moisture, particle-size distribution, acidity, and electrical conductivity of the soil. The rate of corrosion of concrete is based mainly on the sulfate and sodium content, texture, moisture content, and acidity of the soil. Special site examination and design may be needed if the combination of factors results in a severe hazard of corrosion. The steel or concrete in installations that intersect soil boundaries or soil layers is more susceptible to corrosion than the steel or concrete in installations that are entirely within one kind of soil or within one soil layer.

For uncoated steel, the risk of corrosion, expressed as low, moderate, or high, is based on soil drainage class, total acidity, electrical resistivity near field capacity, and electrical conductivity of the saturation extract.

For concrete, the risk of corrosion also is expressed as low, moderate, or high. It is based on soil texture, acidity, and amount of sulfates in the saturation extract.
(Absence of an entry indicates that the data were not estimated)

Table 22.--Engineering Index Properties--Continued

Table 22.--Engineering Index Properties--Continued

| Map symbol
 and
 soil name | $\begin{aligned} & \text { Pct. of } \\ & \text { map unit } \end{aligned}$ | Depth | USDA texture | Classification | | Fragments | | Percentage passing sieve number-- | | | | \|Liquid|
 \|limit | $\begin{aligned} & \mid \text { Plas- } \\ & \mid \text { ticity } \\ & \text { \|index } \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | | | >10 | 3-10 | | | | | | |
| | | | | Unified | AASHTO | inches | \|inches| | 4 | 10 | 40 | 200 | | |
| B203A: | | In | | | | Pct | Pct | | | | | Pct | |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Chilgren----- | 3 | 0-4 | \|Fine sandy loam| | ML, SC-SM, | \|A-2-4, A-4, | 0-1 | 0-3 | \| 90-100 | 85-100 | 60-85 | 25-55 | 15-35 | \|NP-10 |
| | | | | \| SM, CL-ML | $\mid \mathrm{A}-2$ | | | | | | | | |
| | | 4-10 | \|Fine sand, fine| | SP-SM, SM | \|A-1, A-2-4, | 0 | 0-2 | 95-100 | 95-100 | \|45-75 | 5-30 | 0-20 | NP-3 |
| | | | sandy loam, | | $A-3, A-2$ | | | | | | | | |
| | | | loamy fine \| | | | | | | | | | | |
| | | | sand | | | | | | | | | | |
| | | 10-18 | \|clay loam, | \| CL, SC | \|A-4, A-6 | 0-1 | 0-5 | \| 95-100 | 80-100 | \|70-100| | 45-80 | \|20-40 | 7-20 |
| | | | \| sandy clay | | | | | | | | | | |
| | | | \| loam, loam | | | | | | | | | | |
| | | 18-72 | \|Clay loam, loam| | CL, CL-ML | \|A-4, A-6 | 0-1 | 0-5 | \|95-100 | 85-95 | 75-90 | \| 50-75 | \| 25-40 | 5-20 |
| | | 72-80 | \|Loam, clay loam| | CL, CL-ML | \|A-6, A-4 | 0-1 | 0-5 | \|95-100 | 85-95 | 75-90 | 150-75 | 25-40 | 5-20 |
| | | | | | | | | | | | | | |
| B204A: | | | | | | | | | | | | | |
| Roliss------- | 75 | 0-14 | \| Loam | \| CL, CL-ML | \|A-4, A-6 | 0-1 | 0-5 | \| 95-100 | 80-100 | \| 80-100| | \|60-90 | 20-40 | 5-20 |
| | | 14-20 | \|Clay loam, loam| | CL, CL-ML | \|A-4, A-6 | 0-1 | 0-5 | \| 95-100 | 85-95 | \| 75-90 | \|50-75 | \|25-40 | 5-20 |
| | | 20-80 | \|Loam, clay loam| | CL, CL-ML | \|A-6, A-4 | 0-1 | 0-5 | \| 95-100 | \| 85-95 | \| 75-90 | 150-75 | \|25-40 | 5-20 |
| | | | | | | | | | | | | | |
| Grygla------ | 8 | 0-6 | \| Loamy fine sand| | SM, SC-SM | \mid A-2-4 | 0 | 0 | 100 | \| 95-100 | 85-95 | 15-35 | 0-25 | \|NP-5 |
| | | 6-26 | \|Sand, fine | | \|SP-SM, SM, | \|A-2-4, A-3 | 0 | 0-1 | 95-100 | 90-100 | \|70-95 | 5-35 | 0-20 | \| NP-5 |
| | | | \| sand, loamy | SC-SM | | | | | | | | | |
| | | | \| fine sand | | | | | | | | | | |
| | | 26-80 | \| Loam, clay loam| | CL, CL-ML | \|A-6, A-4 | 0-1 | 0-5 | \|95-100 | 85-95 | 75-90 | 50-75 | 25-40 | 5-20 |
| | | | | | | | | | | | | | |
| Chilgren---- | 5 | 0-4 | \|Fine sandy loam| | SM, CL-ML, | \|A-2-4, A-4, | 0-1 | 0-3 | \|90-100 | 85-100 | 60-85 | \|25-55 | \| 15-35 | \| NP-10 |
| | | | | \| ML, SC-SM | \| A-2 | | | | | | | | |
| | | 4-10 | \|Fine sand, fine| | \|SP-SM, SM | $\mathrm{A}-1, \mathrm{~A}-2-4,$ | 0 | 0-2 | 95-100 | \| 95-100| | \|45-75 | 5-30 | 0-20 | \|NP-3 |
| | | | \| sandy loam, | , | $A-3, A-2$ | | | | | | | | |
| | | | \| loamy fine | | | | | | | | | | | |
| | | | \| sand | | | | | | | | | | |
| | | 10-18 | \| Clay loam, | \| CL, SC | \|A-4, A-6 | 0-1 | 0-5 | 95-100 | 80-100 | 70-100 | 45-80 | 20-40 | 7-20 |
| | | | \| sandy clay | | | | | | | | | | |
| | | | loam, loam | | | | | | | | | | |
| | | 18-72 | \| Loam, clay loam| | \|CL, CL-ML | \|A-4, A-6 | 0-1 | 0-5 | \| 95-100 | \|85-95 | \|75-90 | \| 50-75 | \| 25-40 | 5-20 |
| | | 72-80 | \| Clay loam, loam| | CL, CL-ML | \|A-6, A-4 | 0-1 | 0-5 | 95-100 | \| 85-95 | \|75-90 | 150-75 | \| 25-40 | 5-20 |
| | | | | | | | | | | | | | |
| Garnes------- | 5 | 0-6 | \|Fine sandy loam| | \|SC-SM, SM | \|A-4 | 0 | 0-5 | \| 85-100 | \| 85-95 | 65-85 | \| 35-50 | \| 15-35 | \| NP-10 |
| | | 6-9 | \mid Fine sand, | \|SP-SM, SM | \|A-2, A-1, | 0 | 0-2 | \| 95-100 | \| 95-100 | 45-75 | 5-30 | 0-20 | \|NP-3 |
| | | | \| sand, loamy | | A-2-4, A-3 | | | | | | | | |
| | | | fine sand | | | | | | | | | | |
| | | 9-14 | \| Clay loam, | \| CL, SC | \|A-4, A-6 | 0-1 | 0-5 | \|95-100 | 80-100 | $\|70-100\|$ | 45-80 | \| 20-40 | 7-20 |
| | | | \| sandy clay | | | | | | | | | | |
| | | | loam, loam | | | | | | | | | | |
| | | 14-72 | \| Loam, clay loam| | CL, CL-ML | \|A-4, A-6 | 0-1 | 0-5 | 95-100 | \| 85-95 | \|75-90 | \| 50-75 | \| 25-40 | 5-20 |
| | | 72-80 | \|clay loam, loam| | CL, CL-ML | \|A-6, A-4 | 0-1 | 0-5 | \| 95-100 | \| 85-95 | \|75-90 | \| 50-75 | \| 25-40 | 5-20 |
| | | | | | | | | | | | | | |

Table 22.--Engineering Index Properties--Continued

Table 22.--Engineering Index Properties--Continued

Table 22.--Engineering Index Properties--Continued

Table 22.--Engineering Index Properties--Continued

| Map symbol
 and
 soil name | Pct. of map unit | Depth | USDA texture | Classification | | Fragments | | Percentage passing sieve number-- | | | | \|Liquid
 \|limit | Plas\|ticity index | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | Unified | AASHTO | $\begin{array}{\|l\|} \mid \text { inches } \end{array}$ | $\begin{array}{\|c\|} \mid 3-10 \\ \mid \text { inches } \end{array}$ | | | | | | |
| | | | | | | | | 4 | 10 | 40 | 200 | | |
| I1A: | 5 | In | | | | Pct | Pct | | | | | Pct | |
| | | | \| | | \| | | | | | | | | |
| | | | | | | | | | | | | | |
| Foxlake---------\| | | 0-19 | \| Loam | \| CL-ML, CL | A-4, A-6 | 0-1 | 0-2 | \| 95-100| | 90-100 | 75-90 | 50-80 | \|20-40 | 5-20 |
| | | 19-38 | \|Silty clay, | \| CH | \|A-7 | 0-1 | 0-3 | \| 95-100| | \| 95-100| | \| 90-100| | 75-95 | \| $40-70$ | \| $20-45$ |
| | | | \| clay, silty | | | | | | | | | | |
| | | | \| clay loam | | | | | | | | | | |
| | | 38-49 | \|Silty clay, | \| CH | \|A-7 | 0-1 | 0-3 | \| 95-100| | 95-100 | \|90-100| | 75-95 | \| $40-70$ | \| 20-45 |
| | | | \| clay, silty | | | | | | | | | | |
| | | | \| clay loam | | | | | | | | | | |
| | | 49-80 | \|Silty clay, | \| CH | \|A-7 | 0-1 | 0-3 | \| 95-100| | 95-100 | \|90-100| | 75-95 | \| $40-70$ | 20-45 |
| | | | \| clay, silty | | | | | | | | | | |
| | | | \| clay loam | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Augsburg, depressional--- | 3 | | | | | | | | | | | | |
| | | 0-11 | \| Mucky loam | \| ML | \|A-4 | 0 | 0 | 100 | 100 | \| 95-100| | 70-95 | 0-25 | \|NP-10 |
| | | 11-18 | | \|CL-ML, ML | \|A-4 | 0 | 0 | 100 | 100 | \| 95-100| | 80-90 | 0-30 | \|NP-10 |
| | | | $\begin{array}{\|l\|} \text { sandy loam, } \\ \text { silt loam } \end{array}$ | | | | | | | | | | |
| | | 18-33 | \| Loamy very fine| | \|CL-ML, ML | \|A-4 | 0 | 0 | 100 | 100 | \| 95-100| | 80-90 | 0-30 | NP-10 |
| | | | \| sand, very | | | | | | | | | | | |
| | | | \| fine sandy | | | | | | | | | | |
| | | | loam, loam | | | | | | | | | | |
| | | 33-60 | \|Silty clay, | \| CH | \|A-7 | 0-1 | 0-3 | \| 95-100| | 95-100 | \| 90-100| | 75-95 | \| $40-70$ | 20-45 |
| | | | \| clay, silty | | | | | | | | | | |
| | | | \| clay loam | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Wheatville------\| | 3 | 0-9 | \mid Very fine sandy | \|CL, CL-ML, ML | A-4 | 0 | 0 | 100 | 100 | \| 90-100| | 50-95 | \| 15-35 | NP-10 |
| | | | \| loam | | | | | | | | | | | |
| | | 9-31 | \|Silt loam, very| | \|CL-ML, ML, CL | A-4 | 0 | 0 | 100 | 100 | \| 90-100| | 85-95 | 0-30 | NP-10 |
| | | | \| fine sandy | | | | | | | | | | | |
| | | | loam, loam | | | | | | | | | | |
| | | 31-80 | \|Silty clay, | \| CH | \|A-7 | 0-1 | 0-3 | \| 95-100| | 95-100 | \|90-100| | 75-95 | \|40-70 | 20-45 |
| | | | \| clay, silty | | | | | | | | | | |
| | | | \| clay loam | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Glyndon---------\| | 2 | 0-11 | \mid Very fine sandy\| | \|CL, CL-ML, ML | A-4 | 0 | 0 | 100 | 100 | \| 95-100| | 50-90 | 20-30 | NP-10 |
| | | | \| loam | | | | | | | | | | | |
| | | 11-28 | \|Silt loam, very| | \| CL-ML, ML | \|A-4 | 0 | 0 | 100 | 100 | \|90-100| | 85-95 | 0-30 | NP-10 |
| | | | fine sandy \| | | | | | | | | | | |
| | | | loam, loam | | | | | | | | | | |
| | | 28-60 | \| Loamy very fine| | \|CL-ML, ML, SM | A-4 | 0 | 0 | 100 | 100 | \|85-100| | 45-90 | 0-30 | NP-10 |
| | | | \| sand, very | | | | | | | | | | |
| | | | fine sand, \| | | | | | | | | | | |
| | | | very fine \| | | | | | | | | | | |
| | | | sandy loam \| | | | | | | \| | | | | |
| | | | | | | | | | | | | | |

Table 22.--Engineering Index Properties--Continued

Table 22.--Engineering Index Properties--Continued

| Map symbol
 and
 soil name | $\begin{aligned} & \text { Pct. of } \\ & \text { map unit } \end{aligned}$ | Depth | USDA texture | Classification | | Fragments | | Percentage passing sieve number-- | | | | \|Liquid|
 \|limit | Plasticity index | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | >10 | 3-10 | | | | | | |
| | | | | Unified | AASHTO | inches | inches | 4 | 10 | 40 | 200 | | |
| I5A: | | In | | | | Pct | Pct | | | | | Pct | |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Glyndon--------\| | 9 \| | 0-11 | \|Very fine sandy| | CL, CL-ML, ML ${ }^{\text {d }}$ | A-4 | 0 | 0 | 100 | 100 | \| 95-100| | 50-90 | 20-30 | \| NP-10 |
| | | | \| loam | | | | | | | | | | | |
| | | 11-28 | \|Silt loam, very| | CL-ML, ML | A-4 | 0 | 0 | 100 | 100 | \| 90-100| | \|85-95 | 0-30 | NP-10 |
| | | | \| fine sandy | | | | | | | | | | | |
| | | | \| loam, loam | | | | | | | | | | |
| | | 28-60 | | \|CL-ML, ML, SM| | A-4 | 0 | 0 | 100 | 100 | \| 85-100| | \|45-90 | 0-30 | \|NP-10 |
| | | | sand, very | | | | | | | | | | |
| | | | \| fine sand, | | | | | | | | | | |
| | | | \| very fine | | | | | | | | | | |
| | | | \| sandy loam | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Rosewood-------\| | 8 | 0-8 | \|Fine sandy loam| | \|SC, SC-SM, SM| | A-2-4, A-4 | 0 | \| 0 | | \| 95-100| | 95-100 | 65-90 | \| 30-50 | 0-25 | \| NP-10 |
| | | 8-18 | \| Fine sandy | \|SC-SM, SM | A-2-4, A-4 | 0 | 0 | \| 95-100| | 95-100 | 65-85 | \|15-50 | 120-30 | \|NP-10 |
| | | | \| loam, sandy | | | | | | | | | | |
| | | | loam, loamy | | | | | | | | | | |
| | | | fine sand | | | | | | | | | | |
| | | 18-80 | Fine sand, sand\| | SM, SP-SM | A-1, A-2-4, | 0 | 0 | \| 85-100| | $\|75-100\|$ | 45-75 | 5-35 | 0-20 | NP-3 |
| | | | | | A-3 | | | | | | | | |
| | | | | | | | | | | | | | |
| Augsburg------- \| | 5 | 0-11 | | | | | 0 | 100 | 100 | \| 95-100| | \|70-95 | \|20-40 | \| NP-10 |
| | | 11-18 | \|Loam, very fine| | ML, CL-ML | A-4 | 0 | 0 | 100 | 100 | \| 95-100| | \|80-90 | 0-30 | \|NP-10 |
| | | | \| sandy loam, | | | | | | | | | | | |
| | | | silt loam | | | | | | | | | | |
| | | 18-33 | \| Loamy very fine| | ML, CL-ML | A-4 | 0 | 0 | 100 | 100 | 95-100 | 75-90 | 0-30 | NP-10 |
| | | | \| sand, very | | | | | | | | | | |
| | | | \mid fine sandy \| | | | | | | | | | | |
| | | | \| loam, loam, | | | | | | | | | | |
| | | | \| very fine sand| | | | | | | | | | | |
| | | 33-60 | \|Silty clay, | | | A-7 | 0-1 | 0-3 | \|95-100| | \|95-100| | \| 90-100| | \|75-95 | 140-70 | 20-45 |
| | | | \| clay, silty | | | | | | | | | | |
| | | | \| clay loam | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Augsburg, depressional--- | | | | | | | | | | | | | |
| | 3 | | \| Mucky loam | | | | | | 100 | 100 | \| 95-100| | 70-95 | 0-25 | \| NP-10 |
| | | 11-18 | \|Loam, very fine| | CL-ML, ML | A-4 | 0 | 0 | 100 | 100 | \| 95-100| | \|80-90 | 0-30 | \|NP-10 |
| | | | $\left\lvert\, \begin{array}{\|l\|} \text { sandy loam, } \\ \text { silt loam } \end{array}\right.$ | | | | | | | | | | |
| | | 18-33 | \| Loamy very fine| | \| CL-ML, ML | A-4 | 0 | 0 | 100 | 100 | \| 95-100| | \|80-90 | 0-30 | \| NP-10 |
| | | | \| sand, very | | | | | | | | | | | |
| | | | \| fine sandy | | | | | | | | | | | |
| | | | loam, loam \| | | | | | | | | | | |
| | | 33-60 | \|Silty clay, | \| CH | A-7 | 0-1 | 0-3 | \| 95-100| | \| 95-100| | \| 90-100| | \|75-95 | 140-70 | 20-45 |
| | | | \| clay, silty | | | | | | | | | | | |
| | | | \| clay loam | | | | | | 1 | | \| | | |
| | | | | | | | | | | | | | |

Table 22.--Engineering Index Properties--Continued

| Map symbol
 and
 soil name | Pct. of map unit | Depth | USDA texture | Classification | | Fragments | | Percentage passing sieve number-- | | | | \|Liquid
 limit | Plasticity index | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | >10 | 3-10 | | | | | | |
| | | | | Unified | AASHTO | inches | inches\| | 4 | 10 | 40 | 200 | | |
| | | In | | | | Pct | Pct | | | | | Pct | |
| | | | | | | | | | | | | | |
| I6A: | | | | | | | | | | | | | |
| Borup------- | 75 | 0-12 | \|Very fine sandy| | CL, CL-ML, ML\| | A-4 | 0 | 0 | 100 | 100 | \| 95-100 | 50-90 | \|20-30 | \| NP-10 |
| | | | loam | | | | | | | | | | |
| | | 12-34 | \|Very fine sandy| | CL-ML, ML | A-4 | 0 | 0 | 100 | 100 | \| 90-100 | 50-95 | 0-30 | NP-10 |
| | | | \| loam, silt | | | | - | | | | | | |
| | | | \| loam, loamy | | | | | - | | | | | | |
| | | | \| very fine sand| | | | | | | | | | | |
| | | 34-60 | \|Loamy very fine| | ML, CL-ML | A-4 | 0 | 0 | 100 | 100 | \| 85-100 | 35-90 | 0-30 | \| NP-10 |
| | | | \| sand, very | | | | | | | | | | |
| | | | fine sand, | | | | | | | | | | |
| | | | \| very fine | | | | | | | | | | |
| | | | \| sandy loam | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Glyndon----- | 9 | 0-11 | \|Very fine sandy| | CL, CL-ML, ML | A-4 | 0 | 0 | 100 | 100 | \| 95-100 | 50-90 | \|20-30 | \| NP-10 |
| | | | \| loam | | | | | | | | | | | |
| | | 11-28 | Silt loam, very\| | CL-ML, ML | A-4 | 0 | 0 | 100 | 100 | \| 90-100 | 85-95 | 0-30 | \| NP-10 |
| | | | \| fine sandy | | | | | | | | | | | |
| | | | loam, loam | | | | | | | | | | |
| | | 28-60 | \|Loamy very fine| | CL-ML, ML, SM\| | A-4 | 0 | 0 | 100 | 100 | 85-100 | 45-90 | 0-30 | \| NP-10 |
| | | | \| sand, very | | | | | | | | | | |
| | | | fine sand, | | | | | | | | | | |
| | | | \| very fine | | | | | | | | | | |
| | | | sandy loam | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Rosewood---- | 8 | 0-8 | \|Fine sandy loam| | SC, SC-SM, SM\| | A-2-4, A-4 | 0 | 0 \| | 95-100\| | 95-100 | 65-90 | \|30-50 | 0-25 | \| NP-10 |
| | | 8-18 | \|Fine sandy | SC-SM, SM | A-2-4, A-4 | 0 | 0 | 95-100\| | 95-100 | \|65-85 | 15-50 | 120-30 | \| NP-10 |
| | | | \| loam, sandy | | | | | | | | | | |
| | | | loam, loamy | | | | | | | | | | |
| | | | fine sand | | | | | | | | | | |
| | | 18-80 | Fine sand, sand\| | SM, SP-SM | A-1, A-2-4, | 0 | 0 | 85-100 | 75-100 | -45-75 | 5-35 | 0-20 | NP-3 |
| | | | | | A-3 | | | | | | | | |
| | | | | | | | | | | | | | |
| Augsburg---- | 5 | 0-11 | \| Loam | ML | A-4 | 0 | 0 | 100 | 100 | \| 95-100 | 170-95 | \|20-40 | \| NP-10 |
| | | 11-18 | \|Loam, very fine| | ML, CL-ML | A-4 | 0 | 0 \| | 100 | 100 | \| 95-100 | 180-90 | 0-30 | NP-10 |
| | | | sandy loam, \| | | | | | | | | | | |
| | | | silt loam | | | | | | | | | | |
| | | 18-33 | \|Loamy very fine| | ML, CL-ML | A-4 | 0 | 0 | 100 | 100 | \| 95-100 | 75-90 | 0-30 | \|NP-10 |
| | | | \| sand, very | | | | | | | | | | |
| | | | fine sandy | | | | | | | | | | |
| | | | loam, loam, \| | | | | | | | | | | |
| | | | \| very fine sand| | | | | | | | | | | |
| | | 33-60 | \|Silty clay, | | CH | A-7 | 0-1 | 0-3 | 95-100\| | 95-100 | 90-100 | 75-95 | \| $40-70$ | 20-45 |
| | | | \| clay, silty | | | | | | | | | | | |
| | | | clay loam | | | | \| | | | | | | |
| | | | | | | | | | | | | | |

Table 22.--Engineering Index Properties--Continued

Table 22.--Engineering Index Properties--Continued

| Map symbol
 and
 soil name | Pct. of map unit | Depth | USDA texture | Classification | | Fragments | | Percentage passing sieve number-- | | | | Liquid
 limit | Plasticity index | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | >10 $3-10$
 \mid inches inches | | | | | | | |
| | | | | Unified | AASHTO | | | | | | | | |
| | | | | | | | | 4 | 10 | 40 | 200 | | |
| I13A: | 7 | In | | \| | \| | Pct | Pct | | | | | Pct | |
| | | | | | \| | | | | | | | | |
| | | | | | \| | | | | | | | | |
| Hilaire--------\| | | 0-10 | \|Fine sandy loam| | \|SC-SM, SM | \|A-2-4, A-4 | 0 | 0 | \| 95-100| | 95-100 | \|65-90 | \|20-50 | 0-25 | NP-10 |
| | | 10-34 | \|Fine sand, | \|SM, SP-SM | \|A-1, A-3, | 0 | 0-5 | \| 85-100| | 75-100 | \|45-85 | 5-40 | 0-20 | NP-3 |
| | | | \| loamy fine | | \| A-2-4 | | | | | | | | |
| | | | sand, sand | | | | | | | | | | |
| | | 34-80 | \|Silty clay, | \| CH | \|A-7 | 0-1 | 0-3 | \| 95-100| | 95-100 | 90-100 | 75-95 | 40-70 | 20-45 |
| | | | \| clay, silty | | | | | | | | | | |
| | | | \| clay loam | | | | | | | | | | |
| | | | | | \| | | | | | | | | |
| Clearwater, depressional--- | 5 | | | | \| | | | | | | | | |
| | | 0-8 | \| Mucky clay loam| | \| CL | \|A-6 | 0 | 0-3 | \| 95-100| | 95-100 | \|80-95 | \|60-85 | 25-40 | 10-20 |
| | | 8-35 | \|clay, silty | \| CH, CL | \|A-7 | 0-1 | 0-1 | \| 95-100| | 95-100 | 90-100 | 70-95 | 40-70 | 20-45 |
| | | | \| clay, silty | | | | | | | | | | |
| | | | \| clay loam | | | | | | | | | | |
| | | 35-80 | \|Silty clay, | \| CH | \|A-7 | 0-1 | 0-3 | \| 95-100| | 95-100 | 90-100 | 75-95 | 40-70 | 20-45 |
| | | | \| clay, silty | | | | | | | | | | |
| | | | \| clay loam | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Thiefriver------ | 5 | 0-12 | \|Fine sandy loam| | \| CL-ML, ML, | \|A-4 | 0 | 0 | \| 95-100| | 80-100 | 70-90 | \| 35-55 | 0-25 | NP-10 |
| | | | | \| SC-SM, SM | | | | | | | | | |
| | | 12-23 | \| Fine sandy | \| SC-SM, SM | \|A-2-4, A-4 | 0 | 0 | \| 95-100| | 95-100 | 65-85 | \| 15-50 | 20-30 | NP-10 |
| | | | \| loam, sandy | | | | | | | | | | |
| | | | \| loam, loamy | | | | | | | | | | |
| | | | fine sand | | | | | | | | | | |
| | | 23-32 | \mid Fine sand, | \| SM, SP-SM | \|A-2-4, A-2, | 0 | 0-3 | \| 90-100| | 80-100 | 50-80 | 5-35 | 0-20 | NP-3 |
| | | | \| loamy fine | | \| A-3 | | | | | | | | |
| | | | \| sand, loamy | | | | | | | | | | |
| | | | \| sand | | | | | | | | | | |
| | | 32-80 | \|Silty clay, | $\mid \mathrm{CH}$ | \|A-7 | 0-1 | 0-3 | \| 95-100| | 95-100 | 90-100 | 75-95 | 40-70 | 20-45 |
| | | | \| clay, silty | | | | | | | | | | |
| | | | \| clay loam | | | \| | | | | | | | | |
| | | | | | | | | | | | | | |

Table 22.--Engineering Index Properties--Continued

Table 22.--Engineering Index Properties--Continued

Table 22.--Engineering Index Properties--Continued

| Map symbol
 and
 soil name | $\begin{aligned} & \text { Pct. of } \\ & \text { map unit } \end{aligned}$ | Depth | USDA texture | Classification | | Fragments | | Percentage passing sieve number-- | | | | \|Liquid
 \|limit | Plasticity index | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | | \| | >10 $3-10$
 \mid inches inches | | | | | | | |
| | | | | Unified | AASHTO | | | 4 | 10 | 40 | 200 | | |
| | | In | | | \| | Pct | Pct | | | | | Pct | |
| | | | I | | | | | | | | | | |
| I15A: | | | | | | | | | | | | | |
| Flaming----- | 70 | 0-12 | Loamy fine sand\| | SM, SC-SM | \|A-2-4 | 0 | 0 | 100 | \| 95-100 | \|65-80 | \|15-30 | 0-20 | \| NP-5 |
| | | 12-17 | Fine sand, | \| SM, SW-SM | \|A-2-4, A-3 | 0 | 0 | 100 | \| 95-100 | 50-80 | 5-30 | 0-20 | \| NP-3 |
| | | | loamy sand, sand | | | | | | | | | | |
| | | 17-27 | Fine sand, | \|SM, SW-SM | \|A-2-4, A-3 | 0 | 0 | 100 | \| 95-100 | 50-80 | 5-30 | 0-20 | \| NP-3 |
| | | | \| loamy sand, | | | | | | | | | | |
| | | | sand | | | | | | | | | | |
| | | 27-60 | Fine sand, | \|SM, SW-SM | \|A-2-4, A-3 | 0 \| | 0 | 100 | 95-100 | 50-80 | 5-30 | 0-20 | \| NP-3 |
| | | | loamy sand, | | | | | | | | | | |
| | | | \| sand | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Garborg----- | 10 | 0-12 | \|Loamy fine sand| | SC-SM, SM | \|A-2-4 | 0 | 0 | 100 | \| 95-100 | 50-80 | \|15-35 | 0-20 | \|NP-5 |
| | | 12-41 | \|Loamy fine | | \| SC-SM, SM, | \|A-2-4 | 0 | 0 | 100 | 95-100 | \|50-80 | \|10-35 | 0-20 | \|NP-3 |
| | | | \| sand, loamy | \| SP-SM | | | | | | | | | |
| | | | \| sand, fine | | | | | | | | | | |
| | | | \| sand | | | | | | | | | | |
| | | 41-59 | \|Fine sand, | \| SC-SM, SM, | \|A-3, A-2-4 | 0 | 0 | 100 | 95-100 | 50-80 | 5-35 | 0-20 | \| NP-3 |
| | | | \| loamy sand, | \| SP-SM | | | | | | | | | |
| | | | \| loamy fine | | | | | | | | | | |
| | | | \| sand | | | | | | | | | | |
| | | 59-80 | \|Fine sand, | \| SC-SM, SM, | \|A-2-4 | 0 | 0 | 100 | 95-100 | 50-80 | 5-35 | 0-20 | \|NP-3 |
| | | | \| loamy sand, | \| SP-SM | | | | | | | | | |
| | | | \| loamy fine | | | | | | | | | | |
| | | | sand | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Hamar------- | 5 | 0-12 | \|Loamy fine sand| | \|SM, SC-SM | \|A-2-4 | 0 | 0 | 100 | \|95-100 | \|50-80 | \|15-35 | 0-20 | \|NP-5 |
| | | 12-17 | \| Loamy fine | \| SC-SM, SM, | \|A-2-4 | 0 | 0 | 100 | \| 95-100 | \|50-80 | \|10-35 | 0-20 | NP-3 |
| | | | sand, loamy | \| SP-SM | | | | | | | | | |
| | | | \| sand, fine | | | | | | | | | | |
| | | | sand | | | | | | | | | | |
| | | 17-40 | \|Fine sand, | \| SC-SM, SM, | \|A-2-4, A-3 | 0 | 0 | 100 | \|95-100 | 50-80 | 5-35 | 0-20 | \| NP-3 |
| | | | \| loamy sand, | \| SP-SM | | | | | | | | | |
| | | | \| loamy fine | | | | | | | | | | |
| | | | sand | | | | | | | | | | |
| | | 40-47 | \| Loamy fine sand| | \|SC-SM, SM | \|A-2-4 | 0 | 0 | 100 | \|95-100 | \|50-80 | \|15-35 | 0-20 | \|NP-5 |
| | | 47-60 | \|Fine sand, | | \| SC-SM, SM, | \|A-3, A-2-4 | , | 0 | 100 | 95-100 | \|50-80 | 5-35 | 0-20 | \|NP-3 |
| | | | \| loamy sand, | \| SP-SM | | | | | | | | | |
| | | | \| loamy fine | | | | | | | | | | |
| | | | sand | | | | | | | | | | |
| | | | | | | | | | | | | | |

Table 22.--Engineering Index Properties--Continued

Table 22.--Engineering Index Properties--Continued

| Map symbol
 and
 soil name | Pct. of map unit | Depth | USDA texture | Classification | | Fragments | | Percentage passing sieve number-- | | | | \|Liquid
 \|limit | Plasticity index | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | Unified | | >10 $3-10$
 inches inches | | | | | | | |
| | | | | | AASHTO | | | | | | | | |
| | | | | | | | | 4 | 10 | 40 | 200 | | |
| | 10 | In | | | \| | Pct | Pct | | | | | Pct | |
| | | | | | | | | | | | | | |
| I19A: | | | | | | | | | | | | | |
| Kittson------ | | 0-10 | \| Loam | CL, CL-mL | \|A-4, A-6 | 0 | 0 | 100 | \| 95-100 | \|85-95 | 50-75 | \| $20-35$ | 5-15 |
| | | 10-17 | \| Loam, fine | CL, SC | \|A-4 | 0 | 0-5 | \| 90-100 | 65-100 | \|55-90 | 35-75 | \|20-35 | 5-10 |
| | | | \| sandy loam, | | | | | | | | | | |
| | | | sandy loam | | | | | | | | | | |
| | 10 | 17-36 | \|Clay loam, loam| | CL, CL-ML | \|A-4, A-6 | 0-1 | 0-5 | \| 95-100 | 85-95 | \|75-90 | 50-75 | \| 25-40 | 5-20 |
| | | 36-60 | \|clay loam, loam| | CL, CL-mL | \|A-6, A-4 | 0-1 | 0-5 | \| 95-100 | 85-95 | \|75-90 | 50-75 | \| 25-40 | 5-20 |
| | | | | | | | | | | | | | |
| Strandquist-- | | 0-10 | \| Loam | CL-ML, CL | \|A-4 | 0 | 0 | \| 95-100 | 80-100 | 75-90 | 50-75 | 20-30 | 5-10 |
| | | 10-20 | \| Gravelly sand, | \|GP, GP-GM, | \|A-1 | 0 | 2-5 | \| 30-65 | \| 15-45 | 5-40 | 0-10 | 0-20 | \| NP-3 |
| | | | \| gravelly | SP, SP-SM, | | | | | | | | | |
| | | | coarse sand, | GW-GM | | | | | | | | | |
| | | | \| very gravelly | | | | | | | | | | |
| | | | sand | | | | | | | | | | |
| | 5 | 20-60 | \|Loam, clay loam| | CL, CL-ML | \|A-6, A-4 | 0-1 | 0-5 | \| 95-100 | 85-95 | 175-90 | 50-75 | \| 25-40 | 5-20 |
| | | | | | | | | | | | | | |
| Foldahl------ | | 0-12 | Fine sandy loam\| | SC-SM, SM | \|A-2-4, A-4 | 0 | 0 | \| 95-100 | 95-100 | 65-90 | 20-50 | 0-25 | \|NP-10 |
| | | 12-30 | Fine sand, | SM, SP-SM, | \|A-2-4, A-3 | 0 | 0-2 | \| 95-100 | 90-100 | \|50-80 | 5-30 | 0-20 | \| NP-3 |
| | | | \| loamy fine | SW-SM | | | | | | | | | |
| | | | \| sand, sand | | | | | | | | | | |
| | 5 | 30-80 | Loam, clay loam\| | CL, CL-ML | \|A-6, A-4 | 0-1 | 0-5 | \| 95-100 | 85-95 | 175-90 | 50-75 | \| 25-40 | 5-20 |
| | | | | | | | | | | | | | |
| Grimstad----- | | 0-9 | \|Fine sandy loam| | SC-SM, SM | \|A-2-4, A-4 | 0 | 0 | \| 95-100 | 95-100 | \|65-90 | 20-50 | 0-30 | \| NP-10 |
| | | 9-22 | \| Loamy sand, | SM, SC-SM | \|A-2-4, A-4 | 0 | 0 | 100 | \| 95-100 | \|65-85 | 15-50 | \|15-25 | \| NP-10 |
| | | | \| loamy fine | | | | | | | | | | |
| | | | \| sand, fine | | | | | | | | | | |
| | | | sand | | | | | | | | | | |
| | 3 | 22-28 | \| Loamy sand, | SM, SW-SM | \|A-2, A-2-4, | 0 | 0 | 100 | \| 95-100 | \| 80-90 | 5-35 | 0-20 | \| NP-3 |
| | | | \| loamy fine | | \| A-3 | | | | | | | | |
| | | | sand, fine | | | | | | | | | | |
| | | | sand | | | | | | | | | | |
| | | 28-60 | Loam, clay loam\| | CL, CL-ML | \|A-4, A-6 | 0-1 | 0-5 | \| 95-100 | 85-95 | \|75-90 | 50-75 | \| 25-40 | 5-20 |
| | | | | | | | | | | | | | |
| Roliss------ | | 0-14 | Loam | CL, CL-ML | \|A-4, A-6 | 0-1 | 0-5 | \| 95-100 | \|80-100| | \| 80-100| | 60-90 | \| 20-40 | 5-20 |
| | | 14-20 | \|Clay loam, loam| | CL, CL-ML | \|A-4, A-6 | 0-1 | 0-5 | \| 95-100 | \|85-95 | \|75-90 | 50-75 | \| 25-40 | 5-20 |
| | | 20-80 | \|Loam, clay loam| | CL, CL-ML | \|A-6, A-4 | 0-1 | 0-5 | \| 95-100 | \| 85-95 | \|75-90 | 50-75 | \| 25-40 | 5-20 |
| | | | | | | | | | | | | | |

Table 22.--Engineering Index Properties--Continued

Table 22.--Engineering Index Properties--Continued

Table 22.--Engineering Index Properties--Continued

Table 22.--Engineering Index Properties--Continued

Table 22.--Engineering Index Properties--Continued

| Map symbol
 and
 soil name | Pct. of map unit | Depth | USDA texture | Classification | | Fragments | | Percentage passing sieve number-- | | | | \|Liquid
 \|limit | Plas\|ticity |index | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | | | >10 | 3-10 | | | | | | |
| | | | | Unified | AASHTO | inches | inches | 4 | 10 | 40 | 200 | | |
| I22A: | 10 | In | \| | | | | Pct | Pct | | | | | Pct | |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Borup------- | | 0-12 | \| Loam | \| ML | \|A-4 | 0 | 0 | 100 | 100 | \| 95-100 | 70-95 | \|20-40 | \| NP-10 |
| | | 12-34 | \|Very fine sandy| | \|CL-ML, ML | \|A-4 | 0 | 0 | 100 | 100 | \| 90-100 | 50-95 | 0-30 | \| NP-10 |
| | | | \| loam, silt | | | | | | | | | | | |
| | | | \| loam, loamy | | | | | | | | | | | |
| | | | \| very fine sand| | | | | | | | | | | |
| | | 34-60 | \|Loamy very fine| | \|CL-ML, ML | \| A-4 | 0 | 0 | 100 | 100 | \| 85-100 | 35-90 | 0-30 | \| NP-10 |
| | | | \| sand, very | | - | | | | | | | | | |
| | | | \| fine sand, | | | | | | | | | | |
| | | | \| very fine | | | | | | | | | | |
| | | | \| sandy loam | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Augsburg----- | 5 | 0-11 | \| Loam | \| ML | A-4 | 0 | 0 | 100 | 100 | \| 95-100 | 70-95 | \|20-40 | \| NP-10 |
| | | 11-18 | \|Loam, very fine| | ML, CL-ML | A-4 | 0 | 0 | 100 | 100 | \| 95-100 | 80-90 | 0-30 | \| NP-10 |
| | | | sandy loam, | | | | | | | | | | |
| | | | \| silt loam | | | | | | | | | | |
| | | 18-33 | \|Loamy very fine| | ML, CL-ML | \|A-4 | 0 | 0 | 100 | 100 | \| 95-100 | 75-90 | 0-30 | \| NP-10 |
| | | | \| sand, very | | | | | | | | | | |
| | | | \| fine sandy | | | | | | | | | | |
| | | | \| loam, loam, | | | | | | | | | | | |
| | | | \| very fine sand| | | | | | | | | | | |
| | | 33-60 | \|Silty clay, | | \| CH | A-7 | 0-1 | 0-3 | 95-100 | \|95-100| | 90-100 | 75-95 | 10-70 | \| 20-45 |
| | | | \| clay, silty | | | | | | | | | | |
| | | | \| clay loam | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Ulen-------- | 5 | | \|Fine sandy loam| | | | | | | 100 | \| 80-100 | \|35-50 | 0-25 | \|NP-10 |
| | | 9-42 | \|Fine sandy | | \|SC-SM, SM | | A-2-4, A-4 | 0 | 0 | 95-100 | \| 95-100| | 65-85 | 15-50 | 15-25 | \| NP-10 |
| | | | \| loam, sandy | | | | | | | | | | |
| | | | \| loam, loamy | | | | | | | | | | |
| | | | \| fine sand | | | | | | | | | | |
| | | 42-60 | \|Fine sand, sand| | SM, SP-SM | $\|\mathrm{A}-2, \mathrm{~A}-3, \mathrm{~A}-1\|$ | 0 | 0 | 85-100 | 75-95 | \|45-75 | 5-25 | 0-20 | \|NP-3 |
| | | | | | | | | | | | | | |
| Wheatville--- | 3 | 0-9 | \mid Very fine sandy\| | | A-4 | 0 | 0 | 100 | 100 | \| 90-100 | 50-95 | 15-35 | \| NP-10 |
| | | | \| loam | | | | | | | | | | | |
| | | 9-31 | \|Silt loam, very| | \|CL-ML, ML, CL \mid | A-4 | 0 | 0 | 100 | 100 | \| 90-100 | 85-95 | 0-30 | \|NP-10 |
| | | | \mid fine sandy \| | | | | | | | | | | |
| | | | \| loam, loam | | | | | | | | | | |
| | | 31-80 | \|Silty clay, | \| CH | A-7 | 0-1 | 0-3 | 95-100 | \| 95-100| | \|90-100| | 75-95 | 140-70 | \|20-45 |
| | | | \| clay, silty | | | | | | | | | | |
| | | | \| clay loam | | | | | | | | | | |
| | | | | | | | | | | | | | |

Table 22.--Engineering Index Properties--Continued

Table 22.--Engineering Index Properties--Continued

| Map symbol
 and
 soil name | Pct. of map unit | Depth | USDA texture | Classification | | Fragments | | Percentage passing sieve number-- | | | | $\begin{aligned} & \text { \| Liquid } \\ & \mid \text { limit } \end{aligned}$ | Plasticity index | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | | | $\left\|\begin{array}{c} >10 \\ \mid \text { inches } \end{array}\right\|$ | $\left\lvert\, \begin{gathered} 3-10 \\ \mid \text { inches } \end{gathered}\right.$ | | | | | | |
| | | | | Unified | AASHTO | | | \| 4 | 10 | 40 | 200 | | |
| 125A: | 2 | In | | | \| | | Pct | Pct | | | | | Pct | |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Hangaard---- | | 0-10 | \|Sandy loam | SM | A-2-4, A-4 | 0 | 0-3 | \| 95-100| | 80-100 | 50-75 | \|15-45 | 0-25 | \| NP-10 |
| | | 10-15 | \| Loamy sand, | SM, SP-SM | \|A-1, A-2-4, | 0 | 0-3 | \| 95-100| | 80-95 | \|40-70 | 5-25 | 0-20 | \|NP-5 |
| | | | \| coarse sandy | | A-3 | | | | | | | | |
| | | | loam, loamy | | | | | | | | | | |
| | | | coarse sand | | | | | | | | | | |
| | | 15-80 | \|Gravelly coarse| | SP, SP-SM | $\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-3\|$ | \| 0 | 0-3 | \|70-95 | 55-90 | \|30-60 | 0-10 | 0-20 | NP-3 |
| | | | \| sand, gravelly| | | | | | | | | | | |
| | | | sand, coarse | | | | | | | | | | |
| | | | sand \| | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Kratka------- | 1 | | \|Fine sandy loam| | | | | | \| 95-100| | \|90-100| | 50-80 | \| 35-50 | 0-25 | \| NP-10 |
| | | 11-18 | \| Loamy sand, | | \|SW-SM, SP-SM, | A-2-4, A-3 | 0 | 0 | \| 95-100| | \|90-100 | \|50-80 | 5-35 | 0-20 | \| NP-3 |
| | | | \| sand, loamy | SM | | | | | | | | | |
| | | | fine sand | | | | | | | | | | |
| | | 18-25 | \| Loamy sand, | SM, SP-SM, | A-2-4, A-2, | 0 | 0 | \| 95-100| | 90-100 | 50-80 | 5-35 | 0-20 | NP-3 |
| | | | sand, fine | SW-SM | A-3 | | | | | | | | |
| | | | \| sand | | | | | | | | | | |
| | | 25-80 | \|Loam, clay loam| | CL, CL-mL | A-6, A-4 | 0-1 | 0-5 | \| 95-100| | \| 85-95 | 175-90 | \| 50-75 | \| 25-40 | 5-20 |
| | | | | | | | | | | | | | |
| I26A: | 75 | | | | | | | | | | | | |
| Hamerly----- | | 0-8 | \| Loam | CL, CL-mL | A-4, A-6 | 0-1 | 0-5 | \| 95-100| | 90-100 | 180-95 | \|60-90 | \|20-40 | 5-20 |
| | | 8-25 | \| Clay loam, loam| | CL, CL-ML | A-4, A-6 | 0-1 | 0-5 | \| 95-100| | 85-95 | \|75-90 | \| 50-75 | \| 25-40 | 5-20 |
| | | 25-60 | \| Loam, clay loam| | CL, CL-ML | A-6, A-4 | 0-1 | 0-5 | \| 95-100| | 85-95 | \|75-90 | 50-75 | \| 25-40 | 5-20 |
| | | | | | | | | | | | | | |
| Vallers------ | 12 | 0-12 | Loam \| | CL-ML, CL | | 0-1 | 0-2 | \| 95-100| | \| 90-100| | 180-90 | \| 50-80 | \| 20-40 | 5-20 |
| | | 12-21 | \| Loam, clay loam| | CL, CL-ML | A-4, A-6 | 0-1 | 0-5 | \| 95-100| | \| 85-95 | \|75-90 | \| 50-75 | \| 25-40 | 5-20 |
| | | 21-60 | \| Clay loam, loam| | CL, CL-ML | A-6, A-4 | 0-1 | 0-5 | \| 95-100| | \| 85-95 | \|75-90 | \| 50-75 | \| 25-40 | 5-20 |
| | | | | | | | | | | | | | |
| Foxhome----- | 3 | 0-10 | Sandy loam | | \|A-4 | 0 | 0-2 | \| 95-100| | \| 90-100| | \|75-90 | \| 35-50 | 0-25 | \| NP-10 |
| | | 10-15 | \|Fine sand, | SM, SW-SM | A-2, A-3 | 0 | 0-3 | \|75-95 | | \| 65-90 | \|45-80 | 5-35 | 0-25 | \| NP-5 |
| | | | \| loamy sand,
 sand | | | | | | | | | | |
| | | 15-23 | \|Very gravelly | GP, GP-GM, | \|A-1 | 0 | 2-5 | \| 30-65 | 15-45 | 5-40 | 0-10 | 0-20 | \| NP-1 |
| | | | sand, very | SP, SP-SM | | | | | | | | | |
| | | | \| gravelly | | | | | | | | | | |
| | | | coarse sand, | | | | | | | | | | |
| | | | very gravelly | | | | | | | | | | |
| | | | \| loamy sand | | | | | | | | | | |
| | | 23-80 | \| Loam, clay loam| | CL, CL-ML | A-6, A-4 | 0-1 | 0-5 | \| 95-100| | \| 85-95 | 175-90 | \| $50-75$ | \| 25-40 | 5-20 |
| | | | | | | | | | | | | | |

Table 22.--Engineering Index Properties--Continued

Table 22.--Engineering Index Properties--Continued

| Map symbol
 and
 soil name | Pct. of map unit | Depth | USDA texture | Classification | | Fragments | | Percentage passing sieve number-- | | | | \|Liquid|
 \|limit | Plas\|ticity index | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | | | >10 | 3-10 | | | | | | |
| | | | | Unified | AASHTO | \|inches | inches | 4 | 10 | 40 | 200 | | |
| I32A: | | In | | | \| | Pct | Pct | | | | | Pct | |
| | | | \| | | | \| | | | | | | | | |
| | | | \mid \| | | \| | | | | | | | | |
| WYandotte---- | 1 | 0-8 | \| Clay loam | \| CL | \|A-6 | 0-1 | 0-3 | \| 95-100| | \|85-100 | 70-95 | 50-70 | \| 30-40 | \| 10-15 |
| | | 8-15 | \| Loam, sandy | \| CL, CL-ML | \|A-4 | 0 | 0-3 | \| 95-100| | \|80-95 | 60-90 | 50-65 | 120-35 | 5-10 |
| | | | \| clay loam | | | | | | | | | | |
| | | 15-34 | \| Gravelly loamy | \|GP-GM, GP, | \|A-1 | 0 | 2-5 | 20-65 | 15-45 | 5-40 | 0-10 | 0-20 | \| NP-3 |
| | | | \| coarse sand, | SP-SM, SP | | | | | | | | | |
| | | | \| gravelly sand, | | \| | | | | | | | | |
| | | | \| very gravelly | | | | | | | | | | | |
| | | | \| loamy coarse | | \| | | | | | | | | |
| | | | \| sand | | | | | | | | | | |
| | | 34-60 | Silty clay, | \| CH | \|A-7 | 0-1 | 0-3 | \|95-100| | 95-100 | 90-100 | 75-95 | 140-70 | \| 20-45 |
| | | | \| clay, silty | | | | | | | | | | |
| | | | \| clay loam | | | | | | | | | | |
| | | | | | | | | | | | | | |
| 133A: | | | | | | | | | | | | | |
| Hilaire------ | 75 | | Loamy fine sand\| | | | | | | \| 95-100 | 65-85 | 15-30 | 0-20 | |
| | | 10-34 | \|Fine sand, | | \|SM, SP-SM | \|A-1, A-3, | 0 | 0-5 | \|85-100| | 75-100 | 45-85 | 5-40 | 0-20 | \| NP-3 |
| | | | \| loamy fine | | A-2-4 | | | | | | | | |
| | | | \| sand, sand | | | | | | | | | | |
| | | 34-80 | \|Silty clay, | \| CH | \|A-7 | 0-1 | 0-3 | \| 95-100| | 95-100 | 90-100 | 75-95 | 140-70 | \|20-45 |
| | | | \| clay, silty | | | | | | | | | | |
| | | | \| clay loam | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Espelie----- | 12 | 0-9 | \|Fine sandy loam| | \| CL, ML, SC, | \|A-2-4, A-4 | 0 | 0 | \|95-100| | 85-100 | 60-85 | 130-65 | 0-25 | \|NP-10 |
| | | | | \| SM | | | | | | | | | |
| | | 9-24 | Loamy sand, | \|SM, SP-SM | \|A-2-4, A-2, | 0 | 0-5 | \|85-100| | \|60-100 | 30-80 | 5-40 | 0-20 | \| NP-3 |
| | | | \| loamy fine | | A-3, A-1 | | | | | | | | |
| | | | \| sand, fine | | | | | | | | | | |
| | | | \| sand | | | | | | | | | | |
| | | 24-80 | Silty clay, | \| CH | \|A-7 | 0-1 | 0-3 | \| 95-100| | 95-100 | 90-100 | 75-95 | 140-70 | \| 20-45 |
| | | | \| clay, silty | | | | | | | | | | |
| | | | \| clay loam | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Huot-------- | 5 | $0-14$ | \|Fine sandy loam| | SM, SC-SM | | 0 | 0 | \|90-100| | 75-100 | \|50-85 | 25-55 | 0-30 | \|NP-10 |
| | | 14-26 | \| Loamy fine | | \|SM, SC-SM | \|A-2-4, A-4 | 0 | 0 | \|95-100| | 95-100 | \|60-85 | 25-55 | 15-25 | \|NP-10 |
| | | | \| sand, fine | | | | | | | | | | |
| | | | \| sandy loam | | | | | | | | | | |
| | | 26-34 | \| Loamy fine | \|SP-SM, SM | \|A-2-4, A-3, | 0 | 0 | \|90-100| | 75-100 | 50-80 | 5-35 | 0-20 | \|NP-3 |
| | | | \| sand, fine | | \| A-2 | | | | | | | | |
| | | | \| sand | | | | | | | | | | |
| | | 34-80 | \|Silty clay, | \| CH | \|A-7 | 0-1 | 0-3 | \|95-100| | 95-100 | $\|90-100\|$ | 75-95 | 140-70 | \|20-45 |
| | | | \| clay, silty | | | | | | | | | | |
| | | | \| clay loam | | | | \| | | | | | | |
| | | | | | | | | | | | | | |

Table 22.--Engineering Index Properties--Continued

Table 22.--Engineering Index Properties--Continued

| Map symbol
 and
 soil name | $\begin{aligned} & \text { Pct. of } \\ & \text { map unit } \end{aligned}$ | Depth | USDA texture | Classification | | Fragments | | Percentage passing sieve number-- | | | | \|Liquid
 \|limit | Plasticity index | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | | | >10 | 3-10 | | | | | | |
| | | | | Unified | AASHTO | inches | \|inches| | \| 4 | 10 | 40 | 200 | | |
| | | In | | | | Pct | Pct | | | | | Pct | |
| | | | | | | | | | | | | | |
| I37A: | | | | | | | | | | | | | |
| Kratka, | | | | | | | | | | | | | |
| depressional---\| | 45 | 0-11 | \| Mucky fine | \|SC-SM, SM, | \|A-4 | 0 | 0 | \| 95-100| | 90-100 | \|70-85 | \|40-55 | 0-25 | \| NP-10 |
| | | | \| sandy loam | \| ML, CL-ML | | | | | | | | | |
| | | 11-18 | \| Loamy sand, | \|SW-SM, SP-SM, | \|A-2-4, A-3 | 0 | 0 | \| 95-100| | 90-100 | 50-80 | 5-35 | 0-20 | \|NP-3 |
| | | | \| sand, loamy | SM | | | | | | | | | |
| | | | fine sand | | | | | | | | | | |
| | | 18-25 | \| Loamy sand, | \|SM, SP-SM, | A-2-4, A-2, | 0 | 0 | \|95-100| | 90-100 | 50-80 | 5-35 | 0-20 | NP-3 |
| | | | \| sand, fine | \| SW-SM | A-3 | | | \|-100| | | | | | |
| | | | sand | | | | | | | | | | |
| | | 25-80 | \|Loam, clay loam| | \|CL, CL-ML | \|A-6, A-4 | 0-1 | 0-5 | \| 95-100| | 85-95 | 75-90 | \|50-75 | \|25-40 | 5-20 |
| | | | | | | | | | | | | | |
| Strathcona, depressional--- | 45 | | | | | | | | | | | | |
| | | 0-10 | \| Mucky fine | \| CL-ML, ML, | \|A-4 | 0 | 0 | \| 95-100| | 90-100 | 70-85 | 140-55 | 0-25 | \| NP-10 |
| | | | \| sandy loam | \| SC-SM, SM | | | | | | | | | |
| | | 10-17 | \|Fine sandy | \| SC-SM, SM | \|A-2-4, A-4 | 0 | 0 | \| 95-100| | 95-100 | 65-85 | 15-50 | \|20-30 | \| NP-10 |
| | | | \| loam, sandy | | | | | | | | | | |
| | | | \| loam, loamy | | | | | | | | | | |
| | | | fine sand | | | | | | | | | | |
| | | 17-28 | | \|SM, SP-SM | | 0 | 0-1 | \| 95-100| | 90-100 | 50-80 | 5-30 | 0-20 | \| NP-3 |
| | | | \| sand, loamy | | A-2 | | | | | | | | |
| | | | fine sand | | | | | | | | | | |
| | | 28-80 | \|Loam, clay loam| | \|CL, CL-ML | \|A-6, A-4 | 0-1 | 0-5 | \| 95-100| | 85-95 | 75-90 | 150-75 | \| 25-40 | 5-20 |
| | | | | | | | | | | | | | |
| Northwood------- \| | 5 | | | | \|A-8 | 0 | 0 | 100 | 100 | \| --- | --- | --- | --- |
| | | 9-14 | \|Fine sandy | \|SC-SM, SM | \|A-2, A-4, | 0 | 0-3 | \| 95-100| | 90-100 | 50-85 | 15-50 | 0-25 | \| NP-10 |
| | | | \| loam, loamy | | A-2-4 | | | | | | | | |
| | | | fine sand, | | | | | | | | | | |
| | | | loamy sand | | | | | | | | | | |
| | | 14-24 | \| Coarse sand, | \|SM, SP-SM | \|A-2, A-3, | 0 | 0-3 | \| 95-100| | 80-100 | 70-95 | 5-35 | 0-15 | \| NP-3 |
| | | | \| fine sand, | | A-2-4 | | | | | | | | |
| | | | loamy fine | | | | | | | | | | |
| | | | sand | | | | | | | | | | |
| | | 24-80 | \|Loam, clay loam| | \| CL-ML, CL | \|A-6, A-4 | 0-1 | 0-5 | \| 95-100| | 85-95 | \|75-90 | \|50-75 | \| 25-40 | 5-20 |
| | | | | | | | | | | | | | |
| Kratka----------\| | 2 | $0-11$ | \|Fine sandy loam| | \|SC-SM, SM | | | 0 | \| 95-100| | 90-100 | \|50-80 | \|35-50 | 0-25 | \| NP-10 |
| | | 11-18 | \| Loamy sand, | | \|SW-SM, SP-SM, | \|A-2-4, A-3 | 0 | 0 | \| 95-100| | \| 90-100 | \|50-80 | 5-35 | 0-20 | \|NP-3 |
| | | | \| sand, loamy | \| SM | | | | | | | | | |
| | | | fine sand | | | | | | | | | | |
| | | 18-25 | \| Loamy sand, | \|SM, SP-SM, | \|A-2-4, A-2, | 0 | 0 | \| 95-100| | 90-100 | 50-80 | 5-35 | 0-20 | \| NP-3 |
| | | | \| sand, fine | \| SW-SM | $\mid \mathrm{A}-3 \mathrm{l}$ | | | | | | | | |
| | | | sand | | | | | | | | | | |
| | | 25-80 | \|Loam, clay loam| | \|CL, CL-ML | \|A-6, A-4 | 0-1 | 0-5 | \| 95-100| | 85-95 | \|75-90 | \|50-75 | \| 25-40 | 5-20 |
| | | | | , | | | | | | | | | |

Table 22.--Engineering Index Properties--Continued

Table 22.--Engineering Index Properties--Continued

Table 22.--Engineering Index Properties--Continued

Table 22.--Engineering Index Properties--Continued

Table 22.--Engineering Index Properties--Continued

| Map symbol
 and
 soil name | Pct. of map unit | Depth | USDA texture | Classification | | | | Percentage passing sieve number-- | | | | \|Liquid|
 limit | Plasticity index | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | \square | | | | | | | |
| | | | | | | $\begin{gathered} \hline>10 \\ \text { inches } \end{gathered}$ | $\begin{array}{\|c\|} 3-10 \\ \mid \text { inches } \end{array}$ | | | | | | |
| | | | | Unified | AASHTO | | | 4 | 10 | 40 | 200 | | |
| | | In | \| | | \| | | Pct | Pct | | | | | Pct | |
| | | | \| | | | | | | | | | | | |
| I40B: | | | | | | | | | | | | | |
| Flaming------ | 5 | 0-12 | \| Loamy fine sand| | SM, SC-SM | \|A-2-4 | 0 | 0 | 100 | \| 95-100| | 65-80 | \|15-30 | 0-20 | NP-5 |
| | | 12-17 | \|Fine sand, | \|SM, SW-SM | \|A-2-4, A-3 | 0 | 0 | 100 | \| 95-100| | 50-80 | 5-30 | 0-20 | NP-3 |
| | | | \| loamy sand, | | | | | | | | | | |
| | | | \| sand | | | | | | | | | | |
| | | 17-27 | Fine sand, | \|SM, SW-SM | \|A-2-4, A-3 | 0 | 0 | 100 | \| 95-100| | 50-80 | 5-30 | 0-20 | NP-3 |
| | | | loamy sand, | | | | | | | | | | |
| | | | \| sand | | | | | | | | | | |
| | | 27-60 | Fine sand, | \|SM, SW-SM | \|A-2-4, A-3 | 0 | 0 | 100 | \| 95-100 | | 50-80 | 5-30 | 0-20 | NP-3 |
| | | | \| loamy sand, | | | | | | | | | | |
| | | | \| sand | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Sandberg---- | 5 | 0-12 | Loamy sand | \|SM, SP-SM | \|A-1, A-2-4 | 0 | 0-5 | \|85-100| | 150-95 | 40-75 | \|10-25 | 0-20 | NP-5 |
| | | 12-19 | \| Gravelly loamy | \|SM, SP-SM | $\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-3\|$ | 0 | 0-5 | 60-95 | 150-95 | 35-70 | 5-25 | 0-20 | NP-3 |
| | | | coarse sand, | | | | | | | | | | |
| | | | \| gravelly | | | | | | | | | | |
| | | | \| coarse sand, | | | | | | | | | | |
| | | | \| loamy sand | | | | | | | | | | |
| | | 19-29 | \|Gravelly coarse| | \|SP, SP-SM, | $\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-3\|$ | 0 | 0-5 | 50-95 | 140-95 | 30-65 | 0-10 | 0-20 | NP-3 |
| | | | \| sand, coarse | | \| SW-SM | | | | | | | | | |
| | | | \| sand, sand | | | | | | | | | | |
| | | 29-80 | \|Gravelly coarse| | \|SP, SP-SM, | $\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-3\|$ | 0 | 0-5 | 50-95 | 140-95 | 130-65 | 0-10 | 0-20 | NP-3 |
| | | | \| sand, coarse | | \| SW-SM | | | | | | | | | |
| | | | \| sand, sand | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Halverson---- | 3 | | \| Loamy fine sand| | | | 0 | 0 | | \| 95-100| | 150-80 | \|15-35 | 0-20 | NP-5 |
| | | 10-23 | \| Loamy fine | | \|SC-SM, SM | \|A-2-4 | 0 | 0 | 100 | \| 95-100| | 80-95 | \|15-40 | 0-20 | NP-3 |
| | | | sand, fine | | | | | | | | | | |
| | | | \| sand, loamy | | | | | | | | | | |
| | | | \| sand | | | | | | | | | | |
| | | 23-35 | \| Clay loam, | \| CL, SC | \|A-6 | 0 | 0-5 | \|90-100| | \|75-100 | | 60-95 | \|45-75 | \|30-40 | 10-20 |
| | | | \| sandy clay | | | | | | | | | | |
| | | | \| loam, loam | | | | | | | | | | |
| | | 35-55 | \|Sandy loam, | \| SM, ML | \|A-4 | 0-1 | 0-5 | \|95-100| | \| 90-100 | | \|60-100| | \|35-90 | 20-40 | NP-10 |
| | | | \| fine sandy | | | | | | | | | | |
| | | | loam, loam | | | | | | | | | | |
| | | 55-80 | \| Sandy loam, | \| SM, ML | \|A-4 | 0-1 | 0-5 | \|95-100| | \| 90-100 | | \|60-100| | \|35-90 | 20-40 | NP-10 |
| | | | \| fine sandy | | | | | | | | | | |
| | | | \| loam, loam | | | | | | | | | | |
| | | | | | | | | | | | | | |

Table 22.--Engineering Index Properties--Continued

Table 22.--Engineering Index Properties--Continued

Table 22.--Engineering Index Properties--Continued

Table 22.--Engineering Index Properties--Continued

| Map symbol
 and
 soil name | $\begin{aligned} & \text { Pct. of } \\ & \text { map unit } \end{aligned}$ | Depth | USDA texture | Classification | | Fragments | | Percentage passing sieve number-- | | | | $\begin{aligned} & \mid \text { Liquid\| } \\ & \mid \text { limit } \mid \end{aligned}$ | Plas\|ticity |index | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | >10 $3-10$
 inches inches | | | | | | | |
| | | | | Unified | AASHTO | | | | | | | | |
| | | | | | | | | 4 | 10 | 40 | 200 | | |
| | 5 | In | | | | Pct | Pct | | | | | Pct | |
| | | | \| | | | | | | | | | | | |
| I42A: | | | | | | | | | | | | | |
| Markey------ | | 0-32 | \| Muck | $\mid \mathrm{PT}$ | \|A-8 | 0 | 0 | 100 | 100 | -- | --- | --- | --- |
| | | 32-60 | \|Fine sand, | \|SM, SP, SP-SM| | A-2, A-3, | 0 | 0 | 100 | \| 75-100 | 60-75 | 0-20 | 0-20 | \|NP-3 |
| | | | \| loamy sand, | | A-2-4 | | | | | | | | |
| | | | \| coarse sand | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Deerwood---- | 4 | 0-10 | \| Muck | \| PT | \|A-8 | 0 | 0 | 100 | 100 | --- | --- | --- | --- |
| | | 10-12 | \|Fine sand, | \|SM, SC-SM | A-2-4, A-4 | 0 | 0-2 | \| 95-100| | 90-100 | 50-75 | \|15-50 | 0-25 | NP-10 |
| | | | \| loamy sand, | | | | | | | | | | |
| | | | \| fine sandy | | | | | | | | | | |
| | | | loam | | | | | | | | | | |
| | | 12-60 | | \|SM, SP, SP-SM| | $\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-3\|$ | 0 | 0-5 | \|75-100| | 55-100 | 35-70 | 0-25 | 0-20 | NP-3 |
| | | | $\mid \text { sand, gravelly\| }$ | | | | | | | | | | |
| | | | sand \| | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Seelyeville, ponded----- | 4 | | | | | | | | | | | | |
| | | | | | | | | 100 | 100 | --- | --- | --- | --- |
| | | 10-80 | \|Muck, mucky | | \|A-8 | 0 | 0 | 100 | 100 | --- | --- | --- | --- |
| | | | \| peat | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Hamar-------- | 1 | | \|Loamy fine sand| | \|SM, SC-SM | \|A-2-4 | 0 | 0 | 100 | \| 95-100 | 50-80 | \|15-35 | 0-20 | \|NP-5 |
| | | 12-17 | \|Loamy fine | | \|SC-SM, SM, | \|A-2-4 | 0 | 0 | 100 | \| 95-100 | 50-80 | \|10-35 | 0-20 | \|NP-3 |
| | | | sand, loamy | SP-SM | | | | | | | | | |
| | | | \| sand, fine | | | | | | | | | | |
| | | | sand | | | | | | | | | | |
| | | 17-40 | \|Fine sand, | \|SC-SM, SM, | \|A-2-4, A-3 | 0 | 0 | 100 | \| 95-100 | 50-80 | 5-35 | 0-20 | NP-3 |
| | | | \| loamy sand, | \| SP-SM | | | | | \| 100 | | | | |
| | | | \| loamy fine | | | | | | | | | | |
| | | | sand | | | | | | | | | | |
| | | 40-47 | \| Loamy fine sand| | \|SC-SM, SM | \|A-2-4 | 0 | 0 | 100 | \| 95-100 | \|50-80 | \|15-35 | 0-20 | \|NP-5 |
| | | 47-60 | \|Fine sand, | | \|SC-SM, SM, | A-3, A-2-4 | 0 | 0 | 100 | \|95-100 | \|50-80 | 5-35 | 0-20 | \|NP-3 |
| | | | \| loamy sand, | SP-SM | | | | | | | | | |
| | | | loamy fine | | | | | | | | | | |
| | | | sand | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Hangaard----- | 1 | 0-10 | \| Sandy loam | \| SM | A-2-4, A-4 | 0 | 0-3 | \| 95-100| | 80-100 | 50-75 | 15-45 | 0-25 | \| NP-10 |
| | | 10-15 | \| Loamy sand, | \|SM, SP-SM | A-1, A-2-4, | 0 | 0-3 | \| 95-100| | 80-95 | 40-70 | 5-25 | 0-20 | NP-5 |
| | | | \| coarse sandy | | A-3 | | | | | | | | |
| | | | loam, loamy | | | | | | | | | | |
| | | | \| coarse sand | | | | | | | | | | |
| | | 15-80 | \|Gravelly coarse| | \|SP, SP-SM | $\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-3\|$ | 0 | 0-3 | \|70-95 | 55-90 | 30-60 | 0-10 | 0-20 | NP-3 |
| | | | \| sand, gravelly| | | | | | | | | | | |
| | | | \| sand, coarse | | | | | | | | | | | |
| | | | sand \| | | | | | | | | | | |
| | | | | | | | | | | | | | |

Table 22.--Engineering Index Properties--Continued

Table 22.--Engineering Index Properties--Continued

| Map symbol
 and
 soil name | $\begin{aligned} & \text { Pct. of } \\ & \text { map unit } \end{aligned}$ | Depth | USDA texture | Classification | | Fragments | | Percentage passing sieve number-- | | | | \|Liquid
 \|limit | Plasticity index | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | | \| | >10 $3-10$
 \mid inches inches | | | | | | | |
| | | | | Unified | AASHTO | | | 4 | 10 | 40 | 200 | | |
| | | In | | | \| | Pct | Pct | | | | | Pct | |
| | | | I | | | | | | | | | | |
| 147A: | | | | | | | | | | | | | |
| Flaming----- | 12 | 0-12 | \| Loamy fine sand| | SM, SC-SM | \|A-2-4 | 0 | 0 | 100 | \| 95-100 | \|65-80 | \|15-30 | 0-20 | \| NP-5 |
| | | 12-17 | \|Fine sand, | \| SM, SW-SM | \|A-2-4, A-3 | 0 | 0 | 100 | \| 95-100 | 50-80 | 5-30 | 0-20 | \| NP-3 |
| | | | \| loamy sand,
 sand | | | | | | | | | | |
| | | 17-27 | \|Fine sand, | \|SM, SW-SM | \|A-2-4, A-3 | 0 | 0 | 100 | \| 95-100 | \|50-80 | 5-30 | 0-20 | \| NP-3 |
| | | | \| loamy sand, | | | | | | | | | | |
| | | | sand | | | | | | | | | | |
| | | 27-60 | Fine sand, | \|SM, SW-SM | \|A-2-4, A-3 | 0 | 0 | 100 | 95-100 | 50-80 | 5-30 | 0-20 | \| NP-3 |
| | | | loamy sand, | | | | | | | | | | |
| | | | \| sand | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Garborg----- | 5 | 0-12 | \| Loamy fine sand| | \|SC-SM, SM | \|A-2-4 | 0 | 0 | 100 | \| 95-100 | 50-80 | \|15-35 | 0-20 | \|NP-5 |
| | | 12-41 | \| Loamy fine | | \| SC-SM, SM, | \|A-2-4 | 0 | 0 | 100 | 95-100 | \|50-80 | \|10-35 | 0-20 | \|NP-3 |
| | | | \| sand, loamy | | \| SP-SM | | | | | | | | | |
| | | | \| sand, fine | | | | | | | | | | |
| | | | \| sand | | | | | | | | | | |
| | | 41-59 | \|Fine sand, | \|SC-SM, SM, | \|A-3, A-2-4 | 0 | 0 | 100 | 95-100 | 50-80 | 5-35 | 0-20 | \| NP-3 |
| | | | \| loamy sand, | \| SP-SM | | | | | | | | | |
| | | | \| loamy fine | | | | | | | | | | |
| | | | \| sand | | | | | | | | | | |
| | | 59-80 | \|Fine sand, | \| SC-SM, SM, | \|A-2-4 | 0 | 0 | 100 | 95-100 | 50-80 | 5-35 | 0-20 | \|NP-3 |
| | | | \| loamy sand, | \| SP-SM | | | | | | | | | |
| | | | \| loamy fine | | | | | | | | | | |
| | | | sand | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Hamar------- | 3 | 0-12 | \|Loamy fine sand| | SM, SC-SM | \|A-2-4 | 0 | 0 | 100 | \| 95-100 | \|50-80 | \|15-35 | 0-20 | \|NP-5 |
| | | 12-17 | \| Loamy fine | \| SC-SM, SM, | \|A-2-4 | 0 | 0 | 100 | \| 95-100 | \|50-80 | \|10-35 | 0-20 | \| NP-3 |
| | | | sand, loamy | \| SP-SM | | | | | | | | | |
| | | | \| sand, fine | | | | | | | | | | |
| | | | sand | | | | | | | | | | |
| | | 17-40 | \|Fine sand, | \| SC-SM, SM, | \|A-2-4, A-3 | 0 | 0 | 100 | \|95-100 | 50-80 | 5-35 | 0-20 | \| NP-3 |
| | | | \| loamy sand, | \| SP-SM | | | | | | | | | |
| | | | \| loamy fine | | | | | | | | | | |
| | | | sand | | | | | | | | | | |
| | | 40-47 | \|Loamy fine sand| | \|SC-SM, SM | \|A-2-4 | 0 | 0 | 100 | \|95-100 | \|50-80 | \|15-35 | 0-20 | \|NP-5 |
| | | 47-60 | \|Fine sand, | | \| SC-SM, SM, | \|A-3, A-2-4 | - | 0 | 100 | 95-100 | \|50-80 | 5-35 | 0-20 | \|NP-3 |
| | | | \| loamy sand, | \| SP-SM | | | | | | | | | |
| | | | \| loamy fine | | | | | | | | | | |
| | | | sand | | | | | | | | | | |
| | | | | | | | | | | | | | |

Table 22.--Engineering Index Properties--Continued

| Map symbol
 and
 soil name | Pct. of map unit | Depth | USDA texture | Classification | | Fragments | | Percentage passing sieve number-- | | | | \|Liquid
 limit | Plasticity index | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | Unified | AASHTO | >10
 inches | $\left\lvert\, \begin{gathered} 3-10 \\ \mid \text { inches } \mid \end{gathered}\right.$ | | | | | | |
| | | | | | | | | | | | | | |
| | | | | | | | | 4 | 10 | 40 | 200 | | |
| I47A: | 2 | In | \| | | | | Pct | Pct | | | | | Pct | |
| | | | \| | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Radium------ | | 0-14 | \| Loamy sand | \| SM, SW-SM | A-2-4 | 0 | 0 | \|95-100| | \|95-100| | 50-70 | 5-25 | 0-20 | NP-5 |
| | | 14-33 | \| Sand, loamy | \|SP, SP-SM, SM| | A-1, A-2, A-3\| | 0 | 0-5 | \|75-100| | \|65-95 | \| 35-60 | 3-15 | 0-20 | NP-3 |
| | | | \| sand, gravelly| | | | | | | | | | | |
| | | | \| loamy coarse | | | | | | | | | | | |
| | | | \| sand | | | | | | | | | | |
| | | 33-43 | \|Gravelly sand, | \|GW, GW-GM, | A-1 | 0 | 0-5 | 15-90 | \| 30-75 | 15-40 | 0-10 | 0-20 | NP-3 |
| | | | \| gravelly | \| SP, SP-SM | | | | | | | | | |
| | | | \| coarse sand, | | | | | | | | | | |
| | | | \| very gravelly | | | | | | | | | | |
| | | | \| coarse sand | | | | | | | | | | |
| | | 43-80 | | | A-1, A-2, A-3 | 0 | 0-5 | \|85-100| | 75-95 | \| $40-75$ | 5-20 | 0-20 | NP-3 |
| | | | \| sand, loamy | \| SP-SM | | | | | | | | | |
| | | | \| sand | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Ulen-------- | 2 | 0-9 | \|Loamy fine sand| | \| SM | A-2-4 | 0 | 0 | 100 | \| 95-100| | 50-80 | 15-30 | 0-20 | NP-5 |
| | | 9-42 | \|Fine sandy | | \|SC-SM, SM | A-2-4, A-4 | 0 | 0 | \|95-100| | \| 95-100| | 65-85 | 15-50 | 15-25 | NP-10 |
| | | | \| loam, sandy | | | | | | | | | | |
| | | | \| loam, loamy | | | | | | | | | | |
| | | | fine sand | | | | | | | | | | |
| | | 42-60 | \|Fine sand, sand| | SM, SP-SM | A-1, A-2, A-3 | 0 | 0 | \|85-100| | 75-95 | \| 45-75 | 5-25 | 0-20 | NP-3 |
| | | | \|rine sand, sand| | \|SM, SP-sM | | | | | | | | | |
| Maddock------ | 1 | 0-10 | \|Loamy fine sand| | \|SC-SM, SM | A-2-4 | 0 | 0 | 100 | \| 95-100| | \|50-80 | 15-35 | 0-20 | NP-5 |
| | | 10-14 | \| Loamy sand, | \| SM, SP-SM | A-2-4, A-3 | 0 | 0 | 100 | \| 95-100| | \| 60-100| | 5-35 | 0-20 | NP-3 |
| | | | \| loamy fine | | | | | | | | | | |
| | | | \| sand, fine | | | | | | | | | | |
| | | | \| sand | | | | | | | | | | |
| | | 14-60 | \| Loamy sand, | \|SM, SP-SM | A-2-4, A-3 | 0 | 0 | 100 | \| 95-100| | 60-100 | 5-35 | 0-20 | NP-3 |
| | | | \| loamy fine | | | | | | | | | | |
| | | | \| sand, fine | | | | | | | | | | |
| | | | \| sand | | | | | | | | | | |
| | | | | | | | | | | | | | |

Table 22.--Engineering Index Properties--Continued

Table 22.--Engineering Index Properties--Continued

| Map symbol
 and
 soil name | Pct. of map unit | Depth | USDA texture | Classification | | Fragments | | Percentage passing sieve number-- | | | | \|Liquid
 limit | Plasticity index | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| | | | | Unified | AASHTO | $\left\lvert\, \begin{gathered} >10 \\ \mid \text { inches } \end{gathered}\right.$ | $\left\lvert\, \begin{gathered} 3-10 \\ \mid \text { inches } \end{gathered}\right.$ | 4 | 10 | 40 | 200 | | |
| | | In | \mid \| | | | Pct | Pct | | | | | Pct | |
| | | | \| | | | | | | | | | | | |
| I55A: | | | | | | | | | | | | | |
| Thiefriver--- | 1 | 0-12 | Fine sandy loam\| | \|CL-ML, ML, | A-4 | 0 | 0 | \| 95-100| | \|80-100 | 70-90 | 35-55 | 0-25 | \| NP-10 |
| | | | | SC-SM, SM | | | | | | | | | |
| | | 12-23 | Fine sandy | \|SM, SC-SM | A-2-4, A-4 | 0 | 0 | \| 95-100| | 95-100 | 65-85 | 15-50 | 20-30 | \| NP-10 |
| | | | \| loam, sandy | | | | | | | | | | |
| | | | \| loam, loamy | | | | | | | | | | |
| | | | \| fine sand | | | | | | | | | | |
| | | 23-32 | \|Fine sand, | \|SM, SP-SM | A-2-4, A-2, | 0 | 0-3 | \| 90-100| | \| 80-100 | 50-80 | 5-35 | 0-20 | \| NP-3 |
| | | | \| loamy fine | | A-3 | | | | | | | | |
| | | | \| sand, loamy | | | | | | | | | | |
| | | | \| sand | | | | | | | | | | |
| | | 32-80 | \|Silty clay, | \| CH | A-7 | 0-1 | 0-3 | \| 95-100| | 95-100 | 90-100 | 75-95 | 140-70 | \|20-45 |
| | | | \| clay, silty | | | | | | | | | | |
| | | | \| clay loam | | | | | | | | | | |
| | | | | | | | | | | | | | |
| I56A: | | | | | | | | | | | | | |
| Rosewood----- | 50 | | \|Fine sandy loam| | \|SC, SC-SM, SM| | A-2-4, A-4 | 0 \| | 0 | \|95-100| | \|95-100 | 65-90 | 30-50 | 0-25 | \| NP-10 |
| | | 8-18 | \|Fine sandy | \|SC-SM, SM | A-2-4, A-4 | 0 | 0 | \| 95-100| | 95-100 | \|65-85 | 15-50 | 20-30 | \|NP-10 |
| | | | \| loam, sandy | | | | | | | | | | |
| | | | \| loam, loamy | | | | | | | | | | |
| | | | \| fine sand | | | | | | | | | | |
| | | 18-80 | Fine sand, sand\| | SM, SP-SM | A-1, A-2-4, | 0 | 0 | \| 85-100| | 75-100 | 45-75 | 5-35 | 0-20 | \| NP-3 |
| | | | | | A-3 | | | | | | | | |
| | | | | | | | | | | | | | |
| Venlo-------- | 40 | 0-13 | \|Fine sandy loam| | SC-SM, SM | A-2-4, A-4 | 0 | 0 | 100 | \| 95-100 | 150-85 | 30-50 | 0-25 | \| NP-5 |
| | | 13-60 | | | A-3, A-2-4 | 0 | 0 | 100 | \|95-100 | \|50-80 | 5-35 | 0-20 | \|NP-3 |
| | | | \| loamy sand, | SP-SM | | | | | | | | | |
| | | | loamy fine | | | | | | | | | | |
| | | | \| sand | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Deerwood----- | 3 | 0-10 | \| Muck | \| PT | A-8 | 0 | 0 | 100 | 100 | --- | --- | --- | --- |
| | | 10-12 | \| Fine sand, | \|SM, SC-SM | A-2, A-4 | 0 | 0-2 | \| 95-100| | 90-100 | 50-75 | 15-50 | 0-25 | \| NP-10 |
| | | | \| loamy sand, | | | | | | | | | | |
| | | | \| fine sandy | | | | | | | | | | |
| | | | \| loam | | | | | | | | | | |
| | | 12-60 | \|Fine sand, | | \|SM, SP, SP-SM| | A-1, A-2, A-3\| | 0 | 0-5 | 75-100\| | 55-100 | \|35-70 | 0-25 | 0-20 | \|NP-3 |
| | | | \| sand, gravelly| | | | | | | | | | | |
| | | | \| sand | | | | | | | | | | | |
| | | | | | | | | | | | | | |

Table 22.--Engineering Index Properties--Continued

| Map symbol and soil name | Pct. of map unit | Depth | USDA texture | Classification | | Fragments | | Percentage passing sieve number-- | | | | $\begin{aligned} & \text { \| Liquid } \\ & \text { \|limit } \end{aligned}$ | Plasticity index | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | | | >10 | 3-10 | | | | | | |
| | | | | Unified | AASHTO | inches | inches | 4 | 10 | 40 | 200 | | |
| I56A: | | In | | | | Pct | Pct | | | | | Pct | |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Syrene------- | 3 | 0-9 | \| Sandy loam | \|SC-SM, SM | \|A-4 | 0-1 | 0-3 | 95-100\| | 80-100 | 60-75 | \|20-45 | 0-25 | \| NP-10 |
| | | 9-17 | \| Loam, sandy | \| CL-ML, SC-SM, | \|A-4 | 0 | 0-5 | \|95-100| | \| 85-100| | 50-75 | \|15-65 | 20-35 | 5-15 |
| | | | loam, sandy | CL, SC | | | | | | | | | |
| | | | \| clay loam | | | | | | | | | | |
| | | 17-27 | \|Stratified | \|SP, SP-SM | $\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-3\|$ | 0-1 | 0-5 | 70-95 | 55-80 | 30-60 | 0-10 | 0-20 | \| NP-3 |
| | | | \| loamy fine | | | | | | | | | | |
| | | | \| sand to | | | | | | | | | | |
| | | | \| gravelly | | | | | | | | | | |
| | | | \| coarse sand | | | | | | | | | | |
| | | 27-60 | \|Stratified | \|SP, SP-SM | $\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-3\|$ | 0-1 | 0-5 | 70-95 | 55-80 | 30-60 | 0-10 | 0-20 | \| NP-3 |
| | | | loamy fine | | | | | | | | | | |
| | | | sand to | | | | | | | | | | |
| | | | \| gravelly | | | | | | | | | | |
| | | | \| coarse sand | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Ulen--------- | 2 | 0-9 | \| Loamy fine sand| | \| SM | \|A-2-4 | 0 | 0 | 100 | \| 95-100| | 50-80 | \|15-30 | 0-20 | \|NP-5 |
| | | 9-42 | \|Fine sandy | \|SC-SM, SM | \|A-2-4, A-4 | 0 | 0 | 95-100\| | 95-100 | 65-85 | \|15-50 | 15-25 | \| NP-10 |
| | | | \| loam, sandy | | | | | | | | | | |
| | | | \| loam, loamy | | | | | | | | | | |
| | | | fine sand | | | | | | | | | | |
| | | 42-60 | \|Fine sand, sand| | \|SM, SP-SM | $\mathrm{A}-1, \mathrm{~A}-2-4,$ | 0 | 0 | 85-100\| | 75-95 | 45-75 | 5-25 | 0-20 | NP-3 |
| | | | | | A-3 | | | | | | | | |
| | | | | | | | | | | | | | |
| Strathcona--- | 1 | 0-10 | \|Fine sandy loam| | | \|A-4 | 0 | 0 | 95-100\| | $\|90-100\|$ | 70-85 | \| $40-55$ | 0-25 | \| NP-10 |
| | | | | \| SC-SM, SM | | | | | | | | | |
| | | 10-17 | \| Fine sandy | \| SM, SC-SM | \|A-2-4, A-4 | 0 | 0 | 95-100\| | \| 95-100 | | 65-85 | \|15-50 | 20-30 | \| NP-10 |
| | | | \| loam, sandy | | | | | | | | | | |
| | | | \| loam, loamy | | | | | | | | | | |
| | | | fine sand | | | | | | | | | | |
| | | 17-28 | \| Sand, fine | \| SM, SP-SM | A-2-4, A-3, | 0 | 0-1 | 95-100\| | \| 90-100| | 50-80 | 5-30 | 0-20 | NP-3 |
| | | | \| sand, loamy | | A-2 | | | | | | | | |
| | | | \| fine sand | | | | | | | | | | |
| | | 28-80 | \| Loam, clay loam| | \|CL, CL-ML | A-6, A-4 | 0-1 | 0-5 | 95-100\| | \|85-95 | 75-90 | \|50-75 | 25-40 | 5-20 |
| | | | | i | - | | | | | | | | |

Table 22.--Engineering Index Properties--Continued

Table 22.--Engineering Index Properties--Continued

| Map symbol
 and
 soil name | $\begin{aligned} & \text { Pct. of } \\ & \text { map unit } \end{aligned}$ | Depth | USDA texture | Classification | | | | Percentage passing sieve number-- | | | | \|Liquid
 \|limit | Plasticity index | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | Unified | AASHTO | \square | | | | | | | |
| | | | | | | $\begin{array}{\|l\|} \hline>10 \\ \mid \text { inches } \end{array}$ | $\left\lvert\, \begin{aligned} & 3-10 \\ & \mid \text { inches } \mid \end{aligned}\right.$ | | | | | | |
| | | | | | | | | 4 | 10 | 40 | 200 | | |
| I57B: | 8 | In | \| | | | \| | Pct | Pct | | | | | Pct | |
| | | | \| | | | \| | | | | | | | | |
| | | | | | \| | | | | | | | | |
| Sioux------- | | 0-5 | \|Sandy loam | \| SM | \|A-4 | 0 | 0-5 | 95-100 | \| 80-100| | 60-85 | \| 35-45 | 0-25 | \| NP-10 |
| | | 5-8 | \|Gravelly loam, | \|GM, SM | $\mid \mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-4$ | 0 | 0-5 | 60-90 | \| 50-80 | 45-70 | \|15-50 | 0-25 | \|NP-5 |
| | | | gravelly sandy | | | | | | | | | | |
| | | | \| loam, gravelly | | | | | | | | | | |
| | | | \| loamy sand | | | | | | | | | | | |
| | | 8-60 | Extremely | \|GM, GP, SM, | \|A-1, A-2 | 0 | 0-5 | 25-75 | \|20-60 | 5-35 | 0-25 | 0-25 | \| NP-5 |
| | | | \| gravelly sand, | SP, SP-SM, | | | | | | | | | |
| | | | \| very gravelly | | GP-GM | | | | | | | | | |
| | | | \| loamy sand, | | \| | | | | | | | | |
| | | | \| very gravelly | | \| | | | | | | | | |
| | | | \| sand | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Oylen------- | 7 | | Sandy loam | \| SC-SM, SM | \|A-2-4, A-4 | 0 | 0 | 100 | \| 85-100| | 60-85 | \|25-45 | 0-20 | \|NP-5 |
| | | 10-18 | \| Loam, sandy | \|SC-SM, SC, | \|A-4 | 0 | 0 | 100 | \| 85-100 | 60-85 | \| 35-60 | 20-30 | 5-10 |
| | | | \| loam | \| CL-ML, CL | | | | | | | | | |
| | | 18-38 | \| Coarse sand, | \| SM, SP-SM | \|A-2-4, A-3 | 0 | 0 | 90-100\| | \|70-100| | 35-65 | 5-20 | 0-20 | \|NP-3 |
| | | | \| loamy sand, | | | | | | | | | | |
| | | | \| sand | | | | | | | | | | |
| | | 38-80 | \|Gravelly coarse| | \|SP-SM, SP | \|A-1-b, A-2-4, | 0 | 0 | \|90-100| | \| 60-100| | 35-55 | 3-10 | 0-20 | \| NP-3 |
| | | | \| sand, sand, | | | $\mid \mathrm{A}-3$, | | | | | | | | |
| | | | \| coarse sand | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Flaming------ | 5 | 0-12 | \| Loamy fine sand| | \|SM, SC-SM | \|A-2-4 | 0 | 0 | 100 | \| 95-100 | 65-80 | \|15-30 | 0-20 | NP-5 |
| | | 12-17 | \|Fine sand, | \|SM, SW-SM | \|A-2-4, A-3 | 0 | 0 | 100 | \| 95-100 | 50-80 | 5-30 | 0-20 | \|NP-3 |
| | | | \| loamy sand, | | | | | | | | | | |
| | | | \| sand | | | | | | | | | | |
| | | 17-27 | | \|SM, SW-SM | \|A-2-4, A-3 | 0 | 0 | 100 | \| 95-100 | 50-80 | 5-30 | 0-20 | \| NP-3 |
| | | | \| loamy sand, sand | | | | | | | | | | |
| | | 27-60 | Fine sand, | \|SM, SW-SM | \|A-2-4, A-3 | 0 | 0 | 100 | \| 95-100 | \|50-80 | 5-30 | 0-20 | \|NP-3 |
| | | 27-60 | \| loamy sand, | \|SM, SW-SM | A-2-4, A-3 | 0 | 0 | 100 | \|95-100| | 50-80 | 5-30 | | |
| | | | \| sand | | \| | | | | | | | | |
| | | | | | | | | | | | | | |

Table 22.--Engineering Index Properties--Continued

| Map symbol
 and
 soil name | $\begin{aligned} & \text { Pct. of } \\ & \text { map unit } \end{aligned}$ | Depth | USDA texture | Classification | | Fragments | | Percentage passing sieve number-- | | | | $\begin{aligned} & \text { \| Liquid } \\ & \mid \text { limit } \end{aligned}$ | Plasticity index | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | | | $\begin{array}{\|l\|l\|} \hline>10 \mid 3-10 \\ \mid \text { inches } & \text { inches } \end{array}$ | | | | | | | |
| | | | | Unified | AASHTO | | | 4 | 10 | 40 | 200 | | |
| | | In | | | | Pct | Pct | | | | | Pct | |
| | | | \| | | | | | | | | | | |
| 157B: | | | | | | | | | | | | | |
| Garborg----- | 5 | 0-12 | Loamy fine sand\| | SC-SM, SM | \|A-2-4 | 0 | 0 | 100 | \| 95-100 | 50-80 | 15-35 | 0-20 | \| NP-5 |
| | | 12-41 | \| Loamy fine | SC-SM, SM, | \|A-2-4 | 0 | 0 | 100 | 95-100 | \|50-80 | 10-35 | 0-20 | \| NP-3 |
| | | | sand, loamy | SP-SM | | | | | | | | | |
| | | | \| sand, fine | | | | | | | | | | |
| | | | \| sand | | | | | | | | | | |
| | | 41-59 | \|Fine sand, | SC-SM, SM, | A-3, A-2-4 | 0 | 0 | 100 | 95-100 | \|50-80 | 5-35 | 0-20 | NP-3 |
| | | | loamy sand, | SP-SM | | | | | | | | | |
| | | | \| loamy fine | | | | | | | | | | |
| | | | sand | | | | | | | | | | |
| | | 59-80 | \|Fine sand, | SC-SM, SM, | \|A-2-4 | 0 | 0 | 100 | \| 95-100 | 50-80 | 5-35 | 0-20 | \| NP-3 |
| | | | \| loamy sand, | SP-SM | | | | | | | | | |
| | | | \| loamy fine | | | | | | | | | | |
| | | | sand | | | | | | | | | | |
| | | | | | | | | | | | | | |
| I58A: | | | | | | | | | | | | | |
| Seelyeville-- | 90 | $0-10$ | | PT | \|A-8 | 0 | 0 | 100 | 100 | -- | -- | --- | --- |
| | | 10-80 | \|Muck, mucky | PT | \|A-8 | 0 | 0 | 100 | 100 | --- | -- | --- | --- |
| | | | \| peat | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Cathro------ | 3 | 0-11 | | PT | \|A-8 | 0 | 0 | 100 | 100 | --- | --- | -- | --- |
| | | 11-23 | \|Muck | PT | \|A-8 | 0 | 0 | 100 | 100 | -- | -- | --- | --- |
| | | 23-60 | \|Loam, clay loam| | CL, CL-ML | A-6, A-4 | 0-1 | 0-5 | 95-100\| | 85-95 | \| 75-90 | 50-75 | \|25-40 | 5-20 |
| | | | | | | | | | | | | | |
| Dora-------- | 3 | 0-12 | \| Mucky peat | PT | \|A-8 | 0 | 0 | 100 | 100 | --- | --- | --- | - |
| | | 12-32 | \|Muck | PT | \|A-8 | 0 | 0 | 100 | 100 | --- | --- | --- | --- |
| | | 32-36 | \mid Mucky silty | CL | \|A-6 | 0 | 0 | 100 | 100 | 90-100 | 85-95 | \|25-40 | 10-20 |
| | | | \| clay loam, | | | | | | | | | | |
| | | | \| mucky silt | | | | | | | | | | |
| | | | loam | | | | | | | | | | |
| | | 36-60 | \|Silty clay | CH, CL | \|A-7 | 0 | 0 | 100 | 100 | \| 90-100| | 90-100 | \|45-80 | \| 35-50 |
| | | | \| loam, silty | | | | | | | | | | |
| | | | clay, clay | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Markey------- | 3 | $0-32$ | | | | | | | | | | | |
| | | 32-60 | \|Fine sand, | SM, SP, SP-SM\| | A-2, A-3, | 0 | 0 | 100 | 75-100 | \|60-75 | 0-20 | 0-20 | \| NP-3 |
| | | | \| loamy sand, | | A-2-4 | | | | | | | | |
| | | | \| coarse sand | | | | | | | | | | |
| | | | | | | | | | | | | | |

Table 22.--Engineering Index Properties--Continued

Table 22.--Engineering Index Properties--Continued

| Map symbol
 and
 soil name | $\begin{aligned} & \text { Pct. of } \\ & \text { map unit } \end{aligned}$ | Depth | USDA texture | Classification | | Fragments | | Percentage passing sieve number-- | | | | \|Liquid
 limit | Plasticity index | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | | | >10 | 3-10 | | | | | | |
| | | | | Unified | AASHTO | inches | inches | 4 | 10 | 40 | 200 | | |
| | | In | | | | Pct | Pct | | | | | Pct | |
| | | | | | | | | | | | | | |
| I59A: | | | | | | | | | | | | | |
| Linveldt-------\| | 3 | 0-9 | \|Fine sandy loam| | SC-SM, SM | A-2-4, A-4 | 0 | 0-5 | \| 95-100| | \|95-100| | 65-90 | 20-50 | 0-25 | \| NP-10 |
| | | 9-16 | Sandy clay | \| CL, CL-ML, | A-2-4, A-4 | 0-1 | 0-5 | \|95-100| | $\|80-100\|$ | 50-90 | 25-75 | 120-30 | 5-10 |
| | | | loam, loam, | SC, SC-SM | | | | | | | | | |
| | | | sandy loam | | | | | | | | | | |
| | | 16-29 | Loamy sand, | \| SC-SM, SM, | \|A-1, A-2, A-3| | 0-1 | 0-5 | \|65-100| | \|55-100| | 30-80 | 5-30 | 0-20 | \| NP-3 |
| | | | \| sand, coarse | SP-SM | | | | | | | | | |
| | | | \| sand | | | | | | | | | | |
| | | 29-45 | \|Clay loam, loam| | CL, CL-ML | A-4, A-6 | 0-1 | 0-5 | \| 95-100| | 185-95 | \|75-90 | 50-75 | \|25-40 | 5-20 |
| | | 45-80 | \|Loam, clay loam| | CL, CL-ML | A-6, A-4 | 0-1 | 0-5 | \|95-100| | \|85-95 | \|75-90 | 50-75 | \|25-40 | 5-20 |
| | | | | | | | | | | | | | |
| Smiley, depressional--- | 3 | | | | | | | | | | | | |
| | | 0-12 | Mucky loam | \| CL, CL-ML | A-4, A-6 | 0-1 | 0-3 | \|95-100| | 85-95 | 80-95 | 60-85 | \|20-40 | 5-20 |
| | | 12-19 | \| Clay loam, | \| CL | A-6 | 0-1 | 0-3 | \| 95-100| | \| 85-100| | 70-95 | 50-80 | \|25-40 | \|10-20 |
| | | | \| loam, silty | | | | | | | | | | |
| | | | \| clay loam | | | | | | | | | | |
| | | 19-42 | \|Clay loam, loam| | CL, CL-ML | A-4, A-6 | 0-1 | 0-5 | \| 95-100| | \|85-95 | \|75-90 | 50-75 | \|25-40 | 5-20 |
| | | 42-80 | Loam, clay loam\| | CL, CL-ML | A-6, A-4 | 0-1 | 0-5 | \|95-100| | \|85-95 | \|75-90 | 50-75 | \|25-40 | 5-20 |
| | | | | | | | | | | | | | |
| Strandquist----\| | 1 | 0-10 | Loam | \| CL-ML, CL | A-4 | 0 | 0 | \| 95-100| | $\|80-100\|$ | 75-90 | 50-75 | 20-30 | 5-10 |
| | | 10-20 | Gravelly sand, | \|GP, GP-GM, | A-1 | 0 | 2-5 | \| 30-65 | \| 15-45 | 5-40 | 0-10 | 0-20 | \| NP-3 |
| | | | \| gravelly | SP, SP-SM, | | | | | | | | | |
| | | | \| coarse sand, | GW-GM | | | | | | | | | |
| | | | \| very gravelly | | | | | | | | | | |
| | | | \| sand | | | | | | | | | | |
| | | 20-60 | \|Clay loam, loam| | CL, CL-ML | A-6, A-4 | 0-1 | 0-5 | \| 95-100| | 185-95 | \|75-90 | 50-75 | 25-40 | 5-20 |
| | | | | | | | | | | | | | |
| I60A: | | | | | | | | | | | | | |
| Smiley, | | | | | | | | | | | | | |
| depressional--- | 80 | 0-12 | Mucky loam | | | | | \|95-100| | \|85-95 | \| 80-95 | 60-85 | 120-40 | 5-20 |
| | | 12-19 | Clay loam, | \|CL | \|A-6 | 0-1 | 0-3 | \|95-100| | $\|85-100\|$ | 70-95 | 50-80 | \|25-40 | 10-20 |
| | | | \| loam, silty | | | | | | | | | | |
| | | | \| clay loam | | | | | | | | | | |
| | | 19-42 | \|Clay loam, loam| | CL, CL-ML | A-4, A-6 | 0-1 | 0-5 | \|95-100| | \|85-95 | \|75-90 | 50-75 | \|25-40 | 5-20 |
| | | 42-80 | Clay loam, loam\| | CL, CL-ML | A-6, A-4 | 0-1 | 0-5 | \|95-100| | \| 85-95 | \|75-90 | 50-75 | \|25-40 | 5-20 |
| | | | | | | | | | | | | | |
| Smiley--------- \| | 10 | 0-12 | Loam | \| CL, CL-ML, ML ${ }^{\text {l }}$ | A-4, A-6 | 0-1 | 0-2 | \| 95-100| | \|85-100| | 70-95 | 50-80 | \|15-35 | 2-12 |
| | | 12-19 | Clay loam, | \| CL | A-6 | 0-1 | 0-3 | \|95-100| | $\|85-100\|$ | 70-95 | 50-80 | \|25-40 | \|10-20 |
| | | | \| loam, silty | | | | | | | | | | |
| | | | \| clay loam | | | | | | | | | | |
| | | 19-42 | Loam, clay loam\| | CL, CL-ML | A-4, A-6 | 0-1 | 0-5 | \|95-100| | \|85-95 | \|75-90 | 50-75 | \|25-40 | 5-20 |
| | | 42-80 | Loam, clay loam\| | CL, CL-ML | A-6, A-4 | 0-1 | 0-5 | \|95-100| | \|85-95 | \|75-90 | 50-75 | \|25-40 | 5-20 |
| | | | | | | | | | | | | | |

Table 22.--Engineering Index Properties--Continued

Table 22.--Engineering Index Properties--Continued

Table 22.--Engineering Index Properties--Continued

| Map symbol
 and
 soil name | $\begin{aligned} & \text { Pct. of } \\ & \text { map unit } \end{aligned}$ | Depth | USDA texture | Classification | | Fragments | | Percentage passing sieve number-- | | | | \mid Liquid\|\mid limit | Plas\|ticity index | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | | | >10 | 3-10 | | | | | | |
| | | | | Unified | AASHTO | inches | \|inches| | 4 | 10 | 40 | 200 | | |
| I62A: | 70 | In | | | | Pct | Pct | | | | | Pct | |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Syrene------ | | 0-9 | \|Sandy loam | \| SC-SM, SM | A-4 | 0-1 | 0-3 | \| 95-100| | 80-100 | \|60-75 | \| 20-45 | 0-25 | NP-10 |
| | | 9-17 | \|Loam, sandy | \| CL-ML, SC-SM, | A-4 | 0 | 0-5 | \|95-100| | 85-100 | 50-75 | \| 15-65 | 20-35 | 5-15 |
| | | | \| loam, sandy | \| CL, SC | | | | | | | | | |
| | | | clay loam | | | | | | | | | | |
| | | 17-27 | \|Stratified | \|SP, SP-SM | $\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-3\|$ | 0-1 | 0-5 | 70-95 | \|55-80 | \| 30-60 | 0-10 | 0-20 | NP-3 |
| | | | \| loamy fine | | | | | | | | | | |
| | | | \| sand to | | | | | | | | | | |
| | | | \| gravelly | | | | | | | | | | |
| | | | \| coarse sand | | | | | | | | | | |
| | 11 | 27-60 | \|Stratified | \|SP, SP-SM | \|A-1, A-2, A-3| | 0-1 | 0-5 | 170-95 | \| 55-80 | \| 30-60 | 0-10 | 0-20 | NP-3 |
| | | | loamy fine | | | | | | | | | | |
| | | | \| sand to | | | | | | | | | | |
| | | | gravelly | | | | | | | | | | |
| | | | \| coarse sand | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Rosewood----- | | 0-8 | \|Fine sandy loam| | \|SC, SC-SM, SM| | A-2-4, A-4 | 0 | 0 | \| 95-100| | 95-100 | 65-90 | 30-50 | 0-25 | NP-10 |
| | | 8-18 | \|Fine sandy | | \|SC-SM, SM | A-2-4, A-4 | 0 | 0 | \|95-100| | 95-100 | 65-85 | 15-50 | 120-30 | NP-10 |
| | | | \| loam, sandy | | | | | | | | | | |
| | | | \| loam, loamy | | | | | | | | | | |
| | | | fine sand | | | | | | | | | | |
| Hangaard----- | 5 | 18-80 | \|Fine sand, sand| | SM, SP-SM | A-1, A-2-4, | 0 | 0 | \| 85-100| | \|75-100| | \|45-75 | 5-35 | 0-20 | NP-3 |
| | | | | | A-3 | | | | | | | | |
| | | | | | | | | | | | | | |
| | | 0-10 | \| Sandy loam | \| SM | A-2-4, A-4 | 0 | 0-3 | \| 95-100| | $\|80-100\|$ | 50-75 | 15-45 | 0-25 | NP-10 |
| | | 10-15 | \|Loamy sand, | \| SM, SP-SM | \|A-1, A-2-4, | 0 | 0-3 | \|95-100| | 80-95 | 10-70 | 5-25 | 0-20 | NP-5 |
| | | | coarse sandy | | A-3 | | | | | | | | |
| | | | \| loam, loamy | | | | | | | | | | |
| | | | \| coarse sand | | | | | | | | | | |
| Karlsruhe---- | 4 | 15-80 | \|Gravelly coarse| | SP, SP-SM | $\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-3\|$ | 0 | 0-3 | 170-95 | \| 55-90 | \| 30-60 | 0-10 | 0-20 | NP-3 |
| | | | $\mid \text { sand, gravelly\| }$ | | | | | | | | | | |
| | | | sand, coarse | | | | | | | | | | |
| | | | sand | | | | | | | | | | |
| | | | | | | | | | | | | | |
| | | | \|Sandy loam | \|SM, SC, SC-SM| | A-4, A-2 | 0 | 0-3 | \| 95-100| | \|85-100| | 55-90 | \|15-50 | 0-25 | NP-10 |
| | | 15-30 | \|Sandy loam, | \|SM, SC, SC-SM| | A-2, A-4, A-1\| | 0 | 0-3 | \| 95-100| | \|85-100| | 45-75 | \|10-40 | 0-25 | NP-10 |
| | | 30-60 | \| Coarse sand, | \|GP-GM, SP, | \|A-1, A-2, A-3| | 0 | 0-5 | 145-90 | \| 30-80 | \|20-70 | 0-15 | 0-20 | NP-1 |
| | | | \| gravelly | SM, GP, | | | | | | | | | |
| | | | \| coarse sand, | SP-SM | | | | | | | | | |
| | | | \| gravelly sand | \mid \| | | | | | | | | | |
| | | | | | | | | | | | | | |

Table 22.--Engineering Index Properties--Continued

| Map symbol
 and
 soil name | $\begin{aligned} & \text { Pct. of } \\ & \text { map unit } \end{aligned}$ | Depth | USDA texture | Classification | | Fragments | | Percentage passing sieve number-- | | | | \|Liquid
 \|limit | Plasticity index | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | | | >10 | 3-10 | | | | | | |
| | | | | Unified | AASHTO | \|inches | \|inches | | \| 4 | 10 | 40 | 200 | | |
| I62A: | | In | | | | Pct | Pct | | | | | Pct | |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Deerwood---- | 3 | 0-10 | \| Muck | \mid PT | \| A-8 | 0 | 0 | 100 | 100 | --- | --- | --- | --- |
| | | 10-12 | \|Fine sand, | \|SM, SC-SM | A-2-4, A-4 | 0 | 0-2 | \| 95-100| | 90-100 | 50-75 | \|15-50 | 0-25 | \| NP-10 |
| | | | \| loamy sand, | | | | | | | | | | |
| | | | \| fine sandy | | | | | | | | | | |
| | | | loam | | | | | | | | | | |
| | | 12-60 | \|Fine sand, | \|SM, SP, SP-SM| | \|A-1, A-2, A-3| | \| 0 | | 0-5 | \|75-100| | 55-100 | 35-70 | 0-25 | 0-20 | \| NP-3 |
| | | | \| sand, gravelly| | | | | | | | | | | |
| | | | \| sand | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Hamar------- | 3 | 0-12 | \| Loamy fine sand| | SM, SC-SM | \|A-2-4 | 0 | 0 | 100 | \| 95-100 | 50-80 | 15-35 | 0-20 | NP-5 |
| | | 12-17 | \| Loamy fine | SC-SM, SM, | \|A-2-4 | 0 \| | 0 | 100 | \| 95-100 | 50-80 | \|10-35 | 0-20 | \| NP-3 |
| | | | \| sand, loamy | \| SP-SM | | | | | | | | | |
| | | | \| sand, fine | | | | | | | | | | |
| | | | sand | | | | | | | | | | |
| | | 17-40 | \|Fine sand, | \|SC-SM, SM, | A-2-4, A-3 | 0 \| | 0 | 100 | \| 95-100 | 50-80 | 5-35 | 0-20 | \| NP-3 |
| | | | \| loamy sand, | \| SP-SM | | | | | | | | | |
| | | | \| loamy fine | | | | | | | | | | |
| | | | sand | | | | | | | | | | |
| | | 40-47 | \| Loamy fine sand| | \|SC-SM, SM | \|A-2-4 | 0 | 0 | 100 | \| 95-100 | 50-80 | \|15-35 | 0-20 | \|NP-5 |
| | | 47-60 | \|Fine sand, | | | A-3, A-2-4 | 0 | 0 | 100 | \| 95-100 | 50-80 | 5-35 | 0-20 | \| NP-3 |
| | | | \| loamy sand, | \|SP-SM | | | | | | | | | |
| | | | \| loamy fine | | | | | | | | | | |
| | | | sand | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Strandquist-- | 2 | | | | | | | | | 75-90 | \| 50-75 | \|20-30 | 5-10 |
| | | 10-20 | \| Gravelly sand, | \|GP, GP-GM, | \|A-1 | 0 | 2-5 | \| 30-65 | \|15-45 | 5-40 | 0-10 | 0-20 | \|NP-3 |
| | | | \| gravelly | SP, SP-SM, | | | | | | | | | |
| | | | \| coarse sand, | GW-GM | | | | | | | | | |
| | | | \| very gravelly | | | | | | | | | | |
| | | | sand | | | | | | | | | | |
| | | 20-60 | \|Loam, clay loam| | \|CL, CL-ML | A-6, A-4 | 0-1 | 0-5 | \| 95-100| | 85-95 | 75-90 | \| 50-75 | \| 25-40 | 5-20 |
| | | | \| | | | | | | | | | | | |
| Radium------ | 1 | 0-14 | \| Loamy sand | \| SM, SW-SM | \|A-2-4 | 0 | 0 | \| 95-100| | 95-100 | \| 50-70 | 5-25 | 0-20 | NP-5 |
| | | 14-33 | \| Sand, loamy | \|SP, SM, SP-SM| | \|A-1, A-2, A-3| | 0 | 0-5 | \| 75-100| | \|65-95 | 35-60 | 3-15 | 0-20 | \| NP-3 |
| | | | $\mid \text { sand, gravelly\| }$ | | | | | | | | | | |
| | | | \| loamy coarse | | | | | | | | | | | |
| | | | sand | | | | | | | | | | |
| | | 33-43 | \| Gravelly sand, | \| GW, GW-GM, | \| A-1 | 0 | 0-5 | \|45-90 | \|30-75 | 15-40 | 0-10 | 0-20 | \| NP-3 |
| | | | \| gravelly | \| SP, SP-SM | | | | | | | | | |
| | | | \| coarse sand, | | | | | | | | | | |
| | | | \| very gravelly | | | | | | | | | | |
| | | | \| coarse sand | | | | | | | | | | |
| | | 43-80 | \| Sand, coarse | sand, loamy | sand | $\begin{aligned} & \mid S M, \quad \text { SW-SM, } \\ & \left\lvert\, \begin{array}{l} \text { SP-SM } \end{array}\right. \end{aligned}$ | $\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-3\|$ | 0 | 0-5 | \| 85-100| | 75-95 | 40-75 | 5-20 | 0-20 | \| NP-3 |
| | | | \| sand | | \| | | | | | | | | | |

Table 22.--Engineering Index Properties--Continued

Table 22.--Engineering Index Properties--Continued

Table 22.--Engineering Index Properties--Continued

Table 22.--Engineering Index Properties--Continued

| Map symbol
 and
 soil name | Pct. of map unit | Depth | USDA texture | Classification | | Fragments | | Percentage passing sieve number-- | | | | \|Liquid
 \|limit | Plasticity index | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | >10 $3-10$
 inches inches | | | | | | | |
| | | | | Unified | AASHTO | | | | | | | | |
| | | | | | | | | 4 | 10 | 40 | 200 | | |
| I64A: | 2 | In | | | | Pct | Pct | | | | | Pct | |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Thiefriver--- | | 0-12 | \|Fine sandy loam| | \|CL-ML, ML, | \|A-4 | 0 | 0 | \|95-100| | 80-100 | 70-90 | \|35-55 | 0-25 | \| NP-10 |
| | | | | \| SC-SM, SM | | | | | | | | | |
| | | 12-23 | Fine sandy | \|SM, SC-SM | A-2-4, A-4 | 0 | 0 | \| 95-100| | 95-100 | 65-85 | \|15-50 | \|20-30 | \| NP-10 |
| | | | \| loam, sandy | | | | | | | | | | |
| | | | \| loam, loamy | | | | | | | | | | |
| | | | \| fine sand | | | | | | | | | | |
| | | 23-32 | \mid Fine sand, | \|SM, SP-SM | A-2-4, A-2, | 0 | 0-3 | \| 90-100| | 80-100 | 50-80 | 5-35 | 0-20 | \| NP-3 |
| | | | \| loamy fine | | A-3 | | | | | | | | |
| | | | \| sand, loamy | | | | | | | | | | |
| | | | \| sand | | | | | | | | | | |
| | | 32-80 | \|Silty clay, | \| CH | \|A-7 | 0-1 | 0-3 | \| 95-100| | 95-100 | 90-100 | 75-95 | \|40-70 | \|20-45 |
| | | | \| clay, silty | | | | | | | | | | |
| | | | \| clay loam | | | | | | | | | | |
| | | | | | | | | | | | | | |
| 165A: | | | | | | | | | | | | | |
| Ulen | 70 | 0-9 | \| Loamy fine sand| | \| SM | \|A-2-4 | 0 | 0 | 100 | 95-100 | 50-80 | 15-30 | 0-20 | \|NP-5 |
| | | 9-42 | \|Fine sandy | | \|SC-SM, SM | A-2-4, A-4 | 0 | 0 | \| 95-100| | 95-100 | 65-85 | 15-50 | \| 15-25 | \| NP-10 |
| | | | \| loam, sandy | | | | | | | | | | |
| | | | \| loam, loamy | | | | | | | | | | |
| | | | \| fine sand | | | | | | | | | | |
| | | 42-60 | \|Fine sand, sand| | SM, SP-SM | A-1, A-2-4, | 0 | 0 | \| 85-100| | 75-95 | 45-75 | 5-25 | 0-20 | \|NP-3 |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Rosewood- | 10 | | \|Fine sandy loam| | \|SC, SC-SM, SM | A-2-4, A-4 | 0 | | \| 95-100| | \|95-100 | 65-90 | \|30-50 | 0-25 | \| NP-10 |
| | | 8-18 | \|Fine sandy | | \|SC-SM, SM | A-2-4, A-4 | 0 | 0 | \| 95-100| | 95-100 | 65-85 | 15-50 | \|20-30 | \|NP-10 |
| | | | \| loam, sandy | | | | | | | | | | |
| | | | \| loam, loamy | | | | | | | | | | |
| | | | \| fine sand | | | | | | | | | | |
| | | 18-80 | Fine sand, sand\| | \|SM, SP-SM | | 0 | 0 | \| 85-100| | 75-100 | 45-75 | 5-35 | 0-20 | \|NP-3 |
| | | | | | A-3 | | | | | | | | |
| | | | | | | | | | | | | | |
| Flaming-- | 6 | 0-12 | \| Loamy fine sand| | \|SM, SC-SM | \|A-2-4 | 0 | 0 | 100 | \| 95-100 | 65-80 | 15-30 | 0-20 | \|NP-5 |
| | | 12-17 | \|Fine sand, | | \|SM, SW-SM | A-2-4, A-3 | 0 | 0 | 100 | \| 95-100 | 50-80 | 5-30 | 0-20 | \|NP-3 |
| | | | $\left\lvert\, \begin{aligned} & \text { loamy sand, } \\ & \text { sand }\end{aligned}\right.$ | | | | | | | | | | |
| | | 17-27 | \|Fine sand, | \|SM, SW-SM | A-2-4, A-3 | 0 | 0 | 100 | \| 95-100 | 50-80 | 5-30 | 0-20 | NP-3 |
| | | | \| loamy sand, | | | | | | | | | | |
| | | 27-60 | \|Fine sand, | \|SM, SW-SM | A-2-4, A-3 | 0 | 0 | 100 | \| 95-100 | \|50-80 | 5-30 | 0-20 | \| NP-3 |
| | | 27-60 | \| loamy sand, | | | | | | | | | | |
| | | | sand | | | | | | | | | | |
| | | | | | | | | | | | | | |

Table 22.--Engineering Index Properties--Continued

| Map symbol
 and
 soil name | Pct. of map unit | Depth | USDA texture | Classification | | Fragments | | Percentage passing sieve number-- | | | | \| Liquid
 \|limit | Plas\|ticity index | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | \| | | | | | | | |
| | | | | | | $\begin{array}{\|c} \mid>10 \\ \mid \text { inches } \end{array}$ | $\left.\begin{array}{\|l\|} \mid 3-10 \\ \mid \text { inches } \end{array} \right\rvert\,$ | | | | | | |
| | | | | Unified | AASHTO | | | \| 4 | 10 | 40 | 200 | | |
| | | In | \| | | | | Pct | Pct | | | | | Pct | |
| | | | \| | \| | | | | | | | | | |
| 165A: | | | | | | | | | | | | | |
| Poppleton---- | 4 | 0-6 | \mid Fine sand | \|SM, SC-SM | A-2-4 | 0 | 0 | \| 95-100| | 95-100 | 65-80 | 15-30 | 0-20 | \| NP-5 |
| | | 6-9 | \|Fine sand, sand| | \|SM |A | A-2-4, A-3 | 0 | 0 \| | 100 | 100 | \| 80-95 | 5-15 | 0-20 | \| NP-3 |
| | | 9-40 | \|Fine sand, sand| | \|SM |A | A-2-4, A-3 | 0 | 0 | 100 | 100 | \| 80-95 | 5-15 | 0-20 | \| NP-3 |
| | | 40-60 | \|Fine sand, sand| | \| SM | A-2-4, A-3 | 0 | 0 | 100 | 100 | \| 80-95 | 5-15 | 0-20 | \| NP-3 |
| | | | | | | | | | | | | | |
| Karlsruhe---- | 3 | 0-15 | \| Sandy loam | $\|S M, ~ S C, ~ S C-S M\| ~$ | A-4, A-2 | 0 | 0-3 | \|95-100| | 85-100 | 55-90 | 15-50 | 0-25 | \|NP-10 |
| | | 15-30 | \| Sandy loam, | $\|S M, ~ S C, ~ S C-S M\| ~$ | A-2, A-4, A-1 | 0 | 0-3 | \|95-100| | \|85-100 | 45-75 | 10-40 | 0-25 | \| NP-10 |
| | | | \| loamy sand | , | | | | | | | | | |
| | | 30-60 | \| Coarse sand, | \|GP-GM, SP, | A-1, A-2, A-3 | 0 | 0-5 | \|45-90 | \| 30-80 | \|20-70 | 0-15 | 0-20 | \| NP-1 |
| | | | \| gravelly | \| SM, GP, | | | | | | | | | |
| | | | \| coarse sand, | SP-SM | | | | | | | | | |
| | | | \| gravelly sand | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Radium------- | 3 | 0-14 | \| Loamy sand | \| SM, SW-SM | | A-2-4 | 0 | 0 | \|95-100| | 95-100 | 50-70 | 5-25 | 0-20 | \| NP-5 |
| | | 14-33 | \| Sand, loamy | \|SM, SP, SP-SM| | A-1, A-2, A-3 | 0 | 0-5 | \|75-100| | \|65-95 | \| 35-60 | 3-15 | 0-20 | \| NP-3 |
| | | | \| sand, gravelly| | | | | | | | | | | |
| | | | \| loamy coarse | | | | | | | | | | | |
| | | | \| sand | | | | | | | | | | |
| | | 33-43 | \|Gravelly sand, | \|GW, GW-GM, | A-1 | 0 | 0-5 | 145-90 | 130-75 | \|15-40 | 0-10 | 0-20 | \| NP-3 |
| | | | \| gravelly | \| SP, SP-SM | | | | | | | | | |
| | | | \| coarse sand, | | | | | | | | | | |
| | | | \| very gravelly | | | | | | | | | | |
| | | | \| coarse sand | | | | | | | | | | |
| | | 43-80 | \|Sand, coarse | \|SM, SW-SM, | | A-1, A-2, A-3 | 0 | 0-5 | \| 85-100| | 75-95 | \| $40-75$ | 5-20 | 0-20 | \| NP-3 |
| | | | \| sand, loamy | \| SP-SM | | | | | | | | | | |
| | | | \| sand | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Strathcona--- | 2 | 0-10 | \|Fine sandy loam| | \| CL-ML, ML, | | A-4 | 0 | 0 | \|95-100| | 90-100 | 70-85 | 40-55 | 0-25 | \| NP-10 |
| | | | | \| SC-SM, SM | | | | | | | | | |
| | | 10-17 | \|Fine sandy | \|SM, SC-SM | | A-2-4, A-4 | 0 | 0 | \|95-100| | 95-100 | 65-85 | 15-50 | 120-30 | \|NP-10 |
| | | | \| loam, sandy | | | | | | | | | | |
| | | | \| loam, loamy | | | | | | | | | | |
| | | | \| fine sand | | | | | | | | | | |
| | | 17-28 | \|Sand, fine | \| SM, SP-SM | | $\mathrm{A}-2-4, \mathrm{~A}-3,$ | 0 | 0-1 | \|95-100| | 90-100 | \| 50-80 | 5-30 | 0-20 | \|NP-3 |
| | | | \| sand, loamy | | A-2 | | | | | | | | |
| | | | \| fine sand | | | | | | | | | | |
| | | 28-80 | \| Loam, clay loam| | CL, CL-ML \| | A-6, A-4 | 0-1 | 0-5 | \| 95-100| | 185-95 | \| 75-90 | 50-75 | 25-40 | 5-20 |
| | | | | | | | | | | | | | |

Table 22.--Engineering Index Properties--Continued

| Map symbol and soil name | Pct. of map unit | Depth | USDA texture | Classification | | Fragments | | Percentage passing sieve number-- | | | | $\begin{aligned} & \text { \|Liquid } \\ & \text { \|limit } \end{aligned}$ | Plasticity index | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | Unified | AASHTO | $\left\lvert\, \begin{gathered} >10 \\ \mid \text { inches } \end{gathered}\right.$ | $\left\lvert\, \begin{gathered} 3-10 \\ \mid \text { inches } \end{gathered}\right.$ | 4 | 10 | 40 | 200 | | |
| I65A: | | In | | | | Pct | Pct | | | | | Pct | |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Thiefriver--- | 2 | 0-12 | Fine sandy loam\| | CL-ML, ML, | \|A-4 | 0 | 0 | \|95-100| | $\|80-100\|$ | 70-90 | \| 35-55 | 0-25 | \|NP-10 |
| | | | | SC-SM, SM | | | | | | | | | |
| | | 12-23 | Fine sandy | \|SM, SC-SM | \|A-2-4, A-4 | 0 | 0 | 95-100\| | \| 95-100| | 65-85 | \| $15-50$ | 20-30 | \| NP-10 |
| | | | \| loam, sandy | | | | | | | | | | |
| | | | \| loam, loamy | | | | | | | | | | |
| | | | \| fine sand | | | | | | | | | | |
| | | 23-32 | \|Fine sand, | \|SM, SP-SM | $\mathrm{A}-2-4, \mathrm{~A}-2 \text {, }$ | 0 | 0-3 | 90-100\| | 80-100 | 50-80 | 5-35 | 0-20 | NP-3 |
| | | | loamy fine | | \| A-3 | | | | | | | | |
| | | | \| sand, loamy | | | | | | | | | | |
| | | | sand | | | | | | | | | | |
| | | 32-80 | \|Silty clay, | CH | \|A-7 | 0-1 | 0-3 | \|95-100| | 95-100 | 90-100 | 75-95 | -40-70 | \|20-45 |
| | | | \| clay, silty | | | | | | | | | | |
| | | | \| clay loam | | | | | | | | | | |
| | | | | | | | | | | | | | |
| 166A: | | | | | | | | | | | | | |
| Vallers------- | 75 | 0-12 | Loam | \| CL-ML, CL | \|A-4 | 0-1 | 0-2 | 95-100\| | $\|90-100\|$ | 80-90 | \| $50-80$ | 20-40 | 5-20 |
| | | 12-21 | \| Clay loam, loam| | \|CL, CL-ML | \|A-4, A-6 | 0-1 | 0-5 | 95-100\| | \| 85-95 | 75-90 | \| $50-75$ | 25-40 | 5-20 |
| | | 21-60 | \|Loam, clay loam| | CL, CL-ML | \|A-6, A-4 | 0-1 | 0-5 | 95-100\| | \|85-95 | 75-90 | \| 50-75 | 25-40 | 5-20 |
| | | | | | | | | | | | | | |
| Vallers, very | | | | | | | | | | | | | |
| cobbly------ | 7 | 0-12 | \| Loam | \| CL-ML, CL | \|A-4 | 0-1 | 0-2 | \|95-100| | $\|90-100\|$ | 80-90 | \| $50-80$ | 20-40 | 5-20 |
| | | 12-21 | \| Clay loam, loam| | CL, CL-ML | A-4, A-6 | 0-1 | 0-5 | 95-100\| | \|85-95 | 75-90 | \|50-75 | 25-40 | 5-20 |
| | | 21-60 | \|clay loam, loam| | CL, CL-ML | \|A-6, A-4 | 0-1 | 0-5 | 95-100 | \| 85-95 | 75-90 | \| 50-75 | 25-40 | 5-20 |
| Hamerly------- | | | | | | | | | | | | | |
| | 6 | 0-8 | \| Loam | \| CL, CL-ML | \|A-4, A-6 | 0-1 | 0-5 | 95-100\| | $\|90-100\|$ | 80-95 | \|60-90 | 20-40 | 5-20 |
| | | 8-25 | \|Loam, clay loam| | CL, CL-ML | $\mathrm{A}-4, \mathrm{~A}-6$ | 0-1 | 0-5 | \|95-100| | \|85-95 | 75-90 | \| 50-75 | 25-40 | 5-20 |
| | | 25-60 | \|Loam, clay loam| | CL, CL-mL | \|A-6, A-4 | 0-1 | 0-5 | 95-100\| | \|85-95 | 75-90 | \| 50-75 | 25-40 | 5-20 |
| | | | | | | | | | | | | | |
| Grimstad------ | 3 | 0-9 | \|Fine sandy loam| | SC-SM, SM | \|A-2-4, A-4 | 0 | 0 | 95-100\| | \|95-100| | 65-90 | \| 20-50 | 0-30 | \| NP-10 |
| | | 9-22 | \| Loamy sand, | | \| SM, SC-SM | \|A-2-4, A-4 | 0 | 0 | 100 | \| 95-100| | 65-85 | \|15-50 | 15-25 | \| NP-10 |
| | | | loamy fine | | | | | | | | | | |
| | | | sand, fine | | | | | | | | | | |
| | | | \| sand | | | | | | | | | | |
| | | 22-28 | \| Loamy sand, | \|SM, SW-SM | \|A-2, A-2-4, | 0 | 0 | 100 | \| 95-100| | 80-90 | 5-35 | 0-20 | \| NP-3 |
| | | | loamy fine | | A-3 | | | | | | | | |
| | | | sand, fine | | | | | | | | | | |
| | | | sand | | | | | | | | | | |
| | | 28-60 | \|Loam, clay loam| | CL, CL-ML | \|A-4, A-6 | 0-1 | 0-5 | 95-100 | \| 85-95 | 75-90 | \| 50-75 | 25-40 | 5-20 |
| | | | | | | | | | | | | | |

Table 22.--Engineering Index Properties--Continued

| Map symbol
 and
 soil name | $\begin{aligned} & \text { Pct. of } \\ & \text { map unit } \end{aligned}$ | Depth | USDA texture | Classification | | Fragments | | Percentage passing sieve number-- | | | | $\begin{aligned} & \text { \| Liquid } \\ & \text { \|limit } \end{aligned}$ | Plas\|ticity index | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | Unified | AASHTO | $\begin{array}{\|c\|c\|} \|>10\| 3-10 \mid \\ \mid \text { inches } \mid \text { inches } \mid \end{array}$ | | | | | | | |
| | | | | | | | | 4 | 10 | 40 | 200 | | |
| | | In | \| | | | | Pct | Pct | | | | | Pct | |
| | | | \| | | | | | | | | | | |
| I66A: | | | | | | | | | | | | | |
| Mavie---------- \| | 3 | 0-12 | \|Fine sandy loam| | SC-SM, SM | A-4 | 0 | 0-3 | \| 95-100| | \|90-100 | 50-80 | \| 35-50 | 0-25 | \|NP-10 |
| | | 12-18 | \| Loam, fine | SM, CL-ML, | A-4, A-6 | 0 | 0-5 | \| 95-100| | \|85-100 | 65-95 | 15-75 | 120-35 | \| NP-15 |
| | | | sandy loam, | SC, SC-SM | | | | | | | | | |
| | | | \| sandy loam | | | | | | | | | | |
| | | 18-39 | \|Very gravelly | GP, GP-GM, | A-1 | 0 | 2-5 | \| 30-65 | \| 15-45 | 5-40 | 0-10 | 0-20 | \| NP-3 |
| | | | \| coarse sand, | SP, SP-SM | | | | | | | | | |
| | | | \| very gravelly | | | | | | | | | | |
| | | | \| sand, very | | | | | | | | | | |
| | | | \| gravelly loamy | | | | | | | | | | |
| | | | \| sand | | | | | | | | | | | |
| | | 39-80 | \|Loam, clay loam| | CL, CL-ML | A-6, A-4 | 0-1 | 0-5 | \|95-100| | \|85-95 | \| 75-90 | 150-75 | \|25-40 | 5-20 |
| | | | | | | | | | | | | | |
| Roliss, depressional--- | 3 | | | | | | | | | | | | |
| | | 0-14 | \| Loam | CL, CL-ML | A-4, A-6 | 0-1 | 0-1 | \|95-100| | \|85-95 | \| 80-95 | \|60-85 | \|20-40 | 5-20 |
| | | 14-20 | \| Clay loam, loam| | CL, CL-ML | A-4, A-6 | 0-1 | 0-5 | \|95-100| | \|85-95 | \|75-90 | \| $50-75$ | \|25-40 | 5-20 |
| | | 20-80 | \|Loam, clay loam| | CL, CL-ML | A-6, A-4 | 0-1 | 0-5 | \|95-100| | \| 85-95 | \|75-90 | \| 50-75 | \|25-40 | 5-20 |
| | | | | | | | | | | | | | |
| Strathcona-----\| | 3 | 0-10 | \|Fine sandy loam| | | \|A-4 | 0 | 0 | \| 95-100| | 90-100 | 70-85 | \|40-55 | 0-25 | \| NP-10 |
| | | | | SC-SM, SM | | | | | | | | | |
| | | 10-17 | \|Fine sandy | SM, SC-SM | A-2-4, A-4 | 0 | 0 | \|95-100| | 95-100 | 65-85 | 15-50 | 120-30 | \| NP-10 |
| | | | \| loam, sandy | | | | | | | | | | |
| | | | \| loam, loamy | | | | | | | | | | |
| | | | \| fine sand | | | | | | | | | | |
| | | 17-28 | \| Sand, fine | SM, SP-SM | A-3, A-2, | 0 | 0-1 | \| 95-100| | 90-100 | 50-80 | 5-30 | 0-20 | \| NP-3 |
| | | | \| sand, loamy | | A-2-4 | | | | | | | | |
| | | | \| fine sand | | | | | | | | | | |
| | | 28-80 | \|Loam, clay loam| | CL, CL-ML | A-6, A-4 | 0-1 | 0-5 | \|95-100| | \|85-95 | \|75-90 | 150-75 | \|25-40 | 5-20 |
| | | | | | | | | | | | | | |
| I67A: | 70 | | | | | | | | | | | | |
| Wheatville-----\| | | 0-9 | \| Loam | ML | A-4 | 0 | 0 | 100 | 100 | \| 95-100| | 170-95 | 20-40 | \|NP-10 |
| | | 9-31 | \|Silt loam, very| | CL-ML, ML, CL ${ }^{\text {d }}$ | A-4 | 0 | 0 | 100 | 100 | \| 90-100| | \|85-95 | 0-30 | \|NP-10 |
| | | | \| fine sandy | | | | | | | | | | | |
| | | | \| loam, loam | | | | | | | | | | |
| | | 31-80 | \|Silty clay, | CH | A-7 | 0-1 | 0-3 | \|95-100| | 95-100 | 90-100 | 75-95 | \|40-70 | \| 20-45 |
| | | | \| clay, silty | | | | | | | | | | |
| | | | \| clay loam | | | | | | | | | | |
| | | | | | | | | | | | | | |

Table 22.--Engineering Index Properties--Continued

Table 22.--Engineering Index Properties--Continued

Table 22.--Engineering Index Properties--Continued

Table 22.--Engineering Index Properties--Continued

| Map symbol
 and
 soil name | $\begin{aligned} & \text { Pct. of } \\ & \text { map unit } \end{aligned}$ | Depth | USDA texture | Classification | | Fragments | | Percentage passing sieve number-- | | | | \|Liquid
 \|limit | Plas\|ticity index | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | | | >10 | 3-10 | | | | | | |
| | | | | Unified | AASHTO | inches | \|inches| | \| 4 | 10 | 40 | 200 | | |
| I69A: | | In | | | \| | Pct | Pct | | | | | Pct | |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Foxlake---------\| | 10 | 0-19 | \| Loam | \| CL-ML, CL | \|A-4, A-6 | 0-1 | 0-2 | \| 95-100| | 90-100 | 75-90 | 50-80 | \|20-40 | 5-20 |
| | | 19-38 | \|Silty clay, | \| CH | \|A-7 | 0-1 | 0-3 | \| 95-100| | 95-100 | \| 90-100| | 75-95 | \| $40-70$ | \|20-45 |
| | | | \| clay, silty | | | | | | | | | | |
| | | | \| clay loam | | | | | | | | | | |
| | | 38-49 | \|Silty clay, | \| CH | \|A-7 | 0-1 | 0-3 | \| 95-100| | 95-100 | \| 90-100| | 75-95 | \| $40-70$ | \|20-45 |
| | | | \| clay, silty | | | | | | | | | | |
| | | | \| clay loam | | | | | | | | | | |
| | | 49-80 | \|Silty clay, | \| CH | \|A-7 | 0-1 | 0-3 | \| 95-100| | 95-100 | \|90-100| | 75-95 | \| $40-70$ | \| 20-45 |
| | | | \| clay, silty | | | | | | | | | | |
| | | | clay loam | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Espelie--------- | 8 | 0-9 | \|Fine sandy loam| | | \|A-2-4, A-4 | 0 | 0 | \| 95-100| | 85-100 | 60-85 | 30-65 | 0-25 | \|NP-10 |
| | | | | SM | | | | | | | | | |
| | | 9-24 | | \|SM, SP-SM | | 0 | 0-5 | \| 85-100| | 60-100 | \|30-80 | 5-40 | 0-20 | \| NP-3 |
| | | | \| loamy fine | | $\mathrm{A}-1, \mathrm{~A}-2-4$ | | | | | | | | |
| | | | \| sand, fine | | | | | | | | | | |
| | | | \| sand | | | | | | | | | | |
| | | 24-80 | \|Silty clay, | \| CH | \|A-7 | 0-1 | 0-3 | \| 95-100| | 95-100 | \| 90-100| | 75-95 | 40-70 | \|20-45 |
| | | | \| clay, silty | | | | | | | | | | |
| | | | \| clay loam | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Clearwater, depressional--- | | | | | | | | | | | | | |
| | 5 | | \|Mucky clay loam| | | | | | \| 95-100| | 95-100 | \|80-95 | 60-85 | \| 25-40 | 10-20 |
| | | 8-35 | \|Clay, silty | | \| CH, CL | \|A-7 | 0-1 | 0-1 | \|95-100| | 95-100 | $\|90-100\|$ | 70-95 | \| $40-70$ | 20-45 |
| | | | \| clay, silty | | | | | | | | | | |
| | | | clay loam | | | | | | | | | | |
| | | 35-80 | \|Silty clay, | \| CH | \|A-7 | 0-1 | 0-3 | \| 95-100| | 95-100 | \| 90-100| | 75-95 | \|40-70 | \|20-45 |
| | | | \| clay, silty | | | | | | | | | | |
| | | | clay loam | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Thiefriver-----\| | 5 | 0-12 | \|Fine sandy loam| | $\begin{aligned} & \text { \|CL-ML, ML, } \\ & \begin{array}{c} \text { SC-SM, } \end{array} \text { SM } \end{aligned}$ | \|A-4 | 0 | 0 | \| 95-100| | 80-100 | 70-90 | 35-55 | 0-25 | \|NP-10 |
| | | 12-23 | \|Fine sandy | \|SM, SC-SM | \|A-2-4, A-4 | 0 | 0 | \| 95-100| | 95-100 | \|65-85 | 15-50 | \|20-30 | \| NP-10 |
| | | | \| loam, sandy | | | | | | | | | | |
| | | | loam, loamy | | | | | | | | | | |
| | | | fine sand | | | | | | | | | | |
| | | 23-32 | \|Fine sand, | \| SM, SP-SM | \|A-2-4, A-2, | 0 | 0-3 | \| 90-100| | 80-100 | 50-80 | 5-35 | 0-20 | \| NP-3 |
| | | | \| loamy fine | | \| A-3 | | | | | | | | |
| | | | sand, loamy | | | | | | | | | | |
| | | | sand | | | | | | | | | | |
| | | 32-80 | \|Silty clay, | \| CH | \|A-7 | 0-1 | 0-3 | \| 95-100| | 95-100 | \| 90-100| | 75-95 | \| $40-70$ | \|20-45 |
| | | | \| clay, silty | | | | | | | | | | |
| | | | \| clay loam | | | | | | | | | | |
| | | | | | | | | | | | | | |

Table 22.--Engineering Index Properties--Continued

Table 22.--Engineering Index Properties--Continued

Table 22.--Engineering Index Properties--Continued

(Entries under "Erosion factors--T" apply to the entire profile. Entries under "Wind erodibility group" and "Wind erodibility index" apply only to the surface layer. Absence of an entry indicates that data were not estimated)

| Map symbol and soil name | Pct. of map unit | Depth | Clay | | Permeability | $\begin{array}{\|l\|} \mid \text { Available } \\ \text { \| water } \\ \text { \| capacity } \end{array}$ | Linear extensibility | Organic
 matter | \|Erosion factors | | | Wind
 \|erodi-|
 \|bility|
 \|group | \|Wind erodibility index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | Moist | | | | | | | | | |
| | | | | $\begin{aligned} & \text { bulk } \\ & \text { density } \end{aligned}$ | | | | | Kw | Kf | T | | |
| | | In | Pct | g / cc | In/ hr | In/in | Pct | Pct | | | | | |
| | | | | | | | | | | | | | |
| B200A: | | | | | | | | | | | | | |
| Garnes, very stony----\| | 5 | 0-6 | 7-20 | \|1.30-1.50| | 0.60-2.00 | \|0.18-0.20| | 0.0-2.9 | 0.5-3.0 | . 32 | . 32 | 5 | 6 | 48 |
| | | 6-9 | 1-10 | \|1.35-1.55| | 6.00-20 | \|0.05-0.12| | 0.0-2.9 | 0.2-1.0 | . 15 | . 15 | | | |
| | | 9-14 | 18-30 | \|1.50-1.65| | 0.60-2.00 | 0.17-0.20\| | 3.0-5.9 | 0.2-1.0 | . 32 | . 32 | | | |
| | | 14-72 | 18-30\| | \|1.35-1.55| | 0.60-2.00 | 0.15-0.19\| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | 72-80 | 18-30\| | \|1.35-1.55| | 0.60-2.00 | 0.15-0.19\| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Grygla--------------- \| | 4 | 0-6 | 2-15 | \|1.40-1.60| | 6.00-20 | \|0.13-0.15| | 0.0-2.9 | 1.0-4.0 | . 15 | . 15 | 5 | 2 | 134 |
| | | 6-26 | 1-10 | \|1.50-1.70| | 6.00-20 | \|0.06-0.11| | 0.0-2.9 | 0.5-1.0 | . 15 | . 15 | | | |
| | | 26-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Pelan---------------- | 3 | 0-6 | 5-15 | \|1.10-1.35| | 2.00-6.00 | \|0.13-0.15| | 0.0-2.9 | 1.0-3.0 | . 20 | . 24 | 5 | 3 | 86 |
| | | 6-9 | 1-10 | \|1.35-1.55| | 6.00-20 | \|0.05-0.12| | 0.0-2.9 | 0.2-1.0 | . 15 | . 15 | | | |
| | | 9-14 | 15-25 | \|1.45-1.65| | 6.00-20 | \|0.03-0.11| | 0.0-2.9 | 0.2-1.0 | . 20 | . 24 | | | |
| | | 14-20 | 1-5 | \|1.50-1.70| | 6.00-20 | \|0.02-0.07| | 0.0-2.9 | 0.0-0.5 | . 05 | . 15 | | | |
| | | 20-60 | 18-30 | \|1.35-1.55| | 0.60-2.00 | 0.15-0.19\| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| B201A: | | | | | | | | | | | | | |
| Chilgren-------------\| | 75 | 0-4 | 5-18 | \|1.30-1.60| | 2.00-6.00 | \|0.16-0.18| | 0.0-2.9 | 1.0-3.0 | . 28 | . 28 | 5 | 3 | 86 |
| | | 4-10 | 1-10 | \|1.35-1.55| | 6.00-20 | \|0.05-0.12| | 0.0-2.9 | 0.2-1.0 | . 15 | . 15 | | | |
| | | 10-18 | 18-30\| | \|1.50-1.65| | 0.60-2.00 | \|0.17-0.20| | 3.0-5.9 | 0.2-1.0 | . 32 | . 32 | | | |
| | | 18-72 | 18-30\| | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | 72-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | 0.15-0.19 | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Garnes---------------\| | 9 | 0-6 | 5-15 | \|1.10-1.35| | 2.00-6.00 | \|0.16-0.18| | 0.0-2.9 | 0.5-3.0 | . 20 | . 24 | 5 | 3 | 86 |
| | | 6-9 | 1-10 | \|1.35-1.55| | 6.00-20 | \|0.05-0.12| | 0.0-2.9 | 0.2-1.0 | . 15 | . 15 | | | |
| | | 9-14 | 18-30\| | \|1.50-1.65| | 0.60-2.00 | \|0.17-0.20| | 3.0-5.9 | 0.2-1.0 | . 32 | . 32 | | | |
| | | 14-72 | 18-30\| | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | 72-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | 0.15-0.19\| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Grygla---------------- \| | 5 | 0-6 | 2-15 | \|1.40-1.60| | 6.00-20 | \|0.13-0.15| | 0.0-2.9 | 1.0-4.0 | . 15 | . 15 | 5 | 2 | 134 |
| | | 6-26 | 1-10 | $\|1.50-1.70\|$ | 6.00-20 | $\|0.06-0.11\|$ | 0.0-2.9 | 0.5-1.0 | . 15 | . 15 | | | |
| | | 26-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Grygla, depressional--\| | 5 | 0-6 | 2-15 | \|1.40-1.60| | 6.00-20 | \|0.13-0.15| | 0.0-2.9 | 3.0-15 | . 15 | . 15 | 5 | 2 | 134 |
| | | 6-26 | 1-10 | $\|1.50-1.70\|$ | 6.00-20 | \|0.06-0.11| | 0.0-2.9 | 0.5-1.0 | . 15 | . 15 | | | |
| | | 26-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Hamre---------------- \| | 5 | 0-13 | 0-0 | \|0.10-0.40| | 0.20-6.00 | \|0.35-0.48| | --- | 50-95 | . 02 | . 02 | 5 | \| 2 | 134 |
| | | 13-18 | 18-35 | \|1.25-1.50| | 0.20-2.00 | \|0.17-0.22| | 3.0-5.9 | 2.0-10 | . 32 | . 32 | | | |
| | | 18-35 | 18-30 | \|1.35-1.55| | 0.60-2.00 | $\|0.15-0.19\|$ | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | 35-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | $\|0.15-0.19\|$ | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | \| | |
| | | | | | | | | | | | | | |

Table 23.--Physical Properties of the Soils--Continued

Table 23.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Pct. of map unit | Depth | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | Permeability | $\begin{array}{\|l\|} \mid \text { Available } \\ \text { \| water } \\ \text { \| capacity } \end{array}$ | Linear extensibility | Organic matter | \mid Erosion factors | | | Wind erodi\|bility group | \|Wind
 erodi-
 \|bility
 index | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | | | | | | Kw | Kf | T | | |
| | | In | Pct | g / cc | In/hr | In/in | Pct | Pct | | - | | | |
| | | | | | | | | | | | | | |
| B203A: | | | | | | | | | | | | | |
| Hamre----------------- \| | 10 | 0-13 | 0-0 | \|0.10-0.40| | 0.20-6.00 | \|0.35-0.48| | --- | 50-95 | . 02 | . 02 | 5 | 2 | 134 |
| | | 13-18 | 18-35 | \|1.25-1.50| | 0.20-2.00 | \|0.17-0.22| | 3.0-5.9 | 2.0-10 | . 32 | . 32 | | | |
| | | 18-35 | 18-30 | \|1.35-1.55| | 0.60-2.00 | 0.15-0.19\| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | 35-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | 0.15-0.19\| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Grygla--------------- \| | 7 | 0-6 | 2-15 | \|1.40-1.60| | 6.00-20 | \|0.13-0.15| | 0.0-2.9 | 1.0-4.0 | . 15 | . 15 | 5 | 2 | 134 |
| | | 6-26 | 1-10 | \|1.50-1.70| | 6.00-20 | \|0.06-0.11| | 0.0-2.9 | 0.5-1.0 | . 15 | . 15 | | | |
| | | 26-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | 0.15-0.19\| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Berner---------------- \| | 5 | 0-28 | 0-0 | \|0.10-0.35| | 0.20-6.00 | 0.35-0.48\| | --- | 75-95 | . 02 | . 02 | 2 | 2 | 134 |
| | | 28-31 | 5-15 | \|1.25-1.45| | 2.00-6.00 | \|0.10-0.18| | 0.0-2.9 | 2.0-10 | . 17 | . 24 | | | |
| | | 31-44 | 0-5 | \|1.45-1.65| | 6.00-20 | 0.05-0.10\| | 0.0-2.9 | 0.1-0.5 | . 05 | . 15 | | | |
| | | 44-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | 0.15-0.19 | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Chilgren------------- \| | 3 | 0-4 | 5-18 | \|1.30-1.60| | 2.00-6.00 | \|0.16-0.18| | 0.0-2.9 | 1.0-3.0 | . 28 | . 28 | 5 | 3 | 86 |
| | | 4-10 | 1-10 | \|1.35-1.55| | 6.00-20 | \|0.05-0.12| | 0.0-2.9 | 0.2-1.0 | . 15 | . 15 | | | |
| | | 10-18 | 18-30 | \|1.50-1.65| | 0.60-2.00 | 0.17-0.20\| | 3.0-5.9 | 0.2-1.0 | . 32 | . 32 | | | |
| | | 18-72 | 18-30\| | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | 72-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | 0.15-0.19\| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| B204A: | | | | | | | | | | | | | |
| Roliss--------------- \| | 75 | 0-14 | 18-27 | \|1.10-1.50| | 0.20-2.00 | \|0.17-0.24| | 3.0-5.9 | 3.0-8.0 | . 24 | . 24 | 5 | 4 L | 86 |
| | | 14-20 | 18-30 | \|1.35-1.55| | 0.60-2.00 | 0.15-0.19\| | 1.0-4.2 | 0.5-2.0 | . 37 | . 37 | | | |
| | | 20-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | 0.15-0.19\| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Grygla---------------\| | 8 | | | \|1.40-1.60| | 6.00-20 | \|0.13-0.15| | 0.0-2.9 | 1.0-4.0 | . 15 | . 15 | 5 | 2 | 134 |
| | | 6-26 | 1-10 | $\|1.50-1.70\|$ | 6.00-20 | \|0.06-0.11| | 0.0-2.9 | 0.5-1.0 | . 15 | . 15 | | | |
| | | 26-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | 0.15-0.19\| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Chilgren-------------- | 5 | 0-4 | 5-18 | \|1.30-1.60| | 2.00-6.00 | \|0.16-0.18| | 0.0-2.9 | 1.0-3.0 | . 28 | . 28 | 5 | 3 | 86 |
| | | 4-10 | 1-10 | \|1.35-1.55| | 6.00-20 | \|0.05-0.12| | 0.0-2.9 | 0.2-1.0 | . 15 | . 15 | | | |
| | | 10-18 | 18-30 | \|1.50-1.65| | 0.60-2.00 | \|0.17-0.20| | 3.0-5.9 | 0.2-1.0 | . 32 | . 32 | | | |
| | | 18-72 | 18-30 | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | 72-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Garnes--------------- \| | 5 | 0-6 | 5-15 | \|1.10-1.35| | 2.00-6.00 | \|0.16-0.18| | 0.0-2.9 | 0.5-3.0 | . 20 | . 24 | 5 | 3 | 86 |
| | | 6-9 | 1-10 | \|1.35-1.55| | 6.00-20 | \|0.05-0.12| | 0.0-2.9 | 0.2-1.0 | . 15 | . 15 | | | |
| | | 9-14 | 18-30 | \|1.50-1.65| | 0.60-2.00 | \|0.17-0.20| | 3.0-5.9 | 0.2-1.0 | . 32 | . 32 | | | |
| | | 14-72 | 18-30 | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | 72-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | 0.15-0.19 | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Roliss, depressional--\| | 5 | 0-14 | 15-27 | $\|1.10-1.40\|$ | 0.20-2.00 | \|0.20-0.25| | 3.0-5.9 | 3.0-15 | . 24 | . 24 | 5 | 6 | 48 |
| | | 14-20 | 18-30\| | \|1.35-1.55| | 0.60-2.00 | $\|0.15-0.19\|$ | 1.0-4.2 | 1.0-3.0 | . 37 | . 37 | | | |
| | | 20-80 | 18-30\| | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |

Table 23.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Pct. of map unit | Depth | Clay | | $\begin{aligned} & \text { Permea- } \\ & \text { bility } \end{aligned}$ | $\begin{array}{\|l\|} \text { \| Available } \\ \text { \| water } \\ \text { \| capacity } \end{array}$ | Linear extensibility | Organic matter | \| Erosion factors | | | Wind erodi\|bility group | \|Wind |erodi|bility
 \|index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | Moist | | | | | | | | | |
| | | | | $\begin{aligned} & \text { bulk } \\ & \text { density } \end{aligned}$ | | | | | Kw | Kf | T | | |
| | | In | Pct | g / cc | In/ hr | In/in | Pct | Pct | | | | | |
| | | | | | | | | | | | | | |
| B204A: | | | | | | | | | | | | | |
| Hamre------------ | 2 | 0-13 | 0-0 | \|0.10-0.40| | 0.20-6.00 | \|0.35-0.48| | --- | 50-95 | . 02 | . 02 | 5 | 2 | 134 |
| | | 13-18 | 18-35 | \|1.25-1.50| | 0.20-2.00 | \|0.17-0.22| | 3.0-5.9 | 2.0-10 | . 32 | . 32 | | | |
| | | 18-35 | 18-30 | \|1.35-1.55| | 0.60-2.00 | 0.15-0.19\| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | 35-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | 0.15-0.19\| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| B205A: | | | | | | | | | | | | | |
| Berner------------ | 80 | 0-28 | 0-0 | \|0.10-0.35| | 0.20-6.00 | \|0.35-0.48| | --- | 75-95 | . 02 | . 02 | 2 | 2 | 134 |
| | | 28-31 | 5-15 | \|1.25-1.45| | 2.00-6.00 | \|0.10-0.18| | 0.0-2.9 | 2.0-10 | . 17 | . 24 | | | |
| | | 31-44 | 0-5 | \|1.45-1.65| | 6.00-20 | \|0.05-0.10| | 0.0-2.9 | 0.1-0.5 | . 05 | . 15 | | | |
| | | 44-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | 0.15-0.19\| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Northwood--------- | 7 | 0-9 | 0-0 | \|0.10-0.40| | 0.20-6.00 | \|0.35-0.48| | --- | 50-95 | . 02 | . 02 | 4 | 2 | 134 |
| | | 9-14 | 5-15 | \|1.25-1.45| | 2.00-20 | \|0.10-0.18| | 0.0-2.9 | 2.0-10 | . 15 | . 15 | | | |
| | | 14-24 | 2-8 | \|1.45-1.70| | 6.00-20 | \|0.06-0.11| | 0.0-2.9 | 0.1-0.5 | . 15 | . 15 | | | |
| | | 24-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | 0.15-0.19\| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Grygla----------- | 5 | | | \|1.40-1.60| | 6.00-20 | \|0.13-0.15| | 0.0-2.9 | 1.0-4.0 | . 15 | . 15 | 5 | 2 | 134 |
| | | 6-26 | 1-10 | $\|1.50-1.70\|$ | 6.00-20 | \|0.06-0.11| | 0.0-2.9 | 0.5-1.0 | . 15 | . 15 | | | |
| | | 26-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | 0.15-0.19\| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Cathro----------- | 3 | 0-11 | 0-0 | \|0.10-0.35| | 0.20-6.00 | \|0.35-0.48| | --- | 75-95 | . 02 | . 02 | 2 | 2 | 134 |
| | | 11-23 | 0-0 | \|0.10-0.35| | 0.20-6.00 | \|0.35-0.48| | --- | 85-95 | . 02 | . 02 | | | |
| | | 23-60 | 18-30 | \|1.35-1.55| | 0.60-2.00 | 0.15-0.19\| | 1.0-4.2 | 0.0-1.0 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Hamre------------ | 3 | 0-13 | 0-0 | \|0.10-0.40| | 0.20-6.00 | \|0.35-0.48| | --- | 50-95 | . 02 | . 02 | 5 | 2 | 134 |
| | | 13-18 | 18-35 | \|1.25-1.50| | 0.20-2.00 | \|0.17-0.22| | 3.0-5.9 | 2.0-10 | . 32 | . 32 | | | |
| | | 18-35 | 18-30 | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | 35-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | 0.15-0.19 | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| Seelyeville------ | | | | | | | | | | | | | |
| | 2 | 0-10 | 0-0 | \|0.10-0.25| | 0.20-6.00 | \|0.35-0.48| | --- | 75-99 | . 02 | . 02 | 3 | 2 | 134 |
| | | 10-80 | 0-0 | \|0.10-0.25| | 0.20-6.00 | \|0.35-0.48| | --- | 75-99 | . 02 | . 02 | | | |
| | | | | | | | | | | | | | |
| B206A: | | | | | | | | | | | | | |
| Hamre------------ | 80 | 0-13 | 0-0 | \|0.10-0.40| | 0.20-6.00 | \|0.35-0.48| | --- | 50-95 | . 02 | . 02 | 5 | 2 | 134 |
| | | 13-18 | 18-35 | \|1.25-1.50| | 0.20-2.00 | \|0.17-0.22| | 3.0-5.9 | 2.0-10 | . 32 | . 32 | | | |
| | | 18-35 | 18-30 | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | 35-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | $\|0.15-0.19\|$ | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Chilgren--------- | 8 | 0-4 | 5-18 | \|1.30-1.60| | 2.00-6.00 | \|0.16-0.18| | 0.0-2.9 | 1.0-3.0 | . 28 | . 28 | 5 | 3 | 86 |
| | | 4-10 | 1-10 | \|1.35-1.55| | 6.00-20 | $\|0.05-0.12\|$ | 0.0-2.9 | 0.2-1.0 | . 15 | . 15 | | | |
| | | 10-18 | 18-30 | \|1.50-1.65| | 0.60-2.00 | \|0.17-0.20| | 3.0-5.9 | 0.2-1.0 | . 32 | . 32 | | | |
| | | 18-72 | 18-30 | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | 72-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | $\|0.15-0.19\|$ | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |

Table 23.--Physical Properties of the Soils--Continued

| Map symbol and soil name | $\begin{aligned} & \text { Pct. of } \\ & \text { map unit } \end{aligned}$ | Depth | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | $\begin{aligned} & \text { Permea- } \\ & \text { bility } \end{aligned}$ | $\begin{aligned} & \text { \| Available } \\ & \mid \text { water } \\ & \text { \|capacity } \\ & \hline \end{aligned}$ | Linear extensibility | Organic matter | \|Erosion factors | | | Wind erodibility group | \|Wind |erodibility |index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| | | | | | | | | | Kw | Kf | T | | |
| | | In | Pct | g / cc | $\mathrm{In} / \mathrm{hr}$ | In/in | Pct | Pct | | | | | |
| | | | | | | | | | | | | | |
| I1A: | | | | | | | | | | | | | |
| Espelie-------------- \| | 1 | 0-9 | 5-18 | 1.20-1.45\| | 2.00-6.00 | 0.13-0.18 | 0.0-2.9 | 3.0-8.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 9-24 | 3-10 | 1.35-1.60\| | $2.00-20$ | \|0.06-0.11 | 0.0-2.9 | 0.5-1.0 | . 17 | . 17 | | | |
| | | 24-80 | 35-60 | 1.25-1.55\| | 0.06-0.20 | 0.09-0.19 | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |
| Hattie--------------- \| | 1 | 0-8 | 40-60 | 1.10-1.30\| | 0.06-0.20 | 0.13-0.17 | 6.0-8.9 | 2.0-5.0 | . 28 | . 28 | 5 | 4 | 86 |
| | | 8-22 | 35-60 | 1.25-1.45\| | 0.06-0.20 | 0.10-0.19 | 6.0-8.9 | 0.2-2.0 | . 28 | . 28 | | | |
| | | 22-80 | 35-60 | 1.25-1.55\| | 0.06-0.20 | 0.09-0.19 | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |
| I2A: | | | | | | | | | | | | | |
| Augsburg------------- \| | 75 | | 10-20\| | 0.95-1.20\| | 0.60-2.00 | \|0.20-0.23 | 0.0-2.9 | 3.0-8.0 | | | 5 | 3 | 86 |
| | | 11-18 | 5-18 | 1.30-1.50\| | 0.60-6.00 | \|0.17-0.22 | $0.0-2.9$ | $0.2-2.0$ | . 28 | . 28 | | | |
| | | 18-33 | 5-18 | 1.40-1.60\| | 0.60-6.00 | \|0.17-0.22 | 0.0-2.9 | 0.1-0.5 | . 28 | . 28 | | | |
| | | 33-60 | 35-60\| | 1.25-1.55\| | 0.06-0.20 | \|0.09-0.19 | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |
| Borup---------------- \| | 10 | 0-12 | 10-20 | 1.15-1.35\| | 0.60-2.00 | 0.20-0.23 | 0.0-2.9 | 3.0-8.0 | . 28 | . 28 | 5 | 3 | 86 |
| | | 12-34 | 10-18 | 1.30-1.50\| | 0.60-6.00 | 0.17-0.22 | 0.0-2.9 | 0.2-2.0 | . 28 | . 28 | | | |
| | | 34-60 | 5-18 | 1.35-1.65\| | 0.60-20 | 0.08-0.22 | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |
| Foxlake--------------- \| | 5 | | | 1.15-1.35\| | 0.60-6.00 | \|0.20-0.22 | $0.0-2.9$ | $3.0-8.0$ | . 24 | | 5 | 4L | 86 |
| | | 19-38 | 35-60\| | 1.25-1.45\| | 0.06-0.20 | \|0.09-0.19 | 6.0-8.9 | 0.5-2.0 | . 28 | . 28 | | | |
| | | 38-49 | 35-60 | 1.25-1.45\| | 0.06-0.20 | 0.09-0.19 | 6.0-8.9 | 0.1-0.5 | . 28 | . 28 | | | |
| | | 49-80 | 35-60 | 1.25-1.55\| | 0.06-0.20 | 0.09-0.19 | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |
| Augsburg, depressional\| | 3 | 0-11 | 10-20 | 1.00-1.30\| | 0.60-2.00 | \|0.20-0.30 | 0.0-2.9 | 3.0-15 | . 28 | . 28 | 5 | 4L | 86 |
| | | 11-18 | 5-18 | 1.30-1.50\| | 0.60-6.00 | \|0.17-0.23 | 0.0-2.9 | 0.5-2.0 | . 28 | . 28 | | | |
| | | 18-33 | 5-18 | 1.40-1.60\| | 0.60-6.00 | \|0.17-0.22 | 0.0-2.9 | 0.1-0.5 | . 28 | . 28 | | | |
| | | 33-60 | 35-60 | 1.25-1.55\| | 0.06-0.20 | 0.09-0.19 | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |
| Wheatville------------ | 3 | 0-9 | 10-20 | 1.25-1.40\| | 0.60-2.00 | 0.18-0.22 | 0.0-2.9 | 2.0-6.0 | . 28 | . 28 | 5 | 3 | 86 |
| | | 9-31 | 10-18 | 1.30-1.50\| | 0.60-6.00 | 0.17-0.22 | 0.0-2.9 | 0.2-2.0 | . 43 | . 43 | | | |
| | | 31-80 | 35-60 | 1.25-1.55\| | 0.06-0.20 | 0.09-0.19 | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |
| Glyndon-------------- \| | 2 | $0-11$ | 10-20 | 1.05-1.25\| | 0.60-2.00 | \|0.20-0.23 | 0.0-2.9 | 2.0-6.0 | . 28 | . 28 | 5 | 3 | 86 |
| | | 11-28 | 10-18 | 1.30-1.50\| | 0.60-6.00 | \|0.17-0.22 | 0.0-2.9 | 0.2-2.0 | . 28 | . 28 | | | |
| | | 28-60 | 5-18 | 1.35-1.65\| | 0.60-6.00 | 0.08-0.22 | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |
| Espelie--------------- \| | 1 | 0-9 | 5-18 | 1.20-1.45\| | 2.00-6.00 | \|0.13-0.18 | 0.0-2.9 | 3.0-8.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 9-24 | 3-10 | 1.35-1.60\| | 2.00-20 | 0.06-0.11 | 0.0-2.9 | 0.5-1.0 | . 17 | . 17 | | | |
| | | 24-80 | 35-60 | 1.25-1.55\| | 0.06-0.20 | 0.09-0.19 | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |
| Hattie--------------- \| | 1 | 0-8 | 40-60 | 1.10-1.30\| | 0.06-0.20 | 0.13-0.17 | 6.0-8.9 | 2.0-5.0 | . 28 | . 28 | 5 | 4 | 86 |
| | | 8-22 | 35-60\| | 1.25-1.45\| | 0.06-0.20 | \|0.10-0.19 | 6.0-8.9 | 0.2-2.0 | . 28 | . 28 | | | |
| | | 22-80 | 35-60\| | 1.25-1.55\| | 0.06-0.20 | \|0.09-0.19 | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |

Table 23.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Pct. of map unit | Depth | Clay | Moist
 bulk
 density | Permeability | $\begin{aligned} & \text { \| Available } \\ & \text { water } \\ & \text { \|capacity } \\ & \hline \end{aligned}$ | Linear extensibility | Organic matter | \|Erosion factors | | | Wind \|erodi|bility group | \|Wind |erodi|bility
 index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | | |
| | | | | | | | | | Kw | Kf | T | | |
| | | In | Pct | g / cc | In/hr | In/in | Pct | Pct | | | | | |
| | | | | | | | | | | | | | |
| I4A: | | | | | | | | | | | | | |
| Rosewood- | 4 | 0-8 | 5-18 | \|1.00-1.35| | 2.00-6.00 | \|0.16-0.18 | 0.0-2.9 | 3.0-8.0 | . 24 | . 24 | 3 | 3 | 86 |
| | | 8-18 | 6-18 | \|1.30-1.50| | 2.00-6.00 | \|0.09-0.17 | 0.0-2.9 | 0.5-2.0 | . 24 | . 24 | | | |
| | | 18-80 | 2-8 | \|1.45-1.65| | 6.00-20 | \|0.05-0.08 | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 | | | |
| | | | | | | | | | | | | | |
| Deerwood- | 2 | 0-10 | 0-0 | \|0.15-0.35| | 0.20-6.00 | \|0.35-0.48 | --- | 50-95 | . 02 | . 02 | 3 | 2 | 134 |
| | | 10-12 | 2-15 | \|1.25-1.45| | 2.00-20 | \|0.09-0.17 | 0.0-2.9 | 2.0-10 | . 17 | . 17 | | | |
| | | 12-60 | 1-8 | \|1.50-1.70| | 6.00-20 | \|0.02-0.10 | 0.0-2.9 | 0.0-0.5 | . 15 | . 17 | | | |
| | | | | | | | | | | | | | |
| Mavie | 2 | 0-12 | 10-18 | \|1.20-1.50| | 2.00-6.00 | \|0.16-0.18 | 0.0-2.9 | 3.0-8.0 | . 20 | . 20 | 3 | 3 | 86 |
| | | 12-18 | 10-25 | \|1.35-1.55| | 0.60-2.00 | \|0.12-0.19 | 0.0-2.9 | 0.5-2.0 | . 28 | . 28 | | | |
| | | 18-39 | 1-10 | \|1.40-1.65| | 6.00-20 | \|0.03-0.06 | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 | | | |
| | | 39-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19 | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Strathcona | 2 | 0-10 | 5-18 | \|1.20-1.50| | 2.00-20 | \|0.13-0.18 | 0.0-2.9 | 3.0-8.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 10-17 | 10-18 | \|1.30-1.50| | 2.00-6.00 | \|0.09-0.17 | 0.0-2.9 | 0.5-2.0 | . 24 | . 24 | | | |
| | | 17-28 | 2-8 | \|1.35-1.60| | 6.00-20 | \|0.05-0.12 | 0.0-2.9 | 0.1-0.5 | . 15 | . 15 | | | |
| | | 28-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19 | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| I5A: | | | | | | | | | | | | | |
| Borup- | 75 | 0-12 | 15-22 | \|0.95-1.20| | 0.60-2.00 | \|0.20-0.23 | 0.0-2.9 | 3.0-8.0 | . 28 | . 28 | 5 | 4 L | 86 |
| | | 12-34 | 10-18 | $\|1.30-1.50\|$ | 0.60-6.00 | \|0.17-0.22 | 0.0-2.9 | 0.2-2.0 | . 28 | . 28 | | | |
| | | 34-60 | 5-18 | \|1.35-1.65| | 0.60-6.00 | \|0.08-0.22 | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |
| Glyndon--------------\| | 9 | | 10-20 | \|1.05-1.25| | 0.60-2.00 | \|0.20-0.23 | 0.0-2.9 | 2.0-6.0 | . 28 | . 28 | 5 | 3 | 86 |
| | | 11-28 | 10-18 | \|1.30-1.50| | 0.60-6.00 | \|0.17-0.22 | 0.0-2.9 | 0.2-2.0 | . 28 | . 28 | | | |
| | | 28-60 | 5-18 | \|1.35-1.65| | 0.60-6.00 | \|0.08-0.22 | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |
| Rosewood------------- \| | 8 | 0-8 | 5-18 | \|1.00-1.35| | 2.00-6.00 | \|0.16-0.18 | 0.0-2.9 | 3.0-8.0 | . 24 | . 24 | 3 | 3 | 86 |
| | | 8-18 | 6-18 | $\|1.30-1.50\|$ | 2.00-6.00 | \|0.09-0.17 | 0.0-2.9 | 0.5-2.0 | . 24 | . 24 | | | |
| | | 18-80 | 2-8 | \| 1.45-1.65| | 6.00-20 | \|0.05-0.08 | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 | | | |
| | | | | | | | | | | | | | |
| Augsburg-------------\| | 5 | 0-11 | 15-22 | \|0.95-1.20| | 0.60-2.00 | \|0.20-0.23 | 0.0-2.9 | 3.0-8.0 | . 28 | . 28 | 5 | 4L | 86 |
| | | 11-18 | 5-18 | $\|1.30-1.50\|$ | 0.60-6.00 | \|0.17-0.22 | 0.0-2.9 | 0.2-2.0 | . 28 | . 28 | | | |
| | | 18-33 | 5-18 | $\|1.40-1.60\|$ | 0.60-6.00 | \|0.17-0.22 | 0.0-2.9 | 0.1-0.5 | . 28 | . 28 | | | |
| | | 33-60 | 35-60 | \|1.25-1.55| | 0.06-0.20 | \|0.09-0.19 | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |
| Augsburg, depressional\| | 3 | 0-11 | 10-20 | $\|1.00-1.30\|$ | 0.60-2.00 | \|0.20-0.30 | 0.0-2.9 | 3.0-15 | . 28 | . 28 | 5 | 4L | 86 |
| | | 11-18 | 5-18 | $\|1.30-1.50\|$ | 0.60-6.00 | \|0.17-0.23 | 0.0-2.9 | 0.5-2.0 | . 28 | . 28 | | | |
| | | 18-33 | 5-18 | $\|1.40-1.60\|$ | 0.60-6.00 | \|0.17-0.22 | 0.0-2.9 | 0.1-0.5 | . 28 | . 28 | | | |
| | | 33-60 | 35-60 | \|1.25-1.55| | 0.06-0.20 | \|0.09-0.19 | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |

Table 23.--Physical Properties of the Soils--Continued

Table 23.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Pct. of map unit | Depth | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | $\begin{aligned} & \text { Permea- } \\ & \text { bility } \end{aligned}$ | $\begin{aligned} & \text { \| Available } \\ & \text { \| water } \\ & \text { \| capacity } \\ & \hline \end{aligned}$ | $\begin{array}{\|c} \text { Linear } \\ \mid \text { extensi- } \\ \text { \| bility } \end{array}$ | Organic
 matter | \|Erosion factors | | | Wind
 erodi-
 bility
 group | \|Wind erodibility
 index | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | | | | | | Kw | Kf | T | | |
| | | In | Pct | g / cc | In/ hr | In/in | Pct | Pct | | | | | |
| | | | | | | | | | | | | | |
| 18A: | | | | | | | | | | | | | |
| Northwood- | 3 | 0-9 | 0-0 | 0.10-0.40\| | 0.20-6.00 | \|0.35-0.48| | --- | 50-95 | . 02 | . 02 | 4 | 2 | 134 |
| | | 9-14 | 5-15 | 1.25-1.45\| | 2.00-20 | \|0.10-0.18| | 0.0-2.9 | 2.0-10 | . 15 | . 15 | | | |
| | | 14-24 | 2-8 | 1.45-1.70\| | 6.00-20 | \|0.06-0.11| | 0.0-2.9 | 0.1-0.5 | . 15 | . 15 | | | |
| | | 24-80 | 18-30 | 1.35-1.55 | 0.60-2.00 | 0.15-0.19 | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Roliss | 3 | 0-14 | 18-27 | 1.10-1.50 | 0.20-2.00 | 0.17-0.24 | 3.0-5.9 | 3.0-8.0 | . 24 | . 24 | 5 | 4 L | 86 |
| | | 14-20 | 18-30\| | 1.35-1.55 | 0.60-2.00 | 0.15-0.19 | 1.0-4.2 | 0.5-2.0 | . 37 | . 37 | | | |
| | | 20-80 | 18-30 | 1.35-1.55 | 0.60-2.00 | 0.15-0.19 | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Berner | 2 | 0-28 | 0-0 | 0.10-0.35\| | 0.20-6.00 | 0.35-0.48 | --- | 75-95 | . 02 | . 02 | 2 | 2 | 134 |
| | | 28-31 | 5-15 | 1.25-1.45 | 2.00-6.00 | \|0.10-0.18| | 0.0-2.9 | 2.0-10 | . 17 | . 24 | | | |
| | | 31-44 | 0-5 | 1.45-1.65 | 6.00-20 | 0.05-0.10 | 0.0-2.9 | 0.1-0.5 | . 05 | . 15 | | | |
| | | 44-80 | 18-30 | 1.35-1.55 | 0.60-2.00 | 0.15-0.19 | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Kratka- | 2 | 0-11 | 5-18 | 1.20-1.50\| | 2.00-6.00 | 0.16-0.18 | 0.0-2.9 | 3.0-8.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 11-18 | 2-10 | 1.30-1.60\| | 6.00-20 | \|0.06-0.11| | 0.0-2.9 | 0.5-2.0 | . 17 | . 17 | | | |
| | | 18-25 | 2-8 | 1.30-1.60\| | 6.00-20 | \|0.06-0.12| | 0.0-2.9 | 0.1-0.5 | . 17 | . 17 | | | |
| | | 25-80 | 18-30 | 1.35-1.55 | 0.60-2.00 | $\|0.15-0.19\|$ | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Seelyeville- | 2 | 0-10 | 0-0 | 0.10-0.25\| | 0.20-6.00 | 0.35-0.48 | --- | 75-99 | . 02 | . 02 | 3 | 2 | 134 |
| | | 10-80 | 0-0 | 0.10-0.25\| | 0.20-6.00 | 0.35-0.48 | --- | 75-99 | . 02 | . 02 | | | |
| | | | | | | | | | | | | | |
| I9A: | | | | | | | | | | | | | |
| Clearwater- | 80 | | $40-60$ | 1.10-1.30\| | 0.06-0.20 | \|0.13-0.17| | 6.0-8.9 | 3.0-8.0 | . 28 | . 28 | 5 | 4 | 86 |
| | | 8-35 | $35-60$ | 1.20-1.50\| | 0.06-0.20 | \|0.10-0.19| | 6.0-8.9 | 0.5-2.0 | . 32 | . 32 | | | |
| | | 35-80 | 35-60\| | 1.25-1.55 | 0.06-0.20 | 0.09-0.19 | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |
| Clearwater, very | | | | | | | | | | | | | |
| cobbly-------- | 5 | 0-8 | 40-60\| | 1.10-1.30\| | 0.06-0.20 | 0.13-0.17 | 6.0-8.9 | 3.0-8.0 | . 24 | . 28 | 5 | 4 | 86 |
| | | 8-35 | 35-60\| | 1.20-1.50\| | 0.06-0.20 | 0.10-0.19 | 6.0-8.9 | 0.5-2.0 | . 32 | . 32 | | | |
| | | 35-80 | 35-60\| | 1.25-1.55 | 0.06-0.20 | 0.09-0.19 | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |
| Reis- | 5 | | | 1.10-1.30\| | 0.06-0.20 | \|0.13-0.17| | 6.0-8.9 | 3.0-8.0 | . 28 | . 28 | 5 | 4 | 86 |
| | | 9-17 | 40-60\| | 1.20-1.50\| | 0.06-0.20 | \|0.13-0.17| | 6.0-8.9 | 0.5-8.0 | . 32 | . 32 | | | |
| | | 17-33 | 40-60\| | 1.20-1.50\| | 0.06-0.20 | \|0.13-0.17| | 6.0-8.9 | 0.5-2.0 | . 32 | . 32 | | | \| |
| | | 33-42 | 40-60\| | 1.30-1.60\| | 0.06-0.20 | \|0.10-0.16| | 6.0-8.9 | 0.2-1.0 | . 32 | . 32 | | | |
| | | 42-60 | 35-60\| | 1.25-1.55 | 0.06-0.20 | 0.09-0.19 | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | 60-80 | 35-60\| | 1.25-1.55 | 0.06-0.20 | 0.09-0.19 | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |
| Clearwater, | | | | | | | | | | | | | |
| depressional-- | 3 | 0-8 | 27-35 | 1.20-1.45 | 0.20-2.00 | \|0.17-0.30| | 3.0-5.9 | 3.0-15 | . 24 | . 24 | 5 | 6 | 48 |
| | | 8-35 | 35-60\| | 1.20-1.50\| | 0.06-0.20 | \|0.10-0.19| | 6.0-8.9 | 1.0-3.0 | . 32 | . 32 | | | |
| | | 35-80 | 35-60\| | 1.25-1.55 | 0.06-0.20 | \|0.09-0.19| | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | \| |
| | | | | | | | | | | | | | |

Table 23.--Physical Properties of the Soils--Continued

Table 23.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Pct. of map unit | Depth | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | Permeability | $\begin{array}{\|l\|} \mid \text { Available } \\ \mid \text { water } \\ \text { \|capacity } \end{array}$ | Linear extensibility | Organic matter | Erosion factors | | | Wind erodibility group | \|Wind |erodibility
 index | | | | | | | | | | | | |
|---|
| | | | | | | | | | | | | | |
| | | | | | | | | | Kw | Kf | T | | |
| | | In | Pct | g / cc | $\mathrm{In} / \mathrm{hr}$ | In/in | Pct | Pct | | | | | |
| I12A: | | | | | | | | | | | | | |
| |
| | 5 | 0-9 | 5-15 | 1.15-1.45 | 2.00-6.00 | \|0.14-0.18| | 0.0-2.9 | 2.0-5.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 9-16 | 12-25 | 1.25-1.50 | 0.60-6.00 | \|0.12-0.18| | 0.0-2.9 | 0.2-2.0 | . 28 | . 28 | | | |
| | | 16-29 | 1-8 | 1.45-1.65\| | 6.00-20 | \|0.05-0.11| | 0.0-2.9 | 0.1-0.5 | . 15 | . 17 | | | |
| | | 29-45 | 18-30 | 1.35-1.55 | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.2-1.0 | . 37 | . 37 | | | |
| | | 45-80 | 18-30 | 1.35-1.55 | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Reiner------------ | 5 | 0-7 | 5-15 | \|1.10-1.35 | 2.00-6.00 | \|0.16-0.18| | 0.0-2.9 | 2.0-5.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 7-17 | 25-35 | \|1.40-1.65 | 0.60-2.00 | \|0.15-0.19| | 3.0-5.9 | 0.2-2.0 | . 32 | . 32 | | | |
| | | 17-35 | 18-30 | \|1.35-1.55 | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.2-1.0 | . 37 | . 37 | | | |
| | | 35-80 | 18-30 | \|1.35-1.55 | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Foldahl---------- | 2 | 0-12 | 2-10 | \|1.20-1.40 | 6.00-20 | \|0.10-0.14| | 0.0-2.9 | 2.0-4.0 | . 17 | . 17 | 5 | 2 | 134 |
| | | 12-30 | 1-10 | \|1.45-1.60 | 6.00-20 | \|0.07-0.12| | 0.0-2.9 | 0.2-1.0 | . 17 | . 17 | | | |
| | | 30-80 | 18-30 | \|1.35-1.55 | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Pelan------------ | 2 | 0-6 | 5-15 | \|1.10-1.35 | 2.00-6.00 | \|0.13-0.15| | 0.0-2.9 | 1.0-3.0 | . 20 | . 24 | 5 | 3 | 86 |
| | | 6-9 | 1-10 | \|1.35-1.55 | 6.00-20 | \|0.05-0.12| | 0.0-2.9 | 0.2-1.0 | . 15 | . 15 | | | |
| | | 9-14 | 15-25 | \|1.45-1.65 | 6.00-20 | \|0.03-0.11| | 0.0-2.9 | 0.2-1.0 | . 20 | . 24 | | | |
| | | 14-20 | 1-5 | \|1.50-1.70 | 6.00-20 | \|0.02-0.07| | 0.0-2.9 | 0.0-0.5 | . 05 | . 15 | | | |
| | | 20-60 | 18-30 | \|1.35-1.55 | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Poppleton--------- | 1 | 0-6 | 2-10 | \|1.20-1.40 | 6.00-20 | \|0.08-0.10| | 0.0-2.9 | 0.5-2.0 | . 15 | . 15 | 5 | 1 | 250 |
| | | 6-9 | 1-8 | \|1.35-1.55 | 6.00-20 | \|0.05-0.12| | 0.0-2.9 | 0.1-0.5 | . 15 | . 15 | | | |
| | | 9-40 | 1-8 | \|1.35-1.55 | 6.00-20 | \|0.05-0.12| | 0.0-2.9 | 0.1-0.5 | . 15 | . 15 | | | |
| | | 40-60 | 1-8 | 1.45-1.65 | 6.00-20 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 | | | |
| | | | | | | | | | | | | | |
| I13A: | | | | | | | | | | | | | |
| Espelie---------- | 75 | 0-9 | 5-18 | \|1.20-1.45 | 2.00-6.00 | \|0.13-0.18| | 0.0-2.9 | 3.0-8.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 9-24 | 3-10 | \|1.35-1.60 | 2.00-20 | \|0.06-0.11| | 0.0-2.9 | 0.5-1.0 | . 17 | . 17 | | | |
| | | 24-80 | 35-60 | \|1.25-1.55 | 0.06-0.20 | \|0.09-0.19| | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |
| Foxlake----------- | 8 | 0-19 | 18-27 | \|1.15-1.35 | 0.60-6.00 | \|0.20-0.22| | 0.0-2.9 | 3.0-8.0 | . 24 | . 24 | 5 | 4L | 56 |
| | | 19-38 | 35-60 | \|1.25-1.45 | 0.06-0.20 | \|0.09-0.19| | 6.0-8.9 | 0.5-2.0 | . 28 | . 28 | | | |
| | | 38-49 | 35-60 | \|1.25-1.45 | 0.06-0.20 | \|0.09-0.19| | 6.0-8.9 | 0.1-0.5 | . 28 | . 28 | | | |
| | | 49-80 | 35-60 | \|1.25-1.55 | 0.06-0.20 | \|0.09-0.19| | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |
| Hilaire---------- | 7 | 0-10 | 5-15 | \|1.15-1.45 | 2.00-6.00 | \|0.10-0.12| | 0.0-2.9 | 2.0-5.0 | . 20 | . 20 | 5 | 2 | 134 |
| | | 10-34 | 1-8 | \|1.35-1.60 | 6.00-20 | \|0.07-0.11| | 0.0-2.9 | 0.5-1.0 | . 15 | . 15 | | | |
| | | 34-80 | 35-60 | \|1.25-1.55 | 0.06-0.20 | \|0.09-0.19| | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |
| Clearwater, depressional | | | | | | | | | | | | | |
| | 5 | 0-8 | 27-35 | \|1.20-1.45 | 0.20-2.00 | \|0.17-0.30| | 3.0-5.9 | 3.0-15 | . 24 | . 24 | 5 | 6 | 48 |
| | | 8-35 | 35-60 | \|1.20-1.50 | 0.06-0.20 | $\|0.10-0.19\|$ | 6.0-8.9 | 1.0-3.0 | . 32 | . 32 | | | |
| | | 35-80 | 35-60 | \|1.25-1.55 | 0.06-0.20 | \|0.09-0.19| | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |

Table 23.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Pct. of map unit | Depth | Clay | Moist
 bulk
 density | Permea-bility | $\begin{aligned} & \text { \| Available } \\ & \text { \| water } \\ & \text { \|capacity } \\ & \hline \end{aligned}$ | $\begin{array}{\|c} \text { Linear } \\ \mid \text { extensi- } \\ \text { \| bility } \end{array}$ | Organic
 matter | \|Erosion factors | | | Wind erodi\|bility group | \|Wind |erodibility
 index | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| | | | | | | | | | Kw | Kf | T | | |
| | | In | Pct | g / cc | $\mathrm{In} / \mathrm{hr}$ | In/in | Pct | Pct | | | | | |
| | | | | | | | | | | | | | |
| I13A: | | | | | | | | | | | | | |
| Thiefriver- | 5 | 0-12 | 8-18 | \|1.20-1.45| | 2.00-6.00 | \|0.13-0.18| | 0.0-2.9 | 3.0-8.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 12-23 | 10-18 | \|1.30-1.50| | 2.00-6.00 | \|0.09-0.17| | 0.0-2.9 | 0.5-2.0 | . 24 | . 24 | | | |
| | | 23-32 | 2-8 | \|1.45-1.70| | 6.00-20 | \|0.06-0.11| | 0.0-2.9 | 0.1-0.5 | . 17 | . 17 | | | |
| | | 32-80 | 35-60\| | \|1.25-1.55| | 0.06-0.20 | \|0.09-0.19| | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |
| I14B: | | | | | | | | | | | | | |
| Fairdale | 85 | 0-7 | 18-27 | \|1.00-1.35| | 0.60-2.00 | \|0.20-0.24| | 0.0-2.9 | 2.0-7.0 | . 28 | . 28 | 5 | 4L | 86 |
| | | 7-48 | 15-35 | $\|1.20-1.50\|$ | 0.60-2.00 | \|0.17-0.23| | 3.0-5.9 | 0.5-3.0 | . 32 | . 32 | | | |
| | | 48-67 | 15-30 | \|1.00-1.30| | 0.60-2.00 | \|0.18-0.24| | 0.0-2.9 | 3.0-6.0 | . 24 | . 24 | | | |
| | | 67-80 | 15-35 | \|1.30-1.60| | 0.60-2.00 | \|0.17-0.23| | 3.0-5.9 | 0.1-3.0 | . 32 | . 32 | | | |
| | | | | | | | | | | | | | |
| Fluvaquents | 6 | 0-16 | 5-15 | \|1.20-1.50| | 2.00-20 | \|0.16-0.24| | 0.0-2.9 | 3.0-10 | . 20 | . 20 | 5 | 5 | 56 |
| | | 16-80 | 1-27 | \|1.40-1.65| | 0.60-20 | \|0.04-0.20| | 0.0-2.9 | 0.5-3.0 | . 17 | . 20 | | | |
| | | | | | | | | | | | | | |
| Hapludolls- | 5 | 0-9 | 15-27 | \|1.00-1.30| | 0.60-2.00 | \|0.17-0.22| | 3.0-5.9 | 1.0-5.0 | . 28 | . 28 | 5 | 6 | 48 |
| | | 9-60 | 15-35 | \|1.20-1.50| | 0.60-2.00 | \|0.14-0.20| | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |
| Hapludalfs | 2 | 0-6 | 10-18 | \|1.30-1.45| | 2.00-6.00 | \|0.16-0.18| | 0.0-2.9 | 0.5-2.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 6-8 | 5-15 | \|1.30-1.55| | 2.00-20 | \|0.10-0.18| | 0.0-2.9 | 0.0-0.5 | . 20 | . 20 | | | |
| | | 8-25 | 18-35 | $\mid 1.25-1.65$ \| | 0.20-2.00 | \|0.15-0.19| | 3.0-5.9 | 0.0-0.5 | . 37 | . 37 | | | |
| | | 25-80 | 10-27 | \|1.30-1.60| | 0.60-6.00 | \|0.14-0.19| | 0.0-2.9 | 0.0-0.5 | . 32 | . 32 | | | |
| | | | | | | | | | | | | | |
| Zell | 2 | 0-6 | 10-18 | \|1.05-1.25| | 0.60-2.00 | \|0.19-0.22| | 0.0-2.9 | 2.0-5.0 | . 32 | . 32 | 5 | 4L | 86 |
| | | 6-26 | 10-18 | \|1.30-1.50| | 0.60-6.00 | \|0.17-0.22| | 0.0-2.9 | 0.0-1.0 | . 43 | . 43 | | | |
| | | 26-60 | 5-18 | \|1.35-1.65| | 0.60-6.00 | \|0.08-0.22| | 0.0-2.9 | 0.0-0.5 | . 43 | . 43 | | | |
| | | | | | | | | | | | | | |
| I14D: | | | | | | | | | | | | | |
| Fairdale | 85 | 0-7 | 18-27 | \|1.00-1.35| | 0.60-2.00 | \|0.20-0.24| | 0.0-2.9 | 2.0-7.0 | . 28 | . 28 | 5 | 4 L | 86 |
| | | 7-48 | 15-35 | $\|1.20-1.50\|$ | 0.60-2.00 | \|0.17-0.23| | 3.0-5.9 | 0.5-3.0 | . 32 | . 32 | | | |
| | | 48-67 | 15-30\| | $\|1.00-1.30\|$ | 0.60-2.00 | \|0.18-0.24| | 0.0-2.9 | 3.0-6.0 | . 24 | . 24 | | | |
| | | 67-80 | 15-35 | \|1.30-1.60| | 0.60-2.00 | \|0.17-0.23| | 3.0-5.9 | 0.1-3.0 | . 32 | . 32 | | | |
| | | | | | | | | | | | | | |
| Fluvaquents - | 6 | $0-16$ | $5-15$ | \|1.20-1.50| | 2.00-20 | \|0.16-0.24| | 0.0-2.9 | $3.0-10$ | . 20 | . 20 | 5 | 5 | 56 |
| | | 16-80 | 1-27 | \|1.40-1.65| | 0.60-20 | \|0.04-0.20| | 0.0-2.9 | 0.5-3.0 | . 17 | . 20 | | | |
| | | | | | | | | | | | | | |
| Hapludolls----- | 4 | 0-9 | 15-27 | \|1.00-1.30| | 0.60-2.00 | \|0.17-0.22| | 3.0-5.9 | 1.0-5.0 | . 28 | . 28 | 5 | 6 | 48 |
| | | 9-60 | 15-35 | \|1.20-1.50| | 0.60-2.00 | \|0.14-0.20| | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |
| Zell----------- | 3 | 0-6 | 10-18 | \|1.05-1.25| | 0.60-2.00 | \|0.19-0.22| | 0.0-2.9 | 2.0-5.0 | . 32 | . 32 | 5 | 4L | 86 |
| | | 6-26 | 10-18 | \|1.30-1.50| | 0.60-6.00 | \|0.17-0.22| | 0.0-2.9 | 0.0-1.0 | . 43 | . 43 | | | |
| | | 26-60 | 5-18 | $\|1.35-1.65\|$ | 0.60-6.00 | \|0.08-0.22| | 0.0-2.9 | 0.0-0.5 | . 43 | . 43 | | | |
| | | | | | | | | | | | | | |

Table 23.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Pct. of map unit | Depth | Clay | | Permeability | $\begin{array}{\|l\|} \mid \text { Available } \mid \\ \mid \text { water } \\ \text { \|capacity } \end{array}$ | Linear extensibility | Organic matter | \|Erosion factors | | | Wind erodibility group | \| Wind |erodi|bility
 \|index | | | | | | | | | | |
|---|
| | | | | | | | | | | | | | |
| | | | | bulk | | | | | Kw | Kf | | | |
| | | | | | | | | | | | | | |
| | | In | Pct | g/cc | In/ hr | In/in | Pct | Pct | | | | | |
| I14D: | | | | | | | | | | | | | |
| |
| Hapludalfs------- | - 2 | 0-6 | 10-18 | \|1.30-1.45| | 2.00-6.00 | 0.16-0.18 | 0.0-2.9 | 0.5-2.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 6-8 | 5-15 | \|1.30-1.55| | 2.00-20 | \|0.10-0.18| | 0.0-2.9 | 0.0-0.5 | . 20 | . 20 | | | |
| | | 8-25 | 18-35 | \|1.25-1.65| | 0.20-2.00 | 0.15-0.19\| | 3.0-5.9 | 0.0-0.5 | . 37 | . 37 | | | |
| | | 25-80 | 10-27 | $\|1.30-1.60\|$ | 0.60-6.00 | 0.14-0.19\| | 0.0-2.9 | 0.0-0.5 | . 32 | . 32 | | | |
| | | | | | | | | | | | | | |
| I15A: | | | | | | | | | | | | | |
| Flaming---------- | 70 | 0-12 | 2-10 | \|1.20-1.40| | 6.00-20 | \|0.10-0.12| | 0.0-2.9 | 2.0-4.0 | . 17 | . 17 | 5 | 2 | 134 |
| | | 12-17 | 2-10 | \|1.30-1.50| | 6.00-20 | $\|0.06-0.12\|$ | 0.0-2.9 | 0.5-3.0 | . 17 | . 17 | | | |
| | | 17-27 | 2-8 | $\|1.30-1.50\|$ | 6.00-20 | \|0.05-0.12| | 0.0-2.9 | 0.2-1.0 | . 17 | . 17 | | | |
| | | 27-60 | 1-8 | \|1.50-1.70| | 6.00-20 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 17 | . 17 | | | |
| | | | | | | | | | | | | | |
| Garborg---------- | 10 | 0-12 | 2-10 | \|1.20-1.40| | 6.00-20 | \|0.10-0.13| | 0.0-2.9 | 2.0-6.0 | . 17 | . 17 | 5 | 2 | 134 |
| | | 12-41 | 2-10 | \|1.35-1.55| | 2.00-20 | $\|0.06-0.12\|$ | 0.0-2.9 | 0.5-2.0 | . 17 | . 17 | | | |
| | | 41-59 | 1-8 | \|1.45-1.65| | 2.00-20 | \|0.06-0.10| | 0.0-2.9 | 0.0-0.5 | . 17 | . 17 | | | |
| | | 59-80 | 1-8 | \|1.45-1.65| | 2.00-20 | 0.06-0.10\| | 0.0-2.9 | 0.0-0.5 | . 17 | . 17 | | | |
| | | | | | | | | | | | | | |
| Hamar------------ | 5 | 0-12 | 2-10 | \|1.20-1.40| | 2.00-20 | \|0.10-0.13| | 0.0-2.9 | 3.0-8.0 | . 17 | . 17 | 5 | 2 | 134 |
| | | 12-17 | 2-10 | \|1.35-1.55| | 2.00-20 | \|0.06-0.12| | 0.0-2.9 | 0.5-2.0 | . 17 | . 17 | | | |
| | | 17-40 | 1-8 | \|1.45-1.65| | 2.00-20 | \|0.06-0.10| | 0.0-2.9 | 0.0-0.5 | . 17 | . 17 | | | |
| | | 40-47 | 2-10 | \|1.30-1.50| | 2.00-20 | \|0.10-0.13| | 0.0-2.9 | 1.0-4.0 | . 17 | . 17 | | | |
| | | 47-60 | 1-8 | \|1.45-1.65| | 2.00-20 | \|0.06-0.10| | 0.0-2.9 | 0.0-0.5 | . 17 | . 17 | | | |
| | | | | | | | | | | | | | |
| Ulen------------- | 5 | 0-9 | 8-18 | \|1.15-1.45| | 2.00-6.00 | \|0.13-0.18| | 0.0-2.9 | 2.0-5.0 | . 20 | . 20 | 3 | 3 | 86 |
| | | 9-42 | 5-15 | \|1.30-1.60| | 2.00-6.00 | \|0.09-0.17| | 0.0-2.9 | 0.2-1.0 | . 24 | . 24 | | | |
| | | 42-60 | 2-8 | \|1.45-1.65| | 6.00-20 | \|0.05-0.08| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 | | | |
| | | | | | | | | | | | | | |
| Poppleton-------- | 3 | 0-6 | 2-10 | \|1.20-1.40| | 6.00-20 | \|0.08-0.10| | 0.0-2.9 | 0.5-2.0 | . 15 | . 15 | 5 | 1 | 250 |
| | | 6-9 | 1-8 | \|1.35-1.55| | 6.00-20 | \|0.05-0.12| | 0.0-2.9 | 0.1-0.5 | . 15 | . 15 | | | |
| | | 9-40 | 1-8 | \|1.35-1.55| | 6.00-20 | $\|0.05-0.12\|$ | 0.0-2.9 | 0.1-0.5 | . 15 | . 15 | | | |
| | | 40-60 | 1-8 | \|1.45-1.65| | 6.00-20 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 | | | |
| | | | | | | | | | | | | | |
| Sandberg--------- | 3 | 0-12 | 2-10 | \|1.20-1.40| | 6.00-20 | \|0.10-0.12| | 0.0-2.9 | 1.0-3.0 | . 17 | . 17 | 5 | 2 | 134 |
| | | 12-19 | 1-5 | \|1.50-1.70| | 6.00-20 | \|0.03-0.10| | 0.0-2.9 | 0.5-1.0 | . 05 | . 10 | | | |
| | | 19-29 | 1-5 | \|1.50-1.70| | 20-40 | \|0.02-0.06| | 0.0-2.9 | 0.5-1.0 | . 05 | . 10 | | | |
| | | 29-80 | 1-5 | \|1.50-1.70| | 20-40 | \|0.02-0.04| | 0.0-2.9 | 0.0-0.5 | . 05 | . 10 | | | |
| | | | | | | | | | | | | | |
| Foldahl---------- | 2 | 0-12 | 2-10 | \|1.20-1.40| | 6.00-20 | \|0.10-0.14| | 0.0-2.9 | 2.0-4.0 | . 17 | . 17 | 5 | 2 | 134 |
| | | 12-30 | 1-10 | \|1.45-1.60| | 6.00-20 | \|0.07-0.12| | 0.0-2.9 | 0.2-1.0 | . 17 | . 17 | | | |
| | | 30-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | $\|0.15-0.19\|$ | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Radium---------- | 2 | 0-14 | 2-8 | \|1.20-1.40| | 6.00-20 | \|0.06-0.12| | 0.0-2.9 | 1.0-3.0 | . 17 | . 17 | 5 | 2 | 134 |
| | | 14-33 | 1-8 | \|1.40-1.65| | 6.00-20 | \|0.03-0.08| | 0.0-2.9 | 0.0-0.5 | . 10 | . 10 | | | |
| | | 33-43 | 1-5 | \|1.55-1.75| | 20-40 | \|0.02-0.05| | 0.0-2.9 | 0.0-0.5 | . 10 | . 17 | | | |
| | | 43-80 | 1-5 | \|1.55-1.75| | 6.00-20 | \|0.03-0.09| | 0.0-2.9 | 0.0-0.5 | . 10 | . 17 | | | |
| | | | | | | | | | | | | | |

Table 23.--Physical Properties of the Soils--Continued

Table 23.--Physical Properties of the Soils--Continued

Table 23.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Pct. of map unit | Depth | Clay | Moist
 bulk
 density | $\begin{aligned} & \text { Permea- } \\ & \text { bility } \end{aligned}$ | $\begin{array}{\|l\|} \text { \| Available } \\ \text { \| water } \\ \text { \| capacity } \end{array}$ | Linear extensibility | Organic
 matter | \|Erosion factors | | | \|Wind erodi|bility group | \|Wind |erodi|bility
 \|index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | | |
| | | | | | | | | | Kw | Kf | T | | |
| | | | | | | | | | | | | | |
| | | In | Pct | g/cc | In/hr | In/in | Pct | Pct | | | | | |
| I18A: | | | | | | | | | | | | | |
| Linveldt | 2 | 0-9 | 5-15 | \|1.15-1.45| | 2.00-6.00 | \|0.14-0.18| | 0.0-2.9 | 2.0-5.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 9-16 | 12-25 | \|1.25-1.50| | 0.60-6.00 | \|0.12-0.18| | 0.0-2.9 | 0.2-2.0 | . 28 | . 28 | | | |
| | | 16-29 | 1-8 | \|1.45-1.65| | 6.00-20 | \|0.05-0.11| | 0.0-2.9 | 0.1-0.5 | . 15 | . 17 | | | |
| | | 29-45 | 18-30 | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.2-1.0 | . 37 | . 37 | | | |
| | | 45-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | 0.15-0.19\| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Eckvoll- | 1 | 0-9 | 2-10 | \|1.20-1.40| | 6.00-20 | \|0.10-0.12| | 0.0-2.9 | 0.5-3.0 | . 17 | . 17 | 5 | 2 | 134 |
| | | 9-25 | 1-10 | \|1.35-1.55| | 6.00-20 | \|0.05-0.12| | 0.0-2.9 | 0.1-1.0 | . 15 | . 15 | | | |
| | | 25-32 | 18-35 | \|1.40-1.70| | 0.20-2.00 | \|0.16-0.18| | 3.0-5.9 | 0.1-1.0 | . 37 | . 37 | | | |
| | | 32-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | 0.15-0.19\| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Strathcona- | 1 | | 5-18 | \|1.20-1.50| | 2.00-20 | \|0.13-0.18| | 0.0-2.9 | 3.0-8.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 10-17 | 10-18 | \|1.30-1.50| | 2.00-6.00 | \|0.09-0.17| | 0.0-2.9 | 0.5-2.0 | . 24 | . 24 | | | |
| | | 17-28 | 2-8 | $\|1.35-1.60\|$ | 6.00-20 | \|0.05-0.12| | 0.0-2.9 | 0.1-0.5 | . 15 | . 15 | | | |
| | | 28-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| I19A: | | | | | | | | | | | | | |
| Foxhome | 65 | 0-10 | 5-15 | \|1.15-1.45| | 2.00-6.00 | \|0.13-0.15| | 0.0-2.9 | 2.0-5.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 10-15 | 2-10 | \|1.40-1.60| | 6.00-20 | \|0.07-0.12| | 0.0-2.9 | 0.2-1.0 | . 15 | . 20 | | | |
| | | 15-23 | 1-5 | $\|1.50-1.70\|$ | 6.00-20 | \|0.02-0.07| | 0.0-2.9 | 0.1-0.5 | . 05 | . 15 | | | |
| | | 23-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Kittson- | 10 | 0-10 | 10-27 | \|1.00-1.30| | 0.60-2.00 | \|0.20-0.22| | 0.0-2.9 | 2.0-5.0 | . 24 | . 24 | 5 | 5 | 56 |
| | | 10-17 | 15-25 | \|1.35-1.55| | 0.60-2.00 | $\|0.12-0.19\|$ | 0.0-2.9 | 0.2-2.0 | . 32 | . 32 | | | |
| | | 17-36 | 18-30 | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.1-1.0 | . 37 | . 37 | | | |
| | | 36-60 | 18-30 | \|1.35-1.55| | 0.60-2.00 | 0.15-0.19\| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Strandquist | 10 | | 10-18 | \|1.10-1.40| | 2.00-6.00 | $\|0.20-0.22\|$ | 0.0-2.9 | 3.0-8.0 | . 24 | . 24 | 5 | 4 L | 86 |
| | | 10-20 | 1-8 | \|1.50-1.70| | 6.00-20 | \|0.02-0.07| | 0.0-2.9 | 0.5-2.0 | . 10 | . 15 | | | |
| | | 20-60 | 18-30 | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Foldahl- | 5 | 0-12 | 5-15 | \|1.15-1.45| | 2.00-6.00 | \|0.14-0.18| | 0.0-2.9 | 2.0-5.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 12-30 | 1-10 | \|1.45-1.60| | 6.00-20 | \|0.07-0.12| | 0.0-2.9 | 0.2-1.0 | . 17 | . 17 | | | |
| | | 30-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Grimstad- | 5 | 0-9 | 10-18 | \|1.15-1.45| | 2.00-6.00 | \|0.14-0.18| | 0.0-2.9 | 2.0-5.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 9-22 | 5-15 | $\|1.30-1.60\|$ | 6.00-20 | \|0.09-0.17| | 0.0-2.9 | 0.2-1.0 | . 20 | . 20 | | | |
| | | 22-28 | 2-8 | $\|1.45-1.60\|$ | 6.00-20 | \|0.05-0.14| | 0.0-2.9 | 0.1-0.5 | . 20 | . 20 | | | |
| | | 28-60 | 18-30 | \|1.35-1.55| | 0.60-2.00 | 0.15-0.19\| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Roliss-- | 3 | 0-14 | 18-27 | \|1.10-1.50| | 0.20-2.00 | \|0.17-0.24| | 3.0-5.9 | 3.0-8.0 | . 24 | . 24 | 5 | 4L | 86 |
| | | 14-20 | 18-30 | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.5-2.0 | . 37 | . 37 | | | |
| | | 20-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | $\|0.15-0.19\|$ | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |

Table 23.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Pct. of map unit | Depth | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | Permeability | $\begin{array}{\|l\|} \mid \text { Available } \\ \text { \| water } \\ \text { \| capacity } \end{array}$ | Linear extensibility | Organic matter | Erosion factors | | | Wind \|erodi|bility group | \|Wind
 \|erodi-
 \|bility
 index | | | | | | | | | | | | |
|---|
| | | | | | | | | | | | | | |
| | | | | | | | | | Kw | Kf | T | | |
| | | In | Pct | g / cc | In/ hr | In/in | Pct | Pct | | | | | |
| I19A: | | | | | | | | | | | | | |
| |
| Mavie---------------- \| | 2 | 0-12 | 10-18 | \|1.20-1.50| | 2.00-6.00 | \|0.16-0.18| | 0.0-2.9 | 3.0-8.0 | . 20 | . 20 | 3 | 3 | 86 |
| | | 12-18 | 10-25 | \|1.35-1.55| | 0.60-2.00 | \|0.12-0.19| | 0.0-2.9 | 0.5-2.0 | . 28 | . 28 | | | |
| | | 18-39 | 1-10 | \|1.40-1.65| | 6.00-20 | \|0.03-0.06| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 | | | |
| | | 39-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| I20A: | 75 | | | | | | | | | | | | |
| Foxlake-------------- \| | | 0-19 | 18-27 | \|1.15-1.35| | 0.60-6.00 | \|0.20-0.22| | 0.0-2.9 | 3.0-8.0 | . 24 | . 24 | 5 | 4L | 86 |
| | | 19-38 | 35-60\| | \|1.25-1.45| | 0.06-0.20 | \|0.09-0.19| | 6.0-8.9 | 0.5-2.0 | . 28 | . 28 | | | |
| | | 38-49 | 35-60\| | \|1.25-1.45| | 0.06-0.20 | \|0.09-0.19| | 6.0-8.9 | 0.1-0.5 | . 28 | . 28 | | | |
| | | 49-80 | 35-60\| | \|1.25-1.55| | 0.06-0.20 | \|0.09-0.19| | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |
| Clearwater----------- | 5 | | | \|1.10-1.30| | 0.06-0.20 | \|0.13-0.17| | 6.0-8.9 | 3.0-8.0 | . 28 | . 28 | 5 | 4 | 86 |
| | | $8-35$ | 35-60\| | \|1.20-1.50| | 0.06-0.20 | \|0.10-0.19| | 6.0-8.9 | 0.5-2.0 | . 32 | . 32 | | | |
| | | 35-80 | 35-60\| | \|1.25-1.55| | 0.06-0.20 | \|0.09-0.19| | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |
| Foxlake, very cobbly--\| | 5 | 0-19 | 18-27 | \|1.15-1.35| | 0.60-6.00 | $\|0.20-0.22\|$ | 0.0-2.9 | 3.0-8.0 | . 20 | . 24 | 5 | 4L | 86 |
| | | 19-38 | 35-60\| | \|1.25-1.45| | 0.06-0.20 | \|0.09-0.19| | 6.0-8.9 | 0.5-2.0 | . 28 | . 28 | | | |
| | | 38-49 | 35-60\| | \|1.25-1.45| | 0.06-0.20 | \|0.09-0.19| | 6.0-8.9 | 0.1-0.5 | . 28 | . 28 | | | |
| | | 49-80 | 35-60\| | \|1.25-1.55| | 0.06-0.20 | \|0.09-0.19| | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |
| Augsburg-------------\| | 3 | 0-11 | 15-22 | \|0.95-1.20| | 0.60-2.00 | \|0.20-0.23| | 0.0-2.9 | 3.0-8.0 | . 28 | . 28 | 5 | 4L | 86 |
| | | 11-18 | 5-18 | \|1.30-1.50| | 0.60-6.00 | \|0.17-0.22| | 0.0-2.9 | 0.2-2.0 | . 28 | . 28 | | | |
| | | 18-33 | 5-18 | $\|1.40-1.60\|$ | 0.60-6.00 | \|0.17-0.22| | 0.0-2.9 | 0.1-0.5 | . 28 | . 28 | | | |
| | | 33-60 | 35-60\| | \|1.25-1.55| | 0.06-0.20 | \|0.09-0.19| | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |
| Clearwater, depressional | 3 | | | | | | | | | | | | |
| | | 0-8 | 27-35 | \|1.20-1.45| | 0.20-2.00 | \|0.17-0.30| | 3.0-5.9 | 3. 0-15 | . 24 | . 24 | 5 | 6 | 48 |
| | | 8-35 | 35-60\| | $\|1.20-1.50\|$ | 0.06-0.20 | \|0.10-0.19| | 6.0-8.9 | 1.0-3.0 | . 32 | . 32 | | | |
| | | 35-80 | 35-60\| | \|1.25-1.55| | 0.06-0.20 | \|0.09-0.19| | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |
| Espelie--------------\| | 3 | 0-9 | 5-18 | \|1.20-1.45| | 2.00-6.00 | \|0.13-0.18| | 0.0-2.9 | 3.0-8.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 9-24 | 3-10 | \|1.35-1.60| | 2.00-20 | \|0.06-0.11| | 0.0-2.9 | 0.5-1.0 | . 17 | . 17 | | | |
| | | 24-80 | 35-60\| | \|1.25-1.55| | 0.06-0.20 | \|0.09-0.19| | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |
| Hilaire--------------\| | 2 | 0-10 | 5-15 | \|1.15-1.45| | 2.00-6.00 | $\|0.10-0.12\|$ | 0.0-2.9 | 2.0-5.0 | . 20 | . 20 | 5 | 2 | 134 |
| | | 10-34 | 1-8 | \|1.35-1.60| | 6.00-20 | \|0.07-0.11| | 0.0-2.9 | 0.5-1.0 | . 15 | . 15 | | | |
| | | 34-80 | 35-60\| | \|1.25-1.55| | 0.06-0.20 | $\|0.09-0.19\|$ | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |
| Reis----------------- \| | 2 | 0-9 | 40-60 | \|1.10-1.30| | 0.06-0.20 | \|0.13-0.17| | 6.0-8.9 | 3.0-8.0 | . 28 | . 28 | 5 | 4 | 86 |
| | | 9-17 | 40-60\| | $\|1.20-1.50\|$ | 0.06-0.20 | \|0.13-0.17| | 6.0-8.9 | 0.5-8.0 | . 32 | . 32 | | | |
| | | 17-33 | 40-60\| | \|1.20-1.50| | 0.06-0.20 | \|0.13-0.17| | 6.0-8.9 | 0.5-2.0 | . 32 | . 32 | | | |
| | | 33-42 | 40-60\| | \|1.30-1.60| | 0.06-0.20 | \|0.10-0.16| | 6.0-8.9 | 0.2-1.0 | . 32 | . 32 | | | \| |
| | | 42-60 | 35-60\| | \|1.25-1.55| | 0.06-0.20 | \|0.09-0.19| | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | 60-80 | 35-60\| | \|1.25-1.55| | 0.06-0.20 | \|0.09-0.19| | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | \| |
| | | | | | | | | | | | | | |

Table 23.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Pct. of map unit | Depth | Clay | Moist
 bulk
 density | Permeability | $\begin{aligned} & \text { \| Available\| } \\ & \text { \| water } \\ & \text { \|capacity } \\ & \hline \end{aligned}$ | Linear extensibility | Organic
 matter | \|Erosion factors | | | Wind erodi\|bility group | \|Wind |erodi|bility
 \|index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | | |
| | | | | | | | | | Kw | Kf | T | | |
| | | In | Pct | g / cc | In/hr | In/in | Pct | Pct | | | | | |
| | | | | | | | | | | | | | |
| I20A: | | | | | | | | | | | | | |
| Wheatville | 2 | 0-9 | 10-20 | \|1.25-1.40| | 0.60-2.00 | \|0.18-0.22 | 0.0-2.9 | 2.0-6.0 | . 28 | . 28 | 5 | 3 | 86 |
| | | 9-31 | 10-18 | $\|1.30-1.50\|$ | 0.60-6.00 | \|0.17-0.22 | 0.0-2.9 | 0.2-2.0 | . 43 | . 43 | | | |
| | | 31-80 | 35-60 | \|1.25-1.55| | 0.06-0.20 | \|0.09-0.19 | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |
| I21A: | | | | | | | | | | | | | |
| Fram- | 85 | 0-7 | 10-18 | \|1.00-1.30| | 0.60-2.00 | \|0.20-0.22 | 0.0-2.9 | 2.0-5.0 | . 24 | . 24 | 5 | 4L | 86 |
| | | 7-38 | 7-18 | $\|1.40-1.60\|$ | 0.60-2.00 | \|0.13-0.20 | 0.0-2.9 | 0.2-2.0 | . 37 | . 37 | | | |
| | | 38-60 | 7-18 | \|1.40-1.60| | 0.60-2.00 | \|0.13-0.20 | 0.0-2.9 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Hedman- | 12 | 0-11 | 10-18 | \|1.30-1.50| | 0.60-2.00 | \|0.20-0.22 | 0.0-2.9 | 3.0-8.0 | . 24 | . 24 | 5 | 4L | 86 |
| | | 11-20 | 7-18 | $\|1.40-1.60\|$ | 0.60-2.00 | \|0.13-0.20 | 0.0-2.9 | 0.2-2.0 | . 37 | . 37 | | | |
| | | 20-80 | 7-18 | \|1.40-1.60| | 0.60-2.00 | \|0.13-0.20 | 0.0-2.9 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Strathcona | 2 | 0-10 | 5-18 | \|1.20-1.50| | 2.00-20 | \|0.13-0.18 | 0.0-2.9 | 3.0-8.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 10-17 | 10-18 | \|1.30-1.50| | 2.00-6.00 | \|0.09-0.17 | 0.0-2.9 | 0.5-2.0 | . 24 | . 24 | | | |
| | | 17-28 | 2-8 | \|1.35-1.60| | 6.00-20 | \|0.05-0.12 | 0.0-2.9 | 0.1-0.5 | . 15 | . 15 | | | |
| | | 28-80 | 7-18 | \|1.40-1.60| | 0.60-2.00 | \|0.13-0.20 | 0.0-2.9 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Foxhome- | 1 | 0-10 | 5-15 | \|1.15-1.45| | 2.00-6.00 | \|0.13-0.15 | 0.0-2.9 | 2.0-5.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 10-15 | 2-10 | $\|1.40-1.60\|$ | 6.00-20 | \|0.07-0.12 | 0.0-2.9 | 0.2-1.0 | . 15 | . 20 | | | |
| | | 15-23 | 1-5 | $\|1.50-1.70\|$ | 6.00-20 | \|0.02-0.07 | 0.0-2.9 | 0.1-0.5 | . 05 | . 15 | | | |
| | | 23-80 | 7-18 | \| 1.40-1.60| | 0.60-2.00 | \|0.13-0.20 | 0.0-2.9 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| I22A: | | | | | | | | | | | | | |
| Glyndon- | 75 | 0-11 | 15-22 | \|1.05-1.25| | 0.60-2.00 | \|0.20-0.23 | 0.0-2.9 | 2.0-6.0 | . 28 | . 28 | 5 | 4 L | 86 |
| | | 11-28 | 10-18 | $\|1.30-1.50\|$ | 0.60-6.00 | \|0.17-0.22 | 0.0-2.9 | 0.2-2.0 | . 28 | . 28 | | | |
| | | 28-60 | 5-18 | \|1.35-1.65| | 0.60-6.00 | \|0.08-0.22 | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |
| Borup- | 10 | | | \|0.95-1.20| | 0.60-2.00 | \|0.20-0.23 | 0.0-2.9 | 3.0-8.0 | | . 28 | 5 | 4L | 86 |
| | | 12-34 | 10-18 | $\|1.30-1.50\|$ | 0.60-6.00 | \|0.17-0.22 | 0.0-2.9 | 0.2-2.0 | . 28 | . 28 | | | |
| | | 34-60 | 5-18 | \|1.35-1.65| | 0.60-6.00 | \|0.08-0.22 | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |
| Augsburg- | 5 | 0-11 | 15-22 | \|0.95-1.20| | 0.60-2.00 | \|0.20-0.23 | 0.0-2.9 | 3.0-8.0 | . 28 | . 28 | 5 | 4L | 86 |
| | | 11-18 | 5-18 | $\|1.30-1.50\|$ | 0.60-6.00 | \|0.17-0.22 | 0.0-2.9 | 0.2-2.0 | . 28 | . 28 | | | |
| | | 18-33 | 5-18 | $\|1.40-1.60\|$ | 0.60-6.00 | \|0.17-0.22 | 0.0-2.9 | 0.1-0.5 | . 28 | . 28 | | | |
| | | 33-60 | 35-60 | \|1.25-1.55| | 0.06-0.20 | \|0.09-0.19 | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |
| Ulen-- | 5 | | 8-18 | \|1.15-1.45| | 2.00-6.00 | \|0.13-0.18 | 0.0-2.9 | 2.0-5.0 | . 20 | . 20 | 3 | 3 | 86 |
| | | 9-42 | 5-15 | \|1.30-1.60| | 2.00-6.00 | \|0.09-0.17 | 0.0-2.9 | 0.2-1.0 | . 24 | . 24 | | | |
| | | 42-60 | 2-8 | \|1.45-1.65| | 6.00-20 | \|0.05-0.08 | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 | | | |
| | | | | | | | | | | | | | |
| Wheatville----- | 3 | 0-9 | 10-20 | \|1.25-1.40| | 0.60-2.00 | \|0.18-0.22 | 0.0-2.9 | 2.0-6.0 | . 28 | . 28 | 5 | 3 | 86 |
| | | 9-31 | 10-18 | $\|1.30-1.50\|$ | 0.60-6.00 | \|0.17-0.22 | 0.0-2.9 | 0.2-2.0 | . 43 | . 43 | | | |
| | | 31-80 | 35-60 | \|1.25-1.55| | 0.06-0.20 | \|0.09-0.19 | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |

Table 23.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Pct. of map unit | Depth | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | Permeability | $\begin{aligned} & \text { \|Available\| } \\ & \mid \text { water } \\ & \text { \|capacity } \end{aligned}$ | Linear
 extensi-
 bility | Organic
 matter | \|Erosion factors | | | Wind erodibility group | \|Wind |erodi|bility |index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | | |
| | | | | | | | | | Kw | Kf | T | | |
| | | In | Pct | g / cc | In/hr | In/in | Pct | Pct | | | | | |
| I24A: | | | | | | | | | | | | | |
| Foldahl | 5 | 0-12 | 5-15 | \|1.15-1.45| | 2.00-6.00 | \|0.14-0.18| | 0.0-2.9 | 2.0-5.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 12-30 | 1-10 | $\|1.45-1.60\|$ | 6.00-20 | \|0.07-0.12| | 0.0-2.9 | 0.2-1.0 | . 17 | . 17 | | | |
| | | 30-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | 0.15-0.19\| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Hamerly | 5 | 0-8 | 18-27 | \|1.00-1.30| | 0.60-2.00 | \|0.20-0.22| | 3.0-5.9 | 2.0-5.0 | . 24 | . 24 | 5 | 4 L | 86 |
| | | 8-25 | 18-30 | $\|1.35-1.55\|$ | 0.60-2.00 | $\|0.15-0.19\|$ | 1.0-4.2 | 0.2-2.0 | . 37 | . 37 | | | |
| | | 25-60 | 18-30 | \|1.35-1.55| | 0.60-2.00 | 0.15-0.19 | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Foxhome- | 2 | 0-10 | 5-15 | 1.15-1.45 | 2.00-6.00 | \|0.13-0.15| | 0.0-2.9 | 2.0-5.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 10-15 | 2-10 | $\|1.40-1.60\|$ | 6.00-20 | $\|0.07-0.12\|$ | 0.0-2.9 | 0.2-1.0 | . 15 | . 20 | | | |
| | | 15-23 | 1-5 | \|1.50-1.70| | 6.00-20 | \|0.02-0.07| | 0.0-2.9 | 0.1-0.5 | . 05 | . 15 | | | |
| | | 23-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Karlsruhe- | 2 | 0-15 | 5-15 | \|1.10-1.40| | 2.00-6.00 | \|0.10-0.15| | 0.0-2.9 | 2.0-6.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 15-30 | 2-12 | \|1.20-1.60| | 2.00-20 | $\|0.09-0.14\|$ | 0.0-2.9 | 0.5-2.0 | . 20 | . 20 | | | |
| | | 30-60 | 0-5 | \|1.30-1.60| | 6.00-40 | \|0.02-0.07| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 | | | |
| | | | | | | | | | | | | | |
| Mavie | 2 | 0-12 | 10-18 | 1.20-1.50\| | 2.00-6.00 | \|0.16-0.18| | 0.0-2.9 | 3.0-8.0 | . 20 | . 20 | 3 | 3 | 86 |
| | | 12-18 | 10-25 | \|1.35-1.55| | 0.60-2.00 | $\|0.12-0.19\|$ | 0.0-2.9 | 0.5-2.0 | . 28 | . 28 | | | |
| | | 18-39 | 1-10 | \|1.40-1.65| | 6.00-20 | \|0.03-0.06| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 | | | |
| | | 39-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Ulen- | 2 | 0-9 | 8-18 | \|1.15-1.45| | 2.00-6.00 | \|0.13-0.18| | 0.0-2.9 | 2.0-5.0 | . 20 | . 20 | 3 | 3 | 86 |
| | | 9-42 | 5-15 | \|1.30-1.60| | 2.00-6.00 | \|0.09-0.17| | 0.0-2.9 | 0.2-1.0 | . 24 | . 24 | | | |
| | | 42-60 | 2-8 | \|1.45-1.65| | 6.00-20 | \|0.05-0.08| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 | | | |
| | | | | | | | | | | | | | |
| 125A: | | | | | | | | | | | | | |
| Hamar | 75 | 0-12 | 2-10 | \|1.20-1.40| | 2.00-20 | \|0.10-0.13| | 0.0-2.9 | 3.0-8.0 | . 17 | . 17 | 5 | 2 | 134 |
| | | 12-17 | 2-10 | \|1.35-1.55| | 2.00-20 | $\|0.06-0.12\|$ | 0.0-2.9 | 0.5-2.0 | . 17 | . 17 | | | |
| | | 17-40 | 1-8 | \|1.45-1.65| | 2.00-20 | $\|0.06-0.10\|$ | 0.0-2.9 | 0.0-0.5 | . 17 | . 17 | | | |
| | | 40-47 | 2-10 | \|1.30-1.50| | 2.00-20 | $\|0.10-0.13\|$ | 0.0-2.9 | 1.0-4.0 | . 17 | . 17 | | | |
| | | 47-60 | 1-8 | \|1.45-1.65| | 2.00-20 | \|0.06-0.10| | 0.0-2.9 | 0.0-0.5 | . 17 | . 17 | | | |
| | | | | | | | | | | | | | |
| Garborg- | 10 | | | \|1.20-1.40| | 6.00-20 | \|0.10-0.13| | 0.0-2.9 | 2.0-6.0 | . 17 | . 17 | 5 | 2 | 134 |
| | | 12-41 | 2-10 | \|1.35-1.55| | 2.00-20 | $\|0.06-0.12\|$ | 0.0-2.9 | 0.5-2.0 | . 17 | . 17 | | | |
| | | 41-59 | 1-8 | \|1.45-1.65| | 2.00-20 | $\|0.06-0.10\|$ | 0.0-2.9 | 0.0-0.5 | . 17 | . 17 | | | |
| | | 59-80 | 1-8 | \|1.45-1.65| | 2.00-20 | $\|0.06-0.10\|$ | 0.0-2.9 | 0.0-0.5 | . 17 | . 17 | | | |
| | | | | | | | | | | | | | |
| Rosewood---- | 7 | 0-8 | 5-18 | \|1.00-1.35| | 2.00-6.00 | \|0.16-0.18| | 0.0-2.9 | 3.0-8.0 | . 24 | . 24 | 3 | 3 | 86 |
| | | 8-18 | 6-18 | $\|1.30-1.50\|$ | 2.00-6.00 | \|0.09-0.17| | 0.0-2.9 | 0.5-2.0 | . 24 | . 24 | | | |
| | | 18-80 | 2-8 | \|1.45-1.65| | 6.00-20 | \|0.05-0.08| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 | | | |
| | | | | | | | | | | | | | |
| Venlo----------- | 3 | 0-13 | 5-10 | \|1.20-1.30| | 6.00-20 | \|0.13-0.18| | 0.0-2.9 | 3.0-15 | . 20 | . 20 | 5 | 3 | 86 |
| | | 13-60 | 1-8 | \|1.45-1.65| | 2.00-20 | $\|0.06-0.10\|$ | 0.0-2.9 | 0.0-0.5 | . 17 | . 17 | | | |
| | | | | | | | | | | | | | |

Table 23.--Physical Properties of the Soils--Continued

| | | | | | | | | | \mid Erosi | fac | | \| Wind | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | Depth | Clay | Mo | | Availabl | Linear | | | | | erod | odi |
| and soil name | map unit\| | | | bulk | bility | water | extensi- | matter | | | | \|bility | bility |
| | | | | density | | \|capacity | bility | | Kw | Kf | T | \| group | index |
| | | In | Pct | g / cc | $\mathrm{In} / \mathrm{hr}$ | In/in | Pct | Pct | | | | | |
| | | | | | | | | | | | | | |
| I26A: | | | | | | | | | | | | | |
| Roliss, depressional--\| | 1 | 0-14 | 15-27 | \|1.10-1.40| | 0.20-2.00 | \|0.20-0.25| | 3.0-5.9 | 3.0-15 | . 24 | . 24 | 5 | 6 | 48 |
| | | 14-20 | 18-30 | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 1.0-3.0 | . 37 | . 37 | | | |
| | | 20-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| 127A: | | | | | | | | | | | | | |
| Hamre | 80 | 0-13 | 0-0 | \|0.10-0.40| | 0.20-6.00 | \|0.35-0.48| | --- | 50-95 | . 02 | . 02 | 5 | 2 | 134 |
| | | 13-18 | 18-35 | $\|1.25-1.50\|$ | 0.20-2.00 | \|0.17-0.22| | 3.0-5.9 | 2.0-10 | . 32 | . 32 | | | |
| | | 18-71 | 18-30 | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | 71-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Northwood- | 5 | 0-9 | 0-0 | \|0.10-0.40| | 0.20-6.00 | \|0.35-0.48| | --- | 50-95 | . 02 | . 02 | 4 | 2 | 134 |
| | | 9-14 | 5-15 | \|1.25-1.45| | 2.00-20 | \|0.10-0.18| | 0.0-2.9 | 2.0-10 | . 15 | . 15 | | | |
| | | 14-24 | 2-8 | \|1.45-1.70| | 6.00-20 | \|0.06-0.11| | 0.0-2.9 | 0.1-0.5 | . 15 | . 15 | | | |
| | | 24-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Roliss--------------- | 5 | | 18-27 | \|1.10-1.50| | 0.20-2.00 | \|0.17-0.24| | 3.0-5.9 | 3.0-8.0 | . 24 | . 24 | 5 | 4 L | 86 |
| | | 14-20 | 18-30 | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.5-2.0 | . 37 | . 37 | | | |
| | | 20-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Smiley- | 5 | 0-12 | 18-27 | \|1.20-1.50| | 0.60-2.00 | \|0.20-0.24| | 0.0-2.9 | 3.0-8.0 | . 24 | . 24 | 5 | 5 | 56 |
| | | 12-19 | 18-35 | \|1.35-1.65| | 0.60-2.00 | \|0.15-0.19| | 3.0-5.9 | 0.5-2.0 | . 24 | . 24 | | | |
| | | 19-42 | 18-30 | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.2-1.0 | . 37 | . 37 | | | |
| | | 42-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Cathro- | 3 | | 0-0 | \|0.10-0.35| | 0.20-6.00 | \|0.35-0.48| | --- | 75-95 | . 02 | . 02 | 2 | 2 | 134 |
| | | 11-23 | 0-0 | \|0.10-0.35| | 0.20-6.00 | \|0.35-0.48| | --- | 85-95 | . 02 | . 02 | | | |
| | | 23-60 | 18-30 | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-1.0 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Kratka-- | 2 | 0-11 | 5-18 | \|1.20-1.50| | 2.00-6.00 | \|0.16-0.18| | 0.0-2.9 | 3.0-8.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 11-18 | 2-10 | \|1.30-1.60| | 6.00-20 | \|0.06-0.11| | 0.0-2.9 | 0.5-2.0 | . 17 | . 17 | | | |
| | | 18-25 | 2-8 | $\|1.30-1.60\|$ | 6.00-20 | \|0.06-0.12| | 0.0-2.9 | 0.1-0.5 | . 17 | . 17 | | | |
| | | 25-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| 128A: | | | | | | | | | | | | | |
| Hangaard-------------\| | 75 | 0-10 | 8-18 | \|1.10-1.40| | 2.00-6.00 | \|0.10-0.15| | 0.0-2.9 | 3.0-8.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 10-15 | 5-15 | \|1.10-1.45| | 6.00-20 | \|0.07-0.11| | 0.0-2.9 | 1.0-3.0 | . 17 | . 17 | | | |
| | | 15-80 | 1-5 | \| 1.50-1.70| | 6.00-40 | \|0.02-0.04| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 | | | |
| | | | | | | | | | | | | | |
| Hamar----------------\| | 7 | 0-12 | 2-10 | \|1.20-1.40| | 2.00-20 | \|0.10-0.13| | 0.0-2.9 | 3.0-8.0 | | . 17 | 5 | 2 | 134 |
| | | 12-17 | 2-10 | \|1.35-1.55| | 2.00-20 | \|0.06-0.12| | 0.0-2.9 | 0.5-2.0 | . 17 | . 17 | | | |
| | | 17-40 | 1-8 | \|1.45-1.65| | 2.00-20 | \|0.06-0.10| | 0.0-2.9 | 0.0-0.5 | . 17 | . 17 | | | |
| | | 40-47 | 2-10 | \|1.30-1.50| | 2.00-20 | \|0.10-0.13| | 0.0-2.9 | 1.0-4.0 | . 17 | . 17 | | | |
| | | 47-60 | 1-8 | \|1.45-1.65| | 2.00-20 | \|0.06-0.10| | 0.0-2.9 | 0.0-0.5 | . 17 | . 17 | | | \| |
| | | | | | | | | | | | | | \| |

Table 23.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Pct. of map unit | Depth | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | Permeability | $\begin{array}{\|l\|} \mid \text { Available } \\ \text { \| water } \\ \text { \| capacity } \end{array}$ | Linear extensibility | Organic matter | Erosion factors | | | Wind erodibility group | \|Wind
 \|erodi-
 \|bility
 index | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | | | | | | Kw | Kf | T | | |
| | | In | Pct | g / cc | $\mathrm{In} / \mathrm{hr}$ | In/in | Pct | Pct | | - | | 1 | \|index |
| | | | | | | | | | | | | | |
| I28A: | | | | | | | | | | | | | |
| Syrene-------------- \| | 7 | 0-9 | 8-18 | \|1.10-1.40| | 0.60-2.00 | \|0.13-0.15| | 0.0-2.9 | 3.0-8.0 | . 20 | . 20 | 3 | 3 | 86 |
| | | 9-17 | 10-25 | \|1.30-1.50| | 2.00-6.00 | \|0.12-0.19| | 0.0-2.9 | 0.5-2.0 | . 32 | . 32 | | | |
| | | 17-27 | 1-5 | \|1.50-1.70| | 6.00-20 | \|0.02-0.04| | 0.0-2.9 | 0.0-0.5 | . 05 | . 10 | | | |
| | | 27-60 | 1-5 | \|1.50-1.70| | 6.00-20 | \|0.02-0.04| | 0.0-2.9 | 0.0-0.5 | . 05 | . 10 | | | |
| | | | | | | | | | | | | | |
| Karlsruhe------------\| | 3 | 0-15 | 5-15 | \|1.10-1.40| | 2.00-6.00 | \|0.10-0.15| | 0.0-2.9 | 2.0-6.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 15-30 | 2-12 | \|1.20-1.60| | 2.00-20 | \|0.09-0.14| | 0.0-2.9 | 0.5-2.0 | . 20 | . 20 | | | |
| | | 30-60 | 0-5 | $\|1.30-1.60\|$ | 6.00-40 | \|0.02-0.07| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 | | | |
| | | | | | | | | | | | | | |
| Rosewood------------- \| | 3 | 0-8 | 5-18 | \|1.00-1.35| | 2.00-6.00 | \|0.16-0.18| | 0.0-2.9 | 3.0-8.0 | . 24 | . 24 | 3 | 3 | 86 |
| | | 8-18 | 6-18 | \|1.30-1.50| | 2.00-6.00 | \|0.09-0.17| | 0.0-2.9 | 0.5-2.0 | . 24 | . 24 | | | |
| | | 18-80 | 2-8 | \|1.45-1.65| | 6.00-20 | \|0.05-0.08| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 | | | |
| | | | | | | | | | | | | | |
| Strandquist----------\| | 3 | 0-10 | 10-18 | \|1.10-1.40| | 2.00-6.00 | \|0.20-0.22| | 0.0-2.9 | 3.0-8.0 | . 24 | . 24 | 5 | 4L | 86 |
| | | 10-20 | 1-8 | $\|1.50-1.70\|$ | 6.00-20 | \|0.02-0.07| | 0.0-2.9 | 0.5-2.0 | . 10 | . 15 | | | |
| | | 20-60 | 18-30 | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Deerwood-------------\| | 2 | 0-10 | 0-0 | \|0.15-0.35| | 0.20-6.00 | \|0.35-0.48| | --- | 50-95 | . 02 | . 02 | 3 | 2 | 134 |
| | | 10-12 | 2-15 | \|1.25-1.45| | 2.00-20 | \|0.09-0.17| | 0.0-2.9 | 2.0-10 | . 17 | . 17 | | | |
| | | 12-60 | 1-8 | \|1.50-1.70| | 6.00-20 | \|0.02-0.10| | 0.0-2.9 | 0.0-0.5 | . 15 | . 17 | | | |
| | | | | | | | | | | | | | |
| I29A: | | | | | | | | | | | | | |
| Hattie--------------- \| | 75 | 0-8 | 40-60\| | \|1.10-1.30| | 0.06-0.20 | \|0.13-0.17| | 6.0-8.9 | 2.0-5.0 | . 28 | . 28 | 5 | 4 | 86 |
| | | 8-22 | 35-60\| | \|1.25-1.45| | 0.06-0.20 | \|0.10-0.19| | 6.0-8.9 | 0.2-2.0 | . 28 | . 28 | | | |
| | | 22-80 | 35-60\| | \|1.25-1.55| | 0.06-0.20 | \|0.09-0.19| | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |
| Clearwater-----------\| | 12 | 0-8 | 40-60\| | \|1.10-1.30| | 0.06-0.20 | \|0.13-0.17| | 6.0-8.9 | 3.0-8.0 | . 28 | . 28 | 5 | 4 | 86 |
| | | 8-35 | 35-60\| | \|1.20-1.50| | 0.06-0.20 | \|0.10-0.19| | 6.0-8.9 | 0.5-2.0 | . 32 | . 32 | | | |
| | | 35-80 | 35-60\| | \|1.25-1.55| | 0.06-0.20 | \|0.09-0.19| | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |
| Reis----------------- \| | 6 | 0-9 | 40-60\| | \|1.10-1.30| | 0.06-0.20 | \|0.13-0.17| | 6.0-8.9 | 3.0-8.0 | . 28 | . 28 | 5 | 4 | 86 |
| | | 9-17 | 40-60\| | $\|1.20-1.50\|$ | 0.06-0.20 | \|0.13-0.17| | 6.0-8.9 | 0.5-8.0 | . 32 | . 32 | | | |
| | | 17-33 | 40-60\| | $\|1.20-1.50\|$ | 0.06-0.20 | \|0.13-0.17| | 6.0-8.9 | 0.5-2.0 | . 32 | . 32 | | | |
| | | 33-42 | 40-60\| | \|1.30-1.60| | 0.06-0.20 | \|0.10-0.16| | 6.0-8.9 | 0.2-1.0 | . 32 | . 32 | | | |
| | | 42-60 | 35-60\| | \|1.25-1.55| | 0.06-0.20 | \|0.09-0.19| | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | 60-80 | 35-60\| | \|1.25-1.55| | 0.06-0.20 | \|0.09-0.19| | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |
| Hattie, very cobbly---\| | 5 | 0-8 | 40-60\| | \|1.10-1.30| | 0.06-0.20 | \|0.13-0.17| | 6.0-8.9 | 2.0-5.0 | . 24 | . 28 | 5 | 4 | 86 |
| | | 8-22 | 35-60\| | \|1.25-1.45| | 0.06-0.20 | \|0.10-0.19| | 6.0-8.9 | 0.2-2.0 | . 28 | . 28 | | | |
| | | 22-80 | 35-60\| | \|1.25-1.55| | 0.06-0.20 | \|0.09-0.19| | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |
| Hilaire--------------\| | 2 | 0-10 | 5-18 | \|1.25-1.45| | 2.00-6.00 | \|0.13-0.18| | 0.0-2.9 | 2.0-5.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 10-34 | 1-8 | \|1.35-1.60| | 6.00-20 | \|0.07-0.11| | 0.0-2.9 | 0.5-1.0 | . 15 | . 15 | | | |
| | | 34-80 | 35-60\| | \|1.25-1.55| | 0.06-0.20 | $\|0.09-0.19\|$ | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | \| |
| | | | | | | | | | | | | | |

Table 23.--Physical Properties of the Soils--Continued

Table 23.--Physical Properties of the Soils--Continued

Table 23.--Physical Properties of the Soils--Continued

| Map symbol and soil name | $\begin{aligned} & \text { Pct. of } \\ & \text { map unit } \end{aligned}$ | Depth | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \end{aligned}$
 density | Permeability | $\begin{aligned} & \text { \| Available } \\ & \text { \| water } \\ & \text { \| capacity } \end{aligned}$ | Linear extensibility | Organic matter | \|Erosion factors | | | \|Wind |erodi|bility group | \| Wind |erodi|bility |index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | | |
| | | | | | | | | | Kw | Kf | T | | |
| | | In | Pct | g / cc | $\mathrm{In} / \mathrm{hr}$ | In/in | Pct | Pct | \| | - | | | index |
| I32A: | | | | | | | | | | | | | |
| Thiefriver------- | 1 | 0-12 | 8-18 | 1.20-1.45 | 2.00-6.00 | 0.13-0.18 | 0.0-2.9 | 3.0-8.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 12-23 | 10-18 | 1.30-1.50 | 2.00-6.00 | 0.09-0.17 | 0.0-2.9 | 0.5-2.0 | . 24 | . 24 | | | |
| | | 23-32 | 2-8 | \|1.45-1.70| | 6.00-20 | \|0.06-0.11 | 0.0-2.9 | 0.1-0.5 | . 17 | . 17 | | | |
| | | 32-80 | 35-60 | \|1.25-1.55| | 0.06-0.20 | \|0.09-0.19| | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |
| Wyandotte- | 1 | 0-8 | 27-30 | \|1.20-1.45| | 0.60-2.00 | \|0.14-0.19 | 0.0-2.9 | 3.0-8.0 | . 32 | . 32 | 5 | 4L | 86 |
| | | 8-15 | 18-25 | \|1.25-1.50| | 0.60-2.00 | \|0.14-0.18| | 0.0-2.9 | 0.2-2.0 | . 32 | . 32 | | | |
| | | 15-34 | 1-5 | \|1.40-1.70| | 6.00-20 | \|0.02-0.07| | 0.0-2.9 | 0.1-0.5 | . 10 | . 15 | | | |
| | | 34-60 | 35-60 | \|1.25-1.55| | 0.06-0.20 | \|0.09-0.19| | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |
| I33A: | | | | | | | | | | | | | |
| Hilaire | 75 | 0-10 | 2-10 | \|1.20-1.40| | 6.00-20 | \|0.10-0.14 | 0.0-2.9 | 2.0-4.0 | . 17 | . 17 | 5 | 2 | 134 |
| | | 10-34 | 1-8 | $\|1.35-1.60\|$ | 6.00-20 | \|0.07-0.11 | 0.0-2.9 | 0.5-1.0 | . 15 | . 15 | | | |
| | | 34-80 | 35-60 | \|1.25-1.55| | 0.06-0.20 | \|0.09-0.19| | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |
| Espelie- | 12 | 0-9 | 5-18 | \|1.20-1.45| | 2.00-6.00 | \|0.13-0.18| | 0.0-2.9 | 3.0-8.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 9-24 | 3-10 | \|1.35-1.60| | 2.00-20 | \|0.06-0.11 | 0.0-2.9 | 0.5-1.0 | . 17 | . 17 | | | |
| | | 24-80 | 35-60 | \|1.25-1.55| | 0.06-0.20 | \|0.09-0.19 | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |
| Huot | 5 | 0-14 | 5-15 | \|1.15-1.45| | 2.00-6.00 | \|0.13-0.18 | 0.0-2.9 | 2.0-5.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 14-26 | 5-15 | \|1.30-1.60| | 2.00-6.00 | \|0.09-0.17| | 0.0-2.9 | 0.2-1.0 | . 20 | . 20 | | | |
| | | 26-34 | 2-8 | $\|1.55-1.70\|$ | 6.00-20 | \|0.06-0.11 | 0.0-2.9 | 0.1-0.5 | . 20 | . 20 | | | |
| | | 34-80 | 35-60 | \|1.25-1.55| | 0.06-0.20 | \|0.09-0.19 | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |
| Flaming- | 2 | $0-12$ | | \|1.20-1.40| | 6.00-20 | \|0.10-0.12| | 0.0-2.9 | 2.0-4.0 | . 17 | . 17 | 5 | 2 | 134 |
| | | 12-17 | 2-10 | \|1.30-1.50| | 6.00-20 | \|0.06-0.12| | 0.0-2.9 | 0.5-3.0 | . 17 | . 17 | | | |
| | | 17-27 | 2-8 | $\|1.30-1.50\|$ | 6.00-20 | \|0.05-0.12 | 0.0-2.9 | 0.2-1.0 | . 17 | . 17 | | | |
| | | 27-60 | 1-8 | $\|1.50-1.70\|$ | 6.00-20 | \|0.05-0.10 | 0.0-2.9 | 0.0-0.5 | . 17 | . 17 | | | |
| | | | | | | | | | | | | | |
| Foxlake- | 2 | 0-19 | 18-27 | \|1.15-1.35| | 0.60-6.00 | \|0.20-0.22 | 0.0-2.9 | 3.0-8.0 | . 24 | . 24 | 5 | 4L | 86 |
| | | 19-38 | 35-60 | \|1.25-1.45| | 0.06-0.20 | \|0.09-0.19 | 6.0-8.9 | 0.5-2.0 | . 28 | . 28 | | | |
| | | 38-49 | 35-60 | \|1.25-1.45| | 0.06-0.20 | \|0.09-0.19| | 6.0-8.9 | 0.1-0.5 | . 28 | . 28 | | | |
| | | 49-80 | 35-60 | \|1.25-1.55| | 0.06-0.20 | \|0.09-0.19 | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |
| Wheatville-- | 2 | 0-9 | 10-20 | \|1.25-1.40| | 0.60-2.00 | \|0.18-0.22 | 0.0-2.9 | 2.0-6.0 | . 28 | . 28 | 5 | 3 | 86 |
| | | 9-31 | 10-18 | $\|1.30-1.50\|$ | 0.60-6.00 | \|0.17-0.22 | 0.0-2.9 | 0.2-2.0 | . 43 | . 43 | | | |
| | | 31-80 | 35-60 | \|1.25-1.55| | 0.06-0.20 | \|0.09-0.19 | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |
| Thiefriver-------- | 1 | 0-12 | 8-18 | \|1.20-1.45| | 2.00-6.00 | \|0.13-0.18| | 0.0-2.9 | 3.0-8.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 12-23 | 10-18 | $\|1.30-1.50\|$ | 2.00-6.00 | \|0.09-0.17| | 0.0-2.9 | 0.5-2.0 | . 24 | . 24 | | | |
| | | 23-32 | 2-8 | \|1.45-1.70| | 6.00-20 | \|0.06-0.11 | 0.0-2.9 | 0.1-0.5 | . 17 | . 17 | | | \| |
| | | 32-80 | 35-60 | \|1.25-1.55| | 0.06-0.20 | \|0.09-0.19 | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | \| |
| | | | | | | | | | | | | | |

Table 23.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Pct. of map unit | Depth | Clay | | $\begin{aligned} & \text { Permea- } \\ & \text { bility } \end{aligned}$ | $\begin{aligned} & \text { \|Available\| } \\ & \text { \| water } \\ & \text { \|capacity } \end{aligned}$ | $\begin{array}{\|c} \text { Linear } \\ \mid \text { extensi- } \\ \text { \| bility } \end{array}$ | Organic
 matter | \|Erosion factors | | | Wind erodi\|bility group | \|Wind |erodibility
 \|index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | Moist | | | | | | | | | |
| | | | | bulk | | | | | Kw | Kf | T | | |
| | | In | Pct | g / cc | In/hr | In/in | Pct | Pct | | | | | |
| 135A: | | | | | | | | | | | | | |
| Ulen------------- | 10 | 0-9 | 2-10 | \|1.20-1.40 | 6.00-20 | \|0.10-0.12| | 0.0-2.9 | 2.0-5.0 | . 17 | . 17 | 5 | 2 | 134 |
| | | 9-42 | 5-15 | \|1.30-1.60 | 2.00-6.00 | \|0.09-0.17| | 0.0-2.9 | 0.2-1.0 | . 24 | . 24 | | | |
| | | 42-60 | 2-8 | \|1.45-1.65 | 6.00-20 | \| 0.05-0.08 | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 | | | |
| | | | | | | | | | | | | | |
| Radium----------- | 5 | 0-14 | 2-8 | \|1.20-1.40 | 6.00-20 | \|0.06-0.12 | 0.0-2.9 | 1.0-3.0 | . 17 | . 17 | 5 | 2 | 134 |
| | | 14-33 | 1-8 | \|1.40-1.65 | 6.00-20 | \|0.03-0.08 | 0.0-2.9 | 0.0-0.5 | . 10 | . 10 | | | |
| | | 33-43 | 1-5 | \|1.55-1.75 | 20-40 | \|0.02-0.05 | 0.0-2.9 | 0.0-0.5 | . 10 | . 17 | | | |
| | | 43-80 | 1-5 | \|1.55-1.75 | 6.00-20 | \|0.03-0.09| | 0.0-2.9 | 0.0-0.5 | . 10 | . 17 | | | |
| | | | | | | | | | | | | | |
| Rosewood--------- | 3 | 0-8 | 5-18 | \|1.00-1.35 | 2.00-6.00 | \|0.16-0.18 | 0.0-2.9 | 3.0-8.0 | . 24 | . 24 | 3 | 3 | 86 |
| | | 8-18 | 6-18 | \|1.30-1.50 | 2.00-6.00 | \|0.09-0.17| | 0.0-2.9 | 0.5-2.0 | . 24 | . 24 | | | |
| | | 18-80 | 2-8 | \|1.45-1.65 | 6.00-20 | \|0.05-0.08| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 | | | |
| | | | | | | | | | | | | | |
| Sandberg--------- | 2 | 0-12 | 2-10 | \|1.20-1.40 | 6.00-20 | \|0.10-0.12 | 0.0-2.9 | 1.0-3.0 | . 17 | . 17 | 5 | 2 | 134 |
| | | 12-19 | 1-5 | \|1.50-1.70 | 6.00-20 | \|0.03-0.10 | 0.0-2.9 | 0.5-1.0 | . 05 | . 10 | | | |
| | | 19-29 | 1-5 | \|1.50-1.70 | 20-40 | \|0.02-0.06| | 0.0-2.9 | 0.5-1.0 | . 05 | . 10 | | | |
| | | 29-80 | 1-5 | \|1.50-1.70 | 20-40 | \| 0.02-0.04| | 0.0-2.9 | 0.0-0.5 | . 05 | . 10 | | | |
| | | | | | | | | | | | | | |
| I36A: | | | | | | | | | | | | | |
| Kittson----------- | 70 | 0-10 | 10-27 | \|1.00-1.30 | 0.60-2.00 | \|0.20-0.22 | 0.0-2.9 | 2.0-5.0 | . 24 | . 24 | 5 | 5 | 56 |
| | | 10-17 | 15-25 | \|1.35-1.55 | 0.60-2.00 | \|0.12-0.19 | 0.0-2.9 | 0.2-2.0 | . 32 | . 32 | | | |
| | | 17-36 | 18-30 | \|1.35-1.55 | 0.60-2.00 | \|0.15-0.19 | 1.0-4.2 | 0.1-1.0 | . 37 | . 37 | | | |
| | | 36-60 | 18-30 | \|1.35-1.55 | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Roliss----------- | 12 | | 18-27 | \|1.10-1.50 | 0.20-2.00 | \|0.17-0.24| | 3.0-5.9 | 3.0-8.0 | . 24 | . 24 | 5 | 4 L | 86 |
| | | 14-20 | 18-30 | \|1.35-1.55 | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.5-2.0 | . 37 | . 37 | | | |
| | | 20-80 | 18-30 | \|1.35-1.55 | 0.60-2.00 | \|0.15-0.19 | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| Hamerly---------- | | | | | | | | | | | | | |
| | 5 | 0-8 | 18-27 | \|1.00-1.30 | 0.60-2.00 | \|0.20-0.22 | 3.0-5.9 | 2.0-5.0 | . 24 | . 24 | 5 | 4 L | 86 |
| | | 8-25 | 18-30 | \|1.35-1.55 | 0.60-2.00 | \|0.15-0.19 | 1.0-4.2 | 0.2-2.0 | . 37 | . 37 | | | |
| | | 25-60 | 18-30 | \|1.35-1.55 | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| Kratka----------- | | | | | | | | | | | | | |
| | 5 | 0-11 | 5-18 | \|1.20-1.50 | 2.00-6.00 | \|0.16-0.18| | 0.0-2.9 | 3.0-8.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 11-18 | 2-10 | \|1.30-1.60 | 6.00-20 | \|0.06-0.11 | 0.0-2.9 | 0.5-2.0 | . 17 | . 17 | | | |
| | | 18-25 | 2-8 | \|1.30-1.60 | 6.00-20 | \|0.06-0.12 | 0.0-2.9 | 0.1-0.5 | . 17 | . 17 | | | |
| | | 25-80 | 18-30 | \|1.35-1.55 | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| Grimstad--------- | 3 | | | | | | | | | | | | |
| | | 0-9 | 10-18 | \|1.15-1.45 | 2.00-6.00 | \|0.14-0.18| | 0.0-2.9 | 2.0-5.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 9-22 | 5-15 | \|1.30-1.60 | 6.00-20 | \|0.09-0.17| | 0.0-2.9 | 0.2-1.0 | . 20 | . 20 | | | |
| | | 22-28 | 2-8 | \|1.45-1.60 | 6.00-20 | \|0.05-0.14 | 0.0-2.9 | 0.1-0.5 | . 20 | . 20 | | | |
| | | 28-60 | 18-30 | \|1.35-1.55 | 0.60-2.00 | \|0.15-0.19 | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |

Table 23.--Physical Properties of the Soils--Continued

Table 23.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Pct. of map unit | Depth | Clay | Moist
 bulk
 density | Permeability | $\begin{aligned} & \text { \| Available } \\ & \text { \| water } \\ & \text { \| capacity } \\ & \hline \end{aligned}$ | Linear extensibility | Organic
 matter | Erosion factors | | | Wind erodibility group | \|Wind |erodibility
 \|index | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | | | | | | Kw | Kf | T | | |
| | | In | Pct | g / cc | In/hr | In/in | Pct | Pct | | | | | |
| I38A: | | | | | | | | | | | | | |
| Kratka---------------\| | 70 | 0-11 | 5-18 | \|1.20-1.50| | 2.00-6.00 | \| 0.16-0.18| | 0.0-2.9 | 3.0-8.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 11-18 | 2-10 | \|1.30-1.60| | 6.00-20 | \|0.06-0.11 | 0.0-2.9 | 0.5-2.0 | . 17 | . 17 | | | |
| | | 18-25 | 2-8 | $\|1.30-1.60\|$ | 6.00-20 | \|0.06-0.12 | 0.0-2.9 | 0.1-0.5 | . 17 | . 17 | | | |
| | | 25-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Smiley--------------\| | 7 | 0-12 | 18-27 | \|1.20-1.50| | 0.60-2.00 | \|0.20-0.24 | 0.0-2.9 | 3.0-8.0 | . 24 | . 24 | 5 | 5 | 56 |
| | | 12-19 | 18-35 | \|1.35-1.65| | 0.60-2.00 | \|0.15-0.19 | 3.0-5.9 | 0.5-2.0 | . 24 | . 24 | | | |
| | | 19-42 | 18-30 | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19 | 1.0-4.2 | 0.2-1.0 | . 37 | . 37 | | | |
| | | 42-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19 | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| Foldahl-------------- | 5 | | | | | | | | | | | | |
| | | 0-12 | 5-15 | \|1.15-1.45| | 2.00-6.00 | \|0.14-0.18| | 0.0-2.9 | 2.0-5.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 12-30 | 1-10 | \|1.45-1.60| | 6.00-20 | \|0.07-0.12| | 0.0-2.9 | 0.2-1.0 | . 17 | . 17 | | | |
| | | 30-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| Kratka, very cobbly---\| | 5 | | | | | | | | | | | | |
| | | 0-11 | 5-18 | \|1.20-1.50| | 2.00-6.00 | \|0.16-0.18 | 0.0-2.9 | 3.0-8.0 | . 15 | . 20 | 5 | 3 | 86 |
| | | 11-18 | 2-10 | \|1.30-1.60| | 6.00-20 | \|0.06-0.11 | 0.0-2.9 | 0.5-2.0 | . 17 | . 17 | | | |
| | | 18-25 | 2-8 | \|1.30-1.60| | 6.00-20 | \|0.06-0.12 | 0.0-2.9 | 0.1-0.5 | . 17 | . 17 | | | |
| | | 25-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | 5 | | | | | | | | | | | | |
| Strathcona-----------\| | | 0-10 | 5-18 | \|1.20-1.50| | 2.00-20 | \|0.13-0.18| | 0.0-2.9 | 3.0-8.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 10-17 | 10-18 | \|1.30-1.50| | 2.00-6.00 | \|0.09-0.17| | 0.0-2.9 | 0.5-2.0 | . 24 | . 24 | | | |
| | | 17-28 | 2-8 | \|1.35-1.60| | 6.00-20 | \|0.05-0.12 | 0.0-2.9 | 0.1-0.5 | . 15 | . 15 | | | |
| | | 28-80 | 18-30 | $\mid 1.35-1.55$ \| | 0.60-2.00 | \|0.15-0.19 | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| Kratka, depressional--\| | | | | | | | | | | | | | |
| | 3 | $0-11$ | | \|1.20-1.50| | 2.00-20 | \|0.20-0.30| | 0.0-2.9 | 3.0-15 | . 20 | . 20 | 5 | 2 | 134 |
| | | 11-18 | 2-10 | $\mid 1.30-1.60$ \| | 6.00-20 | \|0.06-0.11 | 0.0-2.9 | 0.5-2.0 | . 17 | . 17 | | | |
| | | 18-25 | 2-8 | \|1.30-1.60| | 6.00-20 | \|0.06-0.12 | 0.0-2.9 | 0.1-0.5 | . 17 | . 17 | | | |
| | | 25-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| Strandquist----------\| | | | | | | | | | | | | | |
| | 3 | 0-10 | 10-18 | \|1.10-1.40| | 2.00-6.00 | \|0.20-0.22 | 0.0-2.9 | 3.0-8.0 | . 24 | . 24 | 5 | 4L | 86 |
| | | 10-20 | 1-8 | $\|1.50-1.70\|$ | 6.00-20 | \|0.02-0.07| | 0.0-2.9 | 0.5-2.0 | . 10 | . 15 | | | |
| | | 20-60 | 18-30 | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| Linveldt-------------\| | | | | | | | | | | | | | |
| | 2 | 0-9 | 5-15 | \|1.15-1.45| | 2.00-6.00 | \|0.14-0.18 | 0.0-2.9 | 2.0-5.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 9-16 | 12-25 | \|1.25-1.50| | 0.60-6.00 | \|0.12-0.18| | 0.0-2.9 | 0.2-2.0 | . 28 | . 28 | | | |
| | | 16-29 | 1-8 | \|1.45-1.65| | 6.00-20 | \|0.05-0.11 | 0.0-2.9 | 0.1-0.5 | . 15 | . 17 | | | |
| | | 29-45 | 18-30 | $\|1.35-1.55\|$ | 0.60-2.00 | \|0.15-0.19 | 1.0-4.2 | 0.2-1.0 | . 37 | . 37 | | | |
| | | 45-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19 | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |

Table 23.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Pct. of map unit | Depth | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | Permeability | $\begin{aligned} & \text { \|Available\| } \\ & \text { \| water } \\ & \text { \|capacity } \end{aligned}$ | $\begin{array}{\|c} \text { Linear } \\ \text { \| extensi- } \\ \text { bility } \end{array}$ | Organic matter | \|Erosion factors | | | \|Wind
 \|erodi-
 \|bility|
 \|group | \|Wind |erodi|bility
 index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| | | | | | | | | | Kw | Kf | T | | |
| | | In | Pct | g / cc | $\mathrm{In} / \mathrm{hr}$ | In/in | Pct | Pct | | | | | |
| | | | | | | | | | | | | | |
| I39A: | | | | | | | | | | | | | |
| Linveldt- | 65 | 0-9 | 5-15 | 1.15-1.45\| | 2.00-6.00 | 0.14-0.18\| | 0.0-2.9 | 2.0-5.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 9-16 | 12-25 | \|1.25-1.50| | 0.60-6.00 | 0.12-0.18\| | 0.0-2.9 | 0.2-2.0 | . 28 | . 28 | | | |
| | | 16-29 | 1-8 | \|1.45-1.65| | 6.00-20 | \|0.05-0.11| | 0.0-2.9 | 0.1-0.5 | . 15 | . 17 | | | |
| | | 29-45 | 18-30 | \|1.35-1.55| | 0.60-2.00 | 0.15-0.19\| | 1.0-4.2 | 0.2-1.0 | . 37 | . 37 | | | |
| | | 45-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | 0.15-0.19\| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Kratka- | 14 | 0-11 | 5-18 | 1.20-1.50\| | 2.00-6.00 | 0.16-0.18\| | 0.0-2.9 | 3.0-8.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 11-18 | 2-10 | \|1.30-1.60| | 6.00-20 | 0.06-0.11\| | 0.0-2.9 | 0.5-2.0 | . 17 | . 17 | | | |
| | | 18-25 | 2-8 | \|1.30-1.60| | 6.00-20 | 0.06-0.12\| | 0.0-2.9 | 0.1-0.5 | . 17 | . 17 | | | |
| | | 25-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | 0.15-0.19\| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Reiner- | 10 | 0-7 | 5-15 | 1.10-1.35\| | 2.00-6.00 | 0.16-0.18\| | 0.0-2.9 | 2.0-5.0 | . 20 | . 24 | 5 | 3 | 86 |
| | | 7-17 | 25-35 | 1.40-1.65\| | 0.60-2.00 | 0.15-0.19\| | 3.0-5.9 | 0.2-2.0 | . 32 | . 32 | | | |
| | | 17-35 | 18-30 | \|1.35-1.55| | 0.60-2.00 | 0.15-0.19\| | 1.0-4.2 | 0.2-1.0 | . 37 | . 37 | | | |
| | | 35-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | 0.15-0.19 | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Smiley-- | 5 | 0-12 | 18-27 | \|1.20-1.50| | 0.60-2.00 | 0.20-0.24\| | 0.0-2.9 | 3.0-8.0 | . 24 | . 24 | 5 | 5 | 56 |
| | | 12-19 | 18-35 | \|1.35-1.65| | 0.60-2.00 | 0.15-0.19\| | 3.0-5.9 | 0.5-2.0 | . 24 | . 24 | | | |
| | | 19-42 | 18-30 | \|1.35-1.55| | 0.60-2.00 | 0.15-0.19\| | 1.0-4.2 | 0.2-1.0 | . 37 | . 37 | | | |
| | | 42-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | 0.15-0.19\| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Eckvoll- | 3 | | | \|1.20-1.40| | 6.00-20 | \|0.10-0.12| | 0.0-2.9 | 0.5-3.0 | . 17 | . 17 | 5 | 2 | 134 |
| | | 9-25 | 1-10 | \|1.35-1.55| | 6.00-20 | \|0.05-0.12| | 0.0-2.9 | 0.1-1.0 | . 15 | . 15 | | | |
| | | 25-32 | 18-35 | \|1.40-1.70| | 0.20-2.00 | 0.16-0.18\| | 3.0-5.9 | 0.1-1.0 | . 37 | . 37 | | | |
| | | 32-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | 0.15-0.19\| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Foldahl----- | 2 | | 5-15 | 1.15-1.45\| | 2.00-6.00 | 0.14-0.18\| | 0.0-2.9 | 2.0-5.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 12-30 | 1-10 | \|1.45-1.60 | 6.00-20 | \|0.07-0.12| | 0.0-2.9 | 0.2-1.0 | . 17 | . 17 | | | |
| | | 30-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | 0.15-0.19\| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Pelan-- | 1 | 0-6 | $5-15$ | \|1.10-1.35| | 2.00-6.00 | \|0.13-0.15| | 0.0-2.9 | 1.0-3.0 | . 20 | . 24 | 5 | 3 | 86 |
| | | 6-9 | 1-10 | 1.35-1.55\| | 6.00-20 | \|0.05-0.12| | 0.0-2.9 | 0.2-1.0 | . 15 | . 15 | | | |
| | | 9-14 | 15-25 | 1.45-1.65\| | 6.00-20 | \|0.03-0.11| | 0.0-2.9 | 0.2-1.0 | . 20 | . 24 | | | |
| | | 14-20 | 1-5 | \|1.50-1.70| | 6.00-20 | \|0.02-0.07| | 0.0-2.9 | 0.0-0.5 | . 05 | . 15 | | | |
| | | 20-60 | 18-30 | 1.35-1.55\| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| I40B: | | | | | | | | | | | | | |
| Maddock------- | 85 | 0-10 | 2-10 | \|1.20-1.40| | 2.00-20 | \|0.10-0.12| | 0.0-2.9 | 1.0-3.0 | . 17 | . 17 | 5 | 2 | 134 |
| | | 10-14 | 1-8 | 1.30-1.50 | 2.00-20 | $\|0.05-0.12\|$ | 0.0-2.9 | 0.2-1.0 | . 17 | . 17 | | | |
| | | 14-60 | 1-8 | \|1.45-1.65| | 2.00-20 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 17 | . 17 | | | |
| | | | | | | | | | | | | | |

Table 23.--Physical Properties of the Soils--Continued

Table 23.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Pct. of map unit | Depth | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | Permeability | $\begin{aligned} & \text { \|Available\| } \\ & \text { \| water } \\ & \text { \|capacity } \end{aligned}$ | Linear extensibility | Organic matter | \|Erosion factors | | | Wind erodi\|bility group | \|Wind |erodi|bility
 \|index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | | |
| | | | | | | | | | Kw | Kf | T | | |
| | | In | Pct | g / cc | $\mathrm{In} / \mathrm{hr}$ | In/in | Pct | Pct | | | | | |
| | | | | | | | | | | | | | |
| 147A: | | | | | | | | | | | | | |
| Garborg | 5 | 0-12 | 2-10 | 1.20-1.40\| | 6.00-20 | \|0.10-0.13| | 0.0-2.9 | 2.0-6.0 | . 17 | . 17 | 5 | 2 | 134 |
| | | 12-41 | 2-10 | \|1.35-1.55| | 2.00-20 | \|0.06-0.12 | 0.0-2.9 | 0.5-2.0 | . 17 | . 17 | | | |
| | | 41-59 | 1-8 | \|1.45-1.65| | 2.00-20 | \|0.06-0.10 | 0.0-2.9 | 0.0-0.5 | . 17 | . 17 | | | |
| | | 59-80 | 1-8 | 1.45-1.65\| | 2.00-20 | \|0.06-0.10 | 0.0-2.9 | 0.0-0.5 | . 17 | . 17 | | | |
| | | | | | | | | | | | | | |
| Hamar | 3 | 0-12 | 2-10 | 1.20-1.40\| | 2.00-20 | \|0.10-0.13 | 0.0-2.9 | 3.0-8.0 | . 17 | . 17 | 5 | 2 | 134 |
| | | 12-17 | 2-10 | \|1.35-1.55| | 2.00-20 | \|0.06-0.12 | 0.0-2.9 | 0.5-2.0 | . 17 | . 17 | | | |
| | | 17-40 | 1-8 | \|1.45-1.65| | 2.00-20 | \|0.06-0.10 | 0.0-2.9 | 0.0-0.5 | . 17 | . 17 | | | |
| | | 40-47 | 2-10 | \|1.30-1.50| | 2.00-20 | \|0.10-0.13| | 0.0-2.9 | 1.0-4.0 | . 17 | . 17 | | | |
| | | 47-60 | 1-8 | \|1.45-1.65| | 2.00-20 | \|0.06-0.10 | 0.0-2.9 | 0.0-0.5 | . 17 | . 17 | | | |
| | | | | | | | | | | | | | |
| Radium- | 2 | 0-14 | 2-8 | 1.20-1.40\| | 6.00-20 | \|0.06-0.12 | 0.0-2.9 | 1.0-3.0 | . 17 | . 17 | 5 | 2 | 134 |
| | | 14-33 | 1-8 | \|1.40-1.65| | 6.00-20 | \|0.03-0.08 | 0.0-2.9 | 0.0-0.5 | . 10 | . 10 | | | |
| | | 33-43 | 1-5 | \|1.55-1.75| | 20-40 | \|0.02-0.05 | 0.0-2.9 | 0.0-0.5 | . 10 | . 17 | | | |
| | | 43-80 | 1-5 | 1.55-1.75\| | 6.00-20 | \|0.03-0.09 | 0.0-2.9 | 0.0-0.5 | . 10 | . 17 | | | |
| | | | | | | | | | | | | | |
| Ulen- | 2 | 0-9 | 2-10 | 1.20-1.40\| | 6.00-20 | \|0.10-0.12 | 0.0-2.9 | 2.0-5.0 | . 17 | . 17 | 5 | 2 | 134 |
| | | 9-42 | 5-15 | \|1.30-1.60| | 2.00-6.00 | \|0.09-0.17| | 0.0-2.9 | 0.2-1.0 | . 24 | . 24 | | | |
| | | 42-60 | 2-8 | \|1.45-1.65| | 6.00-20 | \|0.05-0.08 | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 | | | |
| | | | | | | | | | | | | | |
| Maddock- | 1 | 0-10 | 2-10 | 1.20-1.40\| | 2.00-20 | \|0.10-0.12 | 0.0-2.9 | 1.0-3.0 | . 17 | . 17 | 5 | 2 | 134 |
| | | 10-14 | 1-8 | 1.30-1.50\| | 2.00-20 | \|0.05-0.12 | 0.0-2.9 | 0.2-1.0 | . 17 | . 17 | | | |
| | | 14-60 | 1-8 | 1.45-1.65\| | 2.00-20 | \|0.05-0.10 | 0.0-2.9 | 0.0-0.5 | . 17 | . 17 | | | |
| | | | | | | | | | | | | | |
| I48A: | | | | | | | | | | | | | |
| Radium- | 75 | | 2-8 | 1.20-1.40\| | 6.00-20 | \|0.06-0.12 | 0.0-2.9 | 1.0-3.0 | . 17 | . 17 | 5 | 2 | 134 |
| | | 14-33 | 1-8 | \|1.40-1.65| | 6.00-20 | \|0.03-0.08 | 0.0-2.9 | 0.0-0.5 | . 10 | . 10 | | | |
| | | 33-43 | 1-5 | \|1.55-1.75| | 20-40 | \|0.02-0.05 | 0.0-2.9 | 0.0-0.5 | . 10 | . 17 | | | |
| | | 43-80 | 1-5 | 1.55-1.75\| | 6.00-20 | \|0.03-0.09 | 0.0-2.9 | 0.0-0.5 | . 10 | . 17 | | | |
| | | | | | | | | | | | | | |
| Sandberg- | 7 | $0-12$ | 2-10 | 1.20-1.40\| | 6.00-20 | \|0.10-0.12 | 0.0-2.9 | 1.0-3.0 | . 17 | . 17 | 5 | 2 | 134 |
| | | 12-19 | 1-5 | \|1.50-1.70| | 6.00-20 | \|0.03-0.10 | 0.0-2.9 | 0.5-1.0 | . 05 | . 10 | | | |
| | | 19-29 | 1-5 | \|1.50-1.70| | 20-40 | \|0.02-0.06| | 0.0-2.9 | 0.5-1.0 | . 05 | . 10 | | | |
| | | 29-80 | 1-5 | \|1.50-1.70| | 20-40 | \|0.02-0.04 | 0.0-2.9 | 0.0-0.5 | . 05 | . 10 | | | |
| | | | | | | | | | | | | | |
| Oylen- | 5 | 0-10 | 5-12 | 1.50-1.70\| | 2.00-6.00 | \|0.12-0.16| | 0.0-2.9 | 2.0-4.0 | . 20 | . 20 | 3 | 3 | 86 |
| | | 10-18 | 7-18 | \|1.60-1.70| | 0.60-2.00 | \|0.12-0.18 | 0.0-2.9 | 0.5-2.0 | . 24 | . 24 | | | |
| | | 18-38 | 2-5 | \|1.45-1.60| | 6.00-20 | \|0.03-0.08| | 0.0-2.9 | 0.0-0.5 | . 10 | . 10 | | | |
| | | 38-80 | 0-5 | 1.45-1.60\| | 6.00-20 | \|0.03-0.07| | 0.0-2.9 | 0.0-0.5 | . 05 | . 10 | | | |
| | | | | | | | | | | | | | |
| Flaming- | 4 | 0-12 | 2-10 | \|1.20-1.40| | 6.00-20 | \|0.10-0.12| | 0.0-2.9 | 2.0-4.0 | . 17 | . 17 | 5 | 2 | 134 |
| | | 12-17 | 2-10 | \|1.30-1.50| | 6.00-20 | \|0.06-0.12| | 0.0-2.9 | 0.5-3.0 | . 17 | . 17 | | | |
| | | 17-27 | 2-8 | 1.30-1.50\| | 6.00-20 | \|0.05-0.12 | 0.0-2.9 | 0.2-1.0 | . 17 | . 17 | | | |
| | | 27-60 | 1-8 | $\|1.50-1.70\|$ | 6.00-20 | \|0.05-0.10 | 0.0-2.9 | 0.0-0.5 | . 17 | . 17 | | | \| |
| | | | | | | | | | | | | | |

Table 23.--Physical Properties of the Soils--Continued

Table 23.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Pct. of map unit | Depth | Clay | | Permeability | $\begin{array}{\|l\|} \mid \text { Available } \\ \text { \| water } \\ \text { \| capacity } \end{array}$ | Linear extensibility | Organic matter | \| Erosion factors | | | Wind
 \|erodi-|
 \|bility|
 \|group | \| Wind |erodibility index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | Moist | | | | | | | | | |
| | | | | $\begin{aligned} & \text { bulk } \\ & \text { density } \end{aligned}$ | | | | | Kw | Kf | T | | |
| | | In | Pct | g / cc | In/ hr | In/in | Pct | Pct | | | | | |
| | | | | | | | | | | | | | |
| I50A: | | | | | | | | | | | | | |
| Smiley--------------- \| | 12 | 0-12 | 18-27 | \|1.20-1.50| | 0.60-2.00 | \|0.20-0.24| | 0.0-2.9 | 3.0-8.0 | . 24 | . 24 | 5 | 5 | 56 |
| | | 12-19 | 18-35 | \|1.35-1.65| | 0.60-2.00 | \|0.15-0.19| | 3.0-5.9 | 0.5-2.0 | . 24 | . 24 | | | |
| | | 19-42 | 18-30 | \|1.35-1.55| | 0.60-2.00 | 0.15-0.19\| | 1.0-4.2 | 0.2-1.0 | . 37 | . 37 | | | |
| | | 42-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | 0.15-0.19\| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Reiner, very cobbly---\| | 7 | 0-7 | 5-15 | \|1.10-1.35| | 2.00-6.00 | \|0.16-0.18| | 0.0-2.9 | 2.0-5.0 | . 17 | . 20 | 5 | 3 | 86 |
| | | 7-17 | 25-35 | \|1.40-1.65| | 0.60-2.00 | 0.15-0.19\| | 3.0-5.9 | 0.2-2.0 | . 32 | . 32 | | | |
| | | 17-35 | 18-30 | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.2-1.0 | . 37 | . 37 | | | |
| | | 35-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | 0.15-0.19\| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Linveldt------------- \| | 5 | 0-9 | 5-15 | \|1.15-1.45| | 2.00-6.00 | \|0.14-0.18| | 0.0-2.9 | 2.0-5.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 9-16 | 12-25 | \|1.25-1.50| | 0.60-6.00 | 0.12-0.18\| | 0.0-2.9 | 0.2-2.0 | . 28 | . 28 | | | |
| | | 16-29 | 1-8 | \|1.45-1.65| | 6.00-20 | \|0.05-0.11| | 0.0-2.9 | 0.1-0.5 | . 15 | . 17 | | | |
| | | 29-45 | 18-30 | \|1.35-1.55| | 0.60-2.00 | 0.15-0.19\| | 1.0-4.2 | 0.2-1.0 | . 37 | . 37 | | | |
| | | 45-80 | 18-30\| | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Eckvoll--------------- \| | 3 | 0-9 | 2-10 | \|1.20-1.40| | 6.00-20 | \|0.10-0.12| | 0.0-2.9 | 0.5-3.0 | . 17 | . 17 | 5 | 2 | 134 |
| | | 9-25 | 1-10 | \|1.35-1.55| | 6.00-20 | $\|0.05-0.12\|$ | 0.0-2.9 | 0.1-1.0 | . 15 | . 15 | | | |
| | | 25-32 | 18-35 | \|1.40-1.70| | 0.20-2.00 | \|0.16-0.18| | 3.0-5.9 | 0.1-1.0 | . 37 | . 37 | | | |
| | | 32-80 | 18-30\| | \|1.35-1.55| | 0.60-2.00 | 0.15-0.19\| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Kratka---------------- \| | 3 | 0-11 | 5-18 | \|1.20-1.50| | 2.00-6.00 | \|0.16-0.18| | 0.0-2.9 | 3.0-8.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 11-18 | 2-10 | \|1.30-1.60| | 6.00-20 | \|0.06-0.11| | 0.0-2.9 | 0.5-2.0 | . 17 | . 17 | | | |
| | | 18-25 | 2-8 | \|1.30-1.60| | 6.00-20 | \|0.06-0.12| | 0.0-2.9 | 0.1-0.5 | . 17 | . 17 | | | |
| | | 25-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | 0.15-0.19 | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| I51A: | | | | | | | | | | | | | |
| Reiner---------------- \| | 65 | | | \|1.20-1.40| | 6.00-20 | \|0.10-0.13| | 0.0-2.9 | 1.0-3.0 | . 17 | . 17 | 5 | 2 | 134 |
| | | 7-17 | 25-35 | \|1.40-1.65| | 0.60-2.00 | \|0.15-0.19| | 3.0-5.9 | 0.2-2.0 | . 32 | . 32 | | | |
| | | 17-35 | 18-30\| | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.2-1.0 | . 37 | . 37 | | | |
| | | 35-80 | 18-30\| | \|1.35-1.55| | 0.60-2.00 | $\|0.15-0.19\|$ | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Smiley--------------- \| | 9 | 0-12 | 18-27 | \|1.20-1.50| | 0.60-2.00 | \|0.20-0.24| | 0.0-2.9 | 3.0-8.0 | . 24 | . 24 | 5 | 5 | 56 |
| | | 12-19 | 18-35 | \|1.35-1.65| | 0.60-2.00 | \|0.15-0.19| | 3.0-5.9 | 0.5-2.0 | . 24 | . 24 | | | |
| | | 19-42 | 18-30\| | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.2-1.0 | . 37 | . 37 | | | |
| | | 42-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | $\|0.15-0.19\|$ | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Reiner fine sandy loam\| | 8 | 0-7 | 5-15 | \|1.10-1.35| | 2.00-6.00 | \|0.16-0.18| | 0.0-2.9 | 2.0-5.0 | . 20 | . 20 | 5 | \| 3 | 86 |
| | | 7-17 | 25-35 | \|1.40-1.65| | 0.60-2.00 | \|0.15-0.19| | 3.0-5.9 | 0.2-2.0 | . 32 | . 32 | | | |
| | | 17-35 | 18-30 | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.2-1.0 | . 37 | . 37 | | | |
| | | 35-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | $\|0.15-0.19\|$ | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | \| | |
| | | | | | | | | | | | | | |

Table 23.--Physical Properties of the Soils--Continued

Table 23.--Physical Properties of the Soils--Continued

Table 23.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Pct. of map unit | Depth | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | $\begin{aligned} & \text { Permea- } \\ & \text { bility } \end{aligned}$ | $\begin{array}{\|l\|} \text { \|Available\| } \\ \text { \| water } \\ \text { \|capacity } \end{array}$ | Linear extensibility | Organic
 matter | \|Erosion factors | | | Wind
 erodi-
 bility
 group | \| Wind erodibility index | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | | | | | | Kw | Kf | T | | |
| | | In | Pct | g / cc | In/ hr | In/in | Pct | Pct | | | | | |
| | | | | | | | | | | | | | |
| I54A: | | | | | | | | | | | | | |
| Roliss, depressional--\| | 80 | 0-14 | 15-27 | 1.10-1.40\| | 0.20-2.00 | \|0.20-0.25| | 3.0-5.9 | 3.0-15 | . 24 | . 24 | 5 | 6 | 48 |
| | | 14-20 | 18-30\| | 1.35-1.55 | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 1.0-3.0 | . 37 | . 37 | | | |
| | | 20-80 | 18-30 | 1.35-1.55 | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Roliss--------------- | 12 | 0-14 | 18-27 | 1.10-1.50\| | 0.20-2.00 | \|0.17-0.24| | 3.0-5.9 | 3.0-8.0 | . 24 | . 24 | 5 | 4L | 86 |
| | | 14-20 | 18-30\| | 1.35-1.55 | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.5-2.0 | . 37 | . 37 | | | |
| | | 20-80 | 18-30 | 1.35-1.55 | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Hamre---------------- \| | 5 | 0-13 | 0-0 | 0.10-0.40\| | 0.20-6.00 | \|0.35-0.48| | --- | 50-95 | . 02 | . 02 | 5 | 2 | 134 |
| | | 13-18 | 18-35 | 1.25-1.50\| | 0.20-2.00 | \|0.17-0.22| | 3.0-5.9 | 2.0-10 | . 32 | . 32 | | | |
| | | 18-71 | 18-30 | 1.35-1.55 | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | 71-80 | 18-30 | 1.35-1.55 | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Kratka---------------\| | 3 | 0-11 | 5-18 | 1.20-1.50\| | 2.00-6.00 | \|0.16-0.18| | 0.0-2.9 | 3.0-8.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 11-18 | 2-10 | 1.30-1.60\| | 6.00-20 | \|0.06-0.11| | 0.0-2.9 | 0.5-2.0 | . 17 | . 17 | | | |
| | | 18-25 | 2-8 | 1.30-1.60\| | 6.00-20 | \|0.06-0.12| | 0.0-2.9 | 0.1-0.5 | . 17 | . 17 | | | |
| | | 25-80 | 18-30 | 1.35-1.55 | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| I55A: | | | | | | | | | | | | | |
| Rosewood-------------\| | 75 | 0-8 | 5-18 | 1.00-1.35 | 2.00-6.00 | \|0.16-0.18| | 0.0-2.9 | 3.0-8.0 | . 24 | . 24 | 3 | 3 | 86 |
| | | 8-18 | 6-18 | 1.30-1.50\| | 2.00-6.00 | \|0.09-0.17| | 0.0-2.9 | 0.5-2.0 | . 24 | . 24 | | | |
| | | 18-80 | 2-8 | 1.45-1.65 | 6.00-20 | \|0.05-0.08| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 | | | |
| | | | | | | | | | | | | | |
| Ulen----------------- \| | 10 | 0-9 | 8-18 | 1.15-1.45 | 2.00-6.00 | \|0.13-0.18| | 0.0-2.9 | 2.0-5.0 | . 20 | . 20 | 3 | 3 | 86 |
| | | 9-42 | 5-15 | 1.30-1.60\| | 2.00-6.00 | \|0.09-0.17| | 0.0-2.9 | 0.2-1.0 | . 24 | . 24 | | | |
| | | 42-60 | 2-8 | 1.45-1.65\| | 6.00-20 | \|0.05-0.08| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 | | | |
| | | | | | | | | | | | | | |
| Hamar----------------\| | 6 | 0-12 | 2-10 | 1.20-1.40\| | 2.00-20 | \|0.10-0.13| | 0.0-2.9 | 3.0-8.0 | . 17 | . 17 | 5 | 2 | 134 |
| | | 12-17 | 2-10 | 1.35-1.55 | 2.00-20 | \|0.06-0.12| | 0.0-2.9 | 0.5-2.0 | . 17 | . 17 | | | |
| | | 17-40 | 1-8 | 1.45-1.65 | 2.00-20 | \|0.06-0.10| | 0.0-2.9 | 0.0-0.5 | . 17 | . 17 | | | |
| | | 40-47 | 2-10 | 1.30-1.50\| | 2.00-20 | \|0.10-0.13| | 0.0-2.9 | 1.0-4.0 | . 17 | . 17 | | | |
| | | 47-60 | 1-8 | 1.45-1.65\| | 2.00-20 | \|0.06-0.10| | 0.0-2.9 | 0.0-0.5 | . 17 | . 17 | | | |
| | | | | | | | | | | | | | |
| Rosewood, depressional\| | 3 | 0-8 | 5-18 | 1.00-1.35\| | 2.00-6.00 | \|0.20-0.30| | 0.0-2.9 | 3.0-15 | . 20 | . 20 | 3 | 3 | 86 |
| | | 8-18 | 6-18 | 1.30-1.50\| | 2.00-6.00 | \|0.09-0.17| | 0.0-2.9 | 0.5-2.0 | . 24 | . 24 | | | |
| | | 18-80 | 2-8 | 1.45-1.65 | 6.00-20 | \|0.05-0.08| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 | | | |
| | | | | | | | | | | | | | |
| Syrene--------------- \| | 3 | 0-9 | 8-18 | 1.10-1.40\| | 0.60-2.00 | \|0.13-0.15| | 0.0-2.9 | 3.0-8.0 | . 20 | . 20 | 3 | 3 | 86 |
| | | 9-17 | 10-25 | 1.30-1.50\| | 2.00-6.00 | \|0.12-0.19| | 0.0-2.9 | 0.5-2.0 | . 32 | . 32 | | | |
| | | 17-27 | 1-5 | 1.50-1.70\| | 6.00-20 | \|0.02-0.04| | 0.0-2.9 | 0.0-0.5 | . 05 | . 10 | | | |
| | | 27-60 | 1-5 | 1.50-1.70\| | 6.00-20 | \|0.02-0.04| | 0.0-2.9 | 0.0-0.5 | . 05 | . 10 | | | \| |
| | | | | | | | | | | | | | |

Table 23.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Pct. of map unit | Depth | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | Permeability | $\begin{aligned} & \text { \| Available } \\ & \text { \| water } \\ & \text { \| capacity } \\ & \hline \end{aligned}$ | Linear \|extensibility | Organic matter | Erosion factors | | | Wind erodibility group | \|Wind |erodi|bility
 \|index | | | | | | | | | | | |
|---|
| | | | | | | | | | | | | | |
| | | | | | | | | | Kw | Kf | T | | |
| | | In | Pct | g / cc | $\mathrm{In} / \mathrm{hr}$ | In/in | Pct | Pct | | | | | |
| I55A: | | | | | | | | | | | | | |
| |
| Karlsruhe--------- | 1 | 0-15 | 5-15 | \|1.10-1.40| | 2.00-6.00 | 0.10-0.15 | 0.0-2.9 | 2.0-6.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 15-30 | 2-12 | $\|1.20-1.60\|$ | 2.00-20 | 0.09-0.14 | 0.0-2.9 | 0.5-2.0 | . 20 | . 20 | | | |
| | | 30-60 | 0-5 | \|1.30-1.60| | 6.00-40 | 0.02-0.07 | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 | | | |
| | | | | | | | | | | | | | |
| Strathcona------- | 1 | 0-10 | 5-18 | \|1.20-1.50| | 2.00-20 | 0.13-0.18 | 0.0-2.9 | 3.0-8.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 10-17 | 10-18 | \|1.30-1.50| | 2.00-6.00 | \|0.09-0.17| | 0.0-2.9 | 0.5-2.0 | . 24 | . 24 | | | |
| | | 17-28 | 2-8 | \|1.35-1.60| | 6.00-20 | \|0.05-0.12| | 0.0-2.9 | 0.1-0.5 | . 15 | . 15 | | | |
| | | 28-80 | 18-30\| | \|1.35-1.55| | 0.60-2.00 | 0.15-0.19 | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Thiefriver-------- | 1 | 0-12 | | \|1.20-1.45| | 2.00-6.00 | 0.13-0.18 | 0.0-2.9 | 3.0-8.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 12-23 | 10-18 | \|1.30-1.50| | 2.00-6.00 | 0.09-0.17\| | 0.0-2.9 | 0.5-2.0 | . 24 | . 24 | | | |
| | | 23-32 | 2-8 | \|1.45-1.70| | 6.00-20 | 0.06-0.11 | 0.0-2.9 | 0.1-0.5 | . 17 | . 17 | | | |
| | | 32-80 | 35-60\| | \|1.25-1.55| | 0.06-0.20 | 0.09-0.19 | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |
| I56A: | | | | | | | | | | | | | |
| Rosewood--------- | 50 | 0-8 | 5-18 | \|1.00-1.35| | 2.00-6.00 | \|0.16-0.18| | 0.0-2.9 | 3.0-8.0 | . 24 | . 24 | 3 | 3 | 86 |
| | | 8-18 | 6-18 | \|1.30-1.50| | 2.00-6.00 | \|0.09-0.17| | 0.0-2.9 | 0.5-2.0 | . 24 | . 24 | | | |
| | | 18-80 | 2-8 | \|1.45-1.65| | 6.00-20 | \|0.05-0.08| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 | | | |
| | | | | | | | | | | | | | |
| Venlo------------- | 40 | 0-13 | 5-10 | \|1.20-1.30| | 6.00-20 | 0.13-0.18 | 0.0-2.9 | 3.0-15 | . 20 | . 20 | 5 | 3 | 86 |
| | | 13-60 | 1-8 | \|1.45-1.65| | 2.00-20 | \|0.06-0.10| | 0.0-2.9 | 0.0-0.5 | . 17 | . 17 | | | |
| | | | | | | | | | | | | | |
| Deerwood--------- | 3 | 0-10 | 0-0 | \|0.15-0.35| | 0.20-6.00 | \|0.35-0.48| | --- | 50-95 | . 02 | . 02 | 3 | 2 | 134 |
| | | 10-12 | 2-15 | \|1.25-1.45| | 2.00-20 | \|0.09-0.17| | 0.0-2.9 | 2.0-10 | . 17 | . 17 | | | |
| | | 12-60 | 1-8 | $\|1.50-1.70\|$ | 6.00-20 | $\|0.02-0.10\|$ | 0.0-2.9 | 0.0-0.5 | . 15 | . 17 | | | |
| | | | | | | | | | | | | | |
| Syrene----------- | 3 | 0-9 | 8-18 | \|1.10-1.40| | 0.60-2.00 | 0.13-0.15 | 0.0-2.9 | 3.0-8.0 | . 20 | . 20 | 3 | 3 | 86 |
| | | 9-17 | 10-25 | $\|1.30-1.50\|$ | 2.00-6.00 | $\|0.12-0.19\|$ | 0.0-2.9 | 0.5-2.0 | . 32 | . 32 | | | |
| | | 17-27 | 1-5 | $\|1.50-1.70\|$ | 6.00-20 | \|0.02-0.04| | 0.0-2.9 | 0.0-0.5 | . 05 | . 10 | | | |
| | | 27-60 | 1-5 | $\|1.50-1.70\|$ | 6.00-20 | \|0.02-0.04| | 0.0-2.9 | 0.0-0.5 | . 05 | . 10 | | | |
| | | | | | | | | | | | | | |
| Ulen------------- | 2 | 0-9 | 2-10 | \|1.20-1.40| | 6.00-20 | \|0.10-0.12| | 0.0-2.9 | 2.0-5.0 | . 17 | . 17 | 5 | 2 | 134 |
| | | 9-42 | 5-15 | \|1.30-1.60| | 2.00-6.00 | \|0.09-0.17| | 0.0-2.9 | 0.2-1.0 | . 24 | . 24 | | | |
| | | 42-60 | 2-8 | \|1.45-1.65| | 6.00-20 | \|0.05-0.08| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 | | | |
| | | | | | | | | | | | | | |
| Strathcona-------- | 1 | 0-10 | 5-18 | \|1.20-1.50| | 2.00-20 | \|0.13-0.18| | 0.0-2.9 | 3.0-8.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 10-17 | 10-18 | \|1.30-1.50| | 2.00-6.00 | \|0.09-0.17| | 0.0-2.9 | 0.5-2.0 | . 24 | . 24 | | | |
| | | 17-28 | 2-8 | \|1.35-1.60| | 6.00-20 | \|0.05-0.12| | 0.0-2.9 | 0.1-0.5 | . 15 | . 15 | | | |
| | | 28-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | $\|0.15-0.19\|$ | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Thiefriver-------- | 1 | 0-12 | 8-18 | \|1.20-1.45| | 2.00-6.00 | \|0.13-0.18| | 0.0-2.9 | 3.0-8.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 12-23 | 10-18 | \|1.30-1.50| | 2.00-6.00 | \|0.09-0.17| | 0.0-2.9 | 0.5-2.0 | . 24 | . 24 | | | \| |
| | | 23-32 | 2-8 | \|1.45-1.70| | 6.00-20 | \|0.06-0.11| | 0.0-2.9 | 0.1-0.5 | . 17 | . 17 | | | |
| | | 32-80 | 35-60\| | \|1.25-1.55| | 0.06-0.20 | 0.09-0.19 | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | \| |
| | | | | | | | | | | | | | |

Table 23.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Pct. of map unit | Depth | Clay | | Permeability | $\begin{array}{\|l\|} \mid \text { Available\| } \\ \mid \text { water } \\ \text { \|capacity } \end{array}$ | Linear extensibility | Organic
 matter | \|Erosion factors | | | \|Wind erodi|bility group | \|Wind erodi|bility index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | Moist | | | | | | | | | |
| | | | | bulk | | | | | Kw | Kf | T | | |
| | | In | Pct | g / cc | In/hr | In/in | Pct | Pct | | | | | |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| I57B:
 Sandberg | 50 | 0-12 | 2-10 | \|1.20-1.40| | 6.00-20 | 0.10-0.12\| | 0.0-2.9 | 1.0-3.0 | . 17 | . 17 | 5 | 2 | 134 |
| | | 12-19 | 1-5 | $\|1.50-1.70\|$ | 6.00-20 | \|0.03-0.10| | 0.0-2.9 | 0.5-1.0 | . 05 | . 10 | | | |
| | | 19-29 | 1-5 | \|1.50-1.70| | 20-40 | \|0.02-0.06| | 0.0-2.9 | 0.5-1.0 | . 05 | . 10 | | | |
| | | 29-80 | 1-5 | \|1.50-1.70| | 20-40 | 0.02-0.04\| | 0.0-2.9 | 0.0-0.5 | . 05 | . 10 | | | |
| | | | | | | | | | | | | | |
| Radium----------- | 25 | 0-14 | 2-8 | \|1.20-1.40| | 6.00-20 | 0.06-0.12\| | 0.0-2.9 | 1.0-3.0 | . 17 | . 17 | 5 | 2 | 134 |
| | | 14-33 | 1-8 | \|1.40-1.65| | 6.00-20 | \|0.03-0.08| | 0.0-2.9 | 0.0-0.5 | . 10 | . 10 | | | |
| | | 33-43 | 1-5 | \|1.55-1.75| | 20-40 | \|0.02-0.05| | 0.0-2.9 | 0.0-0.5 | . 10 | . 17 | | | |
| | | 43-80 | 1-5 | \|1.55-1.75| | 6.00-20 | \|0.03-0.09| | 0.0-2.9 | 0.0-0.5 | . 10 | . 17 | | | |
| | | | | | | | | | | | | | |
| Sioux------------ | 8 | 0-5 | 10-18 | \|1.25-1.40| | 2.00-6.00 | 0.11-0.15 | 0.0-2.9 | 1.0-3.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 5-8 | 1-10 | \|1.20-1.50| | 2.00-6.00 | \|0.10-0.15| | 0.0-2.9 | 0.5-2.0 | . 15 | . 20 | | | |
| | | 8-60 | 1-10 | \|1.60-1.70| | 6.00-60 | \| $0.03-0.06 \mid$ | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 | | | |
| | | | | | | | | | | | | | |
| Oylen------------ | 7 | 0-10 | 5-12 | \|1.50-1.70| | 2.00-6.00 | 0.12-0.16\| | 0.0-2.9 | 2.0-4.0 | . 20 | . 20 | 3 | 3 | 86 |
| | | 10-18 | 7-18 | \|1.60-1.70| | 0.60-2.00 | 0.12-0.18\| | 0.0-2.9 | 0.5-2.0 | . 24 | . 24 | | | |
| | | 18-38 | 2-5 | $\|1.45-1.60\|$ | 6.00-20 | \|0.03-0.08| | 0.0-2.9 | 0.0-0.5 | . 10 | . 10 | | | |
| | | 38-80 | 0-5 | \|1.45-1.60| | 6.00-20 | \|0.03-0.07| | 0.0-2.9 | 0.0-0.5 | . 05 | . 10 | | | |
| | | | | | | | | | | | | | |
| Flaming---------- | 5 | 0-12 | 2-10 | \|1.20-1.40| | 6.00-20 | \|0.10-0.12| | 0.0-2.9 | 2.0-4.0 | . 17 | . 17 | 5 | 2 | 134 |
| | | 12-17 | 2-10 | \|1.30-1.50| | 6.00-20 | \|0.06-0.12| | 0.0-2.9 | 0.5-3.0 | . 17 | . 17 | | | |
| | | 17-27 | 2-8 | $\|1.30-1.50\|$ | 6.00-20 | \|0.05-0.12| | 0.0-2.9 | 0.2-1.0 | . 17 | . 17 | | | |
| | | 27-60 | 1-8 | \|1.50-1.70| | 6.00-20 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 17 | . 17 | | | |
| | | | | | | | | | | | | | |
| Garborg----------- | 5 | 0-12 | 2-10 | \|1.20-1.40| | 6.00-20 | \|0.10-0.13| | 0.0-2.9 | 2.0-6.0 | . 17 | . 17 | 5 | 2 | 134 |
| | | 12-41 | 2-10 | \|1.35-1.55| | 2.00-20 | \|0.06-0.12| | 0.0-2.9 | 0.5-2.0 | . 17 | . 17 | | | |
| | | 41-59 | 1-8 | \|1.45-1.65| | 2.00-20 | \|0.06-0.10| | 0.0-2.9 | 0.0-0.5 | . 17 | . 17 | | | |
| | | 59-80 | 1-8 | \|1.45-1.65| | 2.00-20 | \|0.06-0.10| | 0.0-2.9 | 0.0-0.5 | . 17 | . 17 | | | |
| | | | | | | | | | | | | | |
| I58A : | | | | | | | | | | | | | |
| Seelyeville------ | 90 | 0-10 | 0-0 | \|0.10-0.25| | 0.20-6.00 | 0.35-0.48\| | --- | 75-99 | . 02 | . 02 | 3 | 2 | 134 |
| | | 10-80 | 0-0 | \|0.10-0.25| | 0.20-6.00 | 0.35-0.48\| | --- | 75-99 | . 02 | . 02 | | | |
| | | | | | | | | | | | | | |
| Cathro------------ | 3 | 0-11 | 0-0 | \|0.10-0.35| | 0.20-6.00 | \|0.35-0.48| | --- | 75-95 | . 02 | . 02 | 2 | 2 | 134 |
| | | 11-23 | 0-0 | \|0.10-0.35| | 0.20-6.00 | \|0.35-0.48| | --- | 85-95 | . 02 | . 02 | | | |
| | | 23-60 | 18-30 | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-1.0 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Dora------------- | 3 | 0-12 | 0-0 | \|0.10-0.25| | 0.60-6.00 | \|0.48-0.58| | --- | 85-95 | . 02 | . 02 | 2 | 2 | 134 |
| | | 12-32 | 0-0 | \|0.15-0.35| | 0.20-6.00 | \|0.35-0.48| | --- | 85-95 | . 02 | . 02 | | | |
| | | 32-36 | 25-40 | \|1.15-1.35| | 0.20-2.00 | \|0.18-0.24| | 3.0-5.9 | 3.0-15 | . 28 | . 28 | | | |
| | | 36-60 | 35-70 | \|1.40-1.65| | 0.06-0.20 | \|0.10-0.20| | 6.0-8.9 | 0.0-0.5 | . 32 | . 32 | | | |
| | | | | | | | | | | | | | |
| Markey------------ | 3 | 0-32 | 0-0 | \|0.10-0.35| | 0.20-6.00 | \|0.35-0.48| | --- | 75-95 | . 02 | . 02 | 2 | 2 | 134 |
| | | 32-60 | 2-8 | \|1.40-1.65| | 6.00-20 | \|0.03-0.10| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 | | | |
| | | | | | | | | | | | | | |

Table 23.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Pct. of map unit | Depth | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | Permeability | $\begin{aligned} & \text { \|Available\| } \\ & \text { \| water } \\ & \text { \|capacity } \\ & \hline \end{aligned}$ | Linear extensibility | Organic matter | Erosion factors\| | | | Wind erodibility group | \|Wind |erodi|bility |index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | | |
| | | | | | | | | | Kw | Kf | T | | |
| | | In | Pct | g / cc | $\mathrm{In} / \mathrm{hr}$ | In/in | Pct | Pct | | | | | |
| I66A: | | | | | | | | | | | | | |
| Hamerly--------------- \| | 6 | 0-8 | 18-27 | 1.00-1.30\| | 0.60-2.00 | \|0.20-0.22| | 3.0-5.9 | 2.0-5.0 | . 24 | . 24 | 5 | 4L | 86 |
| | | 8-25 | 18-30\| | 1.35-1.55 | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.2-2.0 | . 37 | . 37 | | | |
| | | 25-60 | 18-30 | 1.35-1.55 | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Grimstad--------------\| | 3 | 0-9 | 10-18 | 1.15-1.45 | 2.00-6.00 | \|0.14-0.18| | 0.0-2.9 | 2.0-5.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 9-22 | 5-15 | 1.30-1.60\| | 6.00-20 | \|0.09-0.17| | 0.0-2.9 | 0.2-1.0 | . 20 | . 20 | | | |
| | | 22-28 | 2-8 | 1.45-1.60\| | 6.00-20 | \|0.05-0.14| | 0.0-2.9 | 0.1-0.5 | . 20 | . 20 | | | |
| | | 28-60 | 18-30 | 1.35-1.55 | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| Mavie----------------\| | | | | | | | | | | | | | |
| | 3 | 0-12 | 10-18 | 1.20-1.50\| | 2.00-6.00 | \|0.16-0.18| | 0.0-2.9 | 3.0-8.0 | . 20 | . 20 | 3 | 3 | 86 |
| | | 12-18 | 10-25 | 1.35-1.55 | 0.60-2.00 | \|0.12-0.19| | 0.0-2.9 | 0.5-2.0 | . 28 | . 28 | | | |
| | | 18-39 | 1-10 | 1.40-1.65 | 6.00-20 | \|0.03-0.06| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 | | | |
| | | 39-80 | 18-30 | 1.35-1.55 | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| Roliss, depressional--\| | | | | | | | | | | | | | |
| | 3 | 0-14 | 15-27 | 1.10-1.40\| | 0.20-2.00 | \|0.20-0.25| | 3.0-5.9 | 3.0-15 | . 24 | . 24 | 5 | 6 | 48 |
| | | 14-20 | 18-30\| | 1.35-1.55 | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 1.0-3.0 | . 37 | . 37 | | | |
| | | 20-80 | 18-30 | 1.35-1.55 | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| Strathcona----------- \| | 3 | | | | | | | | | | | | |
| | | 0-10 | 5-18 | 1.20-1.50\| | 2.00-20 | \|0.13-0.18| | 0.0-2.9 | 3.0-8.0 | . 20 | . 20 | 5 | 3 | 86 |
| | | 10-17 | 10-18 | 1.30-1.50\| | 2.00-6.00 | \|0.09-0.17| | 0.0-2.9 | 0.5-2.0 | . 24 | . 24 | | | |
| | | 17-28 | 2-8 | 1.35-1.60\| | 6.00-20 | \|0.05-0.12| | 0.0-2.9 | 0.1-0.5 | . 15 | . 15 | | | |
| | | 28-80 | 18-30\| | 1.35-1.55 | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| 167A: | | | | | | | | | | | | | |
| Wheatville-----------\| | 70 | 0-9 | 15-22 | 1.05-1.25 | 0.60-2.00 | $\|0.20-0.23\|$ | 0.0-2.9 | 2.0-6.0 | . 28 | . 28 | 5 | 4L | 86 |
| | | 9-31 | 10-18 | 1.30-1.50\| | 0.60-6.00 | \|0.17-0.22| | 0.0-2.9 | 0.2-2.0 | . 43 | . 43 | | | |
| | | 31-80 | 35-60\| | 1.25-1.55\| | 0.06-0.20 | \|0.09-0.19| | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| Augsburg------------- \| | | | | | | | | | | | | | |
| | 13 | | 15-22 | 0.95-1.20\| | 0.60-2.00 | \|0.20-0.23| | 0.0-2.9 | 3.0-8.0 | . 28 | . 28 | 5 | 4L | 86 |
| | | 11-18 | 5-18 | 1.30-1.50\| | 0.60-6.00 | $\|0.17-0.22\|$ | 0.0-2.9 | 0.2-2.0 | . 28 | . 28 | | | |
| | | 18-33 | 5-18 | 1.40-1.60\| | 0.60-6.00 | \|0.17-0.22| | 0.0-2.9 | 0.1-0.5 | . 28 | . 28 | | | |
| Glyndon-------------- | | 33-60 | 35-60\| | 1.25-1.55 | 0.06-0.20 | \|0.09-0.19| | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | 8 | | | | | | | | | | | | |
| | | 0-11 | 10-20 | 1.05-1.25 | 0.60-2.00 | \|0.20-0.23| | 0.0-2.9 | 2.0-6.0 | . 28 | . 28 | 5 | 3 | 86 |
| | | 11-28 | 10-18 | 1.30-1.50\| | 0.60-6.00 | \|0.17-0.22| | 0.0-2.9 | 0.2-2.0 | . 28 | . 28 | | | |
| | | 28-60 | 5-18 | 1.35-1.65 | 0.60-6.00 | \|0.08-0.22| | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 | | | |
| Foxlake-------------\| | 5 | | | | | | | | | | | | |
| | | 0-19 | 18-27 | 1.15-1.35 | 0.60-6.00 | $\|0.20-0.22\|$ | 0.0-2.9 | 3.0-8.0 | . 24 | . 24 | 5 | 4L | 86 |
| | | 19-38 | 35-60\| | 1.25-1.45 | 0.06-0.20 | \|0.09-0.19| | 6.0-8.9 | 0.5-2.0 | . 28 | . 28 | | | |
| | | 38-49 | 35-60\| | 1.25-1.45 | 0.06-0.20 | \|0.09-0.19| | 6.0-8.9 | 0.1-0.5 | . 28 | . 28 | | | |
| Hilaire--------------\| | 2 | 49-80 | 35-60\| | 1.25-1.55 | 0.06-0.20 | \|0.09-0.19| | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | | |
| | | 0-10 | 2-10 | 1.20-1.40\| | 6.00-20 | \|0.10-0.14| | 0.0-2.9 | 2.0-4.0 | . 17 | . 17 | 5 | 2 | 134 |
| | | 10-34 | 1-8 | 1.35-1.60\| | 6.00-20 | \|0.07-0.11| | 0.0-2.9 | 0.5-1.0 | . 15 | . 15 | | | |
| | | 34-80 | 35-60\| | 1.25-1.55 | 0.06-0.20 | \|0.09-0.19| | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | \| |
| | | | | | | | | | | | | | |

Table 23.--Physical Properties of the Soils--Continued

Table 23.--Physical Properties of the Soils--Continued

Table 23.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Pct. of map unit | Depth | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | Permeability | $\begin{aligned} & \mid \text { Available } \mid \\ & \mid \text { water } \\ & \text { \|capacity } \\ & \hline \end{aligned}$ | $\begin{array}{\|c} \text { Linear } \\ \mid \text { extensi- } \\ \text { bility } \end{array}$ | Organic matter | \|Erosion factors| | | | Wind erodibility group | Wind erodibility index | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | | | | | | Kw | Kf | T | | |
| | | In | Pct | g / cc | In/ hr | In/in | Pct | Pct | | | | | |
| | | | | | | | | | | | | | |
| I70A: | | | | | | | | | | | | | |
| Mavie- | 3 | 0-12 | 10-18 | \|1.20-1.50| | 2.00-6.00 | \|0.16-0.18| | 0.0-2.9 | 3.0-8.0 | . 20 | . 20 | 3 | 3 | 86 |
| | | 12-18 | 10-25 | \|1.35-1.55| | 0.60-2.00 | \|0.12-0.19| | 0.0-2.9 | 0.5-2.0 | . 28 | . 28 | | | |
| | | 18-39 | 1-10 | \|1.40-1.65| | 6.00-20 | \|0.03-0.06| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 | | | |
| | | 39-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| Rosewood-------- | 3 | 0-8 | 5-18 | \|1.00-1.35| | 2.00-6.00 | \|0.16-0.18| | 0.0-2.9 | 3.0-8.0 | . 24 | . 24 | 3 | 3 | 86 |
| | | 8-18 | 6-18 | \|1.30-1.50| | 2.00-6.00 | \|0.09-0.17| | 0.0-2.9 | 0.5-2.0 | . 24 | . 24 | | | |
| | | 18-80 | 2-8 | \|1.45-1.65| | 6.00-20 | \|0.05-0.08| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 | | | |
| | | | | | | | | | | | | | |
| Strathcona, | | | | | | | | | | | | | |
| depressional-- | 3 | | 5-18 | \|1.20-1.50| | 2.00-20 | \|0.20-0.30| | 0.0-2.9 | | . 20 | . 20 | 3 | 3 | 86 |
| | | 10-17 | 10-18 | \|1.30-1.50| | 2.00-6.00 | \|0.09-0.17| | 0.0-2.9 | 0.5-2.0 | . 24 | . 24 | | | |
| | | 17-28 | 2-8 | \|1.35-1.60| | 6.00-20 | \|0.05-0.12| | 0.0-2.9 | 0.1-0.5 | . 15 | . 15 | | | |
| | | 28-80 | 18-30 | \|1.35-1.55| | 0.60-2.00 | \|0.15-0.19| | 1.0-4.2 | 0.0-0.5 | . 37 | . 37 | | | |
| | | | | | | | | | | | | | |
| M-w. | | | | | | | | | | | | | |
| Miscellaneous water | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| w. | | | | | | | | | | | | | |
| Water | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |

Table 24.--Chemical Properties of the Soils
(Absence of an entry indicates that data were not estimated)

Table 24.--Chemical Properties of the Soils--Continued

Table 24.--Chemical Properties of the Soils--Continued

| Map symbol and soil name | Pct. of map unit | Depth | Cationexchange capacity | Soil reaction | $\begin{gathered} \text { Calcium } \\ \text { carbon- } \\ \text { ate } \end{gathered}$ | Gypsum | Salinity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | In | $\mid \mathrm{meq} / 100 \mathrm{~g}$ | pH | Pct | Pct | mmhos/cm |
| B203A : | | | | | | | |
| Northwood------------ \| | 75 | 0-9 | 120-180 | 5.1-7.8 | 0 | 0 | 0 |
| | | 9-14 | 5.0-20 | 5.6-7.8 | 0-5 | 0 | 0 |
| | | 14-24 | 1.0-5.0 | 5.6-8.4 | 0-15 | 0 | 0 |
| | | 24-80 | 10-20 | 7.4-8.4 | 10-20 | 0 | 0 |
| | | | | | | | |
| Hamre--------------- \| | 10 | 0-13 | 120-180 | 5.1-7.8 | 0-5 | 0 | 0 |
| | | 13-18 | 15-35 | 5.1-7.8 | 0-10 | 0 | 0 |
| | | 18-35 | 10-20 | 6.6-8.4 | 5-20 | 0 | 0 |
| | | 35-80 | 10-20 | 7.4-8.4 | 10-20 | 0 | 0 |
| | | | | | | | |
| Grygla-------------- \| | 7 | 0-6 | 5.0-15 | 6.1-7.3 | 0 | 0 | 0 |
| | | 6-26 | 1.0-10 | 6.6-7.8 | 0 | 0 | 0 |
| | | 26-80 | 10-20 | 7.4-8.4 | 10-20 | 0 | 0 |
| | | | | | | | |
| Berner-------------- \| | 5 | 0-28 | 120-180 | 5.6-7.3 | 0 | 0 | 0 |
| | | 28-31 | 5.0-20 | 6.1-7.3 | 0 | 0 | 0 |
| | | 31-44 | 1.0-5.0 | 6.1-7.8 | 0-5 | 0 | 0 |
| | | 44-80 | 10-20 | 7.4-8.4 | 10-20 | 0 | 0 |
| | | | | | | | |
| Chilgren------------ \| | 3 | 0-4 | 5.0-20 | 6.1-7.3 | 0 | 0 | 0 |
| | | 4-10 | 1.0-10 | 6.1-7.3 | 0 | 0 | 0 |
| | | 10-18 | 10-25 | 6.1-7.8 | 0 | 0 | 0 |
| | | 18-72 | 10-25 | 7.4-8.4 | 15-25 | 0 | 0 |
| | | 72-80 | 10-20 | 7.4-8.4 | 10-20 | 0 | 0 |
| | | | | | | | |
| B204A: | | | | | | | |
| Roliss-------------- | 75 | 0-14 | 20-40 | 6.6-8.4 | 0-10 | 0 | 0 |
| | | 14-20 | 10-25 | 7.4-8.4 | 5-15 | 0 | 0 |
| | | 20-80 | 10-20 | 7.4-8.4 | 10-20 | 0 | 0 |
| | | | | | | | |
| Grygla-------------- \| | 8 | 0-6 | 5.0-15 | 6.1-7.3 | 0 | 0 | 0 |
| | | 6-26 | 1.0-10 | 6.6-7.8 | 0 | 0 | 0 |
| | | 26-80 | 10-20 | 7.4-8.4 | 10-20 | 0 | 0 |
| | | | | | | | |
| Chilgren------------ | 5 | 0-4 | 5.0-20 | 6.1-7.3 | 0 | 0 | 0 |
| | | 4-10 | 1.0-10 | 6.1-7.3 | 0 | 0 | 0 |
| | | 10-18 | 10-25 | 6.1-7.8 | 0 | 0 | 0 |
| | | 18-72 | 10-25 | 7.4-8.4 | 15-25 | 0 | 0 |
| | | 72-80 | 10-20 | 7.4-8.4 | 10-20 | 0 | 0 |
| | | | | | | | |
| Garnes-------------- \| | 5 | 0-6 | 5.0-25 | 6.1-7.3 | 0 | 0 | 0 |
| | | 6-9 | 1.0-10 | 6.1-7.3 | 0 | 0 | 0 |
| | | 9-14 | 10-25 | 6.6-7.8 | 0 | 0 | 0 |
| | | 14-72 | 10-25 | 7.4-8.4 | 15-25 | 0 | 0 |
| | | 72-80 | 10-20 | 7.4-8.4 | 10-20 | 0 | 0 |
| | | | | | | | |
| Roliss, depressional | 5 | 0-14 | 15-50 | 6.6-8.4 | 0-10 | 0 | 0 |
| | | 14-20 | 10-25 | 7.4-8.4 | 5-15 | 0 | 0 |
| | | 20-80 | 10-20 | 7.4-8.4 | 10-20 | 0 | 0 |
| | | | | | | | |
| Hamre--------------- \| | 2 | 0-13 | 120-180 | 5.1-7.8 | 0-5 | 0 | 0 |
| | | 13-18 | 15-35 | 5.1-7.8 | 0-10 | 0 | 0 |
| | | 18-35 | 10-20 | 6.6-8.4 | 5-20 | 0 | 0 |
| | | 35-80 | 10-20 | 7.4-8.4 | 10-20 | 0 | 0 |
| | | | | | | | |
| B205A: | | | | | | | |
| Berner-------------- \| | 80 | 0-28 | 120-180 | 5.6-7.3 | 0 | 0 | 0 |
| | | 28-31 | 5.0-20 | 6.1-7.3 | 0 | 0 | 0 |
| | | 31-44 | 1.0-5.0 | 6.1-7.8 | 0-5 | 0 | 0 |
| | | 44-80 | 10-20 | 7.4-8.4 | 10-20 | 0 | 0 |
| | | | | | | | |

Table 24.--Chemical Properties of the Soils--Continued

Table 24.--Chemical Properties of the Soils--Continued

Table 24.--Chemical Properties of the Soils-Continued

Table 24.--Chemical Properties of the Soils--Continued

| Map symbol and soil name | Pct. of map unit | Depth | Cationexchange capacity | $\left\lvert\, \begin{gathered} \text { Soil } \\ \mid \text { reaction } \end{gathered}\right.$ | $\begin{aligned} & \mid \text { Calcium } \mid \\ & \mid \text { carbon- } \mid \\ & \mid \text { ate } \end{aligned}$ | Gypsum | Salinity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | In | meq/100 g | pH | Pct | Pct | mmhos/cm |
| I4A: | | | | | | | |
| Mavie----------- | 2 | 0-12 | 10-30 | 7.4-8.4 | 5-15 | 0 | 0 |
| | | 12-18 | 5.0-20 | 7.9-8.4 | 15-40 | 0-1 | 0.0-2.0 |
| | | 18-39 | 1.0-5.0 | 7.4-8.4 | 10-25 | 0-1 | 0.0-2.0 |
| | | 39-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Strathcona------ | 2 | 0-10 | 10-30 | 7.4-8.4 | 5-15 | 0 | 0 |
| | | 10-17 | 5.0-15 | 7.4-8.4 | 15-30 | 0-1 | 0.0-2.0 |
| | | 17-28 | 2.0-8.0 | 7.4-8.4 | 5-15 | 0-1 | 0.0-2.0 |
| | | 28-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| I5A: | | | | | | | |
| Borup----------- | 75 | 0-12 | 10-30 | 7.4-8.4 | 5-25 | 0 | 0 |
| | | 12-34 | 5.0-15 | 7.4-8.4 | 15-40 | 0-1 | 0.0-2.0 |
| | | 34-60 | 3.0-15 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Glyndon--------- | 9 | 0-11 | 10-25 | 7.4-8.4 | 5-25 | 0 | 0 |
| | | 11-28 | 5.0-15 | 7.4-8.4 | 15-40 | 0-1 | 0.0-2.0 |
| | | 28-60 | 3.0-15 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Rosewood--------- | 8 | 0-8 | 10-25 | 7.4-8.4 | 5-25 | 0 | 0 |
| | | 8-18 | 2.0-10 | 7.4-8.4 | 15-40 | 0-1 | 0.0-2.0 |
| | | 18-80 | 1.0-5.0 | 7.4-8.4 | 5-25 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Augsburg-------- | 5 | 0-11 | 10-30 | 7.4-8.4 | 5-25 | 0 | 0 |
| | | 11-18 | 5.0-20 | 7.4-8.4 | 15-40 | 0-1 | 0.0-2.0 |
| | | 18-33 | 3.0-15 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | 33-60 | 20-50 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Augsburg, | | | | | | | |
| depressional--- | 3 | 0-11 | 10-45 | 7.4-8.4 | 5-25 | 0 | 0 |
| | | 11-18 | 5.0-20 | 7.4-8.4 | 15-40 | 0-1 | 0.0-2.0 |
| | | 18-33 | 3.0-15 | 7.4-8.4 | 30-35 | 0-1 | 0.0-2.0 |
| | | 33-60 | 20-50 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| I6A: | | | | | | | |
| Borup----------- | 75 | 0-12 | 10-30 | 7.4-8.4 | 10-25 | 0 | 0 |
| | | 12-34 | 5.0-15 | 7.4-8.4 | 15-40 | 0-1 | 0.0-2.0 |
| | | 34-60 | 3.0-15 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Glyndon--------- | 9 | 0-11 | 10-25 | 7.4-8.4 | 5-25 | 0 | 0 |
| | | 11-28 | 5.0-15 | 7.4-8.4 | 15-40 | 0-1 | 0.0-2.0 |
| | | 28-60 | 3.0-15 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Rosewood-------- | 8 | 0-8 | 10-25 | 7.4-8.4 | 5-25 | 0 | 0 |
| | | 8-18 | 2.0-10 | 7.4-8.4 | 15-40 | 0-1 | 0.0-2.0 |
| | | 18-80 | 1.0-5.0 | 7.4-8.4 | 5-25 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Augsburg--------- | 5 | 0-11 | 10-30 | 7.4-8.4 | 5-25 | 0 | 0 |
| | | 11-18 | 5.0-20 | 7.4-8.4 | 15-40 | 0-1 | 0.0-2.0 |
| | | 18-33 | 3.0-15 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | 33-60 | 20-50 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Augsburg, | | | | | | | |
| depressional | 3 | 0-11 | 10-45 | 7.4-8.4 | 5-25 | 0 | 0 |
| | | 11-18 | 5.0-20 | 7.4-8.4 | 15-40 | 0-1 | 0.0-2.0 |
| | | 18-33 | 3.0-15 | 7.4-8.4 | 30-35 | 0-1 | 0.0-2.0 |
| | | 33-60 | 20-50 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | | | | | | |

Table 24.--Chemical Properties of the Soils-Continued

| Map symbol and soil name | Pct. of map unit | Depth | \| Cation| exchange capacity | $\left\lvert\, \begin{gathered} \text { Soil } \\ \text { \|reaction } \end{gathered}\right.$ | $\begin{aligned} & \mid \text { Calcium } \mid \\ & \mid \text { carbon- } \mid \\ & \mid \text { ate } \end{aligned}$ | Gypsum | Salinity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | In | $\mid \mathrm{meq} / 100 \mathrm{~g}$ | pH | Pct | Pct | mmhos/cm |
| I7A:Bowstring | | | | | | | |
| | 45 | 0-38 | 80-180 | 5.6-8.4 | 0-25 | 0 | 0 |
| | | 38-47 | 10-40 | 5.6-8.4 | 0-25 | 0 | 0 |
| | | 47-80 | 80-180 | 5.6-8.4 | 0-25 | 0 | 0 |
| | | | | | | | |
| Fluvaquents----- | 45 | 0-16 | 10-35 | 6.6-7.8 | 0-10 | 0 | 0 |
| | | 16-80 | 5.0-30 | 6.6-7.8 | 0-15 | 0 | 0.0-2.0 |
| | | | | | | | |
| Hapludolls------- | 5 | 0-9 | 10-35 | 6.6-7.8 | 0-10 | 0 | 0 |
| | | 9-60 | 10-30 | 7.4-8.4 | 0-10 | 0 | 0 |
| | | | | | | | |
| Water-----------I8A: | 5 | --- | --- | \| --- | --- | --- | --- |
| | | | | | | | |
| 18A: | 80 | 0-11 | 120-180 | 4.5-7.8 | 0 | 0 | 0 |
| | | 11-23 | 120-180 | 4.5-7.8 | 0 | 0 | 0 |
| | | 23-60 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Hamre----------- | 8 | 0-13 | 120-180 | 5.1-7.8 | 0-5 | 0 | 0 |
| | | 13-18 | 15-35 | 5.1-7.8 | 0-10 | 0 | 0 |
| | | 18-71 | 10-20 | 6.6-8.4 | 5-20 | 0 | 0 |
| | | 71-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Northwood------- | 3 | 0-9 | 120-180 | 5.1-7.8 | 0 | 0 | 0 |
| | | 9-14 | 5.0-20 | 5.6-7.8 | 0-5 | 0 | 0 |
| | | 14-24 | 1.0-5.0 | 5.6-8.4 | 0-15 | 0 | 0 |
| | | 24-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Roliss---------- | 3 | 0-14 | 20-40 | 6.6-8.4 | 0-10 | 0 | 0 |
| | | 14-20 | 10-25 | 7.4-8.4 | 5-15 | 0-1 | 0.0-2.0 |
| | | 20-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Berner---------- | 2 | 0-28 | 120-180 | 5.6-7.3 | 0 | 0 | 0 |
| | | 28-31 | 5.0-20 | 6.1-7.3 | 0 | 0 | 0 |
| | | 31-44 | 1.0-5.0 | 6.1-7.8 | 0-5 | 0 | 0 |
| | | 44-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Kratka---------- | 2 | | 10-30 | 5.6-7.8 | 0 | 0 | 0 |
| | | 11-18 | 1.0-12 | 5.6-7.8 | 0-5 | 0 | 0 |
| | | 18-25 | 2. 0-10 | 6.6-7.8 | 0-15 | 0 | 0 |
| | | 25-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Seelyeville----- | 2 | 0-10 | 120-200 | 4.5-7.3 | 0 | 0 | 0 |
| | | 10-80 | 140-200 | 4.5-7.3 | 0 | 0 | 0 |
| | | | | | | | |
| I9A: | | | | | | | |
| Clearwater------ | 80 | 0-8 | 30-65 | 6.6-7.8 | 0-5 | 0 | 0 |
| | | 8-35 | 20-50 | 7.4-8.4 | 3-25 | 0 | 0 |
| | | 35-80 | 20-50 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Clearwater, very | | | | | | | |
| cobbly | 5 | 0-8 | 30-65 | 6.6-7.8 | 0-5 | 0 | 0 |
| | | 8-35 | 20-50 | 7.4-8.4 | 3-25 | 0 | 0 |
| | | 35-80 | 20-50 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Reis------------ | 5 | 0-9 | 30-65 | 7.4-8.4 | 5-20 | 0 | 0 |
| | | 9-17 | 25-65 | 7.4-8.4 | 15-25 | 0 | 0 |
| | | 17-33 | 25-50 | 7.4-8.4 | 15-30 | 0-1 | 0.0-2.0 |
| | | 33-42 | 25-60 | 7.4-8.4 | 15-30 | 0-1 | 0.0-2.0 |
| | | 42-60 | 20-50 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | 60-80 | 20-50 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | | | | | | |

Table 24.--Chemical Properties of the Soils--Continued

Table 24.--Chemical Properties of the Soils-Continued

Table 24.--Chemical Properties of the Soils--Continued

| Map symbol and soil name | Pct. of map unit | Depth | Cationexchange capacity | $\left\lvert\, \begin{gathered} \text { Soil } \\ \text { reaction } \end{gathered}\right.$ | Calcium carbonate | Gypsum | Salinity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | In | meq/100 g | pH | Pct | Pct | mmhos/cm |
| I13A: | | | | | | | |
| Espelie--------- | 75 | 0-9 | 10-30 | 6.6-7.3 | 0 | 0 | 0 |
| | | 9-24 | 2.0-8.0 | 6.6-7.8 | 0-10 | 0 | 0 |
| | | 24-80 | 20-50 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Foxlake--------- | 8 | 0-19 | 20-40 | 6.6-7.8 | 0-5 | 0 | 0 |
| | | 19-38 | 20-55 | 7.4-8.4 | 0-5 | 0 | 0 |
| | | 38-49 | 20-50 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | 49-80 | 20-50 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Hilaire--------- | 7 | 0-10 | 10-25 | 6.6-7.3 | 0-5 | 0 | 0 |
| | | 10-34 | 2.0-8.0 | 6.6-7.8 | 0-10 | 0 | 0 |
| | | 34-80 | 20-50 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Clearwater, | | | | | | | |
| depressional--- | 5 | 0-8 | 20-60 | 6.6-7.8 | 0-5 | 0 | 0 |
| | | 8-35 | 20-55 | 7.4-8.4 | 3-25 | 0 | 0 |
| | | 35-80 | 20-50 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Thiefriver------ | 5 | 0-12 | 10-30 | 7.4-8.4 | 5-25 | 0 | 0 |
| | | 12-23 | 5.0-15 | 7.4-8.4 | 15-40 | 0-1 | 0.0-2.0 |
| | | 23-32 | 1.0-5.0 | 7.4-8.4 | 5-20 | 0-1 | 0.0-2.0 |
| | | 32-80 | 20-50 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| I14B: | | | | | | | |
| Fairdale-------- | 85 | 0-7 | 15-35 | 7.4-7.8 | 0-10 | 0 | 0 |
| | | 7-48 | 10-30 | 7.4-8.4 | 5-35 | 0 | 0.0-2.0 |
| | | 48-67 | 15-30 | 7.4-7.8 | 3-10 | 0 | 0.0-2.0 |
| | | 67-80 | 10-30 | 7.4-8.4 | 5-35 | 0 | 0.0-2.0 |
| | | | | | | | |
| Fluvaquents------ | 6 | 0-16 | 10-35 | 6.6-7.8 | 0-10 | 0 | 0 |
| | | 16-80 | 5.0-30 | 6.6-7.8 | 0-15 | 0 | 0.0-2.0 |
| | | | | | | | |
| Hapludolls------ | 5 | 0-9 | 10-35 | 6.6-7.8 | 0-10 | 0 | 0 |
| | | 9-60 | 10-30 | 7.4-8.4 | 0-10 | 0 | 0 |
| | | | | | | | |
| Hapludalfs------ | 2 | 0-6 | 10-20 | 6.1-7.8 | 0-1 | 0 | 0 |
| | | 6-8 | 5.0-15 | 6.1-7.8 | 0-1 | 0 | 0 |
| | | 8-25 | 15-30 | 6.6-7.8 | 0-1 | 0 | 0 |
| | | 25-80 | 5.0-25 | 7.4-8.4 | 5-20 | 0 | 0 |
| | | | | | | | |
| Zell------------ | 2 | 0-6 | 10-30 | 6.6-8.4 | 0-10 | 0 | 0 |
| | | 6-26 | 5.0-15 | 7.4-8.4 | 15-30 | 0-1 | 0.0-2.0 |
| | | 26-60 | 3.0-15 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| I14D: | | | | | | | |
| Fairdale-------- | 85 | 0-7 | 15-30 | 7.4-7.8 | 0-10 | 0 | |
| | | 7-48 | 10-30 | 7.4-8.4 | 5-35 | 0 | 0.0-2.0 |
| | | 48-67 | 15-30 | 7.4-7.8 | 3-10 | 0 | 0.0-2.0 |
| | | 67-80 | 10-30 | 7.4-8.4 | 5-35 | 0 | 0.0-2.0 |
| | | | | | | | |
| Fluvaquents------ | 6 | 0-16 | 10-35 | 6.6-7.8 | 0-10 | 0 | 0 |
| | | 16-80 | 5.0-30 | 6.6-7.8 | 0-15 | 0 | 0.0-2.0 |
| | | | | | | | |
| Hapludolls------ | 4 | 0-9 | 10-35 | 6.6-7.8 | 0-10 | 0 | 0 |
| | | 9-60 | 10-30 | 7.4-8.4 | 0-10 | 0 | 0 |
| | | | | | | | |
| Zell----------- | 3 | 0-6 | 10-30 | 6.6-8.4 | 0-10 | 0 | 0 |
| | | 6-26 | 5.0-15 | 7.4-8.4 | 15-30 | 0-1 | 0.0-2.0 |
| | | 26-60 | 3.0-15 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | | | | | | |

Table 24.--Chemical Properties of the Soils--Continued

Table 24.--Chemical Properties of the Soils--Continued

Table 24.--Chemical Properties of the Soils--Continued

| Map symbol and soil name | Pct. of map unit | Depth | \| Cation|exchange capacity | $\left\lvert\, \begin{gathered} \text { Soil } \\ \mid \text { reaction } \end{gathered}\right.$ | $\begin{array}{\|l\|} \mid \text { Calcium } \mid \\ \mid \text { carbon- } \mid \\ \mid \text { ate } \end{array}$ | Gypsum | Salinity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | In | \|meq/100 g | pH | Pct | Pct | mmhos/cm |
| I18A: | | | | | | | |
| Kratka---------- | 10 | 0-11 | 10-30 | 5.6-7.8 | 0 | 0 | 0 |
| | | 11-18 | 1.0-12 | 5.6-7.8 | 0-5 | 0 | 0 |
| | | 18-25 | 2.0-10 | 6.6-7.8 | 0-15 | 0 | 0 |
| | | 25-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Roliss----------- | 5 | 0-14 | 20-40 | 6.6-8.4 | 0-10 | 0 | 0 |
| | | 14-20 | 10-25 | 7.4-8.4 | 5-15 | 0-1 | 0.0-2.0 |
| | | 20-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Flaming--------- | 4 | 0-12 | 5.0-15 | 5.6-7.3 | 0 | 0 | 0 |
| | | 12-17 | 3. 0-15 | 5.6-8.4 | 0-3 | 0 | 0 |
| | | 17-27 | 1.0-8.0 | 5.6-8.4 | 0-5 | 0 | 0 |
| | | 27-60 | 1.0-5.0 | 5.6-8.4 | 0-10 | 0 | 0 |
| | | | | | | | |
| Grimstad-------- | 2 | 0-9 | 10-25 | 7.4-8.4 | 5-15 | 0 | 0 |
| | | 9-22 | 5.0-15 | 7.4-8.4 | 15-30 | 0-1 | 0.0-2.0 |
| | | 22-28 | 1.0-5.0 | 7.4-8.4 | 5-20 | 0-1 | 0.0-2.0 |
| | | 28-60 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Linveldt-------- | 2 | 0-9 | 10-25 | 6.6-7.8 | 0 | 0 | 0 |
| | | 9-16 | 8.0-20 | 6.6-7.8 | 0 | 0 | 0 |
| | | 16-29 | 1.0-5.0 | 7.4-8.4 | 0-15 | 0 | 0 |
| | | 29-45 | 10-25 | 7.4-8.4 | 15-25 | 0-1 | 0.0-2.0 |
| | | 45-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Eckvoll--------- | 1 | 0-9 | 3.0-15 | 6.1-7.3 | 0 | 0 | 0 |
| | | 9-25 | 1.0-10 | 6.1-7.3 | 0 | 0 | 0 |
| | | 25-32 | 10-30 | 6.6-7.8 | 0 | 0 | 0 |
| | | 32-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Strathcona------ | 1 | | 10-30 | 7.4-8.4 | 5-15 | | |
| | | 10-17 | 5.0-15 | 7.4-8.4 | 15-30 | 0-1 | 0.0-2.0 |
| | | 17-28 | 2.0-8.0 | 7.4-8.4 | 5-15 | 0-1 | 0.0-2.0 |
| | | 28-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| I19A: | | | | | | | |
| Foxhome--------- | 65 | 0-10 | 10-25 | 6.6-7.8 | 0 | 0 | 0 |
| | | 10-15 | 1.0-8.0 | 6.6-7.8 | 0-10 | 0 | 0 |
| | | 15-23 | 1.0-5.0 | 7.4-8.4 | 5-15 | 0 | 0 |
| | | 23-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| Kittson | | | | | | | |
| | 10 | 0-10 | 10-35 | 6.6-7.8 | 0 | 0 | 0 |
| | | 10-17 | 10-25 | 6.6-7.8 | 0-5 | 0 | 0 |
| | | 17-36 | 10-25 | 7.4-8.4 | 15-25 | 0-1 | 0.0-2.0 |
| | | 36-60 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Strandquist----- | 10 | 0-10 | 15-30 | 6.6-8.4 | 0-10 | 0 | 0 |
| | | 10-20 | 1.0-5.0 | 7.4-8.4 | 5-15 | 0 | 0 |
| | | 20-60 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Foldahl--------- | 5 | 0-12 | 10-25 | 6.1-7.8 | 0-5 | 0 | 0 |
| | | 12-30 | 2.0-10 | 6.6-7.8 | 0-10 | 0 | 0 |
| | | 30-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Grimstad-------- | 5 | 0-9 | 10-25 | 7.4-8.4 | 5-15 | 0 | 0 |
| | | 9-22 | 5.0-15 | 7.4-8.4 | 15-30 | 0-1 | 0.0-2.0 |
| | | 22-28 | 1.0-5.0 | 7.4-8.4 | 5-20 | 0-1 | 0.0-2.0 |
| | | 28-60 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |

Table 24.--Chemical Properties of the Soils--Continued

Table 24.--Chemical Properties of the Soils--Continued

| Map symbol and soil name | Pct. of map unit | Depth | \| Cation|exchange capacity | $\left\lvert\, \begin{gathered} \text { Soil } \\ \text { \|reaction } \end{gathered}\right.$ | $\begin{aligned} & \mid \text { Calcium } \mid \\ & \mid \text { carbon- } \mid \\ & \mid \text { ate } \end{aligned}$ | Gypsum | Salinity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | In | \|meq/100 g | pH | Pct | Pct | mmhos/cm |
| I21A: | | | | | | | |
| Hedman---------- | 12 | 0-11 | 15-30 | 6.6-7.8 | 3-15 | 0 | 0 |
| | | 11-20 | 5.0-15 | 7.4-8.4 | 15-30 | 0-1 | 0.0-2.0 |
| | | 20-80 | 5.0-15 | 7.4-8.4 | 10-25 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Strathcona----- | 2 | 0-10 | 10-30 | 7.4-8.4 | 5-15 | 0 | 0 |
| | | 10-17 | 5.0-15 | 7.4-8.4 | 15-30 | 0-1 | 0.0-2.0 |
| | | 17-28 | 2.0-8.0 | 7.4-8.4 | 5-15 | 0-1 | 0.0-2.0 |
| | | 28-80 | 5.0-15 | 7.4-8.4 | 10-25 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Foxhome-------- | 1 | 0-10 | 10-25 | 6.6-7.8 | 0 | 0 | 0 |
| | | 10-15 | 1.0-8.0 | 6.6-7.8 | 0-10 | 0 | 0 |
| | | 15-23 | 1.0-5.0 | 7.4-8.4 | 5-15 | 0 | 0 |
| | | 23-80 | 5.0-15 | 7.4-8.4 | 10-25 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| I22A: | | | | | | | |
| Glyndon-------- | 75 | 0-11 | 10-30 | 7.4-8.4 | 5-25 | 0 | 0 |
| | | 11-28 | 5.0-15 | 7.4-8.4 | 15-40 | 0-1 | 0.0-2.0 |
| | | 28-60 | 3.0-15 | 7.4-8.4 | 10-30 | 0-1 | $0.0-2.0$ |
| | | | | | | | |
| Borup---------- | 10 | 0-12 | 10-30 | 7.4-8.4 | 5-25 | 0 | 0 |
| | | 12-34 | 5.0-15 | 7.4-8.4 | 15-40 | 0-1 | 0.0-2.0 |
| | | 34-60 | 3.0-15 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Augsburg------- | 5 | 0-11 | 10-30 | 7.4-8.4 | 5-25 | | 0 |
| | | 11-18 | 5.0-20 | 7.4-8.4 | 15-40 | 0-1 | 0.0-2.0 |
| | | 18-33 | 3.0-15 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | 33-60 | 20-50 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Ulen------------ | 5 | 0-9 | 10-25 | 7.4-8.4 | 5-25 | 0 | 0 |
| | | 9-42 | 5.0-15 | 7.4-8.4 | 15-40 | 0-1 | 0.0-2.0 |
| | | 42-60 | 1.0-5.0 | 7.4-8.4 | 5-25 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Wheatville------ | 3 | 0-9 | 10-25 | 7.4-8.4 | 5-25 | 0 | 0 |
| | | 9-31 | 5.0-20 | 7.4-8.4 | 15-40 | 0-1 | 0.0-2.0 |
| | | 31-80 | 20-50 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Flaming--------- | 2 | 0-12 | 5.0-15 | 5.6-7.3 | 0 | 0 | 0 |
| | | 12-17 | 3.0-15 | 5.6-8.4 | 0-3 | 0 | 0 |
| | | 17-27 | 1.0-8.0 | 5.6-8.4 | 0-5 | 0 | 0 |
| | | 27-60 | 1.0-5.0 | 5.6-8.4 | 0-10 | 0 | 0 |
| | | | | | | | |
| I23A: | | | | | | | |
| Glyndon--------- | 75 | 0-11 | 10-25 | 7.4-8.4 | 5-25 | 0 | 0 |
| | | 11-28 | 5.0-15 | 7.4-8.4 | 15-40 | 0-1 | 0.0-2.0 |
| | | 28-60 | 3.0-15 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Borup----------- | 10 | 0-12 | 10-30 | 7.4-8.4 | 10-25 | 0 | 0 |
| | | 12-34 | 5.0-15 | 7.4-8.4 | 15-40 | 0-1 | 0.0-2.0 |
| | | 34-60 | 3.0-15 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Augsburg------- | 5 | 0-11 | 10-30 | 7.4-8.4 | 5-25 | 0 | 0 |
| | | 11-18 | 5.0-20 | 7.4-8.4 | 15-40 | 0-1 | 0.0-2.0 |
| | | 18-33 | 3.0-15 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | 33-60 | 20-50 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Ulen------------ | 5 | 0-9 | 5.0-15 | 7.4-8.4 | 5-25 | 0 | |
| | | 9-42 | 5.0-15 | 7.4-8.4 | 15-40 | 0-1 | 0.0-2.0 |
| | | 42-60 | 1.0-5.0 | 7.4-8.4 | 5-25 | 0-1 | 0.0-2.0 |
| | | | | | | | |

Table 24.--Chemical Properties of the Soils--Continued

Table 24.--Chemical Properties of the Soils--Continued

Table 24.--Chemical Properties of the Soils--Continued

| Map symbol and soil name | Pct. of map unit | Depth | Cationexchange \|capacity | $\left\lvert\, \begin{gathered} \text { Soil } \\ \text { reaction } \end{gathered}\right.$ | $\begin{aligned} & \text { \|Calcium\| } \\ & \mid \text { carbon- } \mid \\ & \mid \text { ate } \end{aligned}$ | Gypsum | Salinity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | In | meq/100 g | pH | Pct | Pct | mmhos/cm |
| I27A: | | | | | | | |
| Northwood-------- | 5 | 0-9 | 120-180 | 5.1-7.8 | 0 | 0 | 0 |
| | | 9-14 | 5.0-20 | 5.6-7.8 | 0-5 | 0 | 0 |
| | | 14-24 | 1.0-5.0 | 5.6-8.4 | 0-15 | 0 | 0 |
| | | 24-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Roliss---------- | 5 | 0-14 | 20-40 | 6.6-8.4 | 0-10 | 0 | 0 |
| | | 14-20 | 10-25 | 7.4-8.4 | 5-15 | 0-1 | 0.0-2.0 |
| | | 20-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Smiley---------- | 5 | 0-12 | 10-25 | 6.6-7.8 | 0-5 | 0 | 0 |
| | | 12-19 | 10-30 | 6.6-8.4 | 0-10 | 0 | 0 |
| | | 19-42 | 10-25 | 7.4-8.4 | 15-30 | 0-1 | 0.0-2.0 |
| | | 42-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Cathro----------- | 3 | 0-11 | 120-180 | 4.5-7.8 | 0 | 0 | 0 |
| | | 11-23 | 120-180 | 4.5-7.8 | 0 | 0 | 0 |
| | | 23-60 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Kratka---------- | 2 | 0-11 | 10-30 | 5.6-7.8 | 0 | 0 | 0 |
| | | 11-18 | 1.0-12 | 5.6-7.8 | 0-5 | 0 | 0 |
| | | 18-25 | 2.0-10 | 6.6-7.8 | 0-15 | 0 | 0 |
| | | 25-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| I28A: | | | | | | | |
| Hangaard-------- | 75 | 0-10 | 10-25 | 6.6-7.8 | 0 | 0 | 0 |
| | | 10-15 | 5.0-20 | 6.6-7.8 | 0-5 | 0 | 0 |
| | | 15-80 | 1.0-5.0 | 7.4-8.4 | 5-15 | 0 | 0 |
| | | | | | | | |
| Hamar----------- | 7 | 0-12 | 5.0-25 | 6.1-7.8 | 0 | 0 | 0 |
| | | 12-17 | 3.0-10 | 6.6-7.8 | 0-1 | 0 | 0 |
| | | 17-40 | 1.0-5.0 | 7.4-7.8 | 0-2 | 0 | 0 |
| | | 40-47 | 5.0-15 | 6.1-7.8 | 0-2 | 0 | 0 |
| | | 47-60 | 1.0-5.0 | 7.4-8.4 | 0-2 | 0 | 0 |
| | | | | | | | |
| Syrene---------- | 7 | | 10-25 | 7.4-8.4 | 5-20 | | 0 |
| | | 9-17 | 5.0-25 | 7.9-8.4 | 15-35 | 0-1 | 0.0-2.0 |
| | | 17-27 | 1.0-5.0 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | 27-60 | 1.0-5.0 | 7.4-8.4 | 5-15 | 0 | 0.0-2.0 |
| | | | | | | | |
| Karlsruhe------- | 3 | 0-15 | 10-25 | 6.6-8.4 | 5-20 | 0 | 0 |
| | | 15-30 | 3.0-15 | 7.4-8.4 | 15-35 | 0-1 | 0 |
| | | 30-60 | 1.0-5.0 | 7.4-8.4 | 10-25 | 0 | 0 |
| | | | | | | | |
| Rosewood--------- | 3 | 0-8 | 10-25 | 7.4-8.4 | 5-25 | 0 | 0 |
| | | 8-18 | 2.0-10 | 7.4-8.4 | 15-40 | 0-1 | 0.0-2.0 |
| | | 18-80 | 1.0-5.0 | 7.4-8.4 | 5-25 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Strandquist----- | 3 | 0-10 | 15-30 | 6.6-8.4 | 0-10 | 0 | 0 |
| | | 10-20 | 1.0-5.0 | 7.4-8.4 | 5-15 | 0 | 0 |
| | | 20-60 | 10-20 | 7.4-8.4 | 10-20 \| | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Deerwood-------- | 2 | 0-10 | 100-180 | 5.6-7.8 | 0-5 | 0 | 0 |
| | | 10-12 | 5.0-20 | 6.1-8.4 | 0-15 | 0 | 0 |
| | | 12-60 | 1.0-5.0 | 7.4-8.4 | 10-20 | 0 | 0 |
| | | | | | | | |
| I29A: | | | | | | | |
| Hattie--------- | 75 | 0-8 | 30-55 | 7.4-8.4 | 0-5 | 0 | 0 |
| | | 8-22 | 20-55 | 7.4-8.4 | 5-25 \| | 0-1 | 0.0-2.0 |
| | | 22-80 | 20-50 | 7.4-8.4 | 10-30 \| | 0-1 | 0.0-2.0 |
| | | | | | | | |

Table 24.--Chemical Properties of the Soils--Continued

| Map symbol and soil name | $\begin{aligned} & \text { Pct. of } \\ & \text { map unit } \end{aligned}$ | Depth | ```\| Cation- | exchange capacity``` | Soil reaction | $\begin{aligned} & \mid \text { Calcium } \\ & \mid \text { carbon- } \mid \\ & \mid \text { ate } \end{aligned}$ | Gypsum | Salinity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \| | | In | \|meq/100 g | pH | Pct | Pct | mmhos/cm |
| I29A: | | | | | | | |
| Clearwater---------- \| | 12 | 0-8 | 30-65 | 6.6-7.8 | 0-5 | 0 | 0 |
| | | 8-35 | 20-50 | 7.4-8.4 | 3-25 | 0 | 0 |
| | | 35-80 | 20-50 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Reis----------------- \| | 6 | 0-9 | 30-65 | 7.4-8.4 | 5-20 | 0 | 0 |
| | | 9-17 | 25-65 | 7.4-8.4 | 15-25 | 0 | 0 |
| | | 17-33 | 25-50 | 7.4-8.4 | 15-30 | 0-1 | 0.0-2.0 |
| | | 33-42 | 25-60 | 7.4-8.4 | 15-30 | 0-1 | 0.0-2.0 |
| | | 42-60 | 20-50 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | 60-80 | 20-50 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Hattie, very cobbly--\| | 5 | 0-8 | 30-55 | 7.4-8.4 | 0-5 | 0 | 0 |
| | | 8-22 | 20-55 | 7.4-8.4 | 5-25 | 0-1 | 0.0-2.0 |
| | | 22-80 | 20-50 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Hilaire------------- \| | 2 | 0-10 | 10-25 | 6.6-7.3 | 0-5 | 0 | 0 |
| | | 10-34 | 2.0-8.0 | 6.6-7.8 | 0-10 | 0 | 0 |
| | | 34-80 | 20-50 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| I29D: | | | | | | | |
| Hattie------------- \| | 85 | 0-8 | 30-55 | 7.4-8.4 | 0-5 | 0 | 0 |
| | | 8-22 | 20-55 | 7.4-8.4 | 5-25 | 0-1 | 0.0-2.0 |
| | | 22-80 | 20-50 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Clearwater---------- \| | 6 | 0-8 | 30-65 | 6.6-7.8 | 0-5 | 0 | 0 |
| | | 8-35 | 20-50 | 7.4-8.4 | 3-25 | 0 | 0 |
| | | 35-80 | 20-50 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Hattie, level-------- | 5 | 0-8 | 30-55 | 7.4-8.4 | 0-5 | 0 | 0 |
| | | 8-22 | 20-55 | 7.4-8.4 | 5-25 | 0-1 | 0.0-2.0 |
| | | 22-80 | 20-50 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Boyerlake----------- \| | 4 | 0-7 | 25-55 | 7.4-8.4 | 2-10 | 0 | 0 |
| | | 7-37 | 20-55 | 7.4-8.4 | 15-25 | 0-1 | 0.0-2.0 |
| | | 37-80 | 20-50 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| I30A: | | | | | | | |
| Hedman-------------- \| | 85 | 0-11 | 15-30 | 6.6-7.8 | 3-15 | 0 | 0 |
| | | 11-20 | 5.0-15 | 7.4-8.4 | 15-30 | 0-1 | 0.0-2.0 |
| | | 20-80 | 5.0-15 | 7.4-8.4 | 10-25 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Fram---------------- \| | 5 | 0-7 | 10-25 | 7.4-8.4 | 3-15 | 0 | 0 |
| | | 7-38 | 5.0-15 | 7.4-8.4 | 15-30 | 0-1 | 0.0-2.0 |
| | | 38-60 | 5.0-15 | 7.4-8.4 | 10-25 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Strathcona----------\| | 5 | 0-10 | 10-30 | 7.4-8.4 | 5-15 | 0 | 0 |
| | | 10-17 | 5.0-15 | 7.4-8.4 | 15-30 | 0-1 | 0.0-2.0 |
| | | 17-28 | 2.0-8.0 | 7.4-8.4 | 5-15 | 0-1 | 0.0-2.0 |
| | | 28-80 | 5.0-15 | 7.4-8.4 | 10-25 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Haug----------------- \| | 3 | 0-10 | 100-180 | 6.6-7.8 | 0-5 | 0 | 0 |
| | | 10-14 | 15-40 | 6.6-8.4 | 5-25 | 0 | 0 |
| | | 14-60 | 5.0-15 | 7.4-8.4 | 10-25 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Strandquist---------\| | 2 | 0-10 | 15-30 | 6.6-8.4 | 0-10 | 0 | 0 |
| | | 10-20 | 1.0-5.0 | 7.4-8.4 | 5-15 | 0 | 0 |
| | | 20-60 | 5.0-15 | 7.4-8.4 | 10-25 | 0-1 | 0.0-2.0 |
| | | | | | | | |

Table 24.--Chemical Properties of the Soils--Continued

| Map symbol and soil name | Pct. of map unit | Depth | $\begin{aligned} & \text { Cation- } \\ & \text { \| exchange } \\ & \text { \| capacity } \end{aligned}$ | $\begin{array}{\|c} \text { Soil } \\ \mid \text { reaction } \end{array}$ | $\begin{aligned} & \mid \text { Calcium } \mid \\ & \mid \text { carbon- } \mid \\ & \mid \text { ate } \end{aligned}$ | Gypsum | Salinity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | In | $\mid \mathrm{meq} / 100 \mathrm{~g}$ | pH | Pct | Pct | mmhos/cm |
| I31A: | | | | | | | |
| Hedman---------- | 50 | 0-11 | 15-30 | 6.6-7.8 | 3-15 | 0 | 0 |
| | | 11-20 | 5.0-15 | 7.4-8.4 | 15-30 | 0-1 | 0.0-2.0 |
| | | 20-80 | 5.0-15 | 7.4-8.4 | 10-25 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Fram------------ | 40 | 0-7 | 10-25 | 7.4-8.4 | 3-15 | 0 | 0 |
| | | 7-38 | 5.0-15 | 7.4-8.4 | 15-30 | 0-1 | 0.0-2.0 |
| | | 38-60 | 5.0-15 | 7.4-8.4 | 10-25 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Strathcona------ | 5 | 0-10 | 10-30 | 7.4-8.4 | 5-15 | 0 | 0 |
| | | 10-17 | 5.0-15 | 7.4-8.4 | 15-30 | 0-1 | 0.0-2.0 |
| | | 17-28 | 2.0-8.0 | 7.4-8.4 | 5-15 | 0-1 | 0.0-2.0 |
| | | 28-80 | 5.0-15 | 7.4-8.4 | 10-25 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Haug------------ | 3 | 0-10 | 100-180 | 6.6-7.8 | 0-5 | 0 | 0 |
| | | 10-14 | 15-40 | 6.6-8.4 | 5-25 | 0 | 0 |
| | | 14-60 | 5.0-15 | 7.4-8.4 | 10-25 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Strandquist----- | 2 | 0-10 | 15-30 | 6.6-8.4 | 0-10 | 0 | 0 |
| | | 10-20 | 1.0-5.0 | 7.4-8.4 | 5-15 | 0 | 0 |
| | | 20-60 | 5.0-15 | 7.4-8.4 | 10-25 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| I32A: | | | | | | | |
| Hilaire--------- | 75 | 0-10 | 10-25 | 6.6-7.3 | 0-5 | 0 | 0 |
| | | 10-34 | 2.0-8.0 | 6.6-7.8 | 0-10 | 0 | 0 |
| | | 34-80 | 20-50 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Espelie--------- | 12 | 0-9 | 10-30 | 6.6-7.3 | 0 | 0 | 0 |
| | | 9-24 | 2.0-8.0 | 6.6-7.8 | 0-10 | 0 | 0 |
| | | 24-80 | 20-50 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| Huot------------ | | | | | | | |
| | 5 | 0-14 | 5.0-25 | 7.4-8.4 | 5-25 | 0 | 0 |
| | | 14-26 | 5.0-15 | 7.4-8.4 | 15-40 | 0-1 | 0.0-2.0 |
| | | 26-34 | 1.0-5.0 | 7.4-8.4 | 5-20 | 0-1 | 0.0-2.0 |
| | | 34-80 | 20-50 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Flaming-------- | 2 | 0-12 | | | | 0 | 0 |
| | | 12-17 | 3.0-15 | 5.6-8.4 | 0-3 | 0 | 0 |
| | | 17-27 | 1.0-8.0 | 5.6-8.4 | 0-5 | 0 | 0 |
| | | 27-60 | 1.0-5.0 | 5.6-8.4 | 0-10 | 0 | 0 |
| | | | \| | | | | |
| Foxlake--------- | 2 | 0-19 | 20-40 | 6.6-7.8 | 0-5 | 0 | 0 |
| | | 19-38 | 20-55 | 7.4-8.4 | 0-5 | 0 | 0 |
| | | 38-49 | 20-50 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | 49-80 | 20-50 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| Wheatville------ | | | | | | | |
| | 2 | 0-9 | 10-25 | 7.4-8.4 | 5-25 | 0 | 0 |
| | | 9-31 | 5.0-20 | 7.4-8.4 | 15-40 | 0-1 | 0.0-2.0 |
| | | 31-80 | 20-50 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | | \| | | | | |
| Thiefriver----- | 1 | 0-12 | 10-30 | 7.4-8.4 | 5-25 | 0 | 0 |
| | | 12-23 | 5.0-15 | 7.4-8.4 | 15-40 | 0-1 | 0.0-2.0 |
| | | 23-32 | 1.0-5.0 | 7.4-8.4 | 5-20 | 0-1 | 0.0-2.0 |
| | | 32-80 | 20-50 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | | \| | | | | |
| Wyandotte-------- | 1 | 0-8 | 30-40 | 7.4-7.8 | 5-20 | 0 | 0 |
| | | 8-15 | 10-20 | 7.9-8.4 | 15-25 | 0-1 | 0.0-2.0 |
| | | 15-34 | 1.0-5.0 | 7.4-8.4 | 5-20 | 0-1 | 0.0-2.0 |
| | | 34-60 | 20-50 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | | \| | | | | |

Table 24.--Chemical Properties of the Soils--Continued

Table 24.--Chemical Properties of the Soils--Continued

Table 24.--Chemical Properties of the Soils-Continued

Table 24.--Chemical Properties of the Soils--Continued

| Map symbol and soil name | $\begin{aligned} & \text { Pct. of } \\ & \text { map unit } \end{aligned}$ | Depth | Cation\|exchange |capacity | $\begin{array}{\|c} \text { Soil } \\ \mid \text { reaction } \end{array}$ | \|Calcium |carbonate | Gypsum | Salinity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | In | \|meq/100 g | pH | Pct | Pct | mmhos/cm |
| I38A: | | | | | | | |
| Kratka, very cobbly--\| | 5 | 0-11 | 10-30 | 5.6-7.8 | 0 | 0 | 0 |
| | | 11-18 | 1.0-12 | 5.6-7.8 | 0-5 | 0 | 0 |
| | | 18-25 | 2.0-10 | 6.6-7.8 | 0-15 | 0 | 0 |
| | | 25-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| Strathcona----------\| | 5 | 0-10 | 10-30 | 7.4-8.4 | 5-15 | 0 | 0 |
| | | 10-17 | 5.0-15 | 7.4-8.4 | 15-30 | 0 | 0.0-2.0 |
| | | 17-28 | 2.0-8.0 | 7.4-8.4 | 5-15 | 0 | 0.0-2.0 |
| | | 28-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Kratka, depressional | 3 | 0-11 | 10-40 | 6.6-7.8 | 0 | 0 | 0 |
| | | 11-18 | 1.0-12 | 5.6-7.8 | 0-5 | 0 | 0 |
| | | 18-25 | 2.0-10 | 6.6-7.8 | 0-15 | 0 | 0 |
| | | 25-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Strandquist---------\| | 3 | 0-10 | 15-30 | 6.6-8.4 | 0-10 | 0 | 0 |
| | | 10-20 | 1.0-5.0 | 7.4-8.4 | 5-15 | 0 | 0 |
| | | 20-60 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Linveldt------------- \| | 2 | 0-9 | 10-25 | 6.6-7.8 | 0 | 0 | 0 |
| | | 9-16 | 8.0-20 | 6.6-7.8 | 0 | 0 | 0 |
| | | 16-29 | 1.0-5.0 | 7.4-8.4 | 0-15 | 0 | 0 |
| | | 29-45 | 10-25 | 7.4-8.4 | 15-25 | 0-1 | 0.0-2.0 |
| | | 45-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| I39A: | | | | | | | |
| Linveldt------------ \| | 65 | 0-9 | 10-25 | 6.6-7.8 | 0 | 0 | 0 |
| | | 9-16 | 8.0-20 | 6.6-7.8 | 0 | 0 | 0 |
| | | 16-29 | 1.0-5.0 | 7.4-8.4 | 0-15 | 0 | 0 |
| | | 29-45 | 10-25 | 7.4-8.4 | 15-25 | 0-1 | 0.0-2.0 |
| | | 45-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Kratka-------------- \| | 14 | 0-11 | 10-30 | 5.6-7.8 | 0 | 0 | 0 |
| | | 11-18 | 1.0-12 | 5.6-7.8 | 0-5 | 0 | 0 |
| | | 18-25 | 2.0-10 | 6.6-7.8 | 0-15 | 0 | 0 |
| | | 25-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Reiner--------------- \| | 10 | 0-7 | 5.0-25 | 6.6-7.3 | 0 | 0 | 0 |
| | | 7-17 | 15-30 | 6.6-7.3 | 0-10 | 0 | 0 |
| | | 17-35 | 10-25 | 7.4-8.4 | 15-25 | 0-1 | 0.0-2.0 |
| | | 35-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Smiley-------------- | 5 | 0-12 | 10-25 | 6.6-7.8 | 0-5 | 0 | 0 |
| | | 12-19 | 10-30 | 6.6-8.4 | 0-10 | 0 | 0 |
| | | 19-42 | 10-25 | 7.4-8.4 | 15-30 | 0-1 | 0.0-2.0 |
| | | 42-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Eckvoll------------- \| | 3 | 0-9 | 3.0-15 | 6.1-7.3 | 0 | 0 | 0 |
| | | 9-25 | 1.0-10 | 6.1-7.3 | 0 | 0 | 0 |
| | | 25-32 | 10-30 | 6.6-7.8 | 0 | 0 | 0 |
| | | 32-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Foldahl------------- \| | 2 | 0-12 | 10-25 | 6.1-7.8 | 0-5 | 0 | 0 |
| | | 12-30 | 2.0-10 | 6.6-7.8 | 0-10 | 0 | 0 |
| | | 30-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Pelan--------------- | 1 | 0-6 | 5.0-25 | 6.1-7.3 | 0 | 0 | 0 |
| | | 6-9 | 1.0-10 | 6.1-7.3 | 0 | 0 | 0 |
| | | 9-14 | 10-20 | 6.1-7.8 | 0 | 0 | 0 |
| | | 14-20 | 1.0-5.0 | 7.4-8.4 | 0-15 | 0 | 0 |
| | | 20-60 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |

Table 24.--Chemical Properties of the Soils--Continued

Table 24.--Chemical Properties of the Soils--Continued

| Map symbol and soil name | $\begin{aligned} & \text { Pct. of } \\ & \text { map unit } \end{aligned}$ | Depth | Cationexchange capacity | $\begin{aligned} & \text { Soil } \\ & \text { reaction } \end{aligned}$ | $\begin{aligned} & \mid \text { Calcium } \mid \\ & \mid \text { carbon- } \mid \\ & \mid \text { ate } \end{aligned}$ | Gypsum | Salinity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | In | meq/100 g | pH | Pct | Pct | mmhos/cm |
| I41A: | | | | | | | |
| Seelyeville---------\| | 2 | 0-10 | 120-200 | 4.5-7.3 | 0 | 0 | 0 |
| | | 10-80 | 140-200 | 4.5-7.3 | 0 | 0 | 0 |
| Syrene-------------- \| | 2 | 0-9 | 10-25 | 7.4-8.4 | 5-20 | 0 | 0 |
| | | 9-17 | 5.0-25 | 7.9-8.4 | 15-35 | 0-1 | 0.0-2.0 |
| | | 17-27 | 1.0-5.0 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | 27-60 | 1.0-5.0 | 7.4-8.4 | 5-15 | 0 | 0.0-2.0 |
| | | | | | | | |
| I42A: | | | | | | | |
| Markey, ponded------- | 85 | 0-32 | 120-180 | 4.5-7.8 | 0 | 0 | 0 |
| | | 32-60 | 1.0-5.0 | 5.6-8.4 | 0-5 | 0 | 0 |
| | | | | | | | |
| Markey-------------- \| | 5 | 0-32 | 120-180 | 4.5-7.8 | 0 | 0 | 0 |
| | | 32-60 | 1.0-5.0 | 5.6-8.4 | 0-5 | 0 | 0 |
| Deerwood------------ \| | 4 | 0-10 | 100-180 | 5.6-7.8 | 0-5 | 0 | 0 |
| | | 10-12 | 5.0-20 | 6.1-8.4 | 0-15 | 0 | 0 |
| | | 12-60 | 1.0-5.0 | 7.4-8.4 | 10-20 | 0 | 0 |
| | | | | | | | |
| Seelyeville, ponded--\| | 4 | 0-10 | 120-200 | 4.5-7.3 | 0 | 0 | 0 |
| | | 10-80 | 140-200 | 4.5-7.3 | 0 | 0 | 0 |
| | | | | | | | |
| Hamar--------------- \| | 1 | 0-12 | 5.0-25 | 6.1-7.8 | 0 | 0 | 0 |
| | | 12-17 | 3.0-10 | 6.6-7.8 | 0-1 | 0 | 0 |
| | | 17-40 | 1.0-5.0 | 7.4-7.8 | 0-2 | 0 | 0 |
| | | 40-47 | 5.0-15 | 6.1-7.8 | 0-2 | 0 | 0 |
| | | 47-60 | 1.0-5.0 | 7.4-8.4 | 0-2 | 0 | 0 |
| Hangaard------------\| | 1 | 0-10 | 10-25 | 6.6-7.8 | 0 | 0 | 0 |
| | | 10-15 | 5.0-20 | 6.6-7.8 | 0-5 | 0 | 0 |
| | | 15-80 | 1.0-5.0 | 7.4-8.4 | 5-15 | 0 | 0 |
| | | | | | | | |
| I43A: | | | | | | | |
| Mavie-------------- \| | 70 | 0-12 | 10-30 | 7.4-8.4 | 5-15 | 0 | 0 |
| | | 12-18 | 5.0-20 | 7.9-8.4 | 15-40 | 0-1 | 0.0-2.0 |
| | | 18-39 | 1.0-5.0 | 7.4-8.4 | 10-25 | 0-1 | 0.0-2.0 |
| | | 39-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Vallers-------------\| | 10 | 0-12 | 20-40 | 7.4-8.4 | 10-20 | 0 | 0 |
| | | 12-21 | 10-25 | 7.4-8.4 | 15-35 | 0-1 | 0.0-2.0 |
| | | 21-60 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Strandquist---------\| | 7 | 0-10 | 15-30 | 6.6-8.4 | 0-10 | 0 | 0 |
| | | 10-20 | 1.0-5.0 | 7.4-8.4 | 5-15 | 0 | 0 |
| | | 20-60 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Strathcona----------\| | 5 | 0-10 | 10-30 | 7.4-8.4 | 5-15 | 0 | 0 |
| | | 10-17 | 5.0-15 | 7.4-8.4 | 15-30 | 0-1 | 0.0-2.0 |
| | | 17-28 | 2.0-8.0 | 7.4-8.4 | 5-15 | 0-1 | 0.0-2.0 |
| | | 28-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Strathcona, | | | | | | | |
| depressional------- | 3 | 0-10 | 10-45 | 7.4-8.4 | 5-15 | 0 | 0 |
| | | 10-17 | 5.0-15 | 7.4-8.4 | 15-30 | 0-1 | 0.0-2.0 |
| | | 17-28 | 2.0-8.0 | 7.4-8.4 | 5-15 | 0-1 | 0.0-2.0 |
| | | 28-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |

Table 24.--Chemical Properties of the Soils--Continued

Table 24.--Chemical Properties of the Soils--Continued

Table 24.--Chemical Properties of the Soils--Continued

Table 24.--Chemical Properties of the Soils--Continued

| Map symbol and soil name | $\begin{aligned} & \text { Pct. of } \\ & \text { map unit } \end{aligned}$ | Depth | Cationexchange capacity | $\left\lvert\, \begin{gathered} \text { Soil } \\ \mid \text { reaction } \end{gathered}\right.$ | $\begin{aligned} & \mid \text { Calcium } \mid \\ & \mid \text { carbon- } \mid \\ & \mid \text { ate } \end{aligned}$ | Gypsum | Salinity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | In | meq/100 g | pH | Pct | Pct | mmhos/cm |
| I49A: | | | | | | | |
| Lamoure-------------- \| | 3 | 0-27 | 25-45 | 7.4-8.4 | 0-10 | 0 | 0 |
| | | 27-43 | 15-40 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | 43-52 | 20-40 | 7.4-8.4 | 5-20 | 0 | 0.0-2.0 |
| | | 52-60 | 5.0-30 | 7.4-8.4 | 5-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| I50A: | | | | | | | |
| Reiner-------------- \| | 70 | 0-7 | 5.0-25 | 6.6-7.3 | 0 | 0 | 0 |
| | | 7-17 | 15-30 | 6.6-7.3 | 0-10 | 0 | 0 |
| | | 17-35 | 10-25 | 7.4-8.4 | 15-25 | 0-1 | 0.0-2.0 |
| | | 35-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Smiley-------------- \| | 12 | 0-12 | 10-25 | 6.6-7.8 | 0-5 | 0 | 0 |
| | | 12-19 | 10-30 | 6.6-8.4 | 0-10 | 0 | 0 |
| | | 19-42 | 10-25 | 7.4-8.4 | 15-30 | 0-1 | 0.0-2.0 |
| | | 42-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Reiner, very cobbly--\| | 7 | 0-7 | 5.0-25 | 6.6-7.3 | 0 | 0 | 0 |
| | | 7-17 | 15-30 | 6.6-7.3 | 0-10 | 0 | 0 |
| | | 17-35 | 10-25 | 7.4-8.4 | 15-25 | 0-1 | 0.0-2.0 |
| | | 35-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Linveldt------------\| | 5 | 0-9 | 10-25 | 6.6-7.8 | 0 | 0 | 0 |
| | | 9-16 | 8.0-20 | 6.6-7.8 | 0 | 0 | 0 |
| | | 16-29 | 1.0-5.0 | 7.4-8.4 | 0-15 | 0 | 0 |
| | | 29-45 | 10-25 | 7.4-8.4 | 15-25 | 0-1 | 0.0-2.0 |
| | | 45-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Eckvoll-------------- \| | 3 | | 3.0-15 | | | 0 | 0 |
| | | 9-25 | 1.0-10 | 6.1-7.3 | 0 | 0 | 0 |
| | | 25-32 | 10-30 | 6.6-7.8 | 0 | 0 | 0 |
| | | 32-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Kratka-------------- \| | 3 | 0-11 | 10-30 | 5.6-7.8 | 0 | 0 | 0 |
| | | 11-18 | 1.0-12 | 5.6-7.8 | 0-5 | 0 | 0 |
| | | 18-25 | 2.0-10 | 6.6-7.8 | 0-15 | 0 | 0 |
| | | 25-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| I51A: | | | | | | | |
| Reiner-------------- \| | 65 | | 3.0-15 | 6.6-7.3 | | 0 | 0 |
| | | 7-17 | 15-30 | 6.6-7.3 | 0-10 | 0 | 0 |
| | | 17-35 | 10-25 | 7.4-8.4 | 15-25 | 0-1 | 0.0-2.0 |
| | | 35-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Smiley-------------- \| | 9 | 0-12 | 10-25 | 6.6-7.8 | 0-5 | 0 | 0 |
| | | 12-19 | 10-30 | 6.6-8.4 | 0-10 | 0 | 0 |
| | | 19-42 | 10-25 | 7.4-8.4 | 15-30 | 0-1 | 0.0-2.0 |
| | | 42-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Reiner fine sandyloam----------- | | | | | | | |
| | 8 | 0-7 | 5.0-25 | 6.6-7.3 | 0 | 0 | 0 |
| | | 7-17 | 15-30 | 6.6-7.3 | 0-10 | 0 | 0 |
| | | 17-35 | 10-25 | 7.4-8.4 | 15-25 | 0-1 | 0.0-2.0 |
| | | 35-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Linveldt------------ \| | 7 | 0-9 | 10-25 | 6.6-7.8 | 0 | 0 | 0 |
| | | 9-16 | 8.0-20 | 6.6-7.8 | 0 | 0 | 0 |
| | | 16-29 | 1.0-5.0 | 7.4-8.4 | 0-15 | 0 | 0 |
| | | 29-45 | 10-25 | 7.4-8.4 | 15-25 | 0-1 | 0.0-2.0 |
| | | 45-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |

Table 24.--Chemical Properties of the Soils-Continued

Table 24.--Chemical Properties of the Soils--Continued

| Map symbol and soil name | $\begin{aligned} & \text { Pct. of } \\ & \text { map unit } \end{aligned}$ | Depth | Cationexchange capacity | $\begin{array}{\|c} \text { Soil } \\ \mid \text { reaction } \end{array}$ | $\begin{aligned} & \mid \text { Calcium } \mid \\ & \mid \text { carbon- } \mid \\ & \mid \text { ate } \end{aligned}$ | Gypsum | Salinity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | In | meq/100 g | pH | Pct | Pct | mmhos/cm |
| I53A: | | | | | | | |
| Roliss, very cobbly--\| | 7 | 0-14 | 20-40 | 6.6-8.4 | 0-10 | 0 | 0 |
| | | 14-20 | 10-25 | 7.4-8.4 | 5-15 | 0-1 | 0.0-2.0 |
| | | 20-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Kittson------------\| | 5 | 0-10 | 10-35 | 6.6-7.8 | 0 | 0 | 0 |
| | | 10-17 | 10-25 | 6.6-7.8 | 0-5 | 0 | 0 |
| | | 17-36 | 10-25 | 7.4-8.4 | 15-25 | 0-1 | 0.0-2.0 |
| | | 36-60 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Roliss, depressional | 3 | 0-14 | 15-50 | 6.6-8.4 | 0-10 | 0 | 0 |
| | | 14-20 | 10-25 | 7.4-8.4 | 5-15 | 0-1 | 0.0-2.0 |
| | | 20-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Smiley-------------- \| | 2 | 0-12 | 10-25 | 6.6-7.8 | 0-5 | 0 | 0 |
| | | 12-19 | 10-30 | 6.6-8.4 | 0-10 | 0 | 0 |
| | | 19-42 | 10-25 | 7.4-8.4 | 15-30 | 0-1 | 0.0-2.0 |
| | | 42-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| I54A: | | | | | | | |
| Roliss, depressional | 80 | 0-14 | 15-50 | 6.6-8.4 | 0-10 | 0 | 0 |
| | | 14-20 | 10-25 | 7.4-8.4 | 5-15 | 0-1 | 0.0-2.0 |
| | | 20-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Roliss--------------\| | 12 | 0-14 | 20-40 | 6.6-8.4 | 0-10 | 0 | 0 |
| | | 14-20 | 10-25 | 7.4-8.4 | 5-15 | 0-1 | 0.0-2.0 |
| | | 20-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Hamre--------------- | 5 | 0-13 | 120-180 | 5.1-7.8 | 0-5 | 0 | 0 |
| | | 13-18 | 15-35 | 5.1-7.8 | 0-10 | 0 | 0 |
| | | 18-71 | 10-20 | 6.6-8.4 | 5-20 | 0 | 0 |
| | | 71-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| Kratka------------- \| | | | | | | | |
| | 3 | 0-11 | 10-30 | 5.6-7.8 | 0 | 0 | 0 |
| | | 11-18 | 1.0-12 | 5.6-7.8 | 0-5 | 0 | 0 |
| | | 18-25 | 2.0-10 | 6.6-7.8 | 0-15 | 0 | 0 |
| | | 25-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| I55A: | | | | | | | |
| Rosewood----------- \| | 75 | 0-8 | 10-25 | 7.4-8.4 | 5-25 | 0 | 0 |
| | | 8-18 | 2.0-10 | 7.4-8.4 | 15-40 | 0-1 | 0.0-2.0 |
| | | 18-80 | 1.0-5.0 | 7.4-8.4 | 5-25 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Ulen---------------- \| | 10 | 0-9 | 10-25 | 7.4-8.4 | 5-25 | 0 | 0 |
| | | 9-42 | 5.0-15 | 7.4-8.4 | 15-40 | 0-1 | 0.0-2.0 |
| | | 42-60 | 1.0-5.0 | 7.4-8.4 | 5-25 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Hamar---------------- \| | 6 | 0-12 | 5.0-25 | 6.1-7.8 | 0 | 0 | 0 |
| | | 12-17 | 3.0-10 | 6.6-7.8 | 0-1 | 0 | 0 |
| | | 17-40 | 1.0-5.0 | 7.4-7.8 | 0-2 | 0 | 0 |
| | | 40-47 | 5.0-15 | 6.1-7.8 | 0-2 | 0 | 0 |
| | | 47-60 | 1.0-5.0 | 7.4-8.4 | 0-2 | 0 | 0 |
| | | | | | | | |
| Rosewood, depressional | 3 | | | | | | |
| | | 0-8 | 10-40 | 7.4-8.4 | 5-25 | 0 | 0 |
| | | 8-18 | 2.0-10 | 7.4-8.4 | 15-40 | 0-1 | 0.0-2.0 |
| | | 18-80 | 1.0-5.0 | 7.4-8.4 | 5-25 | 0-1 | 0.0-2.0 |
| | | | | | | | |

Table 24.--Chemical Properties of the Soils--Continued

Table 24.--Chemical Properties of the Soils--Continued

| Map symbol and soil name | Pct. of map unit | Depth | \| Cation|exchange |capacity | $\left\lvert\, \begin{gathered} \text { Soil } \\ \mid \text { reaction } \end{gathered}\right.$ | $\begin{aligned} & \text { \|Calcium\| } \\ & \mid \text { carbon- } \mid \\ & \mid \text { ate } \end{aligned}$ | Gypsum | Salinity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | In | $\mid \mathrm{meq} / 100 \mathrm{~g}$ | pH | Pct | Pct | mmhos/cm |
| I57B: | | | | | | | |
| Sioux--------------- \| | 8 | 0-5 | 10-25 | 6.6-8.4 | 0-5 | 0 | 0 |
| | | 5-8 | 5.0-15 | 6.6-8.4 | 0-5 | 0 | 0 |
| | | 8-60 | 1.0-5.0 | 7.4-8.4 | 0-15 | 0 | 0 |
| Oylen-------------- | 7 | 0-10 | 5.0-15 | 6.1-7.3 | 0 | 0 | 0 |
| | | 10-18 | 5.0-15 | 6.1-7.3 | 0 | 0 | 0 |
| | | 18-38 | 1.0-3.0 | 6.1-7.3 | 0 | 0 | 0 |
| | | 38-80 | 1.0-2.0 | 6.6-8.4 | 0-15 | 0 | 0 |
| | | | | | | | |
| Flaming------------- \| | 5 | 0-12 | 5.0-15 | 5.6-7.3 | 0 | 0 | 0 |
| | | 12-17 | 3.0-15 | 5.6-8.4 | 0-3 | 0 | 0 |
| | | 17-27 | 1.0-8.0 | 5.6-8.4 | 0-5 | 0 | 0 |
| | | 27-60 | 1.0-5.0 | 5.6-8.4 | 0-10 | 0 | 0 |
| | | | | | | | |
| Garborg------------- \| | 5 | 0-12 | 5.0-20 | 6.1-7.8 | 0 | 0 | 0 |
| | | 12-41 | 3.0-10 | 6.6-8.4 | 0-1 | 0 | 0 |
| | | 41-59 | 1.0-5.0 | 7.4-8.4 | 5-15 | 0 | 0 |
| | | 59-80 | 1.0-5.0 | 7.4-8.4 | 0-2 | 0 | 0 |
| | | | | | | | |
| I58A: | | | | | | | |
| Seelyeville---------\| | 90 | 0-10 | 120-200 | 4.5-7.3 | 0 | 0 | 0 |
| | | 10-80 | 140-200 | 4.5-7.3 | 0 | 0 | 0 |
| | | | | | | | |
| Cathro-------------- \| | 3 | 0-11 | 120-180 | 4.5-7.8 | 0 | 0 | 0 |
| | | 11-23 | 120-180 | 4.5-7.8 | 0 | 0 | 0 |
| | | 23-60 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | 3 | | | | | | |
| Dora----------------\| | | 0-12 | 120-180 | 4.5-7.8 | 0 | 0 | 0 |
| | | 12-32 | 120-180 | 4.5-7.8 | 0 | 0 | 0 |
| | | 32-36 | 20-60 | 6.1-8.4 | 0-10 | 0 | 0 |
| | | 36-60 | 20-55 | 6.1-8.4 | 0-20 | 0-1 | 0.0-2.0 |
| Markey-------------- \| | | | | | | | |
| | 3 | 0-32 | 120-180 | 4.5-7.8 | 0 | 0 | 0 |
| | | 32-60 | 1.0-5.0 | 5.6-8.4 | 0-5 | 0 | 0 |
| | | | | | | | |
| Berner-------------- \| | 1 | 0-28 | 120-180 | 5.6-7.3 | | 0 | 0 |
| | | 28-31 | 5.0-20 | 6.1-7.3 | 0 | 0 | 0 |
| | | 31-44 | 1.0-5.0 | 6.1-7.8 | 0-5 | 0 | 0 |
| | | 44-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| I59A: | | | | | | | |
| Smiley------------- \| | 65 | 0-12 | 10-25 | 6.6-7.8 | 0-5 | 0 | 0 |
| | | 12-19 | 10-30 | 6.6-8.4 | 0-10 | 0 | 0 |
| | | 19-42 | 10-25 | 7.4-8.4 | 15-30 | 0-1 | 0.0-2.0 |
| | | 42-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| Smiley, very cobbly--\| | | | | | | | |
| | 10 | 0-12 | 10-25 | 6.6-7.8 | 0-5 | 0 | 0 |
| | | 12-19 | 10-30 | 6.6-8.4 | 0-10 | 0 | 0 |
| | | 19-42 | 10-25 | 7.4-8.4 | 15-30 | 0-1 | 0.0-2.0 |
| | | 42-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | \| | | | | |
| Kratka--------------\| | 9 | 0-11 | 10-30 | 5.6-7.8 | 0 | 0 | 0 |
| | | 11-18 | 1.0-12 | 5.6-7.8 | 0-5 | 0 | 0 |
| | | 18-25 | 2.0-10 | 6.6-7.8 | 0-15 | 0 | 0 |
| | | 25-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Roliss-------------\| | 5 | 0-14 | 20-40 | 6.6-8.4 | 0-10 | 0 | 0 |
| | | 14-20 | 10-25 | 7.4-8.4 | 5-15 | 0-1 | 0.0-2.0 |
| | | 20-80 | 10-20 | 7.4-8.4 | 10-20 \| | 0-1 | 0.0-2.0 |
| | | | | | | | |

Table 24.--Chemical Properties of the Soils--Continued

| Map symbol and soil name | Pct. of map unit | Depth | $\begin{aligned} & \text { Cation- } \\ & \text { \| exchange } \\ & \text { \| capacity } \end{aligned}$ | $\left\lvert\, \begin{gathered} \text { Soil } \\ \text { reaction } \end{gathered}\right.$ | $\begin{aligned} & \mid \text { Calcium } \mid \\ & \mid \text { carbon- } \mid \\ & \mid \text { ate } \end{aligned}$ | Gypsum | Salinity | |
|---|---|---|---|---|---|---|---|---|
| | | In | \| meq/100 g | pH | Pct | Pct | mmhos/cm |
| I59A: | | | | | | | |
| Reiner-------------- | 4 | 0-7 | 5.0-25 | 6.6-7.3 | 0 | 0 | 0 |
| | | 7-17 | 15-30 | 6.6-7.3 | 0-10 | 0 | 0 |
| | | 17-35 | 10-25 | 7.4-8.4 | 15-25 | 0-1 | 0.0-2.0 |
| | | 35-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Linveldt------------ \| | 3 | 0-9 | 10-25 | 6.6-7.8 | 0 | 0 | 0 |
| | | 9-16 | 8.0-20 | 6.6-7.8 | 0 | 0 | 0 |
| | | 16-29 | 1.0-5.0 | 7.4-8.4 | 0-15 | 0 | 0 |
| | | 29-45 | 10-25 | 7.4-8.4 | 15-25 | 0-1 | 0.0-2.0 |
| | | 45-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Smiley, depressional | 3 | 0-12 | 15-50 | 6.6-7.8 | 0-5 | 0 | 0 |
| | | 12-19 | 10-30 | 6.6-8.4 | 0-10 | 0 | 0 |
| | | 19-42 | 10-25 | 7.4-8.4 | 15-30 | 0-1 | 0.0-2.0 |
| | | 42-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Strandquist--------- | 1 | 0-10 | 15-30 | 6.6-8.4 | 0-10 | 0 | 0 |
| | | 10-20 | 1.0-5.0 | 7.4-8.4 | 5-15 | 0 | 0 |
| | | 20-60 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| I60A: | | | | | | | |
| Smiley, depressional | 80 | 0-12 | 15-50 | 6.6-7.8 | 0-5 | 0 | 0 |
| | | 12-19 | 10-30 | 6.6-8.4 | 0-10 | 0 | 0 |
| | | 19-42 | 10-25 | 7.4-8.4 | 15-30 | 0-1 | 0.0-2.0 |
| | | 42-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Smiley------------- \| | 10 | 0-12 | 10-25 | 6.6-7.8 | 0-5 | 0 | 0 |
| | | 12-19 | 10-30 | 6.6-8.4 | 0-10 | 0 | 0 |
| | | 19-42 | 10-25 | 7.4-8.4 | 15-30 | 0-1 | 0.0-2.0 |
| | | 42-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Hamre---------------\| | 5 | 0-13 | 120-180 | 5.1-7.8 | 0-5 | 0 | 0 |
| | | 13-18 | 15-35 | 5.1-7.8 | 0-10 | 0 | 0 |
| | | 18-71 | 10-20 | 6.6-8.4 | 5-20 | 0 | 0 |
| | | 71-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Kratka--------------\| | 5 | 0-11 | 10-30 | 5.6-7.8 | 0 | 0 | 0 |
| | | 11-18 | 1.0-12 | 5.6-7.8 | 0-5 | 0 | 0 |
| | | 18-25 | 2.0-10 | 6.6-7.8 | 0-15 | 0 | 0 |
| | | 25-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| 161A: | | | | | | | |
| Strandquist---------\| | 70 | 0-10 | 15-30 | 6.6-8.4 | 0-10 | 0 | 0 |
| | | 10-20 | 1.0-5.0 | 7.4-8.4 | 5-15 | 0 | 0 |
| | | 20-60 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Mavie---------------- \| | 8 | 0-12 | 10-30 | 7.4-8.4 | 5-15 | 0 | 0 |
| | | 12-18 | 5.0-20 | 7.9-8.4 | 15-40 | 0-1 | 0.0-2.0 |
| | | 18-39 | 1.0-5.0 | 7.4-8.4 | 10-25 | 0-1 | 0.0-2.0 |
| | | 39-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Roliss-------------- | 7 | 0-14 | 20-40 | 6.6-8.4 | 0-10 | 0 | 0 |
| | | 14-20 | 10-25 | 7.4-8.4 | 5-15 | 0-1 | 0.0-2.0 |
| | | 20-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Kratka--------------\| | 5 | 0-11 | 10-30 | 5.6-7.8 | 0 | 0 | 0 |
| | | 11-18 | 1.0-12 | 5.6-7.8 | 0-5 | 0 | 0 |
| | | 18-25 | 2.0-10 | 6.6-7.8 | 0-15 | 0 | 0 |
| | | 25-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | \| | | | |

Table 24.--Chemical Properties of the Soils--Continued

Table 24.--Chemical Properties of the Soils--Continued

Table 24.--Chemical Properties of the Soils--Continued

| Map symbol and soil name | $\begin{aligned} & \text { Pct. of } \\ & \text { map unit } \end{aligned}$ | Depth | Cation\|exchange |capacity | Soil reaction | Calcium carbonate | Gypsum | Salinity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | In | $\mid \mathrm{meq} / 100 \mathrm{~g}$ | pH | Pct | Pct | mmhos/cm |
| 164A: | | | | | | | |
| Strathcona----------- \| | 2 | 0-10 | 10-30 | 7.4-8.4 | 5-15 | 0 | 0 |
| | | 10-17 | 5.0-15 | 7.4-8.4 | 15-30 | 0-1 | 0.0-2.0 |
| | | 17-28 | 2.0-8.0 | 7.4-8.4 | 5-15 | 0-1 | 0.0-2.0 |
| | | 28-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Thiefriver---------- | 2 | 0-12 | 10-30 | 7.4-8.4 | 5-25 | 0 | 0 |
| | | 12-23 | 5.0-15 | 7.4-8.4 | 15-40 | 0-1 | 0.0-2.0 |
| | | 23-32 | 1.0-5.0 | 7.4-8.4 | 5-20 | 0-1 | 0.0-2.0 |
| | | 32-80 | 20-50 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| I65A: | | | | | | | |
| Ulen----------------- \| | 70 | 0-9 | 5.0-15 | 7.4-8.4 | 5-25 | 0 | 0 |
| | | 9-42 | 5.0-15 | 7.4-8.4 | 15-40 | 0-1 | 0.0-2.0 |
| | | 42-60 | 1.0-5.0 | 7.4-8.4 | 5-25 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Rosewood------------ \| | 10 | 0-8 | 10-25 | 7.4-8.4 | 5-25 | 0 | 0 |
| | | 8-18 | 2.0-10 | 7.4-8.4 | 15-40 | 0-1 | 0.0-2.0 |
| | | 18-80 | 1.0-5.0 | 7.4-8.4 | 5-25 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Flaming-------------\| | 6 | 0-12 | 5.0-15 | 5.6-7.3 | 0 | 0 | 0 |
| | | 12-17 | 3.0-15 | 5.6-8.4 | 0-3 | 0 | 0 |
| | | 17-27 | 1.0-8.0 | 5.6-8.4 | 0-5 | 0 | 0 |
| | | 27-60 | 1.0-5.0 | 5.6-8.4 | 0-10 | 0 | 0 |
| | | | | | | | |
| Poppleton----------- \| | 4 | 0-6 | 3.0-12 | 5.6-7.3 | 0 | 0 | 0 |
| | | 6-9 | 1.0-6.0 | 6.1-7.8 | 0-5 | 0 | 0 |
| | | 9-40 | 1.0-6.0 | 6.1-7.8 | 0-10 | 0 | 0 |
| | | 40-60 | 1.0-6.0 | 6.1-7.8 | 0-15 | 0 | 0 |
| | | | | | | | |
| Karlsruhe----------- \| | 3 | 0-15 | 10-25 | 6.6-8.4 | 5-20 | 0 | 0 |
| | | 15-30 | 3.0-15 | 7.4-8.4 | 15-35 | 0-1 | 0 |
| | | 30-60 | 1.0-5.0 | 7.4-8.4 | 10-25 | 0 | 0 |
| | | | | | | | |
| Radium-------------- \| | 3 | 0-14 | 3.0-12 | 6.1-7.8 | 0-5 | 0 | 0 |
| | | 14-33 | 2.0-8.0 | 6.6-8.4 | 2-10 | 0 | 0 |
| | | 33-43 | 1.0-5.0 | 7.4-8.4 | 5-15 | 0 | 0 |
| | | 43-80 | 1.0-5.0 | 7.4-8.4 | 5-15 | 0 | 0 |
| | | | | | | | |
| Strathcona----------- \| | 2 | 0-10 | 10-30 | 7.4-8.4 | 5-15 | | |
| | | 10-17 | 5.0-15 | 7.4-8.4 | 15-30 | 0-1 | 0.0-2.0 |
| | | 17-28 | 2.0-8.0 | 7.4-8.4 | 5-15 | 0-1 | 0.0-2.0 |
| | | 28-80 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Thiefriver---------- \| | 2 | 0-12 | 10-30 | 7.4-8.4 | 5-25 | 0 | 0 |
| | | 12-23 | 5.0-15 | 7.4-8.4 | 15-40 | 0-1 | 0.0-2.0 |
| | | 23-32 | 1.0-5.0 | 7.4-8.4 | 5-20 | 0-1 | 0.0-2.0 |
| | | 32-80 | 20-50 | 7.4-8.4 | 10-30 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| 166A: | | | | | | | |
| Vallers------------- \| | 75 | 0-12 | 20-40 | 7.4-8.4 | 10-20 | 0 | 0 |
| | | 12-21 | 10-25 | 7.4-8.4 | 15-35 | 0-1 | 0.0-2.0 |
| | | 21-60 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Vallers, very cobbly | 7 | 0-12 | 20-40 | 7.4-8.4 | 10-20 | 0 | 0 |
| | | 12-21 | 10-25 | 7.4-8.4 | 15-35 | 0-1 | 0.0-2.0 |
| | | 21-60 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |
| Hamerly------------- \| | 6 | 0-8 | 15-35 | 6.6-8.4 | 0-25 | 0 | 0 |
| | | 8-25 | 10-25 | 7.4-8.4 | 15-35 | 0-1 | 0.0-2.0 |
| | | 25-60 | 10-20 | 7.4-8.4 | 10-20 | 0-1 | 0.0-2.0 |
| | | | | | | | |

Table 24.--Chemical Properties of the Soils--Continued

Table 24.--Chemical Properties of the Soils--Continued

Table 24.--Chemical Properties of the Soils--Continued

Table 25.--Soil Moisture, Ponding, and Flooding
(Depths are in feet. For top depth, bottom depth, and ponding depth, L indicates a low value, R indicates a representative value, and H indicates a high value. See text for further explanation of terms used in this table. Some map units are subject to occasional overland flooding of brief or very brief duration in spring or after heavy or prolonged precipitation in summer)

B109A Bowstring and Fluvaquents soils, MLRA 88, 0 to 2 percent slopes, frequently flooded

Bowstring (45 percent of the map unit)

| Month | $\begin{aligned} & \mid \text { Moisture } \mid \\ & \mid \text { status } \mid \end{aligned}$ | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | | |
|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | --- | | | 0.0-0.3-0.5 |
| January | moist | 10.0-0.0-0.0 | 0.5-1.3-3.3\| | none | | frequent | \|very long | |
| | wet | 0.5-1.3-3.3 | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 1.3-2.1-4.1\| | \| none | --- | frequent | \|very long | 0.0-0.3-0.5 |
| | wet | \|1.3-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0 | 0.0-0.0-2.5\| | frequent | very long | frequent | \|very long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-2.5 | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 0.0-0.0-0.8\| | \|very frequent| | very long | frequent | \|very long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-0.8 | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.0-0.0-1.3\| | \|very frequent| | long | frequent | \|very long | 10.0-0.5-1.0 |
| | wet | 0.0-0.0-1.3 | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0 | 0.0-0.0-1.6\| | frequent | long | frequent | \|very long | 10.0-0.5-1.0 |
| | wet | \|0.0-0.0-1.6| | 6.7-6.7-6.7\| | | | | | |
| July | moist | 0.0-0.0-0.0 | 0.2-0.8-2.5\| | frequent | brief | occasional | long | 10.0-0.3-0.5 |
| | wet | $\|0.2-0.8-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | frequent | brief | \|occasional | long | 10.0-0.3-0.5 |
| | wet | \|0.8-1.6-3.3 | 6.7-6.7-6.7\| | | | | | |
| September | moist | $\|0.0-0.0-0.0\|$ | 0.3-1.1-3.0\| | frequent | brief | \|occasional | brief | 10.0-0.3-0.5 |
| | wet | $\|0.3-1.1-3.0\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 0.2-0.5-2.5\| | frequent | long | \|occasional | brief | 10.0-0.3-0.5 |
| | wet | $\|0.2-0.5-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.0-0.3-1.6\| | rare | long | \|occasional | long | 10.0-0.3-0.5 |
| | wet | $\|0.0-0.3-1.6\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 0.5-0.8-2.5\| | none | --- | frequent | \|very long | 10.0-0.3-0.5 |
| | wet | $\|0.5-0.8-2.5\|$ | 6.7-6.7-6.7\| | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
B109A (continued)
Fluvaquents (40 percent of the map unit)

Hapludalfs (5 percent of the map unit)

B109A (continued)
Seelyeville (5 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0\| | 0.5-1.0-3.3\| | none | --- | occasional | long | 0.0-0.3-0.5 |
| | wet | 0.5-1.0-3.3\| | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 1.3-1.6-4.1\| | none | --- | occasional | long | 0.0-0.3-0.5 |
| | wet | 1.3-1.6-4.1\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0\| | 0.0-0.0-2.5\| | frequent | very long | occasional | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-2.5\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 0.0-0.0-0.8 | very frequent\| | very long | frequent | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-0.8\| | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0\| | 0.0-0.0-1.3\| | \|very frequent| | long | frequent | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-1.3\| | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0\| | 0.0-0.3-1.6\| | frequent | long | frequent | brief | 0.0-0.5-1.0 |
| | wet | 0.0-0.3-1.6\| | 6.7-6.7-6.7\| | | | | | |
| July | moist | 0.0-0.0-0.0\| | 0.0-0.8-2.5\| | frequent | brief | occasional | \|very brief | 0.0-0.3-0.5 |
| | wet | 0.0-0.8-2.5\| | 6.7-6.7-6.7\| | | | | | |
| August | moist | 0.0-0.0-0.0\| | 0.5-1.6-3.3\| | frequent | brief | occasional | \|very brief | 0.0-0.3-0.5 |
| | wet | 0.5-1.6-3.3\| | 6.7-6.7-6.7\| | | | | | |
| September | moist | 0.0-0.0-0.0\| | 0.3-1.1-3.0\| | frequent | brief | \|occasional | \|very brief | 0.0-0.3-0.5 |
| | wet | 0.3-1.1-3.0\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 0.0-0.5-2.5\| | frequent | brief | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.0-0.5-2.5\| | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0\| | 0.0-0.3-1.6\| | rare | long | occasional | long | 10.0-0.3-0.5 |
| | wet | 0.0-0.3-1.6\| | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 0.5-0.8-2.5\| | none | --- | \|occasional | long | 10.0-0.3-0.5 |
| | wet | 0.5-0.8-2.5\| | 6.7-6.7-6.7\| | | | | | |

Water (5 percent of the map unit) (not applicable)

B200A Garnes fine sandy loam, 0 to 3 percent slopes
Garnes (70 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0 | 4.1-5.4-6.7\| | none | --- | none | --- | --- |
| | wet | \|4.1-5.4-6.7 | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0 | 4.9-5.9-6.7\| | none | --- | none | --- | --- |
| | wet | \|4.9-5.9-6.7 | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0 | 3.3-4.9-6.7\| | none | --- | none | --- | --- |
| | wet | \|3.3-4.9-6.7 | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0 | 1.8-2.5-4.1\| | none | --- | none | --- | --- |
| | wet | 1.8-2.5-4.1 | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0 | 2.3-2.8-4.9\| | none | --- | none | --- | --- |
| | wet | \|2.3-2.8-4.9 | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0 | 2.6-3.1-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.6-3.1-5.7 | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 3.3-5.7-6.7\| | none | --- | none | --- | --- |
| | wet | \|3.3-5.7-6.7 | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 4.9-6.7-6.7\| | none | --- | none | --- | --- |
| | wet | \|4.9-6.7-6.7 | 6.7-6.7-6.7\| | | | | | |
| September | moist | 0.0-0.0-0.0 | 3.6-4.9-6.7\| | none | --- | none | --- | --- |
| | wet | \|3.6-4.9-6.7 | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0 | 3.0-4.3-5.7\| | none | --- | none | --- | --- |
| | wet | $\|3.0-4.3-5.7\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0 | 2.3-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | 2.3-3.3-4.9 | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0 | 3.3-4.6-5.7\| | none | --- | none | --- | --- |
| | wet | \|3.3-4.6-5.7 | 6.7-6.7-6.7\| | | | | | |

B200A (continued)
Chilgren (13 percent of the map unit)

Eckvoll (5 percent of the map unit)

Garnes, very stony (5 percent of the map unit)

Grygla (4 percent of the map unit)

| Month | Moisture status | Top depth
 L - R - H | Bottom depth
 L - R - H | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{gathered} \text { Ponding } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0 | 1.6-3.0-4.1 | none | - | none | --- | --- |
| | wet | \|1.6-3.0-4.1 | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0 | 2.5-3.3-4.9 | none | --- | none | --- | --- |
| | wet | \|2.5-3.3-4.9 | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0 | 1.6-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.6-2.1-4.1 | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0 | 0.0-0.5-2.5\| | none | --- | \|occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.0-0.5-2.5 | 6.7-6.7-6.7\| | | | | | |
| May | moist | 10.0-0.0-0.0 | 0.5-0.8-3.3\| | none | --- | \|occasional | \|very brief | 0.0-0.3-0.5 |
| | wet | \|0.5-0.8-3.3 | 6.7-6.7-6.7\| | | | | | |
| June | moist | 10.0-0.0-0.0 | 0.8-1.6-4.1\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | \|0.8-1.6-4.1 | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0 | 1.6-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | \|1.6-3.3-4.9 | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0 | 2.5-4.1-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.5-4.1-5.7 | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0 | 1.6-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | \|1.6-3.3-4.9 | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0 | 1.3-2.5-4.1\| | none | - | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | \|1.3-2.5-4.1 | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0 | 0.8-1.6-3.3\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | \|0.8-1.6-3.3 | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0 | 1.3-2.1-3.8\| | none | -- | none | --- | - |
| | wet | \|1.3-2.1-3.8 | 6.7-6.7-6.7\| | | | | | |

B200A (continued)
Pelan (3 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 4.8-5.4-6.7\| | none | --- | none | --- | --- |
| | wet | $\|4.8-5.4-6.7\| 6$ | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0|5 | 5.2-5.7-6.7\| | none | --- | none | --- | --- |
| | wet | $\|5.2-5.7-6.7\| 6$ | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 3.3-4.6-6.7\| | none | --- | none | --- | --- |
| | wet | $\|3.3-4.6-6.7\| 6$ | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 1.3-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | $\|1.3-2.5-4.9\| 6$ | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0|2 | 2.0-3.0-5.6\| | none | --- | none | --- | --- |
| | wet | $\|2.0-3.0-5.6\| 6$ | 6.7-6.7-6.7\| | | | | | |
| June | moist | $\|0.0-0.0-0.0\| 2$ | 2.6-3.6-6.2\| | none | --- | none | --- | --- |
| | wet | $\mid 2.6$-3.6-6.2\|6 | 6.7-6.7-6.7\| | | | | | |
| July | moist | $\|0.0-0.0-0.0\| 3$ | 3.9-5.4-6.7\| | none | --- | none | --- | --- |
| | wet | $\|3.9-5.4-6.7\| 6$ | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0|5 | 5.4-6.7-6.7\| | none | --- | none | --- | --- |
| | wet | \| 5.4-6.7-6.7|6. | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 4.1-4.6-6.7\| | none | --- | none | --- | --- |
| | wet | $\|4.1-4.6-6.7\| 6$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0|3 | 3.6-3.9-6.7\| | none | --- | none | --- | --- |
| | wet | $\|3.6-3.9-6.7\| 6$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0|2 | 2.5-3.3-5.7\| | none | --- | none | --- | --- |
| | wet | $\|2.5-3.3-5.7\| 6$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0|3 | 3.9-4.6-6.2\| | none | --- | none | --- | --- |
| | wet | $\|3.9-4.6-6.2\| 6$ | 6.7-6.7-6.7\| | | | | | |

B201A Chilgren fine sandy loam, 0 to 2 percent slopes
Chilgren (75 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \text { L-R - H } \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 1.6-3.0-4.1\| | none | --- | none | --- | --- |
| | wet | $\|1.6-3.0-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 2.5-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | \|2.5-3.3-4.9 | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 1.3-2.1-3.3\| | none | --- | none | --- | --- |
| | wet | $\|1.3-2.1-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0 | 0.0-0.5-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | $\|0.0-0.5-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| May | moist | $\|0.0-0.0-0.0\|$ | 0.3-0.8-3.3\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | $\|0.3-0.8-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 0.7-1.3-4.1\| | none | --- | occasional | very brief | 0.0-0.3-0.5 |
| | wet | $\|0.7-1.3-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 1.6-3.0-4.9\| | none | --- | none | --- | --- |
| | wet | $\|1.6-3.0-4.9\|$ | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 2.5-3.8-5.7\| | none | --- | none | --- | --- |
| | wet | \| 2.5-3.8-5.7| | 6.7-6.7-6.7\| | | | | | |
| September\| | moist | \|0.0-0.0-0.0| | 2.0-3.3-4.9\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | $\|2.0-3.3-4.9\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 1.3-1.6-4.1\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | $\|1.3-1.6-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.8-1.3-3.3\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | $\|0.8-1.3-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 1.3-2.1-3.8 | none | --- | none | --- | --- |
| | wet | \|1.3-2.1-3.8| | 6.7-6.7-6.7\| | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
B201A (continued)
Garnes (9 percent of the map unit)

Grygla (5 percent of the map unit)

| Month | Moisture status | Top depth
 L - R - H | Bottom depth
 L - R - H | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{gathered} \text { Ponding } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0 | 1.6-3.0-4.1 | none | - | none | --- | --- |
| | wet | \|1.6-3.0-4.1 | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0 | 2.5-3.3-4.9 | none | --- | none | --- | --- |
| | wet | \|2.5-3.3-4.9 | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0 | 1.6-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.6-2.1-4.1 | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0 | 0.0-0.5-2.5\| | none | --- | \|occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.0-0.5-2.5 | 6.7-6.7-6.7\| | | | | | |
| May | moist | 10.0-0.0-0.0 | 0.5-0.8-3.3\| | none | --- | \|occasional | \|very brief | 0.0-0.3-0.5 |
| | wet | \|0.5-0.8-3.3 | 6.7-6.7-6.7\| | | | | | |
| June | moist | 10.0-0.0-0.0 | 0.8-1.6-4.1\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | \|0.8-1.6-4.1 | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0 | 1.6-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | \|1.6-3.3-4.9 | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0 | 2.5-4.1-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.5-4.1-5.7 | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0 | 1.6-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | \|1.6-3.3-4.9 | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0 | 1.3-2.5-4.1\| | none | - | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | \|1.3-2.5-4.1 | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0 | 0.8-1.6-3.3\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | \|0.8-1.6-3.3 | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0 | 1.3-2.1-3.8\| | none | -- | none | --- | - |
| | wet | \|1.3-2.1-3.8 | 6.7-6.7-6.7\| | | | | | |

Grygla, depressional (5 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \text { L - R - H } \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 1.0-1.6-3.0 | none | --- | occasional | long | 0.0-0.3-0.5 |
| | wet | \|1.0-1.6-3.0| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 1.6-3.0-3.6\| | none | --- | occasional | long | 0.0-0.3-0.5 |
| | wet | \|1.6-3.0-3.6| | 6.7-6.7-6.7\| | | | | | |
| March | moist | $\|0.0-0.0-0.0\|$ | 0.0-0.0-2.0\| | none | --- | occasional | long | 0.0-0.3-0.5 |
| | wet | \|0.0-0.0-2.0| | 6.7-6.7-6.7\| | | | | | |
| April | moist | $\|0.0-0.0-0.0\|$ | 0.0-0.0-1.0\| | none | --- | frequent | long | 0.0-0.3-0.8 |
| | wet | $\|0.0-0.0-1.0\|$ | 6.7-6.7-6.7\| | | | | | |
| May | moist | $\|0.0-0.0-0.0\|$ | 0.0-0.0-2.0\| | none | --- | frequent | long | 0.0-0.3-0.8 |
| | wet | \|0.0-0.0-2.0 | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 0.2-0.8-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | $\|0.2-0.8-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 0.7-1.6-3.3\| | none | --- | rare | \|very brief | 0.0-0.2-0.3 |
| | wet | \|0.7-1.6-3.3 | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 1.6-2.5-3.6\| | none | --- | rare | \|very brief | 0.0-0.2-0.3 |
| | wet | \|1.6-2.5-3.6| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 1.0-1.6-3.0\| | none | --- | rare | \|very brief | 0.0-0.2-0.3 |
| | wet | $\|1.0-1.6-3.0\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 0.7-1.3-2.6\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.7-1.3-2.6 | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.3-0.8-1.6\| | none | --- | occasional | long | 0.0-0.3-0.5 |
| | wet | \|0.3-0.8-1.6| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 0.7-1.3-2.3\| | none | --- | occasional | long | 0.0-0.3-0.5 |
| | wet | 0.7-1.3-2.3 | 6.7-6.7-6.7\| | | | | | |

Hamre (5 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | Ponding depth L - R - H | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | $\|0.8-1.6-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 1.6-2.5-4.1\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | $\|1.6-2.5-4.1\| 6$ | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 0.0-0.0-2.5\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-2.5| | 6.7-6.7-6.7\| | | | | | |
| April | moist | $\|0.0-0.0-0.0\|$ | 0.0-0.0-0.8\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-0.8| | 6.7-6.7-6.7\| | | | | | |
| May | moist | $\|0.0-0.0-0.0\| 0$ | 0.0-0.0-1.3\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-1.3 | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 0.0-0.5-1.6\| | none | --- | frequent | brief | 0.0-0.5-1.0 |
| | wet | \|0.0-0.5-1.6| | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0|0 | 0.2-0.8-2.5\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | \|0.2-0.8-2.5| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | $\|0.8-1.6-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| September | moist | $\|0.0-0.0-0.0\|$ | 0.5-1.3-3.0\| | none | --- | \|occasional | brief | 10.0-0.3-0.5 |
| | wet | $\|0.5-1.3-3.0\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 0.3-0.8-2.5\| | none | --- | \|occasional | brief | 0.0-0.5-1.0 |
| | wet | $\|0.3-0.8-2.5\| 6$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.0-0.3-1.6\| | none | --- | \|occasional | long | \|0.0-0.5-1.0 |
| | wet | $\|0.0-0.3-1.6\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0|0. | 0.5-1.3-2.5\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | $\|0.5-1.3-2.5\| 6$ | 6.7-6.7-6.7\| | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
B201A (continued)
Pelan (1 percent of the map unit)

| Month | Moisture status | $\left\{\begin{array}{c} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{array}\right.$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | Ponding depth $L-R-H$ | |
|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | |
| January | moist | \|0.0-0.0-0.0 | 4.8-5.4-6.7\| | none | --- | none | --- | --- |
| | wet | \|4.8-5.4-6.7 | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0 | 5.2-5.7-6.7\| | none | --- | none | --- | --- |
| | wet | $\|5.2-5.7-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0 | 3.3-4.6-6.7\| | none | --- | none | --- | --- |
| | wet | $\|3.3-4.6-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0 | 1.3-2.5-4.9\| | none | --- | none | -- | --- |
| | wet | \|1.3-2.5-4.9 | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0 | 2.0-3.0-5.6\| | none | --- | none | --- | --- |
| | wet | \|2.0-3.0-5.6 | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0 | 2.6-3.6-6.2\| | none | --- | none | --- | --- |
| | wet | $\|2.6-3.6-6.2\|$ | 6.7-6.7-6.7\| | | | | | |
| July | moist | $\|0.0-0.0-0.0\|$ | 3.9-5.4-6.7\| | none | - | none | --- | --- |
| | wet | \|3.9-5.4-6.7| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0 | 5.4-6.7-6.7\| | none | --- | none | --- | --- |
| | wet | \| 5.4-6.7-6.7| | 6.7-6.7-6.7\| | | | | | |
| September | moist | $\|0.0-0.0-0.0\|$ | | none | --- | none | --- | -- |
| | wet | \|4.1-4.6-6.7 | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0 | 3.6-3.9-6.7\| | none | --- | none | --- | -- |
| | wet | \| 3.6-3.9-6.7| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0 | 2.5-3.3-5.7\| | none | --- | none | --- | -- |
| | wet | $\|2.5-3.3-5.7\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0 | 3.9-4.6-6.2\| | none | - | none | -- | --- |
| | wet | $\|3.9-4.6-6.2\|$ | 6.7-6.7-6.7\| | | | | | |
| | | | | | | | | |

B202A Cathro muck, depressional, MLRA 88, 0 to 1 percent slopes
Cathro (80 percent of the map unit)

B202A (continued)
Hamre (8 percent of the map unit)

Chilgren (3 percent of the map unit)

Northwood (3 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0 | 0.8-1.6-3.3\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | 0.8-1.6-3.3 | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0 | 1.6-2.5-4.1\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | 1.6-2.5-4.1 | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0 | 0.0-0.0-2.5\| | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-2.5 | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0 | 0.0-0.0-0.8 | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-0.8 | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0 | 0.0-0.0-1.3\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-1.3 | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0 | 0.0-0.5-1.6\| | none | --- | frequent | brief | 0.0-0.5-1.0 |
| | wet | 0.0-0.5-1.6 | 6.7-6.7-6.7\| | | | | | |
| July | moist | 0.0-0.0-0.0 | 0.2-0.8-2.5\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | 0.2-0.8-2.5 | 6.7-6.7-6.7\| | | | | | |
| August | moist | 0.0-0.0-0.0 | 0.8-1.6-3.3\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | 0.8-1.6-3.3 | 6.7-6.7-6.7\| | | | | | |
| September | moist | 0.0-0.0-0.0 | 0.5-1.3-3.0\| | none | --- | \|occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.5-1.3-3.0 | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0 | 0.3-0.8-2.5\| | none | --- | \|occasional | brief | 10.0-0.5-1.0 |
| | wet | 0.3-0.8-2.5 | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0 | 0.0-0.3-1.6\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.3-1.6 | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0 | 0.5-1.3-2.5\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | 0.5-1.3-2.5 | 6.7-6.7-6.7\| | | | | | |

Berner (2 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding
 frequency | Flooding duration | Ponding
 frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | |
| January | moist | 0.0-0.0-0.0 | 0.5-1.3-3.3\| | none | --- | \|occasional | long | 0.0-0.3-0.5 |
| | wet | 0.5-1.3-3.3 | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0 | 1.3-2.1-4.1\| | none | --- | occasional | long | 0.0-0.3-0.5 |
| | wet | 1.3-2.1-4.1 | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0 | 0.0-0.0-2.5\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-2.5 | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0 | 0.0-0.0-0.8\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | 10.0-0.0-0.8 | 6.7-6.7-6.7\| | | | | | |
| May | moist | 10.0-0.0-0.0 | 0.0-0.0-1.3\| | none | --- | frequent | long | 10.0-0.5-1.0 |
| | wet | 0.0-0.0-1.3 | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0 | 0.0-0.0-1.6\| | none | --- | \|occasional | brief | 10.0-0.5-1.0 |
| | wet | 0.0-0.0-1.6 | 6.7-6.7-6.7\| | | | | | |
| July | moist | 0.0-0.0-0.0 | 0.2-0.8-2.5\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | $\|0.2-0.8-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| August | moist | 0.0-0.0-0.0 | 0.8-1.6-3.3\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | 0.8-1.6-3.3 | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 0.3-1.1-3.0\| | none | --- | rare | brief | 10.0-0.3-0.5 |
| | wet | 0.3-1.1-3.0 | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0 | 0.2-0.5-2.5\| | none | --- | \|occasional | brief | 10.0-0.3-0.5 |
| | wet | $\|0.2-0.5-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | $\|0.0-0.0-0.0\|$ | 0.0-0.3-1.6\| | none | --- | \|occasional | long | 10.0-0.3-0.5 |
| | wet | 0.0-0.3-1.6 | 6.7-6.7-6.7\| | | | | | |
| December | moist | $\|0.0-0.0-0.0\|$ | 0.5-0.8-2.5\| | none | --- | \|occasional | long | 10.0-0.3-0.5 |
| | wet | \|0.5-0.8-2.5| | 6.7-6.7-6.7\| | | | | | |
| | | | | | | | | |

B202A (continued)
Grygla (2 percent of the map unit)

Seelyeville (2 percent of the map unit)

| Month | $\begin{aligned} & \mid \text { Moisture } \mid \\ & \mid \text { status } \mid \end{aligned}$ | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | |
| January | moist | 10.0-0.0-0.0 | 0.5-1.0-3.3\| | none | --- | \|occasional | long | 0.0-0.3-0.5 |
| | wet | 0.5-1.0-3.3 | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0 | 1.3-1.6-4.1\| | none | --- | \|occasional | long | 10.0-0.3-0.5 |
| | wet | $\|1.3-1.6-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| March | moist | $\|0.0-0.0-0.0\|$ | 0.0-0.0-2.5\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | $\|0.0-0.0-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0 | 0.0-0.0-0.8\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | $\|0.0-0.0-0.8\|$ | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0 | 0.0-0.0-1.3\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-1.3 | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0 | 0.0-0.3-1.6\| | none | --- | frequent | brief | 0.0-0.5-1.0 |
| | wet | \|0.0-0.3-1.6 | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0 | 0.0-0.8-2.5\| | none | --- | \|occasional | very brief | 0.0-0.3-0.5 |
| | wet | 10.0-0.8-2.5 | 6.7-6.7-6.7\| | | | | | |
| August | moist | $\|0.0-0.0-0.0\|$ | 0.5-1.6-3.3\| | none | --- | \|occasional
 \| | \|very brief | 0.0-0.3-0.5 |
| | wet | $\|0.5-1.6-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0 | 0.3-1.1-3.0\| | none | --- | \|occasional | \|very brief | 10.0-0.3-0.5 |
| | wet | $\|0.3-1.1-3.0\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | $\|0.0-0.0-0.0\|$ | 0.0-0.5-2.5\| | none | --- | \|occasional | brief | 10.0-0.3-0.5 |
| | wet | $\|0.0-0.5-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | $\|0.0-0.0-0.0\|$ | 0.0-0.3-1.6\| | none | --- | \|occasional | long | $0.0-0.3-0.5$ |
| | wet | $\|0.0-0.3-1.6\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 0.5-0.8-2.5\| | none | --- | \|occasional | long | 0.0-0.3-0.5 |
| | wet | \|0.5-0.8-2.5| | 6.7-6.7-6.7\| | | | | | |
| | | | | | | | | |

B203A Northwood muck, depressional, MLRA 88, 0 to 1 percent slopes
Northwood (75 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0\| | \|0.8-1.6-3.3| | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | 0.8-1.6-3.3\| | \|6.7-6.7-6.7| | | | | | |
| February | moist | 0.0-0.0-0.0\| | $\|1.6-2.5-4.1\|$ | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | 1.6-2.5-4.1\| | \|6.7-6.7-6.7| | | | | | |
| March | moist | 0.0-0.0-0.0\| | $\|0.0-0.0-2.5\|$ | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-2.5\| | \|6.7-6.7-6.7| | | | | | |
| April | moist | 0.0-0.0-0.0\| | $\|0.0-0.0-0.8\|$ | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-0.8\| | $\|6.7-6.7-6.7\|$ | | | | | |
| May | moist | 0.0-0.0-0.0\| | $\|0.0-0.0-1.3\|$ | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-1.3\| | \|6.7-6.7-6.7| | | | | | |
| June | moist | 0.0-0.0-0.0\| | $\|0.0-0.5-1.6\|$ | none | --- | frequent | brief | 0.0-0.5-1.0 |
| | wet | 0.0-0.5-1.6\| | $\|6.7-6.7-6.7\|$ | | | | | |
| July | moist | 0.0-0.0-0.0\| | $\|0.2-0.8-2.5\|$ | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | 0.2-0.8-2.5\| | $\|6.7-6.7-6.7\|$ | | | | | |
| August | moist | 0.0-0.0-0.0\| | $\|0.8-1.6-3.3\|$ | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | 0.8-1.6-3.3\| | $\|6.7-6.7-6.7\|$ | | | | | |
| September | moist | 0.0-0.0-0.0\| | \mid 0.5-1.3-3.0\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.5-1.3-3.0\| | \mid 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | $\|0.3-0.8-2.5\|$ | none | --- | occasional | brief | 0.0-0.5-1.0 |
| | wet | 0.3-0.8-2.5\| | \|6.7-6.7-6.7| | | | | | |
| November | moist | 0.0-0.0-0.0\| | $\|0.0-0.3-1.6\|$ | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.3-1.6\| | \mid 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | \mid 0.5-1.3-2.5\| | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | 0.5-1.3-2.5\| | \|6.7-6.7-6.7| | | | | | |

Hamre (10 percent of the map unit)

| Month | \|Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \text { L-R - H } \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | $\|0.8-1.6-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 1.6-2.5-4.1\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | $\|1.6-2.5-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| March | moist | $\|0.0-0.0-0.0\|$ | 0.0-0.0-2.5\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | $\|0.0-0.0-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| April | moist | $\|0.0-0.0-0.0\|$ | 0.0-0.0-0.8\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | $\|0.0-0.0-0.8\|$ | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.0-0.0-1.3\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | $\|0.0-0.0-1.3\|$ | 6.7-6.7-6.7\| | | | | | |
| June | moist | $\|0.0-0.0-0.0\|$ | 0.0-0.5-1.6\| | none | --- | frequent | brief | 0.0-0.5-1.0 |
| | wet | $\|0.0-0.5-1.6\|$ | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 0.2-0.8-2.5\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | $\|0.2-0.8-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | $\|0.8-1.6-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 0.5-1.3-3.0\| | none | --- | \|occasional | brief | 10.0-0.3-0.5 |
| | wet | $\|0.5-1.3-3.0\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 0.3-0.8-2.5\| | none | --- | \|occasional | brief | 10.0-0.5-1.0 |
| | wet | $\|0.3-0.8-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.0-0.3-1.6\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | $\|0.0-0.3-1.6\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 0.5-1.3-2.5\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | $\|0.5-1.3-2.5\|$ | 6.7-6.7-6.7\| | | | | | |

B203A (continued)
Grygla (7 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0\| | 1.6-3.0-4.1\| | none | --- | none | --- | --- |
| | wet | 1.6-3.0-4.1\| | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 2.5-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | 2.5-3.3-4.9\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0\| | 1.6-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | 1.6-2.1-4.1\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 0.0-0.5-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.0-0.5-2.5\| | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0\| | 0.5-0.8-3.3\| | none | --- | occasional | very brief | 0.0-0.3-0.5 |
| | wet | 0.5-0.8-3.3\| | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0 | 0.8-1.6-4.1\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | 0.8-1.6-4.1\| | 6.7-6.7-6.7\| | | | | | |
| July | moist | 0.0-0.0-0.0\| | 1.6-3.3-4.9 | none | --- | none | --- | --- |
| | wet | 1.6-3.3-4.9\| | 6.7-6.7-6.7\| | | | | | |
| August | moist | 0.0-0.0-0.0\| | 2.5-4.1-5.7\| | none | --- | none | --- | --- |
| | wet | 2.5-4.1-5.7\| | 6.7-6.7-6.7\| | | | | | |
| September | moist | 0.0-0.0-0.0\| | 1.6-3.3-4.9\| | none | --- | none | -- | --- |
| | wet | 1.6-3.3-4.9\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 1.3-2.5-4.1\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | 1.3-2.5-4.1\| | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0\| | 0.8-1.6-3.3\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | 0.8-1.6-3.3\| | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 1.3-2.1-3.8 | none | --- | none | --- | --- |
| | wet | 1.3-2.1-3.8\| | 6.7-6.7-6.7\| | | | | | |

Berner (5 percent of the map unit)

| Month | \|Moisture
 status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \text { L }-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 0.5-1.3-3.3\| | none | --- | \|occasional | long | 0.0-0.3-0.5 |
| | wet | $\|0.5-1.3-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0|1 | 1.3-2.1-4.1\| | none | --- | \|occasional | long | 0.0-0.3-0.5 |
| | wet | $\|1.3-2.1-4.1\| 6$ | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0|0 | 0.0-0.0-2.5\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | $\|0.0-0.0-2.5\| 6$ | 6.7-6.7-6.7\| | | | | | |
| April | moist | $\|0.0-0.0-0.0\|$ | 0.0-0.0-0.8\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | $\|0.0-0.0-0.8\|$ | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.0-0.0-1.3\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | 10.0-0.0-1.3 | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 0.0-0.0-1.6\| | none | --- | \|occasional | brief | 10.0-0.5-1.0 |
| | wet | \|0.0-0.0-1.6| | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 0.2-0.8-2.5\| | none | --- | rare | very brief | 10.0-0.3-0.5 |
| | wet | \|0.2-0.8-2.5| | 6.7-6.7-6.7\| | | | | | |
| August | moist | $\|0.0-0.0-0.0\| 0$ | 0.8-1.6-3.3\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | $\|0.8-1.6-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| September | moist | $\|0.0-0.0-0.0\|$ | 0.3-1.1-3.0\| | none | --- | rare | brief | 10.0-0.3-0.5 |
| | wet | $\|0.3-1.1-3.0\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 0.2-0.5-2.5\| | none | --- | \|occasional | brief | 10.0-0.3-0.5 |
| | wet | $\|0.2-0.5-2.5\| 6$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.0-0.3-1.6\| | none | --- | \|occasional | long | 10.0-0.3-0.5 |
| | wet | $\|0.0-0.3-1.6\| 6$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0|0. | 0.5-0.8-2.5\| | none | --- | \|occasional | long | 0.0-0.3-0.5 |
| | wet | $\|0.5-0.8-2.5\| 6$ | 6.7-6.7-6.7\| | | | | | |

Chilgren (3 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 1.6-3.0-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.6-3.0-4.1| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 2.5-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | \|2.5-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 1.3-2.1-3.3\| | none | --- | none | --- | --- |
| | wet | \|1.3-2.1-3.3| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0|0. | 0.0-0.5-2.5\| | none | -- | occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.0-0.5-2.5| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0|0 | 0.3-0.8-3.3\| | none | --- | \|occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.3-0.8-3.3| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0|0 | 0.7-1.3-4.1\| | none | --- | \|occasional | very brief | 0.0-0.3-0.5 |
| | wet | \|0.7-1.3-4.1| | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 1.6-3.0-4.9\| | none | --- | none | -- | --- |
| | wet | \|1.6-3.0-4.9| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 2.5-3.8-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.5-3.8-5.7| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 2.0-3.3-4.9\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | \|2.0-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 1.3-1.6-4.1\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | \|1.3-1.6-4.1| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0|0 | 0.8-1.3-3.3\| | none | --- | \|occasional | brief | 0.0-0.3-0.5 |
| | wet | $\|0.8-1.3-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 1.3-2.1-3.8\| | none | --- | none | --- | --- |
| | wet | \|1.3-2.1-3.8| | 6.7-6.7-6.7\| | | | | | |
| | | | | | | | | |

B204A Roliss loam, MLRA 88, 0 to 2 percent slopes
Roliss (75 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 1.6-3.0-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.6-3.0-4.1| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 2.5-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | \|2.5-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 1.3-2.1-3.3\| | none | --- | none | --- | --- |
| | wet | \|1.3-2.1-3.3| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 0.0-0.5-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | $\|0.0-0.5-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.3-0.8-3.3\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.3-0.8-3.3| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 0.7-1.3-4.1\| | none | --- | occasional | very brief | 0.0-0.3-0.5 |
| | wet | $\|0.7-1.3-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 1.6-3.0-4.9\| | none | --- | none | --- | --- |
| | wet | \|1.6-3.0-4.9| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 2.5-3.8-5.7\| | none | --- | none | --- | -- - |
| | wet | \| 2.5-3.8-5.7| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 2.0-3.3-4.9\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | \|2.0-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 1.3-1.6-4.1\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | \|1.3-1.6-4.1| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.8-1.3-3.3\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | $\|0.8-1.3-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 1.3-2.1-3.8\| | none | --- | none | --- | --- |
| | wet | \|1.3-2.1-3.8| | 6.7-6.7-6.7\| | | | | | |

B204A (continued)
Grygla (8 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0\| | 1.6-3.0-4.1\| | none | --- | none | --- | --- |
| | wet | 1.6-3.0-4.1\| | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 2.5-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | 2.5-3.3-4.9\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0\| | 1.6-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | 1.6-2.1-4.1\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 0.0-0.5-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.0-0.5-2.5\| | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0\| | 0.5-0.8-3.3\| | none | --- | occasional | very brief | 0.0-0.3-0.5 |
| | wet | 0.5-0.8-3.3\| | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0 | 0.8-1.6-4.1\| | none | --- | rare | very brief | 0.0-0.1-0.3 |
| | wet | 0.8-1.6-4.1\| | 6.7-6.7-6.7\| | | | | | |
| July | moist | 0.0-0.0-0.0\| | 1.6-3.3-4.9 | none | --- | none | --- | --- |
| | wet | 1.6-3.3-4.9\| | 6.7-6.7-6.7\| | | | | | |
| August | moist | 0.0-0.0-0.0\| | 2.5-4.1-5.7\| | none | --- | none | --- | --- |
| | wet | 2.5-4.1-5.7\| | 6.7-6.7-6.7\| | | | | | |
| September | moist | 0.0-0.0-0.0\| | 1.6-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | 1.6-3.3-4.9\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 1.3-2.5-4.1\| | none | --- | rare | very brief | 0.0-0.1-0.3 |
| | wet | 1.3-2.5-4.1\| | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0\| | 0.8-1.6-3.3\| | none | --- | rare | very brief | 0.0-0.1-0.3 |
| | wet | 0.8-1.6-3.3\| | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 1.3-2.1-3.8\| | none | --- | none | --- | --- |
| | wet | 1.3-2.1-3.8\| | 6.7-6.7-6.7\| | | | | | |

Chilgren (5 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
B204A (continued)
Garnes (5 percent of the map unit)

Roliss, depressional (5 percent of the map unit)

B204A (continued)
Hamre (2 percent of the map unit)

B205A Berner muck, depressional, MLRA 88, 0 to 1 percent slopes
Berner (80 percent of the map unit)

Northwood (7 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \text { L-R }-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0 | 0.8-1.6-3.3\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | $\|0.8-1.6-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 1.6-2.5-4.1\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|1.6-2.5-4.1| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0 | 0.0-0.0-2.5\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-2.5| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0 | 0.0-0.0-0.8 | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-0.8 | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0 | 0.0-0.0-1.3\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-1.3 | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0 | 0.0-0.5-1.6\| | none | --- | frequent | brief | 0.0-0.5-1.0 |
| | wet | 0.0-0.5-1.6 | 6.7-6.7-6.7\| | | | | | |
| July | moist | 0.0-0.0-0.0 | 0.2-0.8-2.5\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | \|0.2-0.8-2.5| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | 0.8-1.6-3.3 | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 0.5-1.3-3.0\| | none | --- | \|occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.5-1.3-3.0 | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0 | 0.3-0.8-2.5\| | none | --- | occasional | brief | 0.0-0.5-1.0 |
| | wet | \|0.3-0.8-2.5| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.0-0.3-1.6\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.3-1.6| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 0.5-1.3-2.5\| | none | --- | \|occasional | long | \|0.0-0.5-1.0 |
| | wet | \|0.5-1.3-2.5| | 6.7-6.7-6.7\| | | | | | |

Grygla (5 percent of the map unit)

B205A (continued)
Cathro (3 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 0.5-1.3-3.3\| | none | --- | occasional | long | 0.0-0.3-0.5 |
| | wet | $\|0.5-1.3-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 1.3-2.1-4.1\| | none | --- | occasional | long | 0.0-0.3-0.5 |
| | wet | $\|1.3-2.1-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 0.0-0.0-2.5\| | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | $\|0.0-0.0-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| April | moist | $\|0.0-0.0-0.0\|$ | 0.0-0.0-0.8\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | $\|0.0-0.0-0.8\|$ | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.0-0.0-1.3\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | $\|0.0-0.0-1.3\|$ | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 0.0-0.0-1.6\| | none | --- | \|occasional | brief | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-1.6| | 6.7-6.7-6.7\| | | | | | |
| July | moist | $\|0.0-0.0-0.0\|$ | 0.2-0.8-2.5\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | $\|0.2-0.8-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | $\|0.8-1.6-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 0.3-1.1-3.0\| | none | --- | rare | brief | 0.0-0.3-0.5 |
| | wet | $\|0.3-1.1-3.0\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 0.2-0.5-2.5\| | none | --- | \|occasional | brief | 10.0-0.3-0.5 |
| | wet | $\|0.2-0.5-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.0-0.3-1.6\| | none | --- | occasional | long | 0.0-0.3-0.5 |
| | wet | $\|0.0-0.3-1.6\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 0.5-0.8-2.5\| | none | --- | occasional | long | 0.0-0.3-0.5 |
| | wet | \|0.5-0.8-2.5| | 6.7-6.7-6.7\| | | | | | |

Hamre (3 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \text { L - R - H } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0 | 0.8-1.6-3.3\| | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | 0.8-1.6-3.3\| | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 1.6-2.5-4.1\| | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | 1.6-2.5-4.1\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0\| | 0.0-0.0-2.5\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-2.5\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 0.0-0.0-0.8\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-0.8\| | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0\| | 0.0-0.0-1.3\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-1.3\| | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0\| | 0.0-0.5-1.6\| | none | --- | frequent | brief | 0.0-0.5-1.0 |
| | wet | 0.0-0.5-1.6\| | 6.7-6.7-6.7\| | | | | | |
| July | moist | 0.0-0.0-0.0\| | 0.2-0.8-2.5\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | 0.2-0.8-2.5\| | 6.7-6.7-6.7\| | | | | | |
| August | moist | 0.0-0.0-0.0\| | 0.8-1.6-3.3\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | 0.8-1.6-3.3 | 6.7-6.7-6.7\| | | | | | |
| September | moist | 0.0-0.0-0.0\| | 0.5-1.3-3.0\| | none | --- | occasional | brief | 10.0-0.3-0.5 |
| | wet | 0.5-1.3-3.0\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 0.3-0.8-2.5\| | none | --- | occasional | brief | 0.0-0.5-1.0 |
| | wet | 0.3-0.8-2.5\| | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0\| | 0.0-0.3-1.6\| | none | --- | occasional | long | $0.0-0.5-1.0$ |
| | wet | 0.0-0.3-1.6\| | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 0.5-1.3-2.5\| | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | 0.5-1.3-2.5\| | 6.7-6.7-6.7\| | | | | | |

B205A (continued)
Seelyeville (2 percent of the map unit)

B206A Hamre muck, depressional, MLRA 88, 0 to 1 percent slopes
Hamre (80 percent of the map unit)

| Month | $\begin{array}{\|l\|} \mid \text { Moisture } \\ \mid \text { status } \end{array}$ | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | $\|0.8-1.6-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 1.6-2.5-4.1\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | $\|1.6-2.5-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 0.0-0.0-2.5\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | $\|0.0-0.0-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 0.0-0.0-0.8\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | $\|0.0-0.0-0.8\|$ | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.0-0.0-1.3\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | $\|0.0-0.0-1.3\|$ | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 0.0-0.5-1.6\| | none | --- | frequent | brief | 0.0-0.5-1.0 |
| | wet | \|0.0-0.5-1.6| | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 0.2-0.8-2.5\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | $\|0.2-0.8-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| August | moist | $\|0.0-0.0-0.0\|$ | 0.8-1.6-3.3\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | $\|0.8-1.6-3.3\|$ | \|6.7-6.7-6.7| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 0.5-1.3-3.0\| | none | --- | \|occasional | brief | 10.0-0.3-0.5 |
| | wet | $\|0.5-1.3-3.0\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 0.3-0.8-2.5\| | none | --- | \|occasional | brief | 0.0-0.5-1.0 |
| | wet | $\|0.3-0.8-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.0-0.3-1.6\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | $\|0.0-0.3-1.6\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 0.5-1.3-2.5\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | $\|0.5-1.3-2.5\|$ | 6.7-6.7-6.7\| | | | | | |

Chilgren (8 percent of the map unit)

Northwood (5 percent of the map unit)

| Month | $\begin{aligned} & \mid \text { Moisture } \mid \\ & \mid \text { status } \mid \end{aligned}$ | $\left\lvert\, \begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}\right.$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0 | 0.8-1.6-3.3\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.8-1.6-3.3 | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 1.6-2.5-4.1\| | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | $\|1.6-2.5-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0 | 0.0-0.0-2.5\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | $\|0.0-0.0-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| April | moist | $\|0.0-0.0-0.0\|$ | 0.0-0.0-0.8\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-0.8 | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0 | 0.0-0.0-1.3\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | $\|0.0-0.0-1.3\|$ | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0 | 0.0-0.5-1.6\| | none | --- | frequent | brief | 0.0-0.5-1.0 |
| | wet | $\|0.0-0.5-1.6\|$ | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 0.2-0.8-2.5\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | $\|0.2-0.8-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0 | 0.8-1.6-3.3\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | \|0.8-1.6-3.3 | 6.7-6.7-6.7\| | | | | | |
| September | moist | $\|0.0-0.0-0.0\|$ | 0.5-1.3-3.0\| | none | --- | occasional | brief | 10.0-0.3-0.5 |
| | wet | $\|0.5-1.3-3.0\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0 | 0.3-0.8-2.5\| | none | --- | occasional | brief | 0.0-0.5-1.0 |
| | wet | $\|0.3-0.8-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | $\|0.0-0.0-0.0\|$ | 0.0-0.3-1.6\| | none | --- | occasional | long | \|0.0-0.5-1.0 |
| | wet | $\|0.0-0.3-1.6\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | $\|0.0-0.0-0.0\|$ | 0.5-1.3-2.5\| | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | $\|0.5-1.3-2.5\|$ | 6.7-6.7-6.7\| | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
B206A (continued)
Cathro (3 percent of the map unit)

| Month | \|Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \text { L-R }-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \text { L - R - H } \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0 | 0.5-1.3-3.3\| | none | --- | \|occasional | long | 10.0-0.3-0.5 |
| | wet | \|0.5-1.3-3.3| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 1.3-2.1-4.1\| | none | --- | \|occasional | long | 0.0-0.3-0.5 |
| | wet | \|1.3-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0 | 0.0-0.0-2.5\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-2.5| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0 | 0.0-0.0-0.8 | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-0.8 | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0 | 0.0-0.0-1.3\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-1.3 | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0 | 0.0-0.0-1.6\| | none | --- | \|occasional | brief | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-1.6 | 6.7-6.7-6.7\| | | | | | |
| July | moist | 0.0-0.0-0.0 | 0.2-0.8-2.5\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | \|0.2-0.8-2.5| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | 0.8-1.6-3.3 | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 0.3-1.1-3.0\| | none | --- | rare | brief | 0.0-0.3-0.5 |
| | wet | 0.3-1.1-3.0 | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0 | 0.2-0.5-2.5\| | none | --- | \|occasional | brief | 10.0-0.3-0.5 |
| | wet | \|0.2-0.5-2.5| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.0-0.3-1.6\| | none | --- | occasional | long | 0.0-0.3-0.5 |
| | wet | \|0.0-0.3-1.6| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 0.5-0.8-2.5\| | none | --- | \|occasional | long | 10.0-0.3-0.5 |
| | wet | \|0.5-0.8-2.5| | 6.7-6.7-6.7\| | | | | | |

Grygla (2 percent of the map unit)

B206A (continued)
Roliss (2 percent of the map unit)

I1A Augsburg loam, 0 to 2 percent slopes
Augsburg (75 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0\| | 1.6-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | 1.6-2.1-4.1\| | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 2.0-2.6-4.9\| | none | --- | none | --- | --- |
| | wet | 2.0-2.6-4.9\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0\| | 1.5-2.3-4.9\| | none | --- | none | --- | --- |
| | wet | 1.5-2.3-4.9\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 0.0-0.5-2.5\| | none | --- | occasional | brief | 10.0-0.3-0.5 |
| | wet | 0.0-0.5-2.5\| | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0\| | 0.5-0.8-3.3\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.5-0.8-3.3\| | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0\| | 0.8-1.6-4.1\| | none | --- | \|occasional | very brief | 0.0-0.3-0.5 |
| | wet | 0.8-1.6-4.1\| | 6.7-6.7-6.7\| | | | | | |
| July | moist | 0.0-0.0-0.0\| | 1.6-3.0-4.9\| | none | --- | none | | --- |
| | wet | 1.6-3.0-4.9\| | 6.7-6.7-6.7\| | | | | | |
| August | moist | 0.0-0.0-0.0\| | 2.5-3.8-5.7\| | none | --- | none | --- | --- |
| | wet | 2.5-3.8-5.7\| | 6.7-6.7-6.7\| | | | | | |
| September | moist | 0.0-0.0-0.0\| | 1.6-3.3-4.9\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | 1.6-3.3-4.9\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 1.3-2.5-4.1\| | none | --- | occasional | brief | 10.0-0.3-0.5 |
| | wet | 1.3-2.5-4.1\| | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0\| | 0.8-1.6-3.3\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.8-1.6-3.3\| | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 1.3-2.0-3.9\| | none | --- | none | --- | --- |
| | wet | 1.3-2.0-3.9\| | 6.7-6.7-6.7\| | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I1A (continued)
Borup (10 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{gathered} \text { Ponding } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 1.6-3.0-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.6-3.0-4.1| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 2.5-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | \| 2.5-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 1.3-2.1-3.3\| | none | --- | none | --- | --- |
| | wet | \|1.3-2.1-3.3| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 0.0-0.5-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | $\|0.0-0.5-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.3-0.8-3.3\| | none | --- | \|occasional | brief | 0.0-0.3-0.5 |
| | wet | $\|0.3-0.8-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 0.7-1.3-4.1\| | none | --- | \|occasional | very brief | 0.0-0.3-0.5 |
| | wet | $\|0.7-1.3-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 1.6-3.0-4.9\| | none | --- | none | --- | --- |
| | wet | \|1.6-3.0-4.9| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 2.5-3.8-5.7\| | none | --- | none | --- | --- |
| | wet | \| 2.5-3.8-5.7| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 2.0-3.3-4.9\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | $\|2.0-3.3-4.9\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 1.3-1.6-4.1\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | $\|1.3-1.6-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.8-1.3-3.3\| | none | --- | occasional | \|very brief | 0.0-0.1-0.3 |
| | wet | $\|0.8-1.3-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 1.3-2.1-3.8\| | none | --- | none | --- | --- |
| | wet | \|1.3-2.1-3.8| | 6.7-6.7-6.7\| | | | | | |

Foxlake (5 percent of the map unit)

| Month | $\begin{aligned} & \mid \text { Moisture } \mid \\ & \mid \text { status } \mid \end{aligned}$ | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding
 frequency | Flooding duration | Ponding
 frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \text { L }-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0 | 0.8-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | 0.8-2.1-4.1 | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 1.6-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | \|1.6-2.5-4.9| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0 | 0.3-1.3-3.3\| | none | --- | none | --- | --- |
| | wet | \|0.3-1.3-3.3 | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0 | 0.0-0.0-1.6\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | $\|0.0-0.0-1.6\|$ | 6.7-6.7-6.7\| | | | | | |
| May | moist | 10.0-0.0-0.0 | 0.0-0.5-2.5\| | none | --- | \|occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.0-0.5-2.5 | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0 | 0.8-1.3-3.3\| | none | --- | \|occasional | \|very brief| | 0.0-0.3-0.5 |
| | wet | \|0.8-1.3-3.3 | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 1.3-2.1-4.1\| | none | --- | rare | \|very brief | 0.0-0.2-0.3 |
| | wet | \|1.3-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |
| August | moist | 0.0-0.0-0.0 | 1.6-3.0-4.9\| | none | --- | rare | \|very brief | 0.0-0.2-0.3 |
| | wet | \|1.6-3.0-4.9 | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 1.3-2.5-4.1\| | none | --- | rare | \|very brief | 0.0-0.2-0.3 |
| | wet | $\|1.3-2.5-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0 | 0.8-1.6-3.3\| | none | --- | occasional | \|very brief | 0.0-0.2-0.3 |
| | wet | \|0.8-1.6-3.3 | 6.7-6.7-6.7\| | | | | | |
| November | moist | 10.0-0.0-0.0 | 0.5-1.3-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | $\|0.5-1.3-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0 | 0.8-1.6-3.3\| | none | --- | none | --- | --- |
| | wet | $\|0.8-1.6-3.3\|$ | 6.7-6.7-6.7\| | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I1A (continued)
Augsburg, depressional (3 percent of the map unit)

Wheatville (3 percent of the map unit)

I1A (continued)
Glyndon (2 percent of the map unit)

| Month | \|Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0 | 2.5-4.1-6.7\| | none | --- | none | --- | --- |
| | wet | \|2.5-4.1-6.7| | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 3.3-4.9-6.7\| | none | --- | none | --- | --- |
| | wet | \|3.3-4.9-6.7| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 2.5-3.9-5.7\| | none | --- | none | --- | --- |
| | wet | 2.5-3.9-5.7 | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0 | 0.7-1.0-3.3\| | none | --- | none | --- | --- |
| | wet | \|0.7-1.0-3.3| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 1.0-1.6-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.0-1.6-4.1| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 1.6-2.5-4.9 | none | --- | none | --- | --- |
| | wet | \|1.6-2.5-4.9| | 6.7-6.7-6.7\| | | | | | |
| July | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.2\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.2| | 2.5-3.9-6.7\| | | | | | |
| | wet | \|2.5-3.9-6.7| | 6.7-6.7-6.7\| | | | | | |
| August | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | 3.3-6.7-6.7\| | | | | | |
| | wet | \|3.3-6.7-6.7| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 2.5-4.6-6.2\| | none | --- | none | --- | --- |
| | wet | \|2.5-4.6-6.2| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 2.0-4.1-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.0-4.1-5.7| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 1.6-3.0-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.6-3.0-4.1| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 2.0-3.8-4.9 | none | --- | none | --- | --- |
| | wet | \|2.0-3.8-4.9| | 6.7-6.7-6.7\| | | | | | |

Espelie (1 percent of the map unit)

| Month | Moisture status | Top depth $\mathrm{L}-\mathrm{R}-\mathrm{H}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding
 frequency | Flooding duration | Ponding
 frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \text { L - R - H } \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 1.6-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.6-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 2.0-2.6-4.9\| | none | --- | none | --- | --- |
| | wet | \|2.0-2.6-4.9| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 1.5-2.3-4.9\| | none | --- | none | --- | --- |
| | wet | \|1.5-2.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0|0 | 0.0-0.5-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.0-0.5-2.5| | 6.7-6.7-6.7\| | | | | | |
| May | moist | $\|0.0-0.0-0.0\| 0$ | 0.5-0.8-3.3\| | none | --- | \|occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.5-0.8-3.3| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0|0 | 0.8-1.6-4.1\| | none | --- | occasional | \|very brief | 10.0-0.3-0.5 |
| | wet | $\|0.8-1.6-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 1.6-3.0-4.9\| | none | --- | none | --- | --- |
| | wet | \|1.6-3.0-4.9| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 2.5-3.8-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.5-3.8-5.7| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 1.6-3.3-4.9\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | \|1.6-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 1.3-2.5-4.1\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | \|1.3-2.5-4.1| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0|0 | 0.8-1.6-3.3\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | $\|0.8-1.6-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 1.3-2.0-3.9\| | none | --- | none | --- | --- |
| | wet | \|1.3-2.0-3.9| | 6.7-6.7-6.7\| | | | | | |

I1A (continued)
Hattie (1 percent of the map unit)

I2A Augsburg very fine sandy loam, 0 to 2 percent slopes
Augsburg (75 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0\| | 1.6-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | 1.6-2.1-4.1\| | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 2.0-2.6-4.9\| | none | --- | none | --- | --- |
| | wet | 2.0-2.6-4.9\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0\| | 1.5-2.3-4.9\| | none | --- | none | --- | --- |
| | wet | 1.5-2.3-4.9\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 0.0-0.5-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.0-0.5-2.5\| | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0\| | 0.5-0.8-3.3\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.5-0.8-3.3\| | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0\| | 0.8-1.6-4.1\| | none | --- | occasional | very brief | 0.0-0.3-0.5 |
| | wet | 0.8-1.6-4.1\| | 6.7-6.7-6.7\| | | | | | |
| July | moist | 0.0-0.0-0.0\| | 1.6-3.0-4.9\| | none | --- | none | --- | --- |
| | wet | 1.6-3.0-4.9\| | 6.7-6.7-6.7\| | | | | | |
| August | moist | 0.0-0.0-0.0\| | 2.5-3.8-5.7\| | none | --- | none | --- | --- |
| | wet | 2.5-3.8-5.7\| | 6.7-6.7-6.7\| | | | | | |
| September\| | moist | 0.0-0.0-0.0\| | 1.6-3.3-4.9\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | 1.6-3.3-4.9\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 1.3-2.5-4.1\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 1.3-2.5-4.1\| | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0\| | 0.8-1.6-3.3\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.8-1.6-3.3 | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 1.3-2.0-3.9 | none | --- | none | --- | --- |
| | wet | 1.3-2.0-3.9 | 6.7-6.7-6.7\| | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I2A (continued)
Borup (10 percent of the map unit)

Foxlake (5 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I2A (continued)
Augsburg, depressional (3 percent of the map unit)

| | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|
| Month | Moisture | Top | Bottom | Flooding | Flooding | Ponding | Ponding duration | $\begin{gathered} \text { Ponding } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ |
| | status | depth | depth | frequency | duration | frequency | | |
| | | L - R - H | L - R H | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| January | moist | 0.0-0.0-0.0\| | 1.0-1.6-3.0 | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | 1.0-1.6-3.0\| | 6.7-6.7-6.7 | | | | | |
| February | moist | 0.0-0.0-0.0\| | 1.6-3.0-3.6 | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | 1.6-3.0-3.6\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0\| | 0.0-0.0-2.0 | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-2.0\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 0.0-0.0-1.0 | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-1.0\| | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0\| | 0.0-0.0-2.0 | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | $\|0.0-0.0-2.0\|$ | 6.7-6.7-6.7\| | | | | | |
| June | moist | $\|0.0-0.0-0.0\|$ | 0.2-0.8-2.5 | none | --- | occasional | brief | 0.0-0.5-1.0 |
| | wet | $\|0.2-0.8-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| July | moist | $\|0.0-0.0-0.0\|$ | 0.7-1.6-3.3 | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | $\|0.7-1.6-3.3\|$ | 6.7-6.7-6.7 | | | | | |
| August | moist | \|0.0-0.0-0.0| | 1.6-2.5-3.6 | none | -- - | rare | very brief | 0.0-0.3-0.5 |
| | wet | $\|1.6-2.5-3.6\|$ | 6.7-6.7-6.7\| | | | | | |
| September | moist | $\|0.0-0.0-0.0\|$ | 1.0-1.6-3.0 | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | $\|1.0-1.6-3.0\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | $\|0.0-0.0-0.0\|$ | 0.7-1.3-2.6\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | $\|0.7-1.3-2.6\|$ | 6.7-6.7-6.7 | | | | | |
| November | moist | $\|0.0-0.0-0.0\|$ | 0.3-0.8-1.6\| | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | $\|0.3-0.8-1.6\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | $\|0.0-0.0-0.0\|$ | 0.7-1.3-2.3 | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | $\|0.7-1.3-2.3\|$ | 6.7-6.7-6.7 | | | | | |
| | | | | | | | | |

Wheatville (3 percent of the map unit)

I2A (continued)
Glyndon (2 percent of the map unit)

| Month | \|Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0 | 2.5-4.1-6.7\| | none | --- | none | --- | --- |
| | wet | \|2.5-4.1-6.7| | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 3.3-4.9-6.7\| | none | --- | none | --- | --- |
| | wet | \|3.3-4.9-6.7| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 2.5-3.9-5.7\| | none | --- | none | --- | --- |
| | wet | 2.5-3.9-5.7 | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0 | 0.7-1.0-3.3\| | none | --- | none | --- | --- |
| | wet | \|0.7-1.0-3.3| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 1.0-1.6-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.0-1.6-4.1| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 1.6-2.5-4.9 | none | --- | none | --- | --- |
| | wet | \|1.6-2.5-4.9| | 6.7-6.7-6.7\| | | | | | |
| July | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.2\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.2| | 2.5-3.9-6.7\| | | | | | |
| | wet | \|2.5-3.9-6.7| | 6.7-6.7-6.7\| | | | | | |
| August | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | 3.3-6.7-6.7\| | | | | | |
| | wet | \|3.3-6.7-6.7| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 2.5-4.6-6.2\| | none | --- | none | --- | --- |
| | wet | \|2.5-4.6-6.2| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 2.0-4.1-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.0-4.1-5.7| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 1.6-3.0-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.6-3.0-4.1| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 2.0-3.8-4.9 | none | --- | none | --- | --- |
| | wet | \|2.0-3.8-4.9| | 6.7-6.7-6.7\| | | | | | |

Espelie (1 percent of the map unit)

I2A (continued)
Hattie (1 percent of the map unit)

I3A Berner muck, 0 to 1 percent slopes
Berner (80 percent of the map unit)

I3A (continued)
Northwood (7 percent of the map unit)

Kratka (5 percent of the map unit)

I3A (continued)
Hamre (3 percent of the map unit)

| Month | Moisture status | Top depth $L-R-H$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0 | 0.8-1.6-3.3\| | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.8-1.6-3.3 | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0 | 1.6-2.5-4.1\| | none | --- | \|occasional | long | 10.0-0.5-1.0 |
| | wet | $\|1.6-2.5-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0 | 0.0-0.0-2.5\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-2.5 | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0 | 0.0-0.0-0.8\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-0.8 | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0 | 0.0-0.0-1.3\| | none | --- | frequent | long | 10.0-0.5-1.0 |
| | wet | 0.0-0.0-1.3 | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0 | 0.0-0.5-1.6\| | none | --- | frequent | brief | 10.0-0.5-1.0 |
| | wet | \|0.0-0.5-1.6 | 6.7-6.7-6.7\| | | | | | |
| July | moist | 0.0-0.0-0.0 | 0.2-0.8-2.5 | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | 0.2-0.8-2.5 | 6.7-6.7-6.7\| | | | | | |
| August | moist | 0.0-0.0-0.0 | 0.8-1.6-3.3\| | none | -- - | rare | very brief | 10.0-0.3-0.5 |
| | wet | \|0.8-1.6-3.3 | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0 | 0.5-1.3-3.0\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | \mid 0.5-1.3-3.0 | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0 | 0.3-0.8-2.5\| | none | --- | occasional | brief | 10.0-0.5-1.0 |
| | wet | $\|0.3-0.8-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | $\|0.0-0.0-0.0\|$ | 0.0-0.3-1.6\| | none | --- | \|occasional | long | 10.0-0.5-1.0 |
| | wet | $\|0.0-0.3-1.6\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | $\|0.0-0.0-0.0\|$ | 0.5-1.3-2.5\| | none | --- | \|occasional | long | 10.0-0.5-1.0 |
| | wet | \mid 0.5-1.3-2.5\| | 6.7-6.7-6.7\| | | | | | |

Strathcona (3 percent of the map unit)

| Month | Moisture status |
 Top Bottom
 depth depth
 $L-R-H$ $L-R-H$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{gathered} \text { Ponding } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | |
| January | moist wet | $\begin{aligned} & 0.0-0.0-0.0 \mid 1.6-3.0-4.1 \\ & 1.6-3.0-4.1 \mid 6.7-6.7-6.7 \end{aligned}$ | none | --- | none | --- | --- |
| February | moist wet | $\begin{aligned} & \|0.0-0.0-0.0\| 2.5-3.3-4.9 \\ & \|2.5-3.3-4.9\| 6.7-6.7-6.7 \end{aligned}$ | none | --- | none | --- | --- |
| March | moist wet | $\begin{aligned} & 0.0-0.0-0.0 \mid 1.6-2.1-4.1 \\ & 1.6-2.1-4.1 \mid 6.7-6.7-6.7 \end{aligned}$ | none | --- | none | --- | --- |
| April | moist wet | $\begin{aligned} & 0.0-0.0-0.0 \mid 0.0-0.5-2.5 \\ & 0.0-0.5-2.5 \mid 6.7-6.7-6.7 \end{aligned}$ | none | --- | \|occasional | brief | 0.0-0.3-0.5 |
| May | moist wet | $\begin{aligned} & 0.0-0.0-0.0 \mid 0.5-0.8-3.3 \\ & 0.5-0.8-3.3 \mid 6.7-6.7-6.7 \end{aligned}$ | none | - | \|occasional | \|very brief | 0.0-0.3-0.5 |
| June | moist wet | $\begin{aligned} & 0.0-0.0-0.0 \mid 0.8-1.6-4.1 \\ & 0.8-1.6-4.1 \mid 6.7-6.7-6.7 \end{aligned}$ | none | --- | rare | very brief | 0.0-0.1-0.3 |
| July | moist wet | $\begin{aligned} & 0.0-0.0-0.0 \mid 1.6-3.3-4.9 \\ & 1.6-3.3-4.9 \mid 6.7-6.7-6.7 \end{aligned}$ | none | --- | none | - | --- |
| August | moist wet | $\begin{aligned} & 0.0-0.0-0.0 \mid 2.5-4.1-5.7 \\ & 2.5-4.1-5.7 \mid 6.7-6.7-6.7 \end{aligned}$ | none | --- | none | | --- |
| September | moist wet | $\begin{aligned} & 0.0-0.0-0.0 \mid 1.6-3.3-4.9 \\ & 1.6-3.3-4.9 \mid 6.7-6.7-6.7 \end{aligned}$ | none | -- | none | | --- |
| October | moist wet | $\begin{aligned} & 0.0-0.0-0.0 \mid 1.3-2.5-4.1 \\ & 1.3-2.5-4.1 \mid 6.7-6.7-6.7 \end{aligned}$ | none | - | rare | very brief | 0.0-0.1-0.3 |
| November | moist wet | $\begin{aligned} & 0.0-0.0-0.0 \mid 0.8-1.6-3.3 \\ & 0.8-1.6-3.3 \mid 6.7-6.7-6.7 \end{aligned}$ | none | -- | rare | very brief | 0.0-0.1-0.3 |
| December | moist wet | $\begin{aligned} & \|0.0-0.0-0.0\| 1.3-2.1-3.8 \mid \\ & \|1.3-2.1-3.8\| 6.7-6.7-6.7 \end{aligned}$ | none | - | none | --- | -- |

I3A (continued)
Seelyeville (2 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \text { L }-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 0.5-1.0-3.3\| | none | --- | occasional | long | 0.0-0.3-0.5 |
| | wet | \|0.5-1.0-3.3 | 6.7-6.7-6.7\| | | | | | |
| February | moist | $\|0.0-0.0-0.0\|$ | 1.3-1.6-4.1\| | none | --- | occasional | long | 0.0-0.3-0.5 |
| | wet | $\|1.3-1.6-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0 | 0.0-0.0-2.5\| | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | 10.0-0.0-2.5 | 6.7-6.7-6.7\| | | | | | |
| April | moist | 10.0-0.0-0.0 | 0.0-0.0-0.8 | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | 10.0-0.0-0.8 | 6.7-6.7-6.7\| | | | | | |
| May | moist | 10.0-0.0-0.0 | 0.0-0.0-1.3\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-1.3 | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0 | 0.0-0.3-1.6\| | none | --- | frequent | brief | 0.0-0.5-1.0 |
| | wet | \|0.0-0.3-1.6 | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0 | 0.0-0.8-2.5\| | none | --- | occasional | \|very brief | 0.0-0.3-0.5 |
| | wet | $\|0.0-0.8-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0 | 0.5-1.6-3.3\| | none | --- | \|occasional | \|very brief | 0.0-0.3-0.5 |
| | wet | \|0.5-1.6-3.3 | 6.7-6.7-6.7\| | | | | | |
| September\| | moist | \|0.0-0.0-0.0 | 0.3-1.1-3.0\| | none | --- | occasional | \|very brief | 0.0-0.3-0.5 |
| | wet | $\|0.3-1.1-3.0\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0 | 0.0-0.5-2.5\| | none | --- | occasional | brief | \|0.0-0.3-0.5 |
| | wet | \|0.0-0.5-2.5 | 6.7-6.7-6.7\| | | | | | |
| November | moist | $\|0.0-0.0-0.0\|$ | 0.0-0.3-1.6\| | none | --- | occasional | long | 0.0-0.3-0.5 |
| | wet | $\|0.0-0.3-1.6\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0 | 0.5-0.8-2.5\| | none | --- | occasional | long | 0.0-0.3-0.5 |
| | wet | 10.5-0.8-2.5 | 6.7-6.7-6.7\| | | | | | |

I4A Berner, Rosewood, and Strathcona soils, seepy, 0 to 2 percent slopes
Berner (30 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 0.5-1.3-3.3\| | none | --- | occasional | long | 0.0-0.3-0.5 |
| | wet | $\|0.5-1.3-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 1.3-2.1-4.1\| | none | --- | occasional | long | 0.0-0.3-0.5 |
| | wet | $\|1.3-2.1-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 0.0-0.0-2.5\| | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | $\|0.0-0.0-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 0.0-0.0-0.8\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-0.8| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.0-0.0-1.3\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | $\|0.0-0.0-1.3\|$ | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 0.0-0.0-1.6\| | none | --- | occasional | brief | 0.0-0.5-1.0 |
| | wet | $\|0.0-0.0-1.6\|$ | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 0.2-0.8-2.5\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | \|0.2-0.8-2.5| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | $\|0.8-1.6-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| September | moist | $\|0.0-0.0-0.0\|$ | 0.3-1.1-3.0\| | none | --- | rare | brief | 0.0-0.3-0.5 |
| | wet | $\|0.3-1.1-3.0\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 0.2-0.5-2.5\| | none | --- | occasional | brief | 10.0-0.3-0.5 |
| | wet | \|0.2-0.5-2.5| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.0-0.3-1.6\| | none | --- | occasional | long | 0.0-0.3-0.5 |
| | wet | $\|0.0-0.3-1.6\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 0.5-0.8-2.5\| | none | --- | occasional | long | 0.0-0.3-0.5 |
| | wet | \|0.5-0.8-2.5| | 6.7-6.7-6.7\| | | | | | |

I4A (continued)
Rosewood, depressional (30 percent of the map unit)

Strathcona, depressional (30 percent of the map unit)

| | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|
| Month | \|Moisture| | Top | Bottom | Flooding | Flooding | Ponding | Ponding duration | $\begin{gathered} \text { Ponding } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ |
| | status | depth | depth | frequency | duration | frequency | | |
| | | L - R - H | L - R - H | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| January | moist | 0.0-0.0-0.0\| | 1.0-1.6-3.0\| | none | --- | occasional | long | 10.0-0.5-1.0 |
| | wet | 1.0-1.6-3.0\| | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 1.6-2.5-3.3\| | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | 1.6-2.5-3.3 | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0\| | 0.0-0.0-2.0\| | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-2.0\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 0.0-0.0-1.0\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-1.0 | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0 | 0.0-0.0-2.0\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-2.0\| | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0\| | 0.2-0.8-2.5\| | none | --- | occasional | brief | 0.0-0.5-1.0 |
| | wet | 0.2-0.8-2.5\| | 6.7-6.7-6.7\| | | | | | |
| July | moist | 0.0-0.0-0.0\| | 0.7-1.6-3.0\| | none | --- | rare | very brief | \|0.0-0.3-0.5 |
| | wet | 0.7-1.6-3.0\| | 6.7-6.7-6.7\| | | | | | |
| August | moist | 0.0-0.0-0.0\| | 1.6-2.5-3.6\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | 1.6-2.5-3.6\| | 6.7-6.7-6.7\| | | | | | |
| September | moist | 0.0-0.0-0.0\| | 1.0-1.6-3.0\| | none | --- | rare | brief | 0.0-0.3-0.5 |
| | wet | 1.0-1.6-3.0\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0 | 0.7-1.3-2.6\| | none | -- - | occasional | brief | 10.0-0.3-0.5 |
| | wet | 0.7-1.3-2.6\| | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0 | 0.3-0.8-1.6\| | none | --- | occasional | long | 10.0-0.5-1.0 |
| | wet | 0.3-0.8-1.6\| | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 0.7-1.3-2.3\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | 0.7-1.3-2.3\| | 6.7-6.7-6.7\| | | | | | |
| | | | | | | | | |

I4A (continued)
Rosewood (4 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \text { L-R }-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{gathered} \text { Ponding } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 2.0-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | $\|2.0-2.5-4.9\|$ | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 2.5-3.3-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.5-3.3-5.7| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 1.6-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | $\|1.6-2.1-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 0.0-0.5-2.5\| | none | --- | \|occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.0-0.5-2.5| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.5-1.3-3.3\| | none | --- | \|occasional | \|very brief | 0.0-0.3-0.5 |
| | wet | $\|0.5-1.3-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 0.8-1.6-4.1\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | \|0.8-1.6-4.1| | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 1.6-3.3-4.9\| | none | --- | none | | --- |
| | wet | $\|1.6-3.3-4.9\|$ | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 2.5-4.9-5.7\| | none | --- | none | --- | --- |
| | wet | \| 2.5-4.9-5.7| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 1.3-3.0-4.9\| | none | --- | none | --- | - |
| | wet | $\|1.3-3.0-4.9\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 1.0-2.1-4.1\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | $\|1.0-2.1-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | none | -- | --- |
| | wet | $\|0.8-1.6-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 1.3-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.3-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |

Deerwood (2 percent of the map unit)

| Month | $\begin{aligned} & \mid \text { Moisture\| } \\ & \mid \text { status } \mid \end{aligned}$ | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 10.0-0.0-0.0 | 0.8-1.6-3.3\| | none | --- | \|occasional | long | 10.0-0.5-1.0 |
| | wet | \|0.8-1.6-3.3 | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0 | 1.6-2.5-4.1\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|1.6-2.5-4.1 | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0 | 0.0-0.0-2.5\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-2.5| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0 | 0.0-0.0-0.8\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | 10.0-0.0-0.8 | 6.7-6.7-6.7\| | | | | | |
| May | moist | 10.0-0.0-0.0 | 0.0-0.0-1.3\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-1.3 | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0 | 0.0-0.5-1.6\| | none | --- | frequent | brief | 0.0-0.5-1.0 |
| | wet | 0.0-0.5-1.6 | 6.7-6.7-6.7\| | | | | | |
| July | moist | 0.0-0.0-0.0 | 0.2-0.8-2.5\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | \|0.2-0.8-2.5 | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | $\|0.8-1.6-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| September | moist | 0.0-0.0-0.0 | 0.5-1.3-3.0\| | none | --- | \|occasional | brief | 10.0-0.3-0.5 |
| | wet | 0.5-1.3-3.0 | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0 | 0.3-0.8-2.5\| | none | --- | \|occasional | brief | 10.0-0.5-1.0 |
| | wet | $\|0.3-0.8-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0 | 0.0-0.3-1.6\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.3-1.6 | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0 | 0.5-1.3-2.5\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | $\|0.5-1.3-2.5\|$ | 6.7-6.7-6.7\| | | | | | |

I4A (continued)
Mavie (2 percent of the map unit)

Strathcona (2 percent of the map unit)

I5A Borup loam, 0 to 2 percent slopes
Borup (75 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0 | 1.6-3.0-4.1\| | none | --- | none | --- | --- |
| | wet | 1.6-3.0-4.1 | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0 | 2.5-3.3-4.9\| | none | --- | none | | -- |
| | wet | 2.5-3.3-4.9 | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0 | 1.3-2.1-3.3\| | none | --- | none | --- | -- |
| | wet | 1.3-2.1-3.3 | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0 | 0.0-0.5-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.0-0.5-2.5 | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0 | 0.3-0.8-3.3\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.3-0.8-3.3 | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0 | 0.7-1.3-4.1\| | none | --- | occasional | \|very brief | 0.0-0.3-0.5 |
| | wet | 0.7-1.3-4.1 | 6.7-6.7-6.7\| | | | | | |
| July | moist | 0.0-0.0-0.0 | 1.6-3.0-4.9 | none | --- | none | | -- |
| | wet | 1.6-3.0-4.9 | 6.7-6.7-6.7\| | | | | | |
| August | moist | 0.0-0.0-0.0 | 2.5-3.8-5.7\| | none | --- | none | | --- |
| | wet | 2.5-3.8-5.7 | 6.7-6.7-6.7\| | | | | | |
| September | moist | 0.0-0.0-0.0 | 2.0-3.3-4.9\| | none | --- | rare | very brief | 0.0-0.1-0.3 |
| | wet | 2.0-3.3-4.9 | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0 | 1.3-1.6-4.1\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | 1.3-1.6-4.1 | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0 | 0.8-1.3-3.3\| | none | --- | occasional | \|very brief | 0.0-0.1-0.3 |
| | wet | 0.8-1.3-3.3 | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0 | 1.3-2.1-3.8\| | none | --- | none | --- | --- |
| | wet | 1.3-2.1-3.8 | 6.7-6.7-6.7\| | | | | | |

Glyndon (9 percent of the map unit)

I5A (continued)
Rosewood (8 percent of the map unit)

Augsburg (5 percent of the map unit)

I5A (continued)
Augsburg, depressional (3 percent of the map unit)

I6A Borup very fine sandy loam, 0 to 2 percent slopes
Borup (75 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \text { L-R - H } \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | Ponding depth
 L - R - H | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0 | 1.6-3.0-4.1\| | none | --- | none | | --- |
| | wet | $\|1.6-3.0-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 2.5-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | \| 2.5-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 1.3-2.1-3.3\| | none | --- | none | --- | --- |
| | wet | \|1.3-2.1-3.3| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 0.0-0.5-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | $\|0.0-0.5-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.3-0.8-3.3\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | $\|0.3-0.8-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| June | moist | $\|0.0-0.0-0.0\|$ | 0.7-1.3-4.1\| | none | --- | \|occasional | \|very brief | 0.0-0.3-0.5 |
| | wet | $\|0.7-1.3-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 1.6-3.0-4.9 | none | --- | none | --- | --- |
| | wet | \|1.6-3.0-4.9| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 2.5-3.8-5.7\| | none | --- | none | --- | --- |
| | wet | \| 2.5-3.8-5.7| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 2.0-3.3-4.9\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | $\|2.0-3.3-4.9\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 1.3-1.6-4.1\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | $\|1.3-1.6-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.8-1.3-3.3\| | none | --- | occasional | \|very brief | 0.0-0.1-0.3 |
| | wet | $\|0.8-1.3-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 1.3-2.1-3.8\| | none | --- | none | --- | --- |
| | wet | \|1.3-2.1-3.8| | 6.7-6.7-6.7\| | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I6A (continued)
Glyndon (9 percent of the map unit)

Rosewood (8 percent of the map unit)

I6A (continued)
Augsburg (5 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 1.6-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.6-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 2.0-2.6-4.9\| | none | --- | none | --- | --- |
| | wet | $\|2.0-2.6-4.9\|$ | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 1.5-2.3-4.9\| | none | --- | none | --- | --- |
| | wet | \|1.5-2.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 0.0-0.5-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | $\|0.0-0.5-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.5-0.8-3.3\| | none | --- | \|occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.5-0.8-3.3| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 0.8-1.6-4.1\| | none | --- | \|occasional | \|very brief | 0.0-0.3-0.5 |
| | wet | $\|0.8-1.6-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 1.6-3.0-4.9\| | none | --- | none | --- | --- |
| | wet | \|1.6-3.0-4.9| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 2.5-3.8-5.7\| | none | --- | none | --- | --- |
| | wet | \| 2.5-3.8-5.7| | 6.7-6.7-6.7\| | | | | | |
| September\| | moist | \|0.0-0.0-0.0| | 1.6-3.3-4.9\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | \|1.6-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 1.3-2.5-4.1\| | none | --- | \|occasional | brief | 0.0-0.3-0.5 |
| | wet | $\|1.3-2.5-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | \|occasional | brief | 0.0-0.3-0.5 |
| | wet | $\|0.8-1.6-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 1.3-2.0-3.9 | none | --- | none | --- | --- |
| | wet | \|1.3-2.0-3.9 ${ }^{\text {\| }}$ | 6.7-6.7-6.7\| | | | | | |

Augsburg, depressional (3 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \text { L - R - H } \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0\| | 1.0-1.6-3.0\| | none | --- | occasional | long | 10.0-0.5-1.0 |
| | wet | \|1.0-1.6-3.0| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 1.6-3.0-3.6\| | none | --- | \|occasional | long | 10.0-0.5-1.0 |
| | wet | $\|1.6-3.0-3.6\|$ | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0|0 | 0.0-0.0-2.0\| | none | --- | \|occasional | long | 10.0-0.5-1.0 |
| | wet | \|0.0-0.0-2.0| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0|0 | 0.0-0.0-1.0\| | none | --- | frequent | long | 10.0-0.5-1.0 |
| | wet | \|0.0-0.0-1.0| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0|0 | 0.0-0.0-2.0\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-2.0| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0|0 | 0.2-0.8-2.5\| | none | --- | \|occasional | brief | 10.0-0.5-1.0 |
| | wet | \|0.2-0.8-2.5| | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0|0 | 0.7-1.6-3.3\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | \|0.7-1.6-3.3| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 1.6-2.5-3.6\| | none | --- | rare | \|very brief | 10.0-0.3-0.5 |
| | wet | \|1.6-2.5-3.6| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 1.0-1.6-3.0\| | none | --- | \|occasional | brief | 10.0-0.3-0.5 |
| | wet | \|1.0-1.6-3.0| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0|0 | 0.7-1.3-2.6\| | none | --- | \|occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.7-1.3-2.6| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0|0 | 0.3-0.8-1.6\| | none | --- | \|occasional | long | 10.0-0.5-1.0 |
| | wet | \|0.3-0.8-1.6| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0|0 | 0.7-1.3-2.3\| | none | --- | occasional | long | 10.0-0.5-1.0 |
| | wet | \|0.7-1.3-2.3| | 6.7-6.7-6.7\| | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued

I7A Bowstring-Fluvaquents complex, 0 to 2 percent slopes, frequently flooded
Bowstring (45 percent of the map unit)

Fluvaquents (45 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \text { L - R - H } \end{aligned}$ | | |
|---|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0 | 0.5-1.3-2.5\| | none | --- | frequent | \|very long | 0.0-0.5-1.0 |
| | wet | \|0.5-1.3-2.5| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.0\| | none | --- | frequent | \|very long | 0.0-0.5-1.0 |
| | wet | \|0.8-1.6-3.0| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 0.0-0.0-1.6\| | frequent | very long | frequent | \|very long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-1.6| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 0.0-0.0-0.8\| | \|very frequent| | very long | frequent | \|very long | \|0.0-0.7-1.3 |
| | wet | \|0.0-0.0-0.8| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.0-0.0-1.3\| | \|very frequent| | long | frequent | \|very long | 10.0-0.7-1.3 |
| | wet | \|0.0-0.0-1.3| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 0.0-0.5-1.6\| | frequent | long | frequent | \|very long | 10.0-0.5-1.0 |
| | wet | \|0.0-0.5-1.6| | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 0.5-1.3-2.5\| | frequent | brief | \|occasional | long | 10.0-0.5-1.0 |
| | wet | $\|0.5-1.3-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.0\| | frequent | brief | \|occasional | brief | 10.0-0.5-1.0 |
| | wet | \|0.8-1.6-3.0| | 6.7-6.7-6.7\| | | | | | |
| September\| | moist | \|0.0-0.0-0.0| | 0.5-1.3-2.5\| | frequent | long | \|occasional | brief | 10.0-0.5-1.0 |
| | wet | \|0.5-1.3-2.5| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 0.3-0.8-2.0\| | frequent | long | \|occasional | long | 10.0-0.5-1.0 |
| | wet | \|0.3-0.8-2.0| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.2-0.5-1.6\| | rare | long | \|occasional | long | 10.0-0.5-1.0 |
| | wet | \|0.2-0.5-1.6| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 0.3-0.8-2.0\| | none | --- | frequent | \|very long | 10.0-0.5-1.0 |
| | wet | \|0.3-0.8-2.0| | 6.7-6.7-6.7\| | | | | | |

I7A (continued)
Hapludolls (5 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| February | moist | \|0.0-0.0-0.0| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| March | moist wet | $\|0.0-0.0-0.0\|$ | | rare | brief | none | --- | --- |
| April | moist wet | $\left\lvert\, \begin{aligned} & \|0.0-0.0-0.0\| \\ & \|4.9-6.7-6.7\| \end{aligned}\right.$ | $\left\lvert\, \begin{array}{\|c} 4.9-6.7-6.7 \\ 6.7-6.7-6.7 \end{array}\right.$ | rare | brief | none | --- | --- |
| May | moist wet | $\left\lvert\, \begin{aligned} & \|0.0-0.0-0.0\| \\ & \|5.7-6.7-6.7\| \end{aligned}\right.$ | $\|5.7-6.7-6.7\|$ | rare | brief | none | --- | --- |
| June | $\begin{gathered} \text { dry } \\ \text { moist } \end{gathered}$ | $\|0.0-0.0-0.0\| \mid$ | 0.0-0.0-0.3\| | rare | very brief | none | --- | --- |
| July | $\begin{gathered} \text { dry } \\ \text { moist } \end{gathered}$ | $\|0.0-0.0-0.0\|$ | $\left\lvert\, \begin{aligned} & \|0.0-0.0-0.5\| \\ & \|6.7-6.7-6.7\| \end{aligned}\right.$ | very rare | very brief | none | --- | --- |
| August | $\begin{gathered} \text { dry } \\ \text { moist } \end{gathered}$ | $\|0.0-0.0-0.0\| \mid$ | $\left\|\begin{array}{l} \|0.0-0.0-0.5\| \\ 6.7-6.7-6.7 \end{array}\right\|$ | very rare | very brief | none | --- | --- |
| September | $\begin{gathered} \text { dry } \\ \text { moist } \end{gathered}$ | $\|0.0-0.0-0.0\|$ | $\|0.0-0.0-0.5\| \mid$ | rare | very brief | none | --- | --- |
| October | moist | \|0.0-0.0-0.0| | 6.7-6.7-6.7\| | rare | brief | none | --- | --- |
| November | moist
 wet | $\|0.0-0.0-0.0\| \mid$ | $\|6.7-6.7-6.7\|$ | rare | brief | none | --- | --- |
| December | moist | \|0.0-0.0-0.0| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |

Water (5 percent of the map unit) (not applicable)

I8A Cathro muck, 0 to 1 percent slopes
Cathro (80 percent of the map unit)

I8A (continued)
Hamre (8 percent of the map unit)

Northwood (3 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I8A (continued)
Roliss (3 percent of the map unit)

Berner (2 percent of the map unit)

I8A (continued)
Kratka (2 percent of the map unit)

Seelyeville (2 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued

I9A Clearwater clay, 0 to 2 percent slopes
Clearwater (80 percent of the map unit)

Clearwater, very cobbly (5 percent of the map unit)

I9A (continued)
Reis (5 percent of the map unit)

Clearwater, depressional (3 percent of the map unit)

I9A (continued)
Espelie (3 percent of the map unit)

| Month | $\begin{aligned} & \mid \text { Moisture } \mid \\ & \mid \text { status } \mid \end{aligned}$ | $\begin{gathered} \text { Top } \\ \text { depth } \\ \text { L }-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \text { L - R - H } \end{aligned}$ | | |
|---|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 1.6-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.6-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 2.0-2.6-4.9\| | none | --- | none | --- | --- |
| | wet | \|2.0-2.6-4.9| | \|6.7-6.7-6.7| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 1.5-2.3-4.9\| | none | --- | none | --- | --- |
| | wet | \|1.5-2.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 0.0-0.5-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.0-0.5-2.5| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.5-0.8-3.3\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.5-0.8-3.3| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 0.8-1.6-4.1\| | none | --- | occasional | \mid very brief | 10.0-0.3-0.5 |
| | wet | \|0.8-1.6-4.1| | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 1.6-3.0-4.9\| | none | --- | none | --- | --- |
| | wet | \|1.6-3.0-4.9| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 2.5-3.8-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.5-3.8-5.7| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 1.6-3.3-4.9\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | \|1.6-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 1.3-2.5-4.1\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | $\|1.3-2.5-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | \|0.8-1.6-3.3| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 1.3-2.0-3.9\| | none | --- | none | --- | --- |
| | wet | \|1.3-2.0-3.9| | 6.7-6.7-6.7\| | | | | | |

Foxlake (2 percent of the map unit)

| Month | $\begin{aligned} & \mid \text { Moisture\| } \\ & \mid \text { status } \mid \end{aligned}$ | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding
 frequency | Flooding duration | $\begin{gathered} \text { Ponding } \\ \text { frequency } \end{gathered}$ | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \text { L }-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 0.8-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | $\|0.8-2.1-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 1.6-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | $\|1.6-2.5-4.9\|$ | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 0.3-1.3-3.3\| | none | --- | none | --- | --- |
| | wet | 0.3-1.3-3.3 | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0 | 0.0-0.0-1.6\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.0-0.0-1.6 | 6.7-6.7-6.7\| | | | | | |
| May | moist | 10.0-0.0-0.0 | 0.0-0.5-2.5\| | none | --- | \|occasional | brief | 0.0-0.3-0.5 |
| | wet | $\|0.0-0.5-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0 | 0.8-1.3-3.3\| | none | --- | \|occasional | \|very brief | 0.0-0.3-0.5 |
| | wet | $\|0.8-1.3-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| July | moist | 0.0-0.0-0.0 | 1.3-2.1-4.1\| | none | --- | rare | \|very brief | 0.0-0.2-0.3 |
| | wet | $\|1.3-2.1-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 1.6-3.0-4.9 | none | --- | rare | \|very brief | 0.0-0.2-0.3 |
| | wet | $\|1.6-3.0-4.9\|$ | 6.7-6.7-6.7\| | | | | | |
| September | moist | 0.0-0.0-0.0 | 1.3-2.5-4.1\| | none | --- | rare | \|very brief
 \| | 0.0-0.2-0.3 |
| | wet | 1.3-2.5-4.1 | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | occasional | \|very brief | 0.0-0.2-0.3 |
| | wet | $\|0.8-1.6-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.5-1.3-2.5\| | none | --- | \|occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.5-1.3-2.5 | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | none | --- | --- |
| | wet | $\|0.8-1.6-3.3\|$ | 6.7-6.7-6.7\| | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I9A (continued)
Hattie (1 percent of the map unit)

| Month | Moisture status | ```Top depth L - R - H``` | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ L-R-H \end{gathered}$ | Flooding frequency | Flooding duration | Ponding
 frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0 | 4.1-5.7-6.7\| | none | --- | none | --- | --- |
| | wet | 4.1-5.7-6.7 | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0 | 4.9-6.7-6.7\| | none | --- | none | --- | --- |
| | wet | 4.9-6.7-6.7\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0 | 4.1-5.7-6.7\| | none | --- | none | --- | --- |
| | wet | 4.1-5.7-6.7 | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0 | 1.3-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | 1.3-2.1-4.1\| | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0\| | 1.6-2.5-4.1\| | none | --- | none | --- | --- |
| | wet | 1.6-2.5-4.1\| | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0 | 2.0-3.0-5.7\| | none | --- | none | --- | --- |
| | wet | 2.0-3.0-5.7\| | 6.7-6.7-6.7\| | | | | | |
| July | moist | 0.0-0.0-0.0\| | 2.5-4.1-6.7\| | none | -- - | none | --- | -- - |
| | wet | 2.5-4.1-6.7\| | 6.7-6.7-6.7\| | | | | | |
| August | moist | 0.0-0.0-0.0\| | 3.3-4.9-6.7\| | none | --- | none | --- | --- |
| | wet | 3.3-4.9-6.7 | 6.7-6.7-6.7\| | | | | | |
| September | moist | 0.0-0.0-0.0\| | 3.3-4.6-6.7\| | none | --- | none | --- | --- |
| | wet | 3.3-4.6-6.7\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0 | 2.5-4.1-5.7\| | none | --- | none | -- - | --- |
| | wet | 2.5-4.1-5.7\| | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0\| | 3.3-4.6-6.7\| | none | --- | none | --- | --- |
| | wet | 3.3-4.6-6.7\| | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 3.6-4.9-6.7\| | none | --- | none | --- | --- |
| | wet | 3.6-4.9-6.7\| | 6.7-6.7-6.7\| | | | | | |

Huot (1 percent of the map unit)

I10A Clearwater mucky clay loam, depressional, 0 to 1 percent slopes
Clearwater, depressional (85 percent of the map unit)

| Month | \|Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0|0. | 0.5-1.3-2.5\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | $\|0.5-1.3-2.5\| 6.7$ | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.0\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | $\|0.8-1.6-3.0\|$ | 6.7-6.7-6.7\| | | | | | |
| March | moist | $\|0.0-0.0-0.0\|$ | 0.0-0.0-1.6\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | $\|0.0-0.0-1.6\|$ | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0|0. | 0.0-0.0-0.8\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-0.8 | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.0-0.0-1.3\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-1.3| | 6.7-6.7-6.7\| | | | | | |
| June | moist | $\|0.0-0.0-0.0\|$ | 0.0-0.5-1.6\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | $\|0.0-0.5-1.6\|$ | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 0.5-1.3-2.5\| | none | --- | \|occasional | brief | 0.0-0.5-1.0 |
| | wet | $\|0.5-1.3-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0|0 | 0.8-1.6-3.0\| | none | --- | \|occasional | brief | 0.0-0.5-1.0 |
| | wet | $\|0.8-1.6-3.0\| 6$ | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 0.5-1.3-2.5\| | none | --- | \|occasional | brief | 0.0-0.5-1.0 |
| | wet | $\|0.5-1.3-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | $\|0.0-0.0-0.0\|$ | 0.3-0.8-2.0\| | none | --- | \|occasional | brief | 10.0-0.5-1.0 |
| | wet | \|0.3-0.8-2.0| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.2-0.5-1.6\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | $\|0.2-0.5-1.6\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 0.3-0.8-2.0\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.3-0.8-2.0| | 6.7-6.7-6.7\| | | | | | |

Clearwater (9 percent of the map unit)

| | | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|
| Month | \| Moisture | Top | Bottom | Flooding | Flooding | Ponding | Ponding duration | $\begin{gathered} \text { Ponding } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ |
| | status | depth | depth | frequency | duration | frequency | | |
| | | L - R - H | L - R - H | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| January | moist | 0.0-0.0-0.0 | 0.8-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | 0.8-2.1-4.1\| | \|6.7-6.7-6.7| | | | | | |
| February | moist | 0.0-0.0-0.0\| | \|1.6-2.5-4.9| | none | --- | none | --- | --- |
| | wet | 1.6-2.5-4.9 | \|6.7-6.7-6.7| | | | | | |
| March | moist | 0.0-0.0-0.0 | \|0.3-1.3-3.3| | none | -- - | none | -- - | -- - |
| | wet | 0.3-1.3-3.3 | \|6.7-6.7-6.7| | | | | | |
| April | moist | 0.0-0.0-0.0 | \|0.0-0.0-1.6| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.0-0.0-1.6\| | \|6.7-6.7-6.7| | | | | | |
| May | moist | 0.0-0.0-0.0\| | \|0.0-0.5-2.5| | none | -- - | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.0-0.5-2.5 | \|6.7-6.7-6.7| | | | | | |
| June | moist | $\|0.0-0.0-0.0\|$ | \|0.8-1.3-3.3| | none | --- | occasional | very brief | 0.0-0.3-0.5 |
| | wet | $\|0.8-1.3-3.3\|$ | \|6.7-6.7-6.7| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 1.3-2.1-4.1\| | none | --- | rare | very brief | 0.0-0.2-0.3 |
| | wet | $\|1.3-2.1-4.1\|$ | \|6.7-6.7-6.7| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 1.6-3.0-4.9\| | none | --- | rare | \|very brief | 0.0-0.2-0.3 |
| | wet | $\|1.6-3.0-4.9\|$ | \|6.7-6.7-6.7| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 1.3-2.5-4.1\| | none | -- - | rare | very brief | 0.0-0.2-0.3 |
| | wet | $\|1.3-2.5-4.1\|$ | \|6.7-6.7-6.7| | | | | | |
| October | moist | $\|0.0-0.0-0.0\|$ | \|0.8-1.6-3.3| | none | --- | occasional | very brief | 0.0-0.2-0.3 |
| | wet | \|0.8-1.6-3.3| | \|6.7-6.7-6.7| | | | | | |
| November | moist | $\|0.0-0.0-0.0\|$ | 0.5-1.3-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | \mid 0.5-1.3-2.5\| | \|6.7-6.7-6.7| | | | | | |
| December | moist | $\|0.0-0.0-0.0\|$ | \|0.8-1.6-3.3| | none | --- | none | --- | --- |
| | wet | $\|0.8-1.6-3.3\|$ | \|6.7-6.7-6.7| | | | | | |
| | | | | | | | | |

I10A (continued)
Augsburg, depressional (3 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \text { L }-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \text { L }-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0 | 1.0-1.6-3.0 | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | 1.0-1.6-3.0 | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 1.6-3.0-3.6\| | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | 1.6-3.0-3.6\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0 | 0.0-0.0-2.0\| | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-2.0 | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 0.0-0.0-1.0\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-1.0\| | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0 | 0.0-0.0-2.0\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-2.0 | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0 | 0.2-0.8-2.5\| | none | --- | occasional | brief | 0.0-0.5-1.0 |
| | wet | 0.2-0.8-2.5\| | 6.7-6.7-6.7\| | | | | | |
| July | moist | 0.0-0.0-0.0 | 0.7-1.6-3.3\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | 0.7-1.6-3.3\| | 6.7-6.7-6.7\| | | | | | |
| August | moist | 0.0-0.0-0.0 | 1.6-2.5-3.6\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | 1.6-2.5-3.6\| | 6.7-6.7-6.7\| | | | | | |
| September\| | moist | 0.0-0.0-0.0\| | 1.0-1.6-3.0\| | none | --- | occasional | brief | 10.0-0.3-0.5 |
| | wet | 1.0-1.6-3.0\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0 | 0.7-1.3-2.6\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.7-1.3-2.6 | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0\| | 0.3-0.8-1.6\| | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | 0.3-0.8-1.6\| | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0 | 0.7-1.3-2.3\| | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | 0.7-1.3-2.3 | 6.7-6.7-6.7\| | | | | | |

Reis (2 percent of the map unit)

I10A (continued)
Espelie (1 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0\| | 1.6-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.6-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 2.0-2.6-4.9\| | none | --- | none | --- | --- |
| | wet | \|2.0-2.6-4.9| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 1.5-2.3-4.9 | none | --- | none | --- | --- |
| | wet | \|1.5-2.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 0.0-0.5-2.5\| | none | --- | \|occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.0-0.5-2.5| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.5-0.8-3.3\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.5-0.8-3.3| | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0 | 0.8-1.6-4.1\| | none | --- | \|occasional | very brief\| | 0.0-0.3-0.5 |
| | wet | \|0.8-1.6-4.1| | 6.7-6.7-6.7\| | | | | | |
| July | moist | 0.0-0.0-0.0 | 1.6-3.0-4.9 | none | --- | none | | --- |
| | wet | \|1.6-3.0-4.9| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 2.5-3.8-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.5-3.8-5.7| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 1.6-3.3-4.9 | none | --- | rare | very brief | 0.0-0.1-0.3 |
| | wet | \|1.6-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 1.3-2.5-4.1\| | none | --- | rare | very brief | 0.0-0.1-0.3 |
| | wet | \|1.3-2.5-4.1| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | \|0.8-1.6-3.3| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 1.3-2.0-3.9 | none | --- | none | --- | --- |
| | wet | \|1.3-2.0-3.9| | 6.7-6.7-6.7\| | | | | | |

I11A Deerwood muck, 0 to 1 percent slopes
Deerwood (85 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \text { L - R - H } \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0\| | 0.8-1.6-3.3\| | none | | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.8-1.6-3.3| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 1.6-2.5-4.1\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | $\|1.6-2.5-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0|0 | 0.0-0.0-2.5\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-2.5| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0|0 | 0.0-0.0-0.8\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-0.8| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0|0 | 0.0-0.0-1.3\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-1.3| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0|0. | 0.0-0.5-1.6\| | none | --- | frequent | brief | 0.0-0.5-1.0 |
| | wet | \|0.0-0.5-1.6| | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0|0 | 0.2-0.8-2.5\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | $\|0.2-0.8-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0|0 | 0.8-1.6-3.3\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | $\|0.8-1.6-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0|0 | 0.5-1.3-3.0\| | none | --- | \|occasional | brief | 10.0-0.3-0.5 |
| | wet | \|0.5-1.3-3.0| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0|0 | 0.3-0.8-2.5\| | none | --- | \|occasional | brief | \|0.0-0.5-1.0 |
| | wet | \|0.3-0.8-2.5| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0|0 | 0.0-0.3-1.6\| | none | --- | \|occasional | long | \|0.0-0.5-1.0 |
| | wet | \|0.0-0.3-1.6| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0|0 | 0.5-1.3-2.5\| | none | -- | \|occasional | long | 10.0-0.5-1.0 |
| | wet | \| 0.5-1.3-2.5| | 6.7-6.7-6.7\| | | | | | |

I11A (continued)
Rosewood (6 percent of the map unit)

Markey (3 percent of the map unit)

Strathcona (2 percent of the map unit)

Syrene (2 percent of the map unit)

I11A (continued)
Venlo (2 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0 | 0.8-1.6-3.0 | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | 0.8-1.6-3.0 | 6.7-6.7-6.7 | | | | | |
| February | moist | 0.0-0.0-0.0 | 2.0-3.0-3.6 | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | 2.0-3.0-3.6 | 6.7-6.7-6.7 | | | | | |
| March | moist | 0.0-0.0-0.0 | 0.0-0.5-2.0 | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.5-2.0 | 6.7-6.7-6.7 | | | | | |
| April | moist | 0.0-0.0-0.0 | 0.0-0.0-1.0 | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-1.0 | 6.7-6.7-6.7 | | | | | |
| May | moist | 0.0-0.0-0.0 | 0.0-0.5-2.0 | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.5-2.0 | 6.7-6.7-6.7 | | | | | |
| June | moist | 0.0-0.0-0.0 | 0.3-1.3-2.6 | none | --- | occasional | brief | 0.0-0.5-1.0 |
| | wet | 0.3-1.3-2.6 | 6.7-6.7-6.7 | | | | | |
| July | moist | 0.0-0.0-0.0 | 1.0-2.1-3.3 | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | 1.0-2.1-3.3 | 6.7-6.7-6.7 | | | | | |
| August | moist | 0.0-0.0-0.0 | 2.0-3.0-3.8 | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | 2.0-3.0-3.8 | 6.7-6.7-6.7 | | | | | |
| September | moist | 0.0-0.0-0.0 | 1.0-2.1-3.3 | none | --- | rare | brief | 0.0-0.3-0.5 |
| | wet | 1.0-2.1-3.3 | 6.7-6.7-6.7 | | | | | |
| October | moist | 0.0-0.0-0.0 | 0.7-1.6-2.6 | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.7-1.6-2.6 | 6.7-6.7-6.7 | | | | | |
| November | moist | 0.0-0.0-0.0 | 0.3-1.3-2.0 | none | | occasional | long | 0.0-0.5-1.0 |
| | wet | 0.3-1.3-2.0 | 6.7-6.7-6.7 | | | | | |
| December | moist | 0.0-0.0-0.0 | 0.7-1.6-2.5 | none | | occasional | long | 0.0-0.5-1.0 |
| | wet | 0.7-1.6-2.5 | 6.7-6.7-6.7 | | | | | |

I12A Eckvoll loamy fine sand, 0 to 3 percent slopes
Eckvoll (70 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ L-R-H \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{gathered} \text { Ponding } \\ \text { depth } \\ L-R-H \end{gathered}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 4.6-5.4-6.7\| | none | --- | none | --- | -- - |
| | wet | \|4.6-5.4-6.7| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0 | 4.9-5.7-6.7\| | none | --- | none | --- | --- |
| | wet | $\|4.9-5.7-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 3.3-4.6-6.7\| | none | --- | none | --- | --- |
| | wet | \|3.3-4.6-6.7| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 2.1-2.5-4.6\| | none | --- | none | --- | --- |
| | wet | \|2.1-2.5-4.6| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 2.6-3.1-5.2\| | none | --- | none | --- | --- |
| | wet | \|2.6-3.1-5.2| | 6.7-6.7-6.7\| | | | | | |
| June | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.3\| | none | -- - | none | --- | --- |
| | moist | $\|0.0-0.0-0.3\|$ | 2.6-3.8-6.2\| | | | | | |
| | wet | $\|2.6-3.8-6.2\|$ | 6.7-6.7-6.7\| | | | | | |
| July | dry | $\|0.0-0.0-0.0\|$ | 0.0-0.0-0.5\| | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.5\|$ | 3.8-4.9-6.7\| | | | | | |
| | wet | $\|3.8-4.9-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| August | dry | $\|0.0-0.0-0.0\|$ | 0.0-0.0-0.8\| | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.8\|$ | 5.2-6.7-6.7\| | | | | | |
| | wet | $\|5.2-6.7-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| September | dry | $\|0.0-0.0-0.0\|$ | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.3\|$ | 3.8-4.1-6.7\| | | | | | |
| | wet | $\|3.8-4.1-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | $\|0.0-0.0-0.0\|$ | 3.3-3.8-6.7\| | none | --- | none | --- | --- |
| | wet | $\|3.3-3.8-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | $\|0.0-0.0-0.0\|$ | 2.5-3.3-5.6\| | none | --- | none | --- | --- |
| | wet | $\|2.5-3.3-5.6\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 3.8-4.1-6.2\| | none | --- | none | --- | --- |
| | wet | $\|3.8-4.1-6.2\|$ | 6.7-6.7-6.7\| | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I12A (continued)
Kratka (8 percent of the map unit)

Smiley (7 percent of the map unit)

I12A (continued)
Linveldt (5 percent of the map unit)

| Month | \mid Moisture
 status | ```Top depth \[L-R-H \]``` | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ L-R-H \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0 | 4.8-5.4-6.7 | none | --- | none | --- | --- |
| | wet | 4.8-5.4-6.7 | 6.7-6.7-6.7 | | | | | |
| February | moist | 0.0-0.0-0.0 | 5.2-5.7-6.7\| | none | --- | none | --- | --- |
| | wet | 5.2-5.7-6.7 | 6.7-6.7-6.7 | | | | | |
| March | moist | 0.0-0.0-0.0 | 3.3-4.6-6.7 | none | --- | none | --- | --- |
| | wet | 3.3-4.6-6.7 | 6.7-6.7-6.7 | | | | | |
| April | moist | 0.0-0.0-0.0 | 1.3-2.5-4.9 | none | --- | none | --- | --- |
| | wet | 1.3-2.5-4.9 | 6.7-6.7-6.7 | | | | | |
| May | moist | 0.0-0.0-0.0 | 2.0-3.0-5.6 | none | --- | none | --- | --- |
| | wet | 2.0-3.0-5.6 | 6.7-6.7-6.7 | | | | | |
| June | dry | 0.0-0.0-0.0 | 0.0-0.0-0.5 | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.5\|$ | 2.6-3.6-6.2 | | | | | |
| | wet | $\|2.6-3.6-6.2\|$ | 6.7-6.7-6.7 | | | | | |
| July | dry | $\|0.0-0.0-0.0\|$ | 0.0-0.0-0.7 | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.7\|$ | 3.9-5.4-6.7\| | | | | | |
| | wet | $\|3.9-5.4-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| August | dry | $\|0.0-0.0-0.0\|$ | 0.0-0.0-1.0\| | none | --- | none | -- - | --- |
| | moist | $\|0.0-0.0-1.0\|$ | 5.4-6.7-6.7\| | | | | | |
| | wet | $\|5.4-6.7-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| September | dry | $\|0.0-0.0-0.0\|$ | 0.0-0.0-0.3 | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.3\|$ | 4.1-4.6-6.7\| | | | | | |
| | wet | $\|4.1-4.6-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | $\|0.0-0.0-0.0\|$ | 3.6-3.9-6.7\| | none | -- - | none | --- | --- |
| | wet | $\|3.6-3.9-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 2.5-3.3-5.7\| | none | --- | none | --- | --- |
| | wet | $\|2.5-3.3-5.7\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | $\|0.0-0.0-0.0\|$ | 3.9-4.6-6.2\| | none | --- | none | --- | --- |
| | wet | $\|3.9-4.6-6.2\|$ | 6.7-6.7-6.7 | | | | | |

Reiner (5 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I12A (continued)
Foldahl (2 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \mathrm{depth} \\ \mathrm{~L} \quad \mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0 | 4.6-5.4-6.7 | none | --- | none | --- | --- |
| | wet | 4.6-5.4-6.7\| | \|6.7-6.7-6.7 | | | | | |
| February | moist | 0.0-0.0-0.0\| | $\|4.9-5.7-6.7\|$ | none | --- | none | --- | --- |
| | wet | 4.9-5.7-6.7\| | \mid 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0\| | 3.3-4.6-6.7\| | none | --- | none | --- | --- |
| | wet | 3.3-4.6-6.7\| | $\|6.7-6.7-6.7\|$ | | | | | |
| April | moist | 0.0-0.0-0.0\| | 1.3-2.5-4.6\| | none | --- | none | --- | --- |
| | wet | 1.3-2.5-4.6\| | $\|6.7-6.7-6.7\|$ | | | | | |
| May | moist | 0.0-0.0-0.0\| | 2.0-3.1-5.2\| | none | --- | none | --- | --- |
| | wet | 2.0-3.1-5.2\| | \mid 6.7-6.7-6.7\| | | | | | |
| June | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.3 | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | 2.6-3.8-6.2\| | | | | | |
| | wet | 2.6-3.8-6.2\| | $\|6.7-6.7-6.7\|$ | | | | | |
| July | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.5 | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.5\| | 3.8-4.9-6.7\| | | | | | |
| | wet | 3.8-4.9-6.7\| | $\|6.7-6.7-6.7\|$ | | | | | |
| August | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.7 | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.7\| | $\|5.2-6.7-6.7\|$ | | | | | |
| | wet | 5.2-6.7-6.7\| | $\|6.7-6.7-6.7\|$ | | | | | |
| September | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.3 | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | \|3.8-4.1-6.7| | | | | | |
| | wet | 3.8-4.1-6.7\| | $\|6.7-6.7-6.7\|$ | | | | | |
| October | moist | 0.0-0.0-0.0\| | $\|3.3-3.8-6.7\|$ | none | --- | none | --- | --- |
| | wet | 3.3-3.8-6.7\| | $\|6.7-6.7-6.7\|$ | | | | | |
| November | moist | 0.0-0.0-0.0\| | 2.5-3.3-5.6\| | none | --- | none | --- | --- |
| | wet | 2.5-3.3-5.6\| | $\|6.7-6.7-6.7\|$ | | | | | |
| December | moist | 0.0-0.0-0.0\| | 3.8-4.1-6.2 | none | --- | none | --- | --- |
| | wet | 3.8-4.1-6.2\| | 6.7-6.7-6.7 | | | | | |

Pelan (2 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{gathered} \text { Ponding } \\ \text { depth } \\ L-R-H \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0 | 4.8-5.4-6.7\| | none | --- | none | --- | --- |
| | wet | 4.8-5.4-6.7 | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0 | 5.2-5.7-6.7\| | none | --- | none | --- | --- |
| | wet | 5.2-5.7-6.7\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0 | 3.3-4.6-6.7\| | none | --- | none | -- - | --- |
| | wet | 3.3-4.6-6.7 | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0 | 1.3-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | 1.3-2.5-4.9 | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0 | 2.0-3.0-5.6\| | none | --- | none | --- | --- |
| | wet | 2.0-3.0-5.6 | 6.7-6.7-6.7\| | | | | | |
| June | dry | 0.0-0.0-0.0 | 0.0-0.0-0.5\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.5 | 2.6-3.6-6.2\| | | | | | |
| | wet | 2.6-3.6-6.2 | 6.7-6.7-6.7\| | | | | | |
| July | dry | 0.0-0.0-0.0 | 0.0-0.0-0.7\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.7 | 3.9-5.4-6.7\| | | | | | |
| | wet | 3.9-5.4-6.7\| | 6.7-6.7-6.7\| | | | | | |
| August | dry | 0.0-0.0-0.0 | 0.0-0.0-1.0\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-1.0 | 5.4-6.7-6.7\| | | | | | |
| | wet | 5.4-6.7-6.7 | 6.7-6.7-6.7\| | | | | | |
| September | dry | 0.0-0.0-0.0 | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3 | 4.1-4.6-6.7\| | | | | | |
| | wet | 4.1-4.6-6.7 | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0 | 3.6-3.9-6.7\| | none | --- | none | --- | --- |
| | wet | 3.6-3.9-6.7 | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0 | 2.5-3.3-5.7\| | none | --- | none | --- | --- |
| | wet | 2.5-3.3-5.7\| | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0 | 3.9-4.6-6.2\| | none | -- - | none | --- | --- |
| | wet | 3.9-4.6-6.2 | 6.7-6.7-6.7\| | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I12A (continued)
Poppleton (1 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ L-R-H \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | Ponding depth $L-R-H$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0 | 4.6-5.4-6.7 | none | --- | none | --- | --- |
| | wet | 4.6-5.4-6.7 | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0 | 5.2-6.2-6.7\| | none | --- | none | --- | --- |
| | wet | 5.2-6.2-6.7\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 3.3-4.1-6.7\| | none | -- - | none | -- - | -- - |
| | wet | $\|3.3-4.1-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 2.1-2.5-6.7 | none | --- | none | -- - | --- |
| | wet | \| 2.1-2.5-6.7 | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 2.5-2.8-5.7\| | none | --- | none | - - - | --- |
| | wet | $\|2.5-2.8-5.7\|$ | 6.7-6.7-6.7\| | | | | | |
| June | dry | $\|0.0-0.0-0.0\|$ | 0.0-0.0-0.3\| | none | --- | none | --- | -- - |
| | moist | $\|0.0-0.0-0.3\|$ | 2.6-3.3-6.7\| | | | | | |
| | wet | $\|2.6-3.3-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| July | dry | $\|0.0-0.0-0.0\|$ | 0.0-0.0-0.7\| | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.7\|$ | 6.7-6.7-6.7\| | | | | | |
| August | dry | $\|0.0-0.0-0.0\|$ | 0.0-0.0-1.0\| | none | -- - | none | -- - | --- |
| | moist | 0.0-0.0-1.0\| | 6.7-6.7-6.7\| | | | | | |
| September | dry | $\|0.0-0.0-0.0\|$ | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.3\|$ | 4.1-4.9-6.7\| | | | | | |
| | wet | $\|4.1-4.9-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 3.3-4.6-6.7\| | none | -- - | none | --- | --- |
| | wet | $\|3.3-4.6-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 2.5-4.1-5.7\| | none | --- | none | --- | --- |
| | wet | $\|2.5-4.1-5.7\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 4.1-4.9-6.7\| | none | --- | none | --- | --- |
| | wet | $\|4.1-4.9-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| | | | | | | | | |

I13A Espelie fine sandy loam, 0 to 2 percent slopes
Espelie (75 percent of the map unit)

| Month | Moisture status | | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding
 frequency | Ponding duration | Ponding depth
 L - R - H |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0 | 1.6-2.1-4.1 | none | --- | none | --- | --- |
| | wet | 1.6-2.1-4.1 | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0 | 2.0-2.6-4.9 | none | --- | none | --- | --- |
| | wet | 2.0-2.6-4.9 | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0 | 1.5-2.3-4.9 | none | --- | none | --- | --- |
| | wet | 1.5-2.3-4.9 | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0 | 0.0-0.5-2.5 | none | -- - | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.0-0.5-2.5 | 6.7-6.7-6.7 | | | | | |
| May | moist | 0.0-0.0-0.0 | 0.5-0.8-3.3 | none | --- | \|occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.5-0.8-3.3 | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0 | 0.8-1.6-4.1 | none | --- | occasional | very brief | 0.0-0.3-0.5 |
| | wet | 0.8-1.6-4.1 | 6.7-6.7-6.7 | | | | | |
| July | moist | 0.0-0.0-0.0 | 1.6-3.0-4.9 | none | --- | none | -- - | --- |
| | wet | 1.6-3.0-4.9 | 6.7-6.7-6.7\| | | | | | |
| August | moist | 0.0-0.0-0.0 | 2.5-3.8-5.7\| | none | --- | none | - - - | --- |
| | wet | 2.5-3.8-5.7 | 6.7-6.7-6.7\| | | | | | |
| September | moist | 0.0-0.0-0.0 | 1.6-3.3-4.9 | none | -- - | rare | very brief | 0.0-0.1-0.3 |
| | wet | 1.6-3.3-4.9 | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0 | 1.3-2.5-4.1 | none | --- | rare | very brief | 0.0-0.1-0.3 |
| | wet | 1.3-2.5-4.1 | 6.7-6.7-6.7 | | | | | |
| November | moist | 0.0-0.0-0.0 | 0.8-1.6-3.3 | none | -- - | rare | very brief | 0.0-0.1-0.3 |
| | wet | 0.8-1.6-3.3 | 6.7-6.7-6.7 | | | | | |
| December | moist | 0.0-0.0-0.0 | 1.3-2.0-3.9 | none | --- | none | --- | --- |
| | wet | 1.3-2.0-3.9 | 6.7-6.7-6.7\| | | | | | |

I13A (continued)
Foxlake (8 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0 | 0.8-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | \|0.8-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0|1 | 1.6-2.5-4.9 | none | --- | none | --- | --- |
| | wet | \|1.6-2.5-4.9| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 0.3-1.3-3.3\| | none | --- | none | --- | --- |
| | wet | \|0.3-1.3-3.3| | 6.7-6.7-6.7\| | | | | | |
| April | moist | $\|0.0-0.0-0.0\| 0$ | 0.0-0.0-1.6\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.0-0.0-1.6| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.0-0.5-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.0-0.5-2.5| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 0.8-1.3-3.3\| | none | --- | \|occasional | \|very brief | 10.0-0.3-0.5 |
| | wet | \|0.8-1.3-3.3 | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 1.3-2.1-4.1\| | none | --- | rare | \|very brief | 0.0-0.2-0.3 |
| | wet | \|1.3-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 1.6-3.0-4.9 | none | --- | rare | \|very brief | 0.0-0.2-0.3 |
| | wet | \|1.6-3.0-4.9| | 6.7-6.7-6.7\| | | | | | |
| September\| | moist | \|0.0-0.0-0.0| | 1.3-2.5-4.1\| | none | --- | rare | \|very brief | 0.0-0.2-0.3 |
| | wet | \|1.3-2.5-4.1| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0|0 | 0.8-1.6-3.3\| | none | --- | \|occasional | \|very brief | 0.0-0.2-0.3 |
| | wet | \|0.8-1.6-3.3| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.5-1.3-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.5-1.3-2.5| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | none | --- | --- |
| | wet | $\|0.8-1.6-3.3\| 6$ | 6.7-6.7-6.7\| | | | | | |

Hilaire (7 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ L-R-H \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ L-R-H \end{gathered}$ | Flooding frequency | Flooding duration | Ponding
 frequency | Ponding duration | $\begin{gathered} \text { Ponding } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 4.6-5.4-6.7 | none | --- | none | --- | --- |
| | wet | \|4.6-5.4-6.7| | 6.7-6.7-6.7 | | | | | |
| February | moist | \|0.0-0.0-0.0| | 4.9-5.7-6.7 | none | --- | none | --- | --- |
| | wet | \|4.9-5.7-6.7| | 6.7-6.7-6.7 | | | | | |
| March | moist | \|0.0-0.0-0.0| | 3.3-4.6-6.7 | none | --- | none | --- | --- |
| | wet | \|3.3-4.6-6.7| | 6.7-6.7-6.7 | | | | | |
| April | moist | \|0.0-0.0-0.0| | 1.6-2.5-4.6 | none | --- | none | --- | --- |
| | wet | \|1.6-2.5-4.6| | 6.7-6.7-6.7 | | | | | |
| May | moist | \|0.0-0.0-0.0| | 2.3-3.0-5.2 | none | --- | none | --- | --- |
| | wet | $\|2.3-3.0-5.2\|$ | 6.7-6.7-6.7 | | | | | |
| June | dry | $\|0.0-0.0-0.0\|$ | 0.0-0.0-0.3 | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.3\|$ | 2.8-3.8-6.2 | | | | | |
| | wet | \|2.8-3.8-6.2| | 6.7-6.7-6.7 | | | | | |
| July | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.5 | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.5| | 3.8-4.6-6.7 | | | | | |
| | wet | \| 3.8-4.6-6.7| | 6.7-6.7-6.7 | | | | | |
| August | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.7 | none | --- | none | -- - | -- - |
| | moist | \|0.0-0.0-0.7| | 5.2-6.7-6.7 | | | | | |
| | wet | \|5.2-6.7-6.7| | 6.7-6.7-6.7 | | | | | |
| September | dry | \|0.0-0.0-0.0 | 0.0-0.0-0.5 | none | -- - | none | -- - | -- - |
| | moist | \|0.0-0.0-0.5| | 3.8-4.1-6.7 | | | | | |
| | wet | $\|3.8-4.1-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 3.3-3.8-6.7 | none | --- | none | --- | --- |
| | wet | $\|3.3-3.8-6.7\|$ | 6.7-6.7-6.7 | | | | | |
| November | moist | \|0.0-0.0-0.0| | 2.5-3.3-4.9 | none | --- | none | --- | --- |
| | wet | \|2.5-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 3.8-4.1-5.7 | none | --- | none | --- | --- |
| | wet | \|3.8-4.1-5.7| | 6.7-6.7-6.7 | | | | | |

I13A (continued)
Clearwater, depressional (5 percent of the map unit)

Thiefriver (5 percent of the map unit)

I14B Fairdale silt loam, 1 to 6 percent slopes, occasionally flooded
Fairdale (85 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \mathrm{depth} \\ \mathrm{C}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | | |
|---|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0\| | 4.1-5.4-6.7\| | none | --- | none | --- | --- |
| | wet | \|4.1-5.4-6.7| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 4.9-5.9-6.7\| | none | --- | none | --- | --- |
| | wet | \|4.9-5.9-6.7| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | \|3.3-4.9-6.7| | occasional | brief | none | --- | --- |
| | wet | \|3.3-4.9-6.7| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 1.6-2.5-4.1\| | occasional | brief | none | --- | --- |
| | wet | 1.6-2.5-4.1\| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 2.1-2.8-4.9 | occasional | brief | none | --- | --- |
| | wet | \|2.1-2.8-4.9| | 6.7-6.7-6.7\| | | | | | |
| June | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.3\| | occasional | brief | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | 2.6-3.1-5.7\| | | | | | |
| | wet | \|2.6-3.1-5.7| | 6.7-6.7-6.7\| | | | | | |
| July | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.5\| | rare | very brief | none | --- | --- |
| | moist | \|0.0-0.0-0.5| | 3.3-5.7-6.7\| | | | | | |
| | wet | $\|3.3-5.7-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| August | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.7\| | very rare | very brief | none | --- | --- |
| | moist | \|0.0-0.0-0.7| | 4.9-6.7-6.7\| | | | | | |
| | wet | \|4.9-6.7-6.7| | 6.7-6.7-6.7\| | | | | | |
| September | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.3\| | very rare | very brief | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | 3.6-4.9-6.7\| | | | | | |
| | wet | \|3.6-4.9-6.7| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 3.0-4.3-5.7\| | very rare | very brief | none | --- | --- |
| | wet | \|3.0-4.3-5.7| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 2.3-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | \|2.3-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 3.3-4.6-5.7\| | none | --- | none | --- | --- |
| | wet | \|3.3-4.6-5.7| | 6.7-6.7-6.7\| | | | | | |

Fluvaquents (6 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | | |
|---|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | \|0.5-1.3-2.5| | none | --- | frequent | \|very long | \|0.0-0.5-1.0 |
| | wet | $\|0.5-1.3-2.5\|$ | \|6.7-6.7-6.7| | | | | | |
| February | moist | \|0.0-0.0-0.0| | $\|0.8-1.6-3.0\|$ | none | --- | frequent | \|very long | \|0.0-0.5-1.0 |
| | wet | $\mid 0.8$-1.6-3.0\| | \|6.7-6.7-6.7| | | | | | |
| March | moist | \|0.0-0.0-0.0| | $\|0.0-0.0-1.6\|$ | frequent | very long | frequent | \|very long | \|0.0-0.5-1.0 |
| | wet | \|0.0-0.0-1.6| | $\|6.7-6.7-6.7\|$ | | | | | |
| April | moist | $\|0.0-0.0-0.0\|$ | $\|0.0-0.0-0.8\|$ | \|very frequent| | very long | frequent | \|very long | 10.0-0.7-1.3 |
| | wet | $\|0.0-0.0-0.8\|$ | \|6.7-6.7-6.7| | | | | | |
| May | moist | \|0.0-0.0-0.0| | $\|0.0-0.0-1.3\|$ | \|very frequent| | long | frequent | \|very long | \|0.0-0.7-1.3 |
| | wet | $\|0.0-0.0-1.3\|$ | \|6.7-6.7-6.7| | | | | | |
| June | moist | \|0.0-0.0-0.0| | $\|0.0-0.5-1.6\|$ | frequent | long | frequent | \|very long | 10.0-0.5-1.0 |
| | wet | $\|0.0-0.5-1.6\|$ | \|6.7-6.7-6.7| | | | | | |
| July | moist | \|0.0-0.0-0.0| | $\|0.5-1.3-2.5\|$ | frequent | brief | \|occasional | long | \|0.0-0.5-1.0 |
| | wet | $\|0.5-1.3-2.5\|$ | \|6.7-6.7-6.7| | | | | | |
| August | moist | \|0.0-0.0-0.0| | $\|0.8-1.6-3.0\|$ | frequent | brief | \|occasional | brief | \|0.0-0.5-1.0 |
| | wet | $\|0.8-1.6-3.0\|$ | $\|6.7-6.7-6.7\|$ | | | | | |
| September | moist | \|0.0-0.0-0.0| | \|0.5-1.3-2.5| | frequent | long | \|occasional | brief | 10.0-0.5-1.0 |
| | wet | $\|0.5-1.3-2.5\|$ | \|6.7-6.7-6.7| | | | | | |
| October | moist | \|0.0-0.0-0.0| | $\|0.3-0.8-2.0\|$ | frequent | long | \|occasional | long | \|0.0-0.5-1.0 |
| | wet | \|0.3-0.8-2.0| | \|6.7-6.7-6.7| | | | | | |
| November | moist | \|0.0-0.0-0.0| | $\|0.2-0.5-1.6\|$ | rare | long | \|occasional | long | 10.0-0.5-1.0 |
| | wet | $\|0.2-0.5-1.6\|$ | $\|6.7-6.7-6.7\|$ | | | | | |
| December | moist | \|0.0-0.0-0.0| | $\|0.3-0.8-2.0\|$ | none | --- | frequent | \|very long | \|0.0-0.5-1.0 |
| | wet | \|0.3-0.8-2.0| | \|6.7-6.7-6.7| | | | | | |
| | | | | | | | | |

I14B (continued)
Hapludolls (5 percent of the map unit)

Hapludalfs (2 percent of the map unit)

| Month | | | | | Flooding duration | | Ponding duration | Ponding depth$L-R-H$ | |
|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | |
| | \| Moisture| | Top | Bottom | Flooding | | Ponding frequency | | |
| | status | depth | depth | frequency | | | | |
| | | L - R - H | L - R H | | | | | |
| | | | | | | | | |
| | | | | | | | --- | --- |
| January | moist | \|0.0-0.0-0.0| | 4.1-5.4-6.7\| | none | --- | none | | |
| | wet | \|4.1-5.4-6.7| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 4.9-6.2-6.7\| | none | --- | none | -- - | --- |
| | wet | $\|4.9-6.2-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 4.1-5.4-6.7\| | rare | brief | none | --- | --- |
| | wet | $\|4.1-5.4-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 2.1-2.5-3.8\| | rare | brief | none | --- | --- |
| | wet | \|2.1-2.5-3.8| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 2.5-2.8-4.6\| | rare | brief | none | --- | --- |
| | wet | \|2.5-2.8-4.6| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 2.8-3.1-5.7\| | rare | very brief | none | --- | --- |
| | wet | $\|2.8-3.1-5.7\|$ | 6.7-6.7-6.7\| | | | | | |
| July | dry | \|0.0-0.0-0.0 | 0.0-0.0-0.2\| | very rare | very brief | none | --- | --- |
| | moist | \|0.0-0.0-0.2| | 3.3-5.7-6.7\| | | | | | |
| | wet | $\|3.3-5.7-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| August | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.3\| | very rare | very brief | none | --- | --- |
| | moist | $\|0.0-0.0-0.3\|$ | 4.9-6.7-6.7\| | | | | | |
| | wet | $\|4.9-6.7-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 3.6-4.9-6.7\| | rare | very brief | none | --- | --- |
| | wet | $\|3.6-4.9-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 3.0-4.6-6.7\| | rare | very brief | none | --- | --- |
| | wet | $\|3.0-4.6-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | $\|0.0-0.0-0.0\|$ | 2.3-3.3-4.9\| | rare | very brief | none | -- - | -- - |
| | wet | $\|2.3-3.3-4.9\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 3.3-4.1-5.7\| | none | --- | none | --- | --- |
| | wet | $\|3.3-4.1-5.7\|$ | 6.7-6.7-6.7\| | | | | | |
| | | | | | | | | |

I14B (continued)
Zell (2 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \text { L }-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| February | moist | \|0.0-0.0-0.0| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| March | moist | \|0.0-0.0-0.0| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| April | moist | \|0.0-0.0-0.0| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| May | moist | \|0.0-0.0-0.0| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| June | dry | \|0.0-0.0-0.0|0 | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | 6.7-6.7-6.7\| | | | | | |
| July | dry | \|0.0-0.0-0.0|0 | 0.0-0.0-0.7\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.7| | 6.7-6.7-6.7\| | | | | | |
| August | dry | \|0.0-0.0-0.0|0 | 0.0-0.0-1.0\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-1.0| | 6.7-6.7-6.7\| | | | | | |
| September | dry | \|0.0-0.0-0.0|0 | 0.0-0.0-1.0\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-1.0| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| November | moist | \|0.0-0.0-0.0| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| December | moist | \|0.0-0.0-0.0| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| | | | | | | | | |

I14D Fairdale silt loam, 6 to 15 percent slopes, occasionally flooded
Fairdale (85 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \text { L-R }-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0\| | 4.6-5.7-6.7\| | none | --- | none | --- | --- |
| | wet | 4.6-5.7-6.7\| | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 4.6-6.2-6.7\| | none | --- | none | --- | --- |
| | wet | 4.6-6.2-6.7\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0\| | 3.8-5.2-6.7\| | occasional | brief | none | --- | --- |
| | wet | 3.3-4.9-6.7\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 1.6-2.5-4.1\| | occasional | brief | none | --- | --- |
| | wet | 1.6-2.5-4.1\| | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0\| | 2.1-3.1-4.9 | occasional | brief | none | --- | --- |
| | wet | 2.1-3.1-4.9\| | 6.7-6.7-6.7\| | | | | | |
| June | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.3\| | occasional | brief | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | 3.0-3.8-6.7\| | | | | | |
| | wet | 3.0-3.8-6.7\| | 6.7-6.7-6.7\| | | | | | |
| July | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.8\| | rare | very brief | none | --- | --- |
| | moist | 0.0-0.0-0.8\| | 4.1-6.2-6.7\| | | | | | |
| | wet | 4.1-6.2-6.7\| | 6.7-6.7-6.7\| | | | | | |
| August | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.8\| | very rare | very brief | none | --- | --- |
| | moist | 0.0-0.0-0.8\| | 5.4-6.7-6.7\| | | | | | |
| | wet | 5.4-6.7-6.7\| | 6.7-6.7-6.7\| | | | | | |
| September | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.3\| | very rare | very brief | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | 4.1-5.4-6.7\| | | | | | |
| | wet | 4.1-5.4-6.7\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 3.3-4.8-6.7\| | very rare | very brief | none | --- | --- |
| | wet | 3.3-4.8-6.7\| | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0\| | 2.5-3.8-5.7\| | none | --- | none | --- | --- |
| | wet | 2.5-3.8-5.7\| | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 4.1-5.2-6.7\| | none | --- | none | --- | --- |
| | wet | 4.1-5.2-5.7\| | 6.7-6.7-6.7\| | | | | | |

I14D (continued)
Fluvaquents (6 percent of the map unit)

Hapludolls (4 percent of the map unit)

| Month | Moisture status | Top depth L $-\mathrm{R}-\mathrm{H}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \text { L-R - H } \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| February | moist | \|0.0-0.0-0.0| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| March | moist | \|0.0-0.0-0.0| | 5.7-6.7-6.7\| | rare | brief | none | --- | --- |
| | wet | \| 5.7-6.7-6.7| | 6.7-6.7-6.7\| | | | | | |
| April | moist | $\|0.0-0.0-0.0\|$ | 4.9-6.7-6.7\| | rare | brief | none | --- | --- |
| | wet | \|4.9-6.7-6.7| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 5.7-6.7-6.7\| | rare | brief | none | --- | --- |
| | wet | \| 5.7-6.7-6.7| | 6.7-6.7-6.7\| | | | | | |
| June | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.3\| | rare | very brief | none | --- | --- |
| | moist | $\|0.0-0.0-0.3\|$ | 6.7-6.7-6.7\| | | | | | |
| July | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.5\| | very rare | very brief | none | --- | --- |
| | moist | $\|0.0-0.0-0.5\|$ | 6.7-6.7-6.7\| | | | | | |
| August | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.5\| | very rare | very brief | none | --- | --- |
| | moist | $\|0.0-0.0-0.5\|$ | 6.7-6.7-6.7\| | | | | | |
| September\| | dry | $\|0.0-0.0-0.0\|$ | 0.0-0.0-0.5\| | rare | very brief | none | --- | --- |
| | moist | $\|0.0-0.0-0.5\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 6.7-6.7-6.7\| | rare | brief | none | --- | --- |
| November | moist | \|0.0-0.0-0.0| | 6.7-6.7-6.7\| | rare | brief | none | --- | --- |
| | wet | \| 5.7-6.7-6.7| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I14D (continued)
Zell (3 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0\| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| February | moist | 0.0-0.0-0.0\| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| March | moist | 0.0-0.0-0.0\| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| April | moist | 0.0-0.0-0.0\| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| May | moist | 0.0-0.0-0.0\| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| June | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | 6.7-6.7-6.7\| | | | | | |
| July | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.7\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.7\| | 6.7-6.7-6.7\| | | | | | |
| August | dry | 0.0-0.0-0.0\| | 0.0-0.0-1.0\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-1.0\| | 6.7-6.7-6.7\| | | | | | |
| September | dry | 0.0-0.0-0.0\| | 0.0-0.0-1.0\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-1.0\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| November | moist | 0.0-0.0-0.0\| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| December | moist | 0.0-0.0-0.0\| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |

Hapludalfs (2 percent of the map unit)

| Month | Moisture status | Top depth $L-R-H$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | ```Ponding depth L - R - H``` | |
|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | |
| | | | | | | | | |
| January | moist | \|0.0-0.0-0.0| | 4.1-5.4-6.7\| | none | - | none | -- | - |
| | wet | \|4.1-5.4-6.7 | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0 | 4.9-6.2-6.7\| | none | - | none | --- | --- |
| | wet | \| 4.9-6.2-6.7| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0 | 4.1-5.4-6.7\| | rare | brief | none | --- | --- |
| | wet | \| 4.1-5.4-6.7| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | | rare | brief | none | --- | --- |
| | wet | \| 2.1-2.5-3.8 | $\|6.7-6.7-6.7\|$ | | | | | |
| May | moist | \|0.0-0.0-0.0| | 2.5-2.8-4.6\| | rare | brief | none | --- | --- |
| | wet | \| 2.5-2.8-4.6 | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0 | 2.8-3.1-5.7\| | rare | very brief | none | --- | --- |
| | wet | $\mid 2.8$-3.1-5.7\| | 6.7-6.7-6.7\| | | | | | |
| July | dry | \|0.0-0.0-0.0 | 0.0-0.0-0.2\| | very rare | very brief | none | --- | --- |
| | moist | \|0.0-0.0-0.2| | 3.3-5.7-6.7\| | | | | | |
| | wet | $\|3.3-5.7-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| August | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.3\| | very rare | very brief | none | --- | --- |
| | moist | $\|0.0-0.0-0.3\|$ | 4.9-6.7-6.7\| | | | | | |
| | wet | $\|4.9-6.7-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 3.6-4.9-6.7\| | rare | very brief | none | --- | --- |
| | wet | $\|3.6-4.9-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 3.0-4.6-6.7\| | rare | very brief | none | --- | -- |
| | wet | $\|3.0-4.6-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 2.3-3.3-4.9\| | rare | very brief | none | --- | --- |
| | wet | $\|2.3-3.3-4.9\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | $\|0.0-0.0-0.0\|$ | 3.3-4.1-5.7\| | none | --- | none | --- | --- |
| | wet | $\|3.3-4.1-5.7\|$ | 6.7-6.7-6.7\| | | | | | |
| | | | | | | | | |

I15A Flaming loamy fine sand, 0 to 3 percent slopes
Flaming (70 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ L-R-H \end{gathered}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{gathered} \text { Ponding } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0\| | 4.6-5.4-6.7\| | none | --- | none | --- | - |
| | wet | 4.6-5.4-6.7\| | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 5.2-6.2-6.7\| | none | --- | none | -- | -- |
| | wet | 5.2-6.2-6.7\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0\| | 3.3-4.1-6.7\| | none | --- | none | - | --- |
| | wet | 3.3-4.1-6.7\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 2.1-2.5-6.7\| | none | --- | none | --- | --- |
| | wet | 2.1-2.5-6.7\| | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0\| | 2.5-2.8-5.7\| | none | --- | none | - | - |
| | wet | 2.5-2.8-5.7\| | 6.7-6.7-6.7\| | | | | | |
| June | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | 2.6-3.3-6.7\| | | | | | |
| | wet | 2.6-3.3-6.7\| | 6.7-6.7-6.7\| | | | | | |
| July | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.7\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.7\| | 6.7-6.7-6.7\| | | | | | |
| August | dry | 0.0-0.0-0.0\| | 0.0-0.0-1.0\| | none | --- | none | -- | --- |
| | moist | 0.0-0.0-1.0\| | \|6.7-6.7-6.7| | | | | | |
| September\| | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | 4.1-4.9-6.7\| | | | | | |
| | wet | 4.1-4.9-6.7\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 3.3-4.6-6.7\| | none | - | none | -- | --- |
| | wet | 3.3-4.6-6.7\| | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0\| | 2.5-4.1-5.7\| | none | - | none | --- | --- |
| | wet | 2.5-4.1-5.7\| | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 4.1-4.9-6.7\| | none | --- | none | --- | --- |
| | wet | 4.1-4.9-6.7\| | 6.7-6.7-6.7\| | | | | | |

Garborg (10 percent of the map unit)

| Month | $\begin{gathered} \text { Moisture } \\ \text { status } \end{gathered}$ | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 10.0-0.0-0.0 | 2.6-3.3-5.9\| | none | -- - | none | --- | --- |
| | wet | $\|2.6-3.3-5.9\|$ | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0 | 3.3-4.1-6.7\| | none | --- | none | --- | --- |
| | wet | \|3.3-4.1-6.7 | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0 | 2.6-3.3-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.6-3.3-5.7 | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0 | 1.1-1.5-3.3\| | none | --- | none | --- | -- - |
| | wet | \|1.1-1.5-3.3| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0 | 1.5-1.8-4.1\| | none | --- | none | --- | --- |
| | wet | $\|1.5-1.8-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| June | dry | \|0.0-0.0-0.0 | 0.0-0.0-0.3\| | none | -- - | none | --- | --- |
| | moist | \|0.0-0.0-0.3 | 2.0-2.5-4.9\| | | | | | |
| | wet | \|2.0-2.5-4.9 | 6.7-6.7-6.7\| | | | | | |
| July | dry | \|0.0-0.0-0.0 | 0.0-0.0-0.5\| | none | -- - | none | --- | --- |
| | moist | $\|0.0-0.0-0.5\|$ | 2.6-4.9-6.2\| | | | | | |
| | wet | $\|2.6-4.9-6.2\|$ | 6.7-6.7-6.7\| | | | | | |
| August | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.7\| | none | --- | none | --- | -- - |
| | moist | \|0.0-0.0-0.7| | 6.7-6.7-6.7\| | | | | | |
| September | dry | \|0.0-0.0-0.0 | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.3\|$ | 2.6-4.9-6.7\| | | | | | |
| | wet | $\|2.6-4.9-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | $\|0.0-0.0-0.0\|$ | 2.3-3.0-5.7\| | none | --- | none | --- | --- |
| | wet | $\|2.3-3.0-5.7\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 2.0-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | $\|2.0-2.5-4.9\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | | $\|2.3-3.0-5.2\|$ | none | --- | none | --- | --- |
| | wet | $\|2.3-3.0-5.2\|$ | 6.7-6.7-6.7\| | | | | | |
| | | | | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I15A (continued)
Hamar (5 percent of the map unit)

| Month | \|Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0\| | 2.0-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | 2.0-2.5-4.9\| | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 2.5-3.3-5.7\| | none | --- | none | --- | --- |
| | wet | 2.5-3.3-5.7\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0\| | 1.6-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | 1.6-2.1-4.1\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 0.0-0.5-2.5\| | none | --- | \|occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.0-0.5-2.5\| | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0\| | 0.5-1.3-3.3\| | none | --- | \|occasional | \|very brief | 0.0-0.3-0.5 |
| | wet | 0.5-1.3-3.3\| | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0\| | 0.8-1.6-4.1\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | 0.8-1.6-4.1\| | 6.7-6.7-6.7\| | | | | | |
| July | moist | 0.0-0.0-0.0\| | 1.6-3.3-4.9\| | none | --- | none | | --- |
| | wet | 1.6-3.3-4.9\| | 6.7-6.7-6.7\| | | | | | |
| August | moist | 0.0-0.0-0.0\| | 2.5-4.9-5.7\| | none | --- | none | --- | --- |
| | wet | 2.5-4.9-5.7\| | 6.7-6.7-6.7\| | | | | | |
| September\| | moist | 0.0-0.0-0.0\| | 1.3-3.0-4.9\| | none | --- | none | | --- |
| | wet | 1.3-3.0-4.9\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 1.0-2.1-4.1\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | 1.0-2.1-4.1\| | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0\| | 0.8-1.6-3.3\| | none | --- | none | --- | --- |
| | wet | 0.8-1.6-3.3\| | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 1.3-2.1-4.1\| | none | --- | none | -- | -- |
| | wet | 1.3-2.1-4.1\| | 6.7-6.7-6.7\| | | | | | |

Ulen (5 percent of the map unit)

| Month | $\begin{aligned} & \mid \text { Moisture } \mid \\ & \mid \text { status } \end{aligned}$ | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 2.6-3.3-5.9\| | none | --- | none | --- | --- |
| | wet | \|2.6-3.3-5.9| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 3.3-4.1-6.7\| | none | --- | none | --- | --- |
| | wet | \|3.3-4.1-6.7| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 2.6-3.3-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.6-3.3-5.7| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 1.5-2.0-3.3\| | none | --- | none | --- | --- |
| | wet | \|1.5-2.0-3.3| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 2.0-2.5-4.1\| | none | --- | none | --- | --- |
| | wet | \|2.0-2.5-4.1| | 6.7-6.7-6.7\| | | | | | |
| June | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | 2.5-3.0-4.9\| | | | | | |
| | wet | \|2.5-3.0-4.9| | 6.7-6.7-6.7\| | | | | | |
| July | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.5\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.5| | 3.0-4.9-6.2\| | | | | | |
| | wet | $\|3.0-4.9-6.2\|$ | 6.7-6.7-6.7\| | | | | | |
| August | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.7\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.7| | 6.7-6.7-6.7\| | | | | | |
| September | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | 2.6-4.9-6.7\| | | | | | |
| | wet | \|2.6-4.9-6.7| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 2.3-3.0-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.3-3.0-5.7| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 2.0-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | \|2.0-2.5-4.9| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 2.3-3.0-5.2\| | none | --- | none | --- | --- |
| | wet | \|2.3-3.0-5.2| | 6.7-6.7-6.7\| | | | | | |

I15A (continued)
Poppleton (3 percent of the map unit)

Sandberg (3 percent of the map unit)

| Month | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|
| | \| Moisture| | Top | Bottom | Flooding | Flooding | Ponding | Ponding duration | Ponding depth |
| | status | depth | depth | frequency | duration | frequency | | |
| | | L - R - H | L - R H | | | | | L - R - H |
| | | | | | | | | |
| | | | | | | | | |
| January | moist | \|0.0-0.0-0.0| | 6.7-6.7-6.7\| | none | -- | none | --- | --- |
| February | moist | 0.0-0.0-0.0 | 6.7-6.7-6.7\| | none | -- | none | --- | --- |
| March | moist | $\|0.0-0.0-0.0\|$ | 6.7-6.7-6.7\| | none | - | none | --- | --- |
| April | moist | $\|0.0-0.0-0.0\|$ | 6.7-6.7-6.7\| | none | - | none | --- | --- |
| May | moist | 0.0-0.0-0.0 | 6.7-6.7-6.7\| | none | --- | none | - | - |
| June | dry | $\|0.0-0.0-0.0\|$ | 0.0-0.0-0.3\| | none | --- | none | --- | -- - |
| | moist | $\|0.0-0.0-0.3\|$ | 6.7-6.7-6.7\| | | | | | |
| July | dry | $\|0.0-0.0-0.0\|$ | 0.0-0.0-0.7\| | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.7\|$ | 6.7-6.7-6.7\| | | | | | |
| August | dry | $\|0.0-0.0-0.0\|$ | 0.0-0.0-1.0\| | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-1.0\|$ | 6.7-6.7-6.7\| | | | | | |
| September\| | dry | $\|0.0-0.0-0.0\|$ | 0.0-0.0-1.0\| | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-1.0\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | $\|0.0-0.0-0.0\|$ | 6.7-6.7-6.7\| | none | - | none | --- | --- |
| November | moist | $\|0.0-0.0-0.0\|$ | 6.7-6.7-6.7\| | none | - | none | -- | --- |
| December | moist | \|0.0-0.0-0.0| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| | | | | | | | | |

I15A (continued)
Foldahl (2 percent of the map unit)

| Month | $\begin{array}{\|c\|} \mid \text { Moisture } \\ \text { status } \end{array}$ | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | Ponding depth
 L - R - H | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0 | 4.6-5.4-6.7\| | none | --- | none | --- | --- |
| | wet | \|4.6-5.4-6.7| | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0 | 4.9-5.7-6.7\| | none | --- | none | --- | --- |
| | wet | \|4.9-5.7-6.7| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0 | 3.3-4.6-6.7\| | none | --- | none | --- | --- |
| | wet | \|3.3-4.6-6.7| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0 | 1.3-2.5-4.6\| | none | --- | none | --- | --- |
| | wet | \|1.3-2.5-4.6| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 2.0-3.1-5.2\| | none | --- | none | --- | --- |
| | wet | 2.0-3.1-5.2\| | 6.7-6.7-6.7\| | | | | | |
| June | dry | 0.0-0.0-0.0 | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | 2.6-3.8-6.2\| | | | | | |
| | wet | \|2.6-3.8-6.2| | 6.7-6.7-6.7\| | | | | | |
| July | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.5\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.5| | 3.8-4.9-6.7\| | | | | | |
| | wet | \|3.8-4.9-6.7| | 6.7-6.7-6.7\| | | | | | |
| August | dry | 0.0-0.0-0.0 | 0.0-0.0-0.7\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.7| | 5.2-6.7-6.7\| | | | | | |
| | wet | \| 5.2-6.7-6.7| | 6.7-6.7-6.7\| | | | | | |
| September | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | 3.8-4.1-6.7\| | | | | | |
| | wet | \|3.8-4.1-6.7| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 3.3-3.8-6.7\| | none | --- | none | --- | --- |
| | wet | \|3.3-3.8-6.7| | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0\| | 2.5-3.3-5.6\| | none | --- | none | --- | --- |
| | wet | 2.5-3.3-5.6\| | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 3.8-4.1-6.2\| | none | --- | none | --- | --- |
| | wet | \|3.8-4.1-6.2| | 6.7-6.7-6.7\| | | | | | |

Radium (2 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued

I16F Fluvaquents, frequently flooded-Hapludolls complex, 0 to 30 percent slopes
Fluvaquents (55 percent of the map unit)

| Month | \|Moisture
 status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \text { L-R - H } \end{aligned}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | | |
|---|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0|0. | 0.5-1.3-2.5\| | none | --- | frequent | \|very long | 0.0-0.5-1.0 |
| | wet | $\|0.5-1.3-2.5\| 6.7$ | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0|0 | 0.8-1.6-3.0\| | none | --- | frequent | \|very long | 10.0-0.5-1.0 |
| | wet | $\|0.8-1.6-3.0\|$ | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0|0. | 0.0-0.0-1.6\| | frequent | very long | frequent | \|very long | 10.0-0.5-1.0 |
| | wet | $\|0.0-0.0-1.6\|$ | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0|0 | 0.0-0.0-0.8\| | \|very frequent| | very long | frequent | \|very long | 10.0-0.7-1.3 |
| | wet | \|0.0-0.0-0.8 | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.0-0.0-1.3\| | \|very frequent| | long | frequent | \|very long | \|0.0-0.7-1.3 |
| | wet | \|0.0-0.0-1.3 | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 0.0-0.5-1.6\| | frequent | long | frequent | \|very long | 10.0-0.5-1.0 |
| | wet | $\|0.0-0.5-1.6\|$ | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 0.5-1.3-2.5\| | frequent | brief | \|occasional | long | 10.0-0.5-1.0 |
| | wet | $\|0.5-1.3-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0|0 | 0.8-1.6-3.0\| | frequent | brief | \|occasional | brief | 10.0-0.5-1.0 |
| | wet | $\|0.8-1.6-3.0\|$ | 6.7-6.7-6.7\| | | | | | |
| September | moist | $\|0.0-0.0-0.0\|$ | 0.5-1.3-2.5\| | frequent | long | \|occasional | brief | 10.0-0.5-1.0 |
| | wet | $\|0.5-1.3-2.5\| 6$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | $\|0.0-0.0-0.0\|$ | 0.3-0.8-2.0\| | frequent | long | \|occasional | long | \|0.0-0.5-1.0 |
| | wet | $\|0.3-0.8-2.0\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.2-0.5-1.6\| | rare | long | \|occasional | long | 0.0-0.5-1.0 |
| | wet | $\|0.2-0.5-1.6\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | $\|0.0-0.0-0.0\|$ | 0.3-0.8-2.0\| | none | --- | frequent | \|very long | 0.0-0.5-1.0 |
| | wet | \|0.3-0.8-2.0| | 6.7-6.7-6.7\| | | | | | |

Hapludolls (25 percent of the map unit)

I16F (continued)
Hapludalfs (7 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Bottom depth $L-R-H$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0\| | 4.1-5.4-6.7\| | none | --- | none | --- | --- |
| | wet | \|4.1-5.4-6.7| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 4.9-6.2-6.7\| | none | --- | none | --- | --- |
| | wet | \|4.9-6.2-6.7| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 4.1-5.4-6.7\| | rare | brief | none | --- | --- |
| | wet | \|4.1-5.4-6.7| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 2.1-2.5-3.8\| | rare | brief | none | --- | --- |
| | wet | \|2.1-2.5-3.8| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 2.5-2.8-4.6\| | rare | brief | none | --- | --- |
| | wet | \|2.5-2.8-4.6| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 2.8-3.1-5.7\| | rare | very brief | none | --- | --- |
| | wet | \|2.8-3.1-5.7| | 6.7-6.7-6.7\| | | | | | |
| July | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.2\| | very rare | very brief | none | --- | --- |
| | moist | \|0.0-0.0-0.2| | 3.3-5.7-6.7\| | | | | | |
| | wet | \|3.3-5.7-6.7| | 6.7-6.7-6.7\| | | | | | |
| August | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.3\| | very rare | very brief | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | 4.9-6.7-6.7\| | | | | | |
| | wet | \|4.9-6.7-6.7| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 3.6-4.9-6.7\| | rare | very brief | none | --- | --- |
| | wet | \|3.6-4.9-6.7| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 3.0-4.6-6.7\| | rare | very brief | none | --- | --- |
| | wet | $\|3.0-4.6-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 2.3-3.3-4.9 | rare | very brief | none | --- | --- |
| | wet | \|2.3-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 3.3-4.1-5.7\| | none | --- | none | --- | --- |
| | wet | \|3.3-4.1-5.7| | 6.7-6.7-6.7\| | | | | | |

Fairdale (5 percent of the map unit)

| Month | $\begin{array}{\|c\|} \mid \text { Moisture } \\ \mid \text { status } \end{array}$ | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ L-R-H \end{gathered}$ | Flooding frequency | Flooding duration | Ponding
 frequency | Ponding duration | $\begin{gathered} \text { Ponding } \\ \text { depth } \\ L-R-H \end{gathered}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0 | 4.6-5.7-6.7\| | none | --- | none | --- | --- |
| | wet | \|4.6-5.7-6.7| | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0 | 4.6-6.2-6.7\| | none | --- | none | --- | --- |
| | wet | \|4.6-6.2-6.7| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0 | 3.8-5.2-6.7\| | occasional | brief | none | --- | --- |
| | wet | \|3.3-4.9-6.7| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0 | 1.6-2.5-4.1\| | occasional | brief | none | --- | --- |
| | wet | \|1.6-2.5-4.1| | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0 | 2.1-3.1-4.9\| | occasional | brief | none | --- | --- |
| | wet | 2.1-3.1-4.9 | 6.7-6.7-6.7\| | | | | | |
| June | dry | 0.0-0.0-0.0 | 0.0-0.0-0.3 | occasional | brief | none | --- | -- - |
| | moist | \|0.0-0.0-0.3 | 3.0-3.8-6.7\| | | | | | |
| | wet | $\|3.0-3.8-6.7\|$ | 6.7-6.7-6.7 | | | | | |
| July | dry | 0.0-0.0-0.0 | 0.0-0.0-0.8\| | rare | very brief | none | --- | --- |
| | moist | \|0.0-0.0-0.8| | 4.1-6.2-6.7\| | | | | | |
| | wet | \|4.1-6.2-6.7| | 6.7-6.7-6.7\| | | | | | |
| August | dry | 0.0-0.0-0.0 | 0.0-0.0-0.8\| | very rare | very brief | none | --- | --- |
| | moist | \|0.0-0.0-0.8| | 5.4-6.7-6.7\| | | | | | |
| | wet | $\|5.4-6.7-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| September | dry | 0.0-0.0-0.0 | 0.0-0.0-0.3\| | very rare | very brief | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | 4.1-5.4-6.7\| | | | | | |
| | wet | \|4.1-5.4-6.7| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 3.3-4.8-6.7\| | very rare | very brief | none | --- | --- |
| | wet | $\|3.3-4.8-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 2.5-3.8-5.7\| | none | --- | none | --- | --- |
| | wet | $\|2.5-3.8-5.7\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 4.1-5.2-6.7\| | none | --- | none | --- | --- |
| | wet | \|4.1-5.2-5.7| | 6.7-6.7-6.7\| | | | | | |

I16F (continued)
Water (5 percent of the map unit) (not applicable)
Bowstring (2 percent of the map unit)

| Month | $\begin{array}{\|l\|} \mid \text { Moisture } \\ \mid \text { status } \end{array}$ | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \text { L-R - H } \end{aligned}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \text { L - R - H } \end{aligned}$ | | |
|---|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0|0. | 0.5-1.3-3.3\| | none | --- | frequent | \|very long | 0.0-0.3-0.5 |
| | wet | $\|0.5-1.3-3.3\| 6$ | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 1.3-2.1-4.1\| | none | --- | frequent | \|very long | 0.0-0.3-0.5 |
| | wet | $\|1.3-2.1-4.1\| 6$ | 6.7-6.7-6.7\| | | | | | |
| March | moist | $\|0.0-0.0-0.0\| 0$ | 0.0-0.0-2.5\| | frequent | very long | frequent | \|very long | 10.0-0.5-1.0 |
| | wet | $\|0.0-0.0-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0|0 | 0.0-0.0-0.8\| | \|very frequent| | very long | frequent | \|very long | 10.0-0.5-1.0 |
| | wet | \|0.0-0.0-0.8| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.0-0.0-1.3\| | \|very frequent| | long | frequent | \|very long | \|0.0-0.5-1.0 |
| | wet | $\|0.0-0.0-1.3\|$ | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 0.0-0.0-1.6\| | frequent | long | frequent | \|very long | 10.0-0.5-1.0 |
| | wet | $\|0.0-0.0-1.6\|$ | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 0.2-0.8-2.5\| | frequent | brief | \|occasional | long | 10.0-0.3-0.5 |
| | wet | \|0.2-0.8-2.5| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | frequent | brief | \|occasional | long | 10.0-0.3-0.5 |
| | wet | $\|0.8-1.6-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| September | moist | $\|0.0-0.0-0.0\|$ | 0.3-1.1-3.0\| | frequent | brief | \|occasional | brief | 10.0-0.3-0.5 |
| | wet | $\|0.3-1.1-3.0\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 0.2-0.5-2.5\| | frequent | long | \|occasional | brief | 10.0-0.3-0.5 |
| | wet | $\|0.2-0.5-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | $\|0.0-0.0-0.0\| 0$ | 0.0-0.3-1.6\| | rare | long | \|occasional | long | 10.0-0.3-0.5 |
| | moist | \|0.0-0.0-0.0| | 0.2-0.5-1.6\| | | | | | |
| | wet | $\|0.0-0.3-1.6\|$ | 6.7-6.7-6.7\| | | | | | |
| | wet | $\|0.2-0.5-1.6\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | $\|0.0-0.0-0.0\|$ | 0.5-0.8-2.5\| | none | --- | frequent | \|very long | 0.0-0.3-0.5 |
| | wet | $\|0.5-0.8-2.5\|$ | 6.7-6.7-6.7\| | | | | | |

Rauville (1 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ L-R-H \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{gathered} \text { Ponding } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0 | 0.5-1.3-2.5 | none | --- | frequent | very long | 10.0-0.5-1.0 |
| | wet | 0.5-1.3-2.5 | 6.7-6.7-6.7 | | | | | |
| February | moist | 0.0-0.0-0.0 | 0.8-1.6-3.0 | none | --- | frequent | \|very long | 10.0-0.5-1.0 |
| | wet | 0.8-1.6-3.0 | 6.7-6.7-6.7 | | | | | |
| March | moist | 0.0-0.0-0.0 | 0.0-0.0-1.6 | frequent | very long | frequent | \|very long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-1.6 | 6.7-6.7-6.7 | | | | | |
| April | moist | 0.0-0.0-0.0 | 0.0-0.0-0.8 | very frequent | very long | frequent | \|very long | 0.0-0.7-1.3 |
| | wet | 0.0-0.0-0.8 | 6.7-6.7-6.7 | | | | | |
| May | moist | 0.0-0.0-0.0 | 0.0-0.0-1.3 | very frequent | long | frequent | \|very long | 0.0-0.7-1.3 |
| | wet | 0.0-0.0-1.3 | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0 | 0.0-0.5-1.6 | frequent | long | frequent | \|very long | 0.0-0.5-1.0 |
| | wet | 0.0-0.5-1.6 | 6.7-6.7-6.7 | | | | | |
| July | moist | 0.0-0.0-0.0 | 0.5-1.3-2.5 | frequent | brief | occasional | long | 0.0-0.5-1.0 |
| | wet | 0.5-1.3-2.5 | 6.7-6.7-6.7 | | | | | |
| August | moist | 0.0-0.0-0.0 | 0.8-1.6-3.0 | frequent | brief | \|occasional | brief | 0.0-0.5-1.0 |
| | wet | 0.8-1.6-3.0 | 6.7-6.7-6.7 | | | | | |
| September | moist | 0.0-0.0-0.0 | 0.5-1.3-2.5 | frequent | long | \|occasional | brief | 0.0-0.5-1.0 |
| | wet | 0.5-1.3-2.5 | 6.7-6.7-6.7 | | | | | |
| October | moist | 0.0-0.0-0.0 | 0.3-0.8-2.0 | frequent | long | occasional | long | 0.0-0.5-1.0 |
| | wet | 0.3-0.8-2.0 | 6.7-6.7-6.7 | | | | | |
| November | moist | 0.0-0.0-0.0 | 0.2-0.5-1.6 | rare | long | occasional | long | 10.0-0.5-1.0 |
| | wet | 0.2-0.5-1.6 | 6.7-6.7-6.7 | | | | | |
| December | moist | 0.0-0.0-0.0 | 0.3-0.8-2.0 | none | --- | frequent | very long | 0.0-0.5-1.0 |
| | wet | 0.3-0.8-2.0 | 6.7-6.7-6.7 | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued

I17A Foldahl fine sandy loam, 0 to 3 percent slopes
Foldahl (75 percent of the map unit)

Kratka (10 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | | |
|---|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0\| | 1.6-3.0-4.1\| | none | --- | none | --- | --- |
| | wet | 1.6-3.0-4.1\| | \|6.7-6.7-6.7| | | | | | |
| February | moist | 0.0-0.0-0.0\| | $\|2.5-3.3-4.9\|$ | none | --- | none | --- | --- |
| | wet | 2.5-3.3-4.9\| | \mid 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0\| | $\|1.6-2.1-4.1\|$ | none | --- | none | --- | --- |
| | wet | \|1.6-2.1-4.1| | \|6.7-6.7-6.7| | | | | | |
| April | moist | 0.0-0.0-0.0\| | $\|0.0-0.5-2.5\|$ | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.0-0.5-2.5| | \|6.7-6.7-6.7| | | | | | |
| May | moist | \|0.0-0.0-0.0| | $\|0.5-0.8-3.3\|$ | none | --- | \|occasional | \|very brief | 0.0-0.3-0.5 |
| | wet | \|0.5-0.8-3.3| | \mid 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | $\|0.8-1.6-4.1\|$ | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | \|0.8-1.6-4.1| | \|6.7-6.7-6.7| | | | | | |
| July | moist | 0.0-0.0-0.0\| | $\|1.6-3.3-4.9\|$ | none | --- | none | --- | --- |
| | wet | 1.6-3.3-4.9\| | \|6.7-6.7-6.7| | | | | | |
| August | moist | 0.0-0.0-0.0\| | $\|2.5-4.1-5.7\|$ | none | --- | none | --- | --- |
| | wet | \|2.5-4.1-5.7| | \mid 6.7-6.7-6.7\| | | | | | |
| September | moist | 0.0-0.0-0.0\| | $\|1.6-3.3-4.9\|$ | none | --- | none | --- | --- |
| | wet | 1.6-3.3-4.9 | \mid 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | $\|1.3-2.5-4.1\|$ | none | --- | rare | \|very brief |very brief | 0.0-0.1-0.3 |
| | wet | \|1.3-2.5-4.1| | \mid 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | $\|0.8-1.6-3.3\|$ | none | --- | rare | | 0.0-0.1-0.3 |
| | wet | \|0.8-1.6-3.3| | \mid 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 1.3-2.1-3.8\| | none | --- | none | --- | --- |
| | wet | 1.3-2.1-3.8\| | \|6.7-6.7-6.7| | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I17A (continued)
Roliss (5 percent of the map unit)

| Month | $\begin{array}{\|c\|} \mid \text { Moisture } \\ \mid \text { status } \end{array}$ | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | | |
|---|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 1.6-3.0-4.1 | none | --- | none | --- | --- |
| | wet | \|1.6-3.0-4.1| | \|6.7-6.7-6.7| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 2.5-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | \|2.5-3.3-4.9| | \|6.7-6.7-6.7| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 1.3-2.1-3.3\| | none | --- | none | --- | --- |
| | wet | \|1.3-2.1-3.3| | \|6.7-6.7-6.7| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 0.0-0.5-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | $\|0.0-0.5-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.3-0.8-3.3\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.3-0.8-3.3| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 0.7-1.3-4.1 | none | --- | occasional | very brief | 0.0-0.3-0.5 |
| | wet | $\|0.7-1.3-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 1.6-3.0-4.9 | none | --- | none | --- | --- |
| | wet | \|1.6-3.0-4.9| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 2.5-3.8-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.5-3.8-5.7| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 2.0-3.3-4.9\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | $\|2.0-3.3-4.9\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 1.3-1.6-4.1 | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | $\|1.3-1.6-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.8-1.3-3.3\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.8-1.3-3.3| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 1.3-2.1-3.8 | none | --- | none | --- | --- |
| | wet | \|1.3-2.1-3.8| | 6.7-6.7-6.7\| | | | | | |

Flaming (4 percent of the map unit)

I17A (continued)
Grimstad (2 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0 | 2.5-3.8-5.7\| | none | --- | none | --- | --- |
| | wet | 2.5-3.8-5.7\| | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 3.3-4.6-6.7\| | none | --- | none | --- | --- |
| | wet | 3.3-4.6-6.7\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0\| | 2.5-3.0-5.7\| | none | --- | none | --- | --- |
| | wet | 2.5-3.0-5.7\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 0.8-1.5-3.3\| | none | --- | none | --- | --- |
| | wet | 0.8-1.5-3.3\| | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0 | 1.1-1.8-4.1\| | none | --- | none | --- | --- |
| | wet | 1.1-1.8-4.1\| | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0\| | 1.6-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | 1.6-3.3-4.9 | 6.7-6.7-6.7\| | | | | | |
| July | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | 2.5-5.7-6.2\| | | | | | |
| | wet | 2.5-5.7-6.2\| | 6.7-6.7-6.7\| | | | | | |
| August | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.5\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.5\| | 6.7-6.7-6.7\| | | | | | |
| September | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | 2.5-3.8-6.7\| | | | | | |
| | wet | 2.5-3.8-6.7\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 2.0-3.0-5.6\| | none | --- | none | --- | --- |
| | wet | 2.0-3.0-5.6\| | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0\| | 1.6-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | 1.6-2.5-4.9 | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 2.0-3.3-5.4\| | none | --- | none | --- | --- |
| | wet | 2.0-3.3-5.4\| | 6.7-6.7-6.7\| | | | | | |

Linveldt (2 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ L-R-H \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0 | 4.8-5.4-6.7 | none | --- | none | --- | --- |
| | wet | 4.8-5.4-6.7 | 6.7-6.7-6.7 | | | | | |
| February | moist | 0.0-0.0-0.0 | 5.2-5.7-6.7 | none | --- | none | --- | --- |
| | wet | 5.2-5.7-6.7 | 6.7-6.7-6.7 | | | | | |
| March | moist | 0.0-0.0-0.0 | 3.3-4.6-6.7 | none | --- | none | --- | --- |
| | wet | 3.3-4.6-6.7 | 6.7-6.7-6.7 | | | | | |
| April | moist | 0.0-0.0-0.0 | 1.3-2.5-4.9 | none | --- | none | --- | --- |
| | wet | 1.3-2.5-4.9 | 6.7-6.7-6.7 | | | | | |
| May | moist | 0.0-0.0-0.0 | 2.0-3.0-5.6 | none | --- | none | --- | --- |
| | wet | 2.0-3.0-5.6 | 6.7-6.7-6.7 | | | | | |
| June | dry | 0.0-0.0-0.0 | 0.0-0.0-0.5 | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.5 | 2.6-3.6-6.2 | | | | | |
| | wet | 2.6-3.6-6.2 | 6.7-6.7-6.7 | | | | | |
| July | dry | 0.0-0.0-0.0 | 0.0-0.0-0.7 | none | -- - | none | --- | --- |
| | moist | 0.0-0.0-0.7 | 3.9-5.4-6.7 | | | | | |
| | wet | 3.9-5.4-6.7\| | 6.7-6.7-6.7 | | | | | |
| August | dry | 0.0-0.0-0.0 | 0.0-0.0-1.0 | none | -- - | none | -- - | --- |
| | moist | 0.0-0.0-1.0 | 5.4-6.7-6.7 | | | | | |
| | wet | 5.4-6.7-6.7\| | 6.7-6.7-6.7 | | | | | |
| September | dry | 0.0-0.0-0.0 | 0.0-0.0-0.3 | none | --- | none | -- - | --- |
| | moist | 0.0-0.0-0.3 | 4.1-4.6-6.7 | | | | | |
| | wet | \|4.1-4.6-6.7| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 3.6-3.9-6.7\| | none | --- | none | -- - | --- |
| | wet | $\|3.6-3.9-6.7\|$ | 6.7-6.7-6.7 | | | | | |
| November | moist | \|0.0-0.0-0.0 | 2.5-3.3-5.7 | none | --- | none | --- | --- |
| | wet | \|2.5-3.3-5.7| | 6.7-6.7-6.7 | | | | | |
| December | moist | \|0.0-0.0-0.0| | 3.9-4.6-6.2 | none | --- | none | --- | --- |
| | wet | $\|3.9-4.6-6.2\|$ | 6.7-6.7-6.7 | | | | | |

I17A (continued)
Eckvoll (1 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0\| | 4.6-5.4-6.7\| | none | --- | none | --- | --- |
| | wet | 4.6-5.4-6.7\| | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 4.9-5.7-6.7\| | none | --- | none | --- | --- |
| | wet | 4.9-5.7-6.7\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0\| | 3.3-4.6-6.7\| | none | --- | none | --- | --- |
| | wet | 3.3-4.6-6.7\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 2.1-2.5-4.6\| | none | --- | none | --- | --- |
| | wet | 2.1-2.5-4.6\| | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0\| | 2.6-3.1-5.2\| | none | --- | none | --- | --- |
| | wet | 2.6-3.1-5.2\| | 6.7-6.7-6.7\| | | | | | |
| June | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | 2.6-3.8-6.2\| | | | | | |
| | wet | 2.6-3.8-6.2\| | 6.7-6.7-6.7\| | | | | | |
| July | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.5\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.5\| | 3.8-4.9-6.7\| | | | | | |
| | wet | 3.8-4.9-6.7\| | 6.7-6.7-6.7\| | | | | | |
| August | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.8\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.8\| | 5.2-6.7-6.7\| | | | | | |
| | wet | 5.2-6.7-6.7\| | 6.7-6.7-6.7\| | | | | | |
| September | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | 3.8-4.1-6.7\| | | | | | |
| | wet | 3.8-4.1-6.7\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 3.3-3.8-6.7\| | none | --- | none | --- | --- |
| | wet | 3.3-3.8-6.7\| | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0\| | 2.5-3.3-5.6\| | none | --- | none | --- | --- |
| | wet | 2.5-3.3-5.6\| | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 3.8-4.1-6.2\| | none | --- | none | --- | --- |
| | wet | 3.8-4.1-6.2\| | 6.7-6.7-6.7\| | | | | | |

Strathcona (1 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued

I18A Foldahl loamy fine sand, 0 to 3 percent slopes
Foldahl (75 percent of the map unit)

Kratka (10 percent of the map unit)

| Month | \mid Moisture \mid | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | | |
|---|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 1.6-3.0-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.6-3.0-4.1| | \|6.7-6.7-6.7| | | | | | |
| February | moist | \|0.0-0.0-0.0| | \|2.5-3.3-4.9| | none | --- | none | --- | --- |
| | wet | \|2.5-3.3-4.9| | \|6.7-6.7-6.7| | | | | | |
| March | moist | \|0.0-0.0-0.0| | \|1.6-2.1-4.1| | none | --- | none | --- | --- |
| | wet | \|1.6-2.1-4.1| | \|6.7-6.7-6.7| | | | | | |
| April | moist | \|0.0-0.0-0.0| | $\|0.0-0.5-2.5\|$ | none | --- | \|occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.0-0.5-2.5| | \|6.7-6.7-6.7| | | | | | |
| May | moist | \|0.0-0.0-0.0| | $\|0.5-0.8-3.3\|$ | none | --- | occasional | \|very brief | 0.0-0.3-0.5 |
| | wet | \|0.5-0.8-3.3| | \|6.7-6.7-6.7| | | | | | |
| June | moist | \|0.0-0.0-0.0| | \|0.8-1.6-4.1| | none | --- | rare | very brief | 0.0-0.1-0.3 |
| | wet | $\|0.8-1.6-4.1\|$ | \|6.7-6.7-6.7| | | | | | |
| July | moist | \|0.0-0.0-0.0| | \|1.6-3.3-4.9| | none | --- | none | --- | --- |
| | wet | \|1.6-3.3-4.9| | \|6.7-6.7-6.7| | | | | | |
| August | moist | \|0.0-0.0-0.0| | \|2.5-4.1-5.7| | none | --- | none | --- | --- |
| | wet | \|2.5-4.1-5.7| | \|6.7-6.7-6.7| | | | | | |
| September | moist | \|0.0-0.0-0.0| | $\|1.6-3.3-4.9\|$ | none | --- | none | --- | --- |
| | wet | \|1.6-3.3-4.9| | $\|6.7-6.7-6.7\|$ | | | | | |
| October | moist | \|0.0-0.0-0.0| | $\|1.3-2.5-4.1\|$ | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | \|1.3-2.5-4.1| | $\|6.7-6.7-6.7\|$ | | | | | |
| November | moist | \|0.0-0.0-0.0| | $\|0.8-1.6-3.3\|$ | none | --- | rare | very brief | 0.0-0.1-0.3 |
| | wet | \|0.8-1.6-3.3| | $\|6.7-6.7-6.7\|$ | | | | | |
| December | moist | \|0.0-0.0-0.0| | \|1.3-2.1-3.8| | none | --- | none | --- | --- |
| | wet | \|1.3-2.1-3.8| | \|6.7-6.7-6.7| | | | | | |

I18A (continued)
Roliss (5 percent of the map unit)

Flaming (4 percent of the map unit)

I18A (continued)
Grimstad (2 percent of the map unit)

| Month | $\text { \|Moisture\| } \mid \text { \| } \mid$ | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Bottom depth
 L - R - H | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | | |
|---|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 2.5-3.8-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.5-3.8-5.7| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | $\|3.3-4.6-6.7\|$ | none | --- | none | --- | --- |
| | wet | \|3.3-4.6-6.7| | $\|6.7-6.7-6.7\|$ | | | | | |
| March | moist | \|0.0-0.0-0.0| | $\|2.5-3.0-5.7\|$ | none | --- | none | --- | --- |
| | wet | \|2.5-3.0-5.7| | $\|6.7-6.7-6.7\|$ | | | | | |
| April | moist | \|0.0-0.0-0.0| | $\|0.8-1.5-3.3\|$ | none | --- | none | --- | --- |
| | wet | \|0.8-1.5-3.3| | \|6.7-6.7-6.7| | | | | | |
| May | moist | \|0.0-0.0-0.0| | $\|1.1-1.8-4.1\|$ | none | --- | none | --- | --- |
| | wet | \|1.1-1.8-4.1| | \|6.7-6.7-6.7| | | | | | |
| June | moist | \|0.0-0.0-0.0| | $\|1.6-3.3-4.9\|$ | none | --- | none | --- | --- |
| | wet | \|1.6-3.3-4.9| | $\|6.7-6.7-6.7\|$ | | | | | |
| July | dry | \|0.0-0.0-0.0| | $\|0.0-0.0-0.3\|$ | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | $\|2.5-5.7-6.2\|$ | | | | | |
| | wet | \|2.5-5.7-6.2| | $\|6.7-6.7-6.7\|$ | | | | | |
| August | dry | \|0.0-0.0-0.0| | $\|0.0-0.0-0.5\|$ | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.5| | $\|6.7-6.7-6.7\|$ | | | | | |
| September\| | dry | 0.0-0.0-0.0\| | $\|0.0-0.0-0.3\|$ | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | $\|2.5-3.8-6.7\|$ | | | | | |
| | wet | \|2.5-3.8-6.7| | $\|6.7-6.7-6.7\|$ | | | | | |
| October | moist | 0.0-0.0-0.0\| | $\|2.0-3.0-5.6\|$ | none | --- | none | --- | --- |
| | wet | \|2.0-3.0-5.6| | \|6.7-6.7-6.7| | | | | | |
| November | moist | \|0.0-0.0-0.0| | $\|1.6-2.5-4.9\|$ | none | --- | none | --- | --- |
| | wet | \|1.6-2.5-4.9| | $\|6.7-6.7-6.7\|$ | | | | | |
| December | moist | 0.0-0.0-0.0\| | $\|2.0-3.3-5.4\|$ | none | --- | none | --- | --- |
| | wet | \|2.0-3.3-5.4| | $\|6.7-6.7-6.7\|$ | | | | | |

Linveldt (2 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding
 frequency | Flooding duration | Ponding
 frequency | Ponding duration | Ponding depth $L-R-H$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0 | 4.8-5.4-6.7 | none | --- | none | --- | --- |
| | wet | 4.8-5.4-6.7 | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0 | 5.2-5.7-6.7\| | none | --- | none | --- | --- |
| | wet | 5.2-5.7-6.7 | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0 | 3.3-4.6-6.7 | none | --- | none | --- | --- |
| | wet | 3.3-4.6-6.7 | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0 | 1.3-2.5-4.9 | none | -- - | none | -- - | --- |
| | wet | 1.3-2.5-4.9 | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0 | 2.0-3.0-5.6\| | none | --- | none | --- | --- |
| | wet | 2.0-3.0-5.6 | 6.7-6.7-6.7\| | | | | | |
| June | dry | 0.0-0.0-0.0 | 0.0-0.0-0.5 | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.5 | 2.6-3.6-6.2\| | | | | | |
| | wet | 2.6-3.6-6.2 | 6.7-6.7-6.7\| | | | | | |
| July | dry | 0.0-0.0-0.0 | 0.0-0.0-0.7 | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.7\| | 3.9-5.4-6.7\| | | | | | |
| | wet | 3.9-5.4-6.7 | 6.7-6.7-6.7\| | | | | | |
| August | dry | 0.0-0.0-0.0 | 0.0-0.0-1.0\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-1.0 | 5.4-6.7-6.7\| | | | | | |
| | wet | 5.4-6.7-6.7\| | 6.7-6.7-6.7\| | | | | | |
| September | dry | 0.0-0.0-0.0 | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3 | 4.1-4.6-6.7\| | | | | | |
| | wet | 4.1-4.6-6.7 | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0 | 3.6-3.9-6.7\| | none | --- | none | --- | --- |
| | wet | 3.6-3.9-6.7 | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0 | 2.5-3.3-5.7\| | none | --- | none | --- | --- |
| | wet | 2.5-3.3-5.7 | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0 | 3.9-4.6-6.2\| | none | --- | none | --- | --- |
| | wet | 3.9-4.6-6.2 | 6.7-6.7-6.7\| | | | | | |

I18A (continued)
Eckvoll (1 percent of the map unit)

| Month | \|Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0 | 4.6-5.4-6.7\| | none | --- | none | --- | --- |
| | wet | 4.6-5.4-6.7 | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0 | 4.9-5.7-6.7\| | none | --- | none | --- | --- |
| | wet | 4.9-5.7-6.7 | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0 | 3.3-4.6-6.7\| | none | --- | none | --- | --- |
| | wet | 3.3-4.6-6.7\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 2.1-2.5-4.6\| | none | --- | none | --- | --- |
| | wet | 2.1-2.5-4.6\| | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0\| | 2.6-3.1-5.2\| | none | --- | none | --- | --- |
| | wet | 2.6-3.1-5.2\| | 6.7-6.7-6.7\| | | | | | |
| June | dry | 0.0-0.0-0.0 | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | 2.6-3.8-6.2\| | | | | | |
| | wet | 2.6-3.8-6.2\| | 6.7-6.7-6.7\| | | | | | |
| July | dry | 0.0-0.0-0.0 | 0.0-0.0-0.5\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.5\| | 3.8-4.9-6.7\| | | | | | |
| | wet | 3.8-4.9-6.7\| | 6.7-6.7-6.7\| | | | | | |
| August | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.8\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.8\| | 5.2-6.7-6.7\| | | | | | |
| | wet | 5.2-6.7-6.7\| | 6.7-6.7-6.7\| | | | | | |
| September | dry | 0.0-0.0-0.0 | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | 3.8-4.1-6.7\| | | | | | |
| | wet | 3.8-4.1-6.7\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 3.3-3.8-6.7\| | none | --- | none | --- | --- |
| | wet | 3.3-3.8-6.7\| | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0\| | 2.5-3.3-5.6\| | none | --- | none | --- | --- |
| | wet | 2.5-3.3-5.6 | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 3.8-4.1-6.2\| | none | --- | none | --- | --- |
| | wet | 3.8-4.1-6.2\| | 6.7-6.7-6.7\| | | | | | |

Strathcona (1 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued

I19A Foxhome sandy loam, 0 to 3 percent slopes
Foxhome (65 percent of the map unit)

I19A (continued)
Kittson (10 percent of the map unit)

Strandquist (10 percent of the map unit)

I19A (continued)
Foldahl (5 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0\| | 4.6-5.4-6.7\| | none | --- | none | --- | --- |
| | wet | \|4.6-5.4-6.7| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 4.9-5.7-6.7\| | none | --- | none | --- | --- |
| | wet | 4.9-5.7-6.7 | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 3.3-4.6-6.7\| | none | --- | none | --- | --- |
| | wet | 3.3-4.6-6.7 | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 1.3-2.5-4.6\| | none | --- | none | --- | --- |
| | wet | \|1.3-2.5-4.6| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 2.0-3.1-5.2\| | none | --- | none | --- | --- |
| | wet | 2.0-3.1-5.2\| | 6.7-6.7-6.7\| | | | | | |
| June | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | 2.6-3.8-6.2\| | | | | | |
| | wet | \|2.6-3.8-6.2| | 6.7-6.7-6.7\| | | | | | |
| July | dry | 0.0-0.0-0.0 | 0.0-0.0-0.5\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.5| | 3.8-4.9-6.7\| | | | | | |
| | wet | \|3.8-4.9-6.7| | 6.7-6.7-6.7\| | | | | | |
| August | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.7\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.7| | 5.2-6.7-6.7\| | | | | | |
| | wet | \| 5.2-6.7-6.7| | 6.7-6.7-6.7\| | | | | | |
| September | dry | 0.0-0.0-0.0 | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | 3.8-4.1-6.7\| | | | | | |
| | wet | \|3.8-4.1-6.7| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 3.3-3.8-6.7\| | none | --- | none | --- | --- |
| | wet | \|3.3-3.8-6.7| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 2.5-3.3-5.6\| | none | --- | none | --- | --- |
| | wet | \|2.5-3.3-5.6| | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 3.8-4.1-6.2\| | none | --- | none | --- | --- |
| | wet | \|3.8-4.1-6.2| | 6.7-6.7-6.7\| | | | | | |

Grimstad (5 percent of the map unit)

I19A (continued)
Roliss (3 percent of the map unit)

Mavie (2 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued

I20A Foxlake loam, 0 to 2 percent slopes
Foxlake (75 percent of the map unit)

Clearwater (5 percent of the map unit)

| Month | Moisture status | Top depth $\mathrm{L}-\mathrm{R}-\mathrm{H}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0\| | 0.8-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | \|0.8-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0|1 | 1.6-2.5-4.9 | none | --- | none | --- | --- |
| | wet | \|1.6-2.5-4.9| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 0.3-1.3-3.3\| | none | --- | none | --- | --- |
| | wet | $\|0.3-1.3-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0|0. | 0.0-0.0-1.6\| | none | --- | occasional | brief | 10.0-0.3-0.5 |
| | wet | 0.0-0.0-1.6 | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.0-0.5-2.5\| | none | --- | occasional | brief | 10.0-0.3-0.5 |
| | wet | \|0.0-0.5-2.5| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0|0. | 0.8-1.3-3.3\| | none | --- | \|occasional | \|very brief | 0.0-0.3-0.5 |
| | wet | 0.8-1.3-3.3 | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 1.3-2.1-4.1\| | none | --- | rare | \|very brief | 0.0-0.2-0.3 |
| | wet | \|1.3-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0|1 | 1.6-3.0-4.9\| | none | --- | rare | \|very brief | 0.0-0.2-0.3 |
| | wet | \|1.6-3.0-4.9| | 6.7-6.7-6.7\| | | | | | |
| September | moist | 0.0-0.0-0.0\| | 1.3-2.5-4.1\| | none | --- | rare | \|very brief | 0.0-0.2-0.3 |
| | wet | \|1.3-2.5-4.1|6. | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0|0 | 0.8-1.6-3.3\| | none | --- | \|occasional | \|very brief | 0.0-0.2-0.3 |
| | wet | \|0.8-1.6-3.3| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0|0. | 0.5-1.3-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.5-1.3-2.5|6. | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0|0 | 0.8-1.6-3.3\| | none | --- | none | --- | --- |
| | wet | $\|0.8-1.6-3.3\| 6$ | 6.7-6.7-6.7\| | | | | | |

I20A (continued)
Foxlake, very cobbly (5 percent of the map unit)

Augsburg (3 percent of the map unit)

Clearwater, depressional (3 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 0.5-1.3-2.5\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | $\|0.5-1.3-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.0 | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.8-1.6-3.0| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 0.0-0.0-1.6\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-1.6| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 0.0-0.0-0.8 | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-0.8| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.0-0.0-1.3\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | $\|0.0-0.0-1.3\|$ | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 0.0-0.5-1.6\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.5-1.6| | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 0.5-1.3-2.5\| | none | --- | \|occasional | brief | 10.0-0.5-1.0 |
| | wet | $\|0.5-1.3-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.0\| | none | --- | \|occasional | brief | 0.0-0.5-1.0 |
| | wet | \|0.8-1.6-3.0| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 0.5-1.3-2.5\| | none | --- | \|occasional | brief | 10.0-0.5-1.0 |
| | wet | $\|0.5-1.3-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 0.3-0.8-2.0 | none | --- | \|occasional | brief | 0.0-0.5-1.0 |
| | wet | \|0.3-0.8-2.0| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.2-0.5-1.6\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.2-0.5-1.6| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 0.3-0.8-2.0\| | none | --- | \|occasional | long | \|0.0-0.5-1.0 |
| | wet | \|0.3-0.8-2.0| | 6.7-6.7-6.7\| | | | | | |

Espelie (3 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \text { L - R - H } \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 1.6-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.6-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 2.0-2.6-4.9\| | none | --- | none | --- | --- |
| | wet | \|2.0-2.6-4.9| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 1.5-2.3-4.9 | none | --- | none | --- | --- |
| | wet | \|1.5-2.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 0.0-0.5-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.0-0.5-2.5| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.5-0.8-3.3\| | none | --- | \|occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.5-0.8-3.3| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 0.8-1.6-4.1\| | none | --- | \|occasional | \|very brief | 0.0-0.3-0.5 |
| | wet | $\|0.8-1.6-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 1.6-3.0-4.9\| | none | --- | none | | -- |
| | wet | \|1.6-3.0-4.9| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 2.5-3.8-5.7\| | none | --- | none | --- | --- |
| | wet | \| 2.5-3.8-5.7| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 1.6-3.3-4.9\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | \|1.6-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 1.3-2.5-4.1\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | \|1.3-2.5-4.1| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | $\|0.8-1.6-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 1.3-2.0-3.9 | none | --- | none | --- | --- |
| | wet | \|1.3-2.0-3.9| | 6.7-6.7-6.7\| | | | | | |

I20A (continued)
Hilaire (2 percent of the map unit)

Reis (2 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I20A (continued)
Wheatville (2 percent of the map unit)

I21A Fram loam, 1 to 3 percent slopes
Fram (85 percent of the map unit)

Hedman (12 percent of the map unit)

| Month | \|Moisture | Top | Bottom | Flooding | Flooding | Ponding | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \text { L }-R-H \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| | status | depth | depth | frequency | duration | frequency | | |
| | | L - R H | L - R H | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| January | moist | 0.0-0.0-0.0 | 1.6-3.0-4.1\| | none | --- | none | --- | --- |
| | wet | $\|1.6-3.0-4.1\|$ | \|6.7-6.7-6.7| | | | | | |
| February | moist | 0.0-0.0-0.0 | \|2.5-3.3-4.9| | none | --- | none | --- | --- |
| | wet | $\|2.5-3.3-4.9\|$ | \| 6.7-6.7-6.7| | | | | | |
| March | moist | \|0.0-0.0-0.0 | \|1.3-2.1-3.3| | none | -- - | none | --- | --- |
| | wet | $\|1.3-2.1-3.3\|$ | \|6.7-6.7-6.7| | | | | | |
| April | moist | 0.0-0.0-0.0 | \|0.0-0.5-2.5| | none | -- - | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.0-0.5-2.5 | \|6.7-6.7-6.7| | | | | | |
| May | moist | 0.0-0.0-0.0 | \|0.3-0.8-3.3| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.3-0.8-3.3 | \|6.7-6.7-6.7| | | | | | |
| June | moist | 0.0-0.0-0.0 | 0.7-1.3-4.1\| | none | --- | occasional | very brief | 0.0-0.3-0.5 |
| | wet | $\|0.7-1.3-4.1\|$ | \|6.7-6.7-6.7| | | | | | |
| July | moist | $\|0.0-0.0-0.0\|$ | 1.6-3.0-4.9\| | none | --- | none | --- | -- - |
| | wet | $\|1.6-3.0-4.9\|$ | \|6.7-6.7-6.7| | | | | | |
| August | moist | 0.0-0.0-0.0 | $\|2.5-3.8-5.7\|$ | none | -- - | none | --- | --- |
| | wet | $\|2.5-3.8-5.7\|$ | \|6.7-6.7-6.7| | | | | | |
| September | moist | 0.0-0.0-0.0 | $\|2.0-3.3-4.9\|$ | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | $\|2.0-3.3-4.9\|$ | \|6.7-6.7-6.7| | | | | | |
| October | moist | $\|0.0-0.0-0.0\|$ | \|1.3-1.6-4.1| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | $\|1.3-1.6-4.1\|$ | \|6.7-6.7-6.7| | | | | | |
| November | moist | $\|0.0-0.0-0.0\|$ | \|0.8-1.3-3.3| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | $\|0.8-1.3-3.3\|$ | \|6.7-6.7-6.7| | | | | | |
| December | moist | $\|0.0-0.0-0.0\|$ | 1.3-2.1-3.8\| | none | -- - | none | --- | --- |
| | wet | \|1.3-2.1-3.8| | 6.7-6.7-6.7\| | | | | | |
| | | | | | | | | |

I21A (continued)
Strathcona (2 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0 | 1.6-3.0-4.1\| | none | --- | none | --- | --- |
| | wet | 1.6-3.0-4.1 | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0 | 2.5-3.3-4.9 | none | --- | none | --- | --- |
| | wet | 2.5-3.3-4.9\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0\| | 1.6-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | 1.6-2.1-4.1\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\|0 | 0.0-0.5-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.0-0.5-2.5\| | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0 | 0.5-0.8-3.3\| | none | --- | occasional | \|very brief | 0.0-0.3-0.5 |
| | wet | 0.5-0.8-3.3 | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0 | 0.8-1.6-4.1\| | none | --- | rare | very brief | 0.0-0.1-0.3 |
| | wet | 0.8-1.6-4.1 | 6.7-6.7-6.7\| | | | | | |
| July | moist | 0.0-0.0-0.0\| | 1.6-3.3-4.9 | none | --- | none | --- | --- |
| | wet | 1.6-3.3-4.9 | 6.7-6.7-6.7\| | | | | | |
| August | moist | 0.0-0.0-0.0 | 2.5-4.1-5.7\| | none | --- | none | --- | --- |
| | wet | 2.5-4.1-5.7\| | 6.7-6.7-6.7\| | | | | | |
| September | moist | 0.0-0.0-0.0 | 1.6-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | 1.6-3.3-4.9 | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0 | 1.3-2.5-4.1\| | none | --- | rare | very brief | 0.0-0.1-0.3 |
| | wet | 1.3-2.5-4.1\| | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0 | 0.8-1.6-3.3\| | none | --- | rare | very brief | 0.0-0.1-0.3 |
| | wet | 0.8-1.6-3.3 | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0 | 1.3-2.1-3.8\| | none | --- | none | --- | --- |
| | wet | 1.3-2.1-3.8 | 6.7-6.7-6.7\| | | | | | |

Foxhome (1 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0\| | 4.8-5.4-6.7\| | none | --- | none | --- | --- |
| | wet | 4.8-5.4-6.7\| | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 5.2-5.7-6.7\| | none | --- | none | --- | --- |
| | wet | 5.2-5.7-6.7\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0\| | 3.3-4.6-6.7\| | none | --- | none | --- | --- |
| | wet | 3.3-4.6-6.7\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 1.3-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | 1.3-2.5-4.9\| | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0\| | 2.0-3.0-5.6\| | none | --- | none | --- | --- |
| | wet | 2.0-3.0-5.6\| | 6.7-6.7-6.7\| | | | | | |
| June | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.5\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.5\| | 2.6-3.6-6.2\| | | | | | |
| | wet | 2.6-3.6-6.2\| | 6.7-6.7-6.7\| | | | | | |
| July | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.7\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.7\| | 3.9-5.4-6.7\| | | | | | |
| | wet | 3.9-5.4-6.7\| | 6.7-6.7-6.7\| | | | | | |
| August | dry | 0.0-0.0-0.0\| | 0.0-0.0-1.0\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-1.0\| | 5.4-6.7-6.7\| | | | | | |
| | wet | 5.4-6.7-6.7\| | 6.7-6.7-6.7\| | | | | | |
| September | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | 4.1-4.6-6.7\| | | | | | |
| | wet | 4.1-4.6-6.7\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 3.6-3.9-6.7\| | none | --- | none | --- | --- |
| | wet | 3.6-3.9-6.7\| | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0\| | 2.5-3.3-5.7\| | none | --- | none | --- | --- |
| | wet | 2.5-3.3-5.7\| | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 3.9-4.6-6.2\| | none | --- | none | --- | --- |
| | wet | 3.9-4.6-6.2\| | 6.7-6.7-6.7\| | | | | | |

I22A Glyndon loam, 0 to 2 percent slopes
Glyndon (75 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \text { L - R - H } \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0 | \|2.5-4.1-6.7| | none | --- | none | --- | --- |
| | wet | \|2.5-4.1-6.7 | \|6.7-6.7-6.7| | | | | | |
| February | moist | 0.0-0.0-0.0 | $\|3.3-4.9-6.7\|$ | none | --- | none | --- | --- |
| | wet | \|3.3-4.9-6.7 | \|6.7-6.7-6.7| | | | | | |
| March | moist | 10.0-0.0-0.0 | $\|2.5-3.9-5.7\|$ | none | --- | none | --- | --- |
| | wet | \|2.5-3.9-5.7 | $\|6.7-6.7-6.7\|$ | | | | | |
| April | moist | 0.0-0.0-0.0 | $\|0.7-1.0-3.3\|$ | none | --- | none | --- | --- |
| | wet | 0.7-1.0-3.3 | $\|6.7-6.7-6.7\|$ | | | | | |
| May | moist | 0.0-0.0-0.0 | $\|1.0-1.6-4.1\|$ | none | --- | none | --- | --- |
| | wet | \|1.0-1.6-4.1 | \|6.7-6.7-6.7| | | | | | |
| June | moist | 0.0-0.0-0.0 | $\|1.6-2.5-4.9\|$ | none | --- | none | --- | --- |
| | wet | \|1.6-2.5-4.9 | $\|6.7-6.7-6.7\|$ | | | | | |
| July | dry | 0.0-0.0-0.0 | $\|0.0-0.0-0.2\|$ | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.2| | $\|2.5-3.9-6.7\|$ | | | | | |
| | wet | $\|2.5-3.9-6.7\|$ | $\|6.7-6.7-6.7\|$ | | | | | |
| August | dry | $\|0.0-0.0-0.0\|$ | $\|0.0-0.0-0.3\|$ | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.3\|$ | $\|3.3-6.7-6.7\|$ | | | | | |
| | wet | $\|3.3-6.7-6.7\|$ | $\|6.7-6.7-6.7\|$ | | | | | |
| September | moist | \|0.0-0.0-0.0| | $\|2.5-4.6-6.2\|$ | none | --- | none | --- | --- |
| | wet | 2.5-4.6-6.2 | $\|6.7-6.7-6.7\|$ | | | | | |
| October | moist | \|0.0-0.0-0.0| | $\|2.0-4.1-5.7\|$ | none | --- | none | --- | --- |
| | wet | \| 2.0-4.1-5.7| | $\|6.7-6.7-6.7\|$ | | | | | |
| November | moist | \|0.0-0.0-0.0| | $\|1.6-3.0-4.1\|$ | none | --- | none | --- | --- |
| | wet | \|1.6-3.0-4.1| | $\|6.7-6.7-6.7\|$ | | | | | |
| December | moist | $\|0.0-0.0-0.0\|$ | $\|2.0-3.8-4.9\|$ | none | --- | none | --- | --- |
| | wet | $\|2.0-3.8-4.9\|$ | \|6.7-6.7-6.7| | | | | | |

Borup (10 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{gathered} \text { Ponding } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 1.6-3.0-4.1\| | none | --- | none | -- | --- |
| | wet | \|1.6-3.0-4.1| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 2.5-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | \|2.5-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 1.3-2.1-3.3\| | none | --- | none | --- | --- |
| | wet | \|1.3-2.1-3.3| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 0.0-0.5-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.0-0.5-2.5| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.3-0.8-3.3\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.3-0.8-3.3| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 0.7-1.3-4.1\| | none | --- | occasional | very brief | 0.0-0.3-0.5 |
| | wet | \|0.7-1.3-4.1| | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 1.6-3.0-4.9\| | none | --- | none | | --- |
| | wet | \|1.6-3.0-4.9| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 2.5-3.8-5.7\| | none | --- | none | | -- |
| | wet | \| 2.5-3.8-5.7| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 2.0-3.3-4.9\| | none | --- | rare | very brief | 0.0-0.1-0.3 |
| | wet | \|2.0-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 1.3-1.6-4.1\| | none | --- | rare | very brief | 0.0-0.1-0.3 |
| | wet | \|1.3-1.6-4.1| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.8-1.3-3.3\| | none | --- | \|occasional | very brief | 0.0-0.1-0.3 |
| | wet | \|0.8-1.3-3.3| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 1.3-2.1-3.8\| | none | --- | none | --- | --- |
| | wet | \|1.3-2.1-3.8| | 6.7-6.7-6.7\| | | | | | |

Augsburg (5 percent of the map unit)

| Month | $\begin{aligned} & \text { \| Moisture } \\ & \mid \text { status } \end{aligned}$ | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{gathered} \text { Ponding } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0\| | 1.6-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.6-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 2.0-2.6-4.9\| | none | --- | none | --- | --- |
| | wet | \|2.0-2.6-4.9| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 1.5-2.3-4.9 | none | --- | none | --- | --- |
| | wet | \|1.5-2.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 0.0-0.5-2.5\| | none | --- | \|occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.0-0.5-2.5| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.5-0.8-3.3\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.5-0.8-3.3| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 0.8-1.6-4.1\| | none | --- | occasional | very brief | 0.0-0.3-0.5 |
| | wet | $\|0.8-1.6-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 1.6-3.0-4.9\| | none | --- | none | --- | --- |
| | wet | 1.6-3.0-4.9\| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 2.5-3.8-5.7\| | none | --- | none | -- | --- |
| | wet | \|2.5-3.8-5.7| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 1.6-3.3-4.9\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | \|1.6-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 1.3-2.5-4.1\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | $\|1.3-2.5-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.8-1.6-3.3| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 1.3-2.0-3.9 | none | --- | none | --- | --- |
| | wet | \|1.3-2.0-3.9| | 6.7-6.7-6.7\| | | | | | |

Ulen (5 percent of the map unit)

| Month | \mid Moisture \mid | Top depth $\mathrm{L}-\mathrm{R}-\mathrm{H}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 2.6-3.3-5.9\| | none | --- | none | --- | --- |
| | wet | $\|2.6-3.3-5.9\|$ | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 3.3-4.1-6.7\| | none | --- | none | --- | --- |
| | wet | $\|3.3-4.1-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 2.6-3.3-5.7\| | none | --- | none | --- | --- |
| | wet | $\|2.6-3.3-5.7\|$ | 6.7-6.7-6.7\| | | | | | |
| April | moist | $\|0.0-0.0-0.0\|$ | 1.5-2.0-3.3\| | none | --- | none | --- | --- |
| | wet | $\|1.5-2.0-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| May | moist | $\|0.0-0.0-0.0\|$ | 2.0-2.5-4.1\| | none | --- | none | --- | --- |
| | wet | $\|2.0-2.5-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| June | dry | $\|0.0-0.0-0.0\|$ | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.3\|$ | 2.5-3.0-4.9\| | | | | | |
| | wet | $\|2.5-3.0-4.9\|$ | 6.7-6.7-6.7\| | | | | | |
| July | dry | $\|0.0-0.0-0.0\|$ | 0.0-0.0-0.5\| | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.5\|$ | 3.0-4.9-6.2\| | | | | | |
| | wet | $\|3.0-4.9-6.2\|$ | 6.7-6.7-6.7\| | | | | | |
| August | dry | $\|0.0-0.0-0.0\|$ | 0.0-0.0-0.7\| | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.7\|$ | 6.7-6.7-6.7\| | | | | | |
| September | \| dry | $\|0.0-0.0-0.0\|$ | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.3\|$ | 2.6-4.9-6.7\| | | | | | |
| | wet | \| 2.6-4.9-6.7| | 6.7-6.7-6.7\| | | | | | |
| October | moist | $\|0.0-0.0-0.0\|$ | 2.3-3.0-5.7\| | none | --- | none | --- | --- |
| | wet | $\|2.3-3.0-5.7\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 2.0-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | $\|2.0-2.5-4.9\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | $\|0.0-0.0-0.0\|$ | 2.3-3.0-5.2\| | none | --- | none | --- | --- |
| | wet | $\mid 2.3$-3.0-5.2\| | 6.7-6.7-6.7\| | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I22A (continued)
Wheatville (3 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ L-R-H \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ L-R-H \end{gathered}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | Ponding depth $L-R-H$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0 | 2.5-3.8-5.7 | none | --- | none | --- | --- |
| | wet | 2.5-3.8-5.7\| | 6.7-6.7-6.7 | | | | | |
| February | moist | 0.0-0.0-0.0\| | 3.3-4.6-6.7 | none | --- | none | -- - | --- |
| | wet | 3.3-4.6-6.7 | 6.7-6.7-6.7 | | | | | |
| March | moist | 0.0-0.0-0.0 | 2.5-3.0-5.7 | none | --- | none | --- | --- |
| | wet | 2.5-3.0-5.7 | 6.7-6.7-6.7 | | | | | |
| April | moist | 0.0-0.0-0.0 | 0.7-1.3-3.3 | none | --- | none | -- - | --- |
| | wet | 0.7-1.3-3.3 | 6.7-6.7-6.7 | | | | | |
| May | moist | 0.0-0.0-0.0 | 1.0-1.6-4.1 | none | --- | none | --- | --- |
| | wet | 1.0-1.6-4.1\| | 6.7-6.7-6.7 | | | | | |
| June | moist | 0.0-0.0-0.0 | 1.6-2.5-4.9 | none | --- | none | -- - | --- |
| | wet | 1.6-2.5-4.9 | 6.7-6.7-6.7 | | | | | |
| July | moist | 0.0-0.0-0.0 | 2.5-3.8-6.2 | none | --- | none | --- | --- |
| | wet | 2.5-3.8-6.2 | 6.7-6.7-6.7 | | | | | |
| August | dry | 0.0-0.0-0.0 | 0.0-0.0-0.3 | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3 | 3.8-6.7-6.7 | | | | | |
| | wet | 3.8-6.7-6.7 | 6.7-6.7-6.7 | | | | | |
| September | moist | 0.0-0.0-0.0 | 2.5-3.8-6.2 | none | --- | none | --- | --- |
| | wet | 2.5-3.8-6.2 | 6.7-6.7-6.7 | | | | | |
| October | moist | 0.0-0.0-0.0 | 2.0-3.0-5.6 | none | --- | none | --- | --- |
| | wet | 2.0-3.0-5.6 | 6.7-6.7-6.7 | | | | | |
| November | moist | 0.0-0.0-0.0 | 1.6-2.5-4.9 | none | --- | none | --- | -- - |
| | wet | 1.6-2.5-4.9 | 6.7-6.7-6.7 | | | | | |
| December | moist | 0.0-0.0-0.0 | 2.0-3.3-5.4 | none | --- | none | --- | --- |
| | wet | 2.0-3.3-5.4 | 6.7-6.7-6.7 | | | | | |

Flaming (2 percent of the map unit)

I23A Glyndon very fine sandy loam, 0 to 2 percent slopes
Glyndon (75 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0\| | 2.5-4.1-6.7\| | none | --- | none | --- | --- |
| | wet | \|2.5-4.1-6.7| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 3.3-4.9-6.7\| | none | --- | none | --- | --- |
| | wet | \|3.3-4.9-6.7| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 2.5-3.9-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.5-3.9-5.7| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 0.7-1.0-3.3\| | none | --- | none | --- | --- |
| | wet | \|0.7-1.0-3.3| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 1.0-1.6-4.1\| | none | --- | none | --- | --- |
| | wet | 1.0-1.6-4.1\| | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0\| | 1.6-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | 1.6-2.5-4.9\| | 6.7-6.7-6.7\| | | | | | |
| July | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.2\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.2 \mid | 2.5-3.9-6.7\| | | | | | |
| | wet | \|2.5-3.9-6.7| | 6.7-6.7-6.7\| | | | | | |
| August | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | 3.3-6.7-6.7\| | | | | | |
| | wet | \|3.3-6.7-6.7| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 2.5-4.6-6.2\| | none | --- | none | --- | --- |
| | wet | \|2.5-4.6-6.2| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 2.0-4.1-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.0-4.1-5.7| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 1.6-3.0-4.1\| | none | --- | none | --- | --- |
| | wet | 1.6-3.0-4.1\| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 2.0-3.8-4.9\| | none | --- | none | --- | --- |
| | wet | \|2.0-3.8-4.9| | 6.7-6.7-6.7\| | | | | | |

Borup (10 percent of the map unit)

| Month | Moisture status | Top depth $\mathrm{L}-\mathrm{R}-\mathrm{H}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \text { L - R - H } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0\| | 1.6-3.0-4.1\| | none | --- | none | --- | --- |
| | wet | 1.6-3.0-4.1\| | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 2.5-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | 2.5-3.3-4.9\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0\| | 1.3-2.1-3.3\| | none | --- | none | --- | --- |
| | wet | 1.3-2.1-3.3\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 0.0-0.5-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.0-0.5-2.5\| | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0\| | 0.3-0.8-3.3\| | none | --- | \|occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.3-0.8-3.3\| | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0\| | 0.7-1.3-4.1\| | none | --- | \|occasional | \|very brief | 0.0-0.3-0.5 |
| | wet | 0.7-1.3-4.1\| | 6.7-6.7-6.7\| | | | | | |
| July | moist | 0.0-0.0-0.0\| | 1.6-3.0-4.9\| | none | --- | none | --- | --- |
| | wet | 1.6-3.0-4.9\| | 6.7-6.7-6.7\| | | | | | |
| August | moist | 0.0-0.0-0.0\| | 2.5-3.8-5.7\| | none | --- | none | --- | -- |
| | wet | 2.5-3.8-5.7\| | 6.7-6.7-6.7\| | | | | | |
| September | moist | 0.0-0.0-0.0\| | 2.0-3.3-4.9\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | 2.0-3.3-4.9\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 1.3-1.6-4.1\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | 1.3-1.6-4.1\| | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0\| | 0.8-1.3-3.3\| | none | --- | \|occasional | \|very brief | 0.0-0.1-0.3 |
| | wet | 0.8-1.3-3.3\| | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0 | 1.3-2.1-3.8\| | none | --- | none | --- | --- |
| | wet | 1.3-2.1-3.8\| | 6.7-6.7-6.7\| | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I23A (continued)
Augsburg (5 percent of the map unit)

Ulen (5 percent of the map unit)

I23A (continued)
Wheatville (3 percent of the map unit)

| Month | $\begin{array}{\|c\|} \mid \text { Moisture } \\ \mid \text { status } \end{array}$ | | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{gathered} \text { Ponding } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0 | 2.5-3.8-5.7\| | none | --- | none | --- | --- |
| | wet | 2.5-3.8-5.7 | \|6.7-6.7-6.7| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 3.3-4.6-6.7\| | none | --- | none | --- | --- |
| | wet | 3.3-4.6-6.7 | \|6.7-6.7-6.7| | | | | | |
| March | moist | 0.0-0.0-0.0\| | 2.5-3.0-5.7\| | none | --- | none | --- | --- |
| | wet | 2.5-3.0-5.7\| | \|6.7-6.7-6.7| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 0.7-1.3-3.3\| | none | --- | none | --- | --- |
| | wet | 0.7-1.3-3.3\| | \|6.7-6.7-6.7| | | | | | |
| May | moist | 0.0-0.0-0.0\| | 1.0-1.6-4.1\| | none | --- | none | --- | --- |
| | wet | 1.0-1.6-4.1\| | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0\| | 1.6-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | 1.6-2.5-4.9 | \|6.7-6.7-6.7| | | | | | |
| July | moist | 0.0-0.0-0.0\| | 2.5-3.8-6.2\| | none | --- | none | --- | --- |
| | wet | 2.5-3.8-6.2 | \|6.7-6.7-6.7| | | | | | |
| August | dry | 0.0-0.0-0.0\| | \|0.0-0.0-0.3| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | \| 3.8-6.7-6.7| | | | | | |
| | wet | 3.8-6.7-6.7\| | \|6.7-6.7-6.7| | | | | | |
| September | moist | 0.0-0.0-0.0\| | $\|2.5-3.8-6.2\|$ | none | --- | none | --- | --- |
| | wet | 2.5-3.8-6.2\| | \|6.7-6.7-6.7| | | | | | |
| October | moist | 0.0-0.0-0.0\| | \|2.0-3.0-5.6| | none | --- | none | --- | --- |
| | wet | 2.0-3.0-5.6\| | \|6.7-6.7-6.7| | | | | | |
| November | moist | 0.0-0.0-0.0\| | 1.6-2.5-4.9\| | none | -- - | none | -- - | --- |
| | wet | 1.6-2.5-4.9 | \|6.7-6.7-6.7| | | | | | |
| December | moist | 0.0-0.0-0.0\| | \|2.0-3.3-5.4| | none | --- | none | --- | --- |
| | wet | 2.0-3.3-5.4\| | 6.7-6.7-6.7\| | | | | | |

Flaming (2 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued

I24A Grimstad fine sandy loam, 0 to 3 percent slopes
Grimstad (70 percent of the map unit)

Strathcona (12 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I24A (continued)
Foldahl (5 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 4.6-5.4-6.7\| | none | --- | none | --- | --- |
| | wet | \|4.6-5.4-6.7| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 4.9-5.7-6.7\| | none | --- | none | --- | --- |
| | wet | \|4.9-5.7-6.7| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 3.3-4.6-6.7\| | none | --- | none | --- | --- |
| | wet | \| 3.3-4.6-6.7| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 1.3-2.5-4.6\| | none | --- | none | --- | --- |
| | wet | \|1.3-2.5-4.6| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 2.0-3.1-5.2\| | none | --- | none | --- | --- |
| | wet | \|2.0-3.1-5.2| | 6.7-6.7-6.7\| | | | | | |
| June | dry | \|0.0-0.0-0.0|0 | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | 2.6-3.8-6.2\| | | | | | |
| | wet | \|2.6-3.8-6.2| | 6.7-6.7-6.7\| | | | | | |
| July | dry | \|0.0-0.0-0.0|0 | 0.0-0.0-0.5\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.5| | 3.8-4.9-6.7\| | | | | | |
| | wet | \| 3.8-4.9-6.7| | 6.7-6.7-6.7\| | | | | | |
| August | dry | \|0.0-0.0-0.0|0 | 0.0-0.0-0.7\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.7| | 5.2-6.7-6.7\| | | | | | |
| | wet | \| 5.2-6.7-6.7| | 6.7-6.7-6.7\| | | | | | |
| September\| | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | 3.8-4.1-6.7\| | | | | | |
| | wet | $\|3.8-4.1-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 3.3-3.8-6.7\| | none | --- | none | --- | --- |
| | wet | \| 3.3-3.8-6.7| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 2.5-3.3-5.6\| | none | --- | none | --- | --- |
| | wet | \|2.5-3.3-5.6| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 3.8-4.1-6.2\| | none | --- | none | --- | --- |
| | wet | \|3.8-4.1-6.2| | 6.7-6.7-6.7\| | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I24A (continued)
Hamerly (5 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I24A (continued)
Foxhome (2 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 4.8-5.4-6.7\| | none | --- | none | --- | --- |
| | wet | \|4.8-5.4-6.7| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 5.2-5.7-6.7\| | none | --- | none | --- | --- |
| | wet | \| 5.2-5.7-6.7| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 3.3-4.6-6.7\| | none | --- | none | --- | --- |
| | wet | \| 3.3-4.6-6.7| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 1.3-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | \|1.3-2.5-4.9| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 2.0-3.0-5.6\| | none | --- | none | --- | --- |
| | wet | \|2.0-3.0-5.6| | 6.7-6.7-6.7\| | | | | | |
| June | dry | \| 0.0-0.0-0.0|0 | 0.0-0.0-0.5\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.5| | 2.6-3.6-6.2\| | | | | | |
| | wet | \|2.6-3.6-6.2| | 6.7-6.7-6.7\| | | | | | |
| July | dry | \|0.0-0.0-0.0|0 | 0.0-0.0-0.7\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.7| | 3.9-5.4-6.7\| | | | | | |
| | wet | \| 3.9-5.4-6.7| | 6.7-6.7-6.7\| | | | | | |
| August | dry | \|0.0-0.0-0.0|0 | 0.0-0.0-1.0\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-1.0| | 5.4-6.7-6.7\| | | | | | |
| | wet | \| 5.4-6.7-6.7| | 6.7-6.7-6.7\| | | | | | |
| September\| | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | 4.1-4.6-6.7\| | | | | | |
| | wet | \|4.1-4.6-6.7| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 3.6-3.9-6.7\| | none | --- | none | --- | --- |
| | wet | \| 3.6-3.9-6.7| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 2.5-3.3-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.5-3.3-5.7| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 3.9-4.6-6.2\| | none | --- | none | --- | --- |
| | wet | $\|3.9-4.6-6.2\|$ | 6.7-6.7-6.7\| | | | | | |

I24A (continued)
Karlsruhe (2 percent of the map unit)

Mavie (2 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I24A (continued)
Ulen (2 percent of the map unit)

| Month | \|Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 2.6-3.3-5.9\| | none | --- | none | --- | --- |
| | wet | $\|2.6-3.3-5.9\| 6$ | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0|3 | 3.3-4.1-6.7\| | none | --- | none | --- | --- |
| | wet | $\|3.3-4.1-6.7\| 6$ | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0|2 | 2.6-3.3-5.7\| | none | --- | none | --- | --- |
| | wet | $\mid 2.6$-3.3-5.7\|6 | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0|1 | 1.5-2.0-3.3\| | none | --- | none | --- | --- |
| | wet | $\|1.5-2.0-3.3\| 6$ | 6.7-6.7-6.7\| | | | | | |
| May | moist | $\|0.0-0.0-0.0\| 2$ | 2.0-2.5-4.1\| | none | --- | none | --- | --- |
| | wet | $\|2.0-2.5-4.1\| 6$ | 6.7-6.7-6.7\| | | | | | |
| June | dry | $\|0.0-0.0-0.0\| 0$ | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.3\| 2$ | 2.5-3.0-4.9\| | | | | | |
| | wet | $\|2.5-3.0-4.9\| 6$ | 6.7-6.7-6.7\| | | | | | |
| July | dry | \|0.0-0.0-0.0|0. | 0.0-0.0-0.5\| | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.5\| 3$ | 3.0-4.9-6.2\| | | | | | |
| | wet | $\|3.0-4.9-6.2\| 6$ | 6.7-6.7-6.7\| | | | | | |
| August | dry | \|0.0-0.0-0.0|0. | 0.0-0.0-0.7\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.7|6. | 6.7-6.7-6.7\| | | | | | |
| September\| | \| dry | \|0.0-0.0-0.0|0. | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.3\| 2$ | 2.6-4.9-6.7\| | | | | | |
| | wet | $\|2.6-4.9-6.7\| 6$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | $\|0.0-0.0-0.0\| 2$ | 2.3-3.0-5.7\| | none | --- | none | --- | --- |
| | wet | $\|2.3-3.0-5.7\| 6$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0|2 | 2.0-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | $\|2.0-2.5-4.9\| 6$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0|2 | 2.3-3.0-5.2\| | none | --- | none | --- | --- |
| | wet | $\|2.3-3.0-5.2\| 6$ | 6.7-6.7-6.7\| | | | | | |

125A Hamar loamy fine sand, 0 to 2 percent slopes
Hamar (75 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \text { L - R - H } \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0 | $\|2.0-2.5-4.9\|$ | none | --- | none | --- | --- |
| | wet | 2.0-2.5-4.9 | \| 6.7-6.7-6.7| | | | | | |
| February | moist | 0.0-0.0-0.0\| | $\|2.5-3.3-5.7\|$ | none | --- | none | --- | --- |
| | wet | 2.5-3.3-5.7\| | \|6.7-6.7-6.7| | | | | | |
| March | moist | 0.0-0.0-0.0\| | $\|1.6-2.1-4.1\|$ | none | --- | none | --- | --- |
| | wet | 1.6-2.1-4.1\| | \|6.7-6.7-6.7| | | | | | |
| April | moist | 0.0-0.0-0.0\| | $\|0.0-0.5-2.5\|$ | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.0-0.5-2.5\| | $\|6.7-6.7-6.7\|$ | | | | | |
| May | moist | 0.0-0.0-0.0 | $\|0.5-1.3-3.3\|$ | none | --- | occasional | very brief | 0.0-0.3-0.5 |
| | wet | 0.5-1.3-3.3 | $\|6.7-6.7-6.7\|$ | | | | | |
| June | moist | 0.0-0.0-0.0\| | $\|0.8-1.6-4.1\|$ | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | 0.8-1.6-4.1\| | \|6.7-6.7-6.7| | | | | | |
| July | moist | 0.0-0.0-0.0\| | $\|1.6-3.3-4.9\|$ | none | --- | none | --- | --- |
| | wet | 1.6-3.3-4.9\| | \|6.7-6.7-6.7| | | | | | |
| August | moist | 0.0-0.0-0.0\| | $\|2.5-4.9-5.7\|$ | none | --- | none | --- | --- |
| | wet | 2.5-4.9-5.7\| | \|6.7-6.7-6.7| | | | | | |
| September | moist | 0.0-0.0-0.0\| | $\|1.3-3.0-4.9\|$ | none | --- | none | --- | --- |
| | wet | 1.3-3.0-4.9\| | \|6.7-6.7-6.7| | | | | | |
| October | moist | 0.0-0.0-0.0\| | $\|1.0-2.1-4.1\|$ | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | 1.0-2.1-4.1\| | $\|6.7-6.7-6.7\|$ | | | | | |
| November | moist | 0.0-0.0-0.0\| | $\|0.8-1.6-3.3\|$ | none | --- | none | --- | --- |
| | wet | 0.8-1.6-3.3\| | $\|6.7-6.7-6.7\|$ | | | | | |
| December | moist | 0.0-0.0-0.0\| | $\|1.3-2.1-4.1\|$ | none | --- | none | --- | --- |
| | wet | 1.3-2.1-4.1\| | \|6.7-6.7-6.7| | | | | | |

Garborg (10 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ L-R-H \end{gathered}$ | Flooding frequency | Flooding duration | Ponding
 frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0 | 2.6-3.3-5.9 | none | --- | none | --- | --- |
| | wet | 2.6-3.3-5.9 | 6.7-6.7-6.7 | | | | | |
| February | moist | 0.0-0.0-0.0 | 3.3-4.1-6.7 | none | --- | none | --- | --- |
| | wet | 3.3-4.1-6.7 | 6.7-6.7-6.7 | | | | | |
| March | moist | 0.0-0.0-0.0 | 2.6-3.3-5.7 | none | --- | none | --- | --- |
| | wet | 2.6-3.3-5.7 | 6.7-6.7-6.7 | | | | | |
| April | moist | 0.0-0.0-0.0 | 1.1-1.5-3.3 | none | --- | none | --- | --- |
| | wet | 1.1-1.5-3.3 | 6.7-6.7-6.7 | | | | | |
| May | moist | 0.0-0.0-0.0 | 1.5-1.8-4.1 | none | --- | none | -- - | --- |
| | wet | 1.5-1.8-4.1\| | 6.7-6.7-6.7 | | | | | |
| June | dry | 0.0-0.0-0.0 | 0.0-0.0-0.3 | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3 | 2.0-2.5-4.9 | | | | | |
| | wet | 2.0-2.5-4.9 | 6.7-6.7-6.7 | | | | | |
| July | dry | 0.0-0.0-0.0 | 0.0-0.0-0.5 | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.5\| | 2.6-4.9-6.2 | | | | | |
| | wet | 2.6-4.9-6.2 | 6.7-6.7-6.7 | | | | | |
| August | dry | 0.0-0.0-0.0 | 0.0-0.0-0.7 | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.7 | 6.7-6.7-6.7 | | | | | |
| September | dry | 0.0-0.0-0.0 | 0.0-0.0-0.3 | none | --- | none | -- - | --- |
| | moist | 0.0-0.0-0.3 | 2.6-4.9-6.7 | | | | | |
| | wet | 2.6-4.9-6.7 | 6.7-6.7-6.7 | | | | | |
| October | moist | 0.0-0.0-0.0 | 2.3-3.0-5.7 | none | --- | none | -- - | --- |
| | wet | 2.3-3.0-5.7 | 6.7-6.7-6.7 | | | | | |
| November | moist | 0.0-0.0-0.0 | 2.0-2.5-4.9 | none | --- | none | --- | --- |
| | wet | 2.0-2.5-4.9 | 6.7-6.7-6.7 | | | | | |
| December | moist | 0.0-0.0-0.0 | 2.3-3.0-5.2 | none | --- | none | --- | --- |
| | wet | 2.3-3.0-5.2\| | 6.7-6.7-6.7 | | | | | |

Rosewood (7 percent of the map unit)

| Month | \|Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0 | 2.0-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | \|2.0-2.5-4.9| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 2.5-3.3-5.7\| | none | --- | none | --- | --- |
| | wet | \| 2.5-3.3-5.7| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0 | 1.6-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.6-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 0.0-0.5-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.0-0.5-2.5| | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0 | 0.5-1.3-3.3\| | none | --- | occasional | very brief | 0.0-0.3-0.5 |
| | wet | \|0.5-1.3-3.3| | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0 | 0.8-1.6-4.1\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | \|0.8-1.6-4.1| | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 1.6-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | \|1.6-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 2.5-4.9-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.5-4.9-5.7| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 1.3-3.0-4.9 | none | --- | none | --- | --- |
| | wet | \|1.3-3.0-4.9| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 1.0-2.1-4.1\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | \|1.0-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | none | --- | --- |
| | wet | \|0.8-1.6-3.3| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 1.3-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.3-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |

Venlo (3 percent of the map unit)

| Month | $\begin{aligned} & \mid \text { Moisture } \mid \\ & \mid \text { status } \mid \end{aligned}$ | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0 | 0.8-1.6-3.0\| | none | --- | \|occasional | long | 10.0-0.5-1.0 |
| | wet | 0.8-1.6-3.0 | 6.7-6.7-6.7\| | | | | | |
| February | moist | 10.0-0.0-0.0 | 2.0-3.0-3.6\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | 2.0-3.0-3.6 | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0 | 0.0-0.5-2.0\| | none | --- | \|occasional | long | 10.0-0.5-1.0 |
| | wet | 0.0-0.5-2.0 | 6.7-6.7-6.7\| | | | | | |
| April | moist | 10.0-0.0-0.0 | 0.0-0.0-1.0\| | none | --- | frequent | long | 10.0-0.5-1.0 |
| | wet | 0.0-0.0-1.0 | 6.7-6.7-6.7\| | | | | | |
| May | moist | 10.0-0.0-0.0 | 0.0-0.5-2.0\| | none | --- | frequent | long | 10.0-0.5-1.0 |
| | wet | 0.0-0.5-2.0 | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0 | 0.3-1.3-2.6\| | none | --- | \|occasional | brief | \|0.0-0.5-1.0 |
| | wet | \|0.3-1.3-2.6| | 6.7-6.7-6.7\| | | | | | |
| July | moist | 0.0-0.0-0.0 | 1.0-2.1-3.3\| | none | --- | rare | \|very brief | 10.0-0.3-0.5 |
| | wet | 1.0-2.1-3.3 | 6.7-6.7-6.7\| | | | | | |
| August | moist | 10.0-0.0-0.0 | 2.0-3.0-3.8\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | $\|2.0-3.0-3.8\|$ | 6.7-6.7-6.7\| | | | | | |
| September | moist | 0.0-0.0-0.0 | 1.0-2.1-3.3\| | none | --- | rare | brief | 10.0-0.3-0.5 |
| | wet | 1.0-2.1-3.3 | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 0.7-1.6-2.6\| | none | --- | \|occasional | brief | 10.0-0.3-0.5 |
| | wet | $\|0.7-1.6-2.6\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0 | 0.3-1.3-2.0\| | none | --- | \|occasional | long | 10.0-0.5-1.0 |
| | wet | 0.3-1.3-2.0 | 6.7-6.7-6.7\| | | | | | |
| December | moist | $\|0.0-0.0-0.0\|$ | 0.7-1.6-2.5\| | none | --- | \|occasional | long | 10.0-0.5-1.0 |
| | wet | \|0.7-1.6-2.5| | 6.7-6.7-6.7\| | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I25A (continued)
Flaming (2 percent of the map unit)

| Month | \|Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 4.6-5.4-6.7\| | none | --- | none | --- | --- |
| | wet | \|4.6-5.4-6.7| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 5.2-6.2-6.7\| | none | --- | none | --- | --- |
| | wet | \| 5.2-6.2-6.7| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 3.3-4.1-6.7\| | none | --- | none | --- | --- |
| | wet | $\|3.3-4.1-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 2.1-2.5-6.7\| | none | --- | none | --- | --- |
| | wet | \|2.1-2.5-6.7| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 2.5-2.8-5.7\| | none | --- | none | --- | --- |
| | wet | \| 2.5-2.8-5.7| | 6.7-6.7-6.7\| | | | | | |
| June | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.3\|$ | 2.6-3.3-6.7\| | | | | | |
| | wet | \|2.6-3.3-6.7| | 6.7-6.7-6.7\| | | | | | |
| July | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.7\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.7| | 6.7-6.7-6.7\| | | | | | |
| August | dry | \|0.0-0.0-0.0| | 0.0-0.0-1.0\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-1.0| | 6.7-6.7-6.7\| | | | | | |
| September | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | 4.1-4.9-6.7\| | | | | | |
| | wet | \|4.1-4.9-6.7| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 3.3-4.6-6.7\| | none | --- | none | --- | --- |
| | wet | \|3.3-4.6-6.7| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 2.5-4.1-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.5-4.1-5.7| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 4.1-4.9-6.7\| | none | --- | none | --- | --- |
| | wet | \|4.1-4.9-6.7| | 6.7-6.7-6.7\| | | | | | |

Hangaard (2 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I25A (continued)
Kratka (1 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued

I26A Hamerly loam, 0 to 2 percent slopes
Hamerly (75 percent of the map unit)

Vallers (12 percent of the map unit)

Foxhome (3 percent of the map unit)

Grimstad (3 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0 | 2.5-3.8-5.7\| | none | --- | none | --- | --- |
| | wet | 2.5-3.8-5.7 | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0 | 3.3-4.6-6.7\| | none | --- | none | --- | --- |
| | wet | 3.3-4.6-6.7 | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0 | 2.5-3.0-5.7\| | none | --- | none | --- | --- |
| | wet | 2.5-3.0-5.7 | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 0.8-1.5-3.3\| | none | --- | none | --- | --- |
| | wet | 0.8-1.5-3.3 | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0\| | 1.1-1.8-4.1\| | none | --- | none | --- | --- |
| | wet | 1.1-1.8-4.1\| | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0\| | 1.6-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | 1.6-3.3-4.9\| | 6.7-6.7-6.7\| | | | | | |
| July | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | 2.5-5.7-6.2\| | | | | | |
| | wet | 2.5-5.7-6.2\| | 6.7-6.7-6.7\| | | | | | |
| August | dry | 0.0-0.0-0.0 | 0.0-0.0-0.5\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.5\| | 6.7-6.7-6.7\| | | | | | |
| September | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | 2.5-3.8-6.7\| | | | | | |
| | wet | 2.5-3.8-6.7\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 2.0-3.0-5.6\| | none | --- | none | --- | --- |
| | wet | 2.0-3.0-5.6\| | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0\| | 1.6-2.5-4.9 | none | --- | none | --- | --- |
| | wet | 1.6-2.5-4.9 | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 2.0-3.3-5.4\| | none | --- | none | --- | --- |
| | wet | 2.0-3.3-5.4 | 6.7-6.7-6.7\| | | | | | |

Hamerly, very cobbly (3 percent of the map unit)

Strathcona (3 percent of the map unit)

Roliss, depressional (1 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued

127A Hamre muck, 0 to 1 percent slopes
Hamre (80 percent of the map unit)

Northwood (5 percent of the map unit)

| Month | \|Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.8-1.6-3.3| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 1.6-2.5-4.1\| | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | \|1.6-2.5-4.1| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 0.0-0.0-2.5\| | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-2.5| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 0.0-0.0-0.8\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-0.8| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.0-0.0-1.3\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | $\|0.0-0.0-1.3\|$ | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 0.0-0.5-1.6\| | none | --- | frequent | brief | 0.0-0.5-1.0 |
| | wet | \|0.0-0.5-1.6| | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 0.2-0.8-2.5\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | \|0.2-0.8-2.5| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | $\|0.8-1.6-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 0.5-1.3-3.0\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | $\|0.5-1.3-3.0\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 0.3-0.8-2.5\| | none | --- | occasional | brief | \|0.0-0.5-1.0 |
| | wet | \|0.3-0.8-2.5| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.0-0.3-1.6\| | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.3-1.6| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 0.5-1.3-2.5\| | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.5-1.3-2.5| | 6.7-6.7-6.7\| | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I27A (continued)
Roliss (5 percent of the map unit)

Smiley (5 percent of the map unit)

I27A (continued)
Cathro (3 percent of the map unit)

Kratka (2 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued

I28A Hangaard sandy loam, 0 to 2 percent slopes
Hangaard (75 percent of the map unit)

| Month | $\begin{array}{\|l\|} \mid \text { Moisture\| } \\ \mid \text { status } \end{array}$ | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \text { L - R - H } \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 2.0-3.0-4.9 | none | --- | none | --- | --- |
| | wet | $\|2.0-3.0-4.9\|$ | 6.7-6.7-6.7\| | | | | | |
| February | moist | $\|0.0-0.0-0.0\|$ | 2.5-3.3-5.7\| | none | --- | none | --- | --- |
| | wet | \| 2.5-3.3-5.7| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 1.6-2.5-4.1\| | none | --- | none | --- | --- |
| | wet | $\|1.6-2.5-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 0.0-0.3-2.5\| | none | --- | occasional | very brief | 0.0-0.3-0.5 |
| | wet | $\|0.0-0.3-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.5-0.8-3.3\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | $\|0.5-0.8-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 1.0-1.6-2.5\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | $\|1.0-1.6-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 1.6-2.5-4.9 | none | --- | none | --- | --- |
| | wet | \|1.6-2.5-4.9| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 2.5-3.3-5.7\| | none | --- | none | --- | --- |
| | wet | \| 2.5-3.3-5.7| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 1.3-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | \|1.3-2.5-4.9| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 1.0-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | $\|1.0-2.1-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | none | --- | --- |
| | wet | \|0.8-1.6-3.3| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 1.6-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.6-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |

Hamar (7 percent of the map unit)

| Month | \|Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \text { L }-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \text { L - R - H } \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0 | 2.0-2.5-4.9 | none | --- | none | --- | --- |
| | wet | \|2.0-2.5-4.9| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 2.5-3.3-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.5-3.3-5.7| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0 | 1.6-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.6-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 0.0-0.5-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.0-0.5-2.5| | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0 | 0.5-1.3-3.3\| | none | --- | occasional | very brief | 0.0-0.3-0.5 |
| | wet | \|0.5-1.3-3.3| | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0 | 0.8-1.6-4.1\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | \|0.8-1.6-4.1| | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 1.6-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | \|1.6-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 2.5-4.9-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.5-4.9-5.7| | 6.7-6.7-6.7\| | | | | | |
| September\| | moist | \|0.0-0.0-0.0| | 1.3-3.0-4.9\| | none | --- | none | --- | --- |
| | wet | \|1.3-3.0-4.9| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 1.0-2.1-4.1\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | \|1.0-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | none | --- | --- |
| | wet | \|0.8-1.6-3.3| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 1.3-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.3-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |

I28A (continued)
Syrene (7 percent of the map unit)

Karlsruhe (3 percent of the map unit)

| Month | Moisture status | Top depth
 L - R - H | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ L-R-H \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 10.0-0.0-0.0 | 2.6-3.3-6.2\| | none | -- - | none | --- | --- |
| | wet | $\|2.6-3.3-6.2\|$ | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 3.3-4.1-6.7\| | none | --- | none | --- | --- |
| | wet | $\|3.3-4.1-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 2.6-3.3-5.9\| | none | -- - | none | --- | --- |
| | wet | $\mid 2.6$-3.3-5.9\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | $\|0.0-0.0-0.0\|$ | 1.5-2.0-3.3\| | none | -- - | none | --- | -- - |
| | wet | $\|1.5-2.0-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| May | moist | $\|0.0-0.0-0.0\|$ | 1.8-2.5-4.1\| | none | -- - | none | --- | --- |
| | wet | $\|1.8-2.5-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| June | moist | $\|0.0-0.0-0.0\|$ | 2.5-3.0-4.9\| | none | --- | none | --- | --- |
| | wet | $\|2.5-3.0-4.9\|$ | 6.7-6.7-6.7\| | | | | | |
| July | dry | $\|0.0-0.0-0.0\|$ | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.3\|$ | 3.0-3.6-6.7\| | | | | | |
| | wet | $\|3.0-3.6-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| August | dry | $\|0.0-0.0-0.0\|$ | 0.0-0.0-0.5\| | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.5\|$ | 4.1-6.7-6.7\| | | | | | |
| | wet | $\|4.1-6.7-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| September | dry | $\|0.0-0.0-0.0\|$ | 0.0-0.0-0.3\| | none | -- - | none | -- - | --- |
| | moist | $\|0.0-0.0-0.3\|$ | 2.6-4.1-6.7\| | | | | | |
| | wet | $\|2.6-4.1-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | $\|0.0-0.0-0.0\|$ | 3.0-4.3-5.7\| | none | --- | none | --- | --- |
| | wet | $\|3.0-4.3-5.7\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | $\|0.0-0.0-0.0\|$ | 2.0-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | $\|2.0-2.5-4.9\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | $\|0.0-0.0-0.0\|$ | 2.3-3.0-5.6\| | none | -- - | none | --- | --- |
| | wet | $\|2.3-3.0-5.6\|$ | 6.7-6.7-6.7\| | | | | | |

Rosewood (3 percent of the map unit)

| Month | $\begin{aligned} & \mid \text { Moisture } \mid \\ & \mid \text { status } \mid \end{aligned}$ | $\begin{gathered} \text { Top } \\ \text { depth } \\ \text { L }-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 2.0-2.5-4.9 | none | --- | none | --- | --- |
| | wet | \|2.0-2.5-4.9| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 2.5-3.3-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.5-3.3-5.7| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 1.6-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.6-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 0.0-0.5-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.0-0.5-2.5| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.5-1.3-3.3\| | none | --- | occasional | \|very brief | 0.0-0.3-0.5 |
| | wet | \|0.5-1.3-3.3| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 0.8-1.6-4.1\| | none | --- | rare | \mid very brief | 10.0-0.3-0.5 |
| | wet | \|0.8-1.6-4.1| | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 1.6-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | \|1.6-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 2.5-4.9-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.5-4.9-5.7| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 1.3-3.0-4.9\| | none | --- | none | --- | --- |
| | wet | \|1.3-3.0-4.9| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 1.0-2.1-4.1\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | \|1.0-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | none | --- | --- |
| | wet | \|0.8-1.6-3.3| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 1.3-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.3-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |

Strandquist (3 percent of the map unit)

I28A (continued)
Deerwood (2 percent of the map unit)

| Month | $\begin{array}{\|c} \mid \text { Moisture } \mid \\ \text { status } \end{array}$ | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.8-1.6-3.3| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 1.6-2.5-4.1\| | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | \|1.6-2.5-4.1| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 0.0-0.0-2.5\| | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-2.5| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 0.0-0.0-0.8\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-0.8| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.0-0.0-1.3\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-1.3| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 0.0-0.5-1.6\| | none | --- | frequent | brief | 10.0-0.5-1.0 |
| | wet | \|0.0-0.5-1.6| | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 0.2-0.8-2.5\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | \|0.2-0.8-2.5| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | \|0.8-1.6-3.3| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 0.5-1.3-3.0\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.5-1.3-3.0| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 0.3-0.8-2.5\| | none | --- | occasional | brief | 0.0-0.5-1.0 |
| | wet | \|0.3-0.8-2.5| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.0-0.3-1.6\| | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.3-1.6| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 0.5-1.3-2.5\| | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.5-1.3-2.5| | 6.7-6.7-6.7\| | | | | | |

129A Hattie clay, 0 to 3 percent slopes
Hattie (75 percent of the map unit)

Clearwater (12 percent of the map unit)

Reis (6 percent of the map unit)

I29A (continued)

Hattie, very cobbly (5 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ L-R-H \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | Ponding depth $L-R-H$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0 | 4.1-5.7-6.7 | none | --- | none | --- | --- |
| | wet | 4.1-5.7-6.7 | 6.7-6.7-6.7 | | | | | |
| February | moist | 0.0-0.0-0.0 | 4.9-6.7-6.7 | none | --- | none | --- | --- |
| | wet | 4.9-6.7-6.7\| | 6.7-6.7-6.7 | | | | | |
| March | moist | 0.0-0.0-0.0 | 4.1-5.7-6.7 | none | --- | none | --- | --- |
| | wet | 4.1-5.7-6.7\| | 6.7-6.7-6.7 | | | | | |
| April | moist | 0.0-0.0-0.0 | 1.3-2.1-4.1 | none | --- | none | --- | --- |
| | wet | 1.3-2.1-4.1 | 6.7-6.7-6.7 | | | | | |
| May | moist | 0.0-0.0-0.0 | 1.6-2.5-4.1 | none | --- | none | --- | --- |
| | wet | 1.6-2.5-4.1 | 6.7-6.7-6.7 | | | | | |
| June | moist | 0.0-0.0-0.0 | 2.0-3.0-5.7 | none | -- - | none | -- - | --- |
| | wet | 2.0-3.0-5.7 | 6.7-6.7-6.7 | | | | | |
| July | moist | 0.0-0.0-0.0 | 2.5-4.1-6.7 | none | --- | none | --- | --- |
| | wet | 2.5-4.1-6.7 | 6.7-6.7-6.7 | | | | | |
| August | moist | 0.0-0.0-0.0 | 3.3-4.9-6.7 | none | --- | none | --- | --- |
| | wet | 3.3-4.9-6.7\| | 6.7-6.7-6.7 | | | | | |
| September | moist | 0.0-0.0-0.0 | 3.3-4.6-6.7\| | none | --- | none | --- | --- |
| | wet | 3.3-4.6-6.7\| | 6.7-6.7-6.7 | | | | | |
| October | moist | 0.0-0.0-0.0 | 2.5-4.1-5.7 | none | -- - | none | -- - | --- |
| | wet | 2.5-4.1-5.7 | 6.7-6.7-6.7 | | | | | |
| November | moist | 0.0-0.0-0.0 | 3.3-4.6-6.7\| | none | --- | none | --- | --- |
| | wet | 3.3-4.6-6.7\| | 6.7-6.7-6.7 | | | | | |
| December | moist | 0.0-0.0-0.0 | 3.6-4.9-6.7 | none | --- | none | --- | --- |
| | wet | 3.6-4.9-6.7 | 6.7-6.7-6.7 | | | | | |

Hilaire (2 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued

I29D Hattie clay, 6 to 18 percent slopes
Hattie (85 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \text { L }-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 4.1-5.7-6.7\| | none | --- | none | --- | --- |
| | wet | \|4.1-5.7-6.7| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 4.9-6.7-6.7\| | none | --- | none | --- | --- |
| | wet | \|4.9-6.7-6.7| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 4.1-5.7-6.7\| | none | --- | none | --- | --- |
| | wet | \|4.1-5.7-6.7| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\|1 | 1.3-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.3-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 1.6-2.5-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.6-2.5-4.1| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0|2 | 2.0-3.0-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.0-3.0-5.7| | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0|2 | 2.5-4.1-6.7\| | none | --- | none | --- | --- |
| | wet | \|2.5-4.1-6.7| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0|3 | 3.3-4.9-6.7\| | none | --- | none | --- | --- |
| | wet | \|3.3-4.9-6.7| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0|3 | 3.3-4.6-6.7\| | none | --- | none | --- | --- |
| | wet | \|3.3-4.6-6.7|6 | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0|2 | 2.5-4.1-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.5-4.1-5.7|6. | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0|3 | 3.3-4.6-6.7\| | none | --- | none | --- | --- |
| | wet | \|3.3-4.6-6.7| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0|3 | 3.6-4.9-6.7\| | none | --- | none | --- | --- |
| | wet | \|3.6-4.9-6.7| | 6.7-6.7-6.7\| | | | | | |

Clearwater (6 percent of the map unit)

| Month | Moisture status | Top depth $\mathrm{L}-\mathrm{R}-\mathrm{H}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0\| | 0.8-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | \|0.8-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0|1 | 1.6-2.5-4.9 | none | --- | none | --- | --- |
| | wet | \|1.6-2.5-4.9| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 0.3-1.3-3.3\| | none | --- | none | --- | --- |
| | wet | $\|0.3-1.3-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0|0. | 0.0-0.0-1.6\| | none | --- | occasional | brief | 10.0-0.3-0.5 |
| | wet | 0.0-0.0-1.6 | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.0-0.5-2.5\| | none | --- | occasional | brief | 10.0-0.3-0.5 |
| | wet | \|0.0-0.5-2.5| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0|0. | 0.8-1.3-3.3\| | none | --- | \|occasional | \|very brief | 0.0-0.3-0.5 |
| | wet | 0.8-1.3-3.3 | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 1.3-2.1-4.1\| | none | --- | rare | \|very brief | 0.0-0.2-0.3 |
| | wet | \|1.3-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0|1 | 1.6-3.0-4.9\| | none | --- | rare | \|very brief | 0.0-0.2-0.3 |
| | wet | \|1.6-3.0-4.9| | 6.7-6.7-6.7\| | | | | | |
| September | moist | 0.0-0.0-0.0\| | 1.3-2.5-4.1\| | none | --- | rare | \|very brief | 0.0-0.2-0.3 |
| | wet | \|1.3-2.5-4.1|6. | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0|0 | 0.8-1.6-3.3\| | none | --- | \|occasional | \|very brief | 0.0-0.2-0.3 |
| | wet | \|0.8-1.6-3.3| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0|0. | 0.5-1.3-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.5-1.3-2.5|6. | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0|0 | 0.8-1.6-3.3\| | none | --- | none | --- | --- |
| | wet | $\|0.8-1.6-3.3\| 6$ | 6.7-6.7-6.7\| | | | | | |

I29D (continued)
Hattie, level (5 percent of the map unit)

Boyerlake (4 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued

I30A Hedman loam, 0 to 2 percent slopes
Hedman (85 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0\| | 1.6-3.0-4.1 | none | --- | none | --- | --- |
| | wet | 1.6-3.0-4.1 | 6.7-6.7-6.7 | | | | | |
| February | moist | 0.0-0.0-0.0 | 2.5-3.3-4.9 | none | --- | none | --- | --- |
| | wet | 2.5-3.3-4.9\| | 6.7-6.7-6.7 | | | | | |
| March | moist | 0.0-0.0-0.0\| | 1.3-2.1-3.3 | none | --- | none | --- | --- |
| | wet | 1.3-2.1-3.3 | 6.7-6.7-6.7 | | | | | |
| April | moist | 0.0-0.0-0.0 | 0.0-0.5-2.5 | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.0-0.5-2.5 | 6.7-6.7-6.7 | | | | | |
| May | moist | 0.0-0.0-0.0 | 0.3-0.8-3.3 | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.3-0.8-3.3 | 6.7-6.7-6.7 | | | | | |
| June | moist | 0.0-0.0-0.0 | 0.7-1.3-4.1 | none | --- | occasional | very brief | 0.0-0.3-0.5 |
| | wet | 0.7-1.3-4.1\| | 6.7-6.7-6.7 | | | | | |
| July | moist | 0.0-0.0-0.0 | 1.6-3.0-4.9 | none | --- | none | --- | --- |
| | wet | 1.6-3.0-4.9 | 6.7-6.7-6.7 | | | | | |
| August | moist | 0.0-0.0-0.0 | 2.5-3.8-5.7 | none | --- | none | --- | --- |
| | wet | 2.5-3.8-5.7\| | 6.7-6.7-6.7 | | | | | |
| September | moist | 0.0-0.0-0.0 | 2.0-3.3-4.9 | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | 2.0-3.3-4.9 | 6.7-6.7-6.7 | | | | | |
| October | moist | 0.0-0.0-0.0 | 1.3-1.6-4.1 | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | 1.3-1.6-4.1 | 6.7-6.7-6.7 | | | | | |
| November | moist | 0.0-0.0-0.0\|0 | 0.8-1.3-3.3 | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.8-1.3-3.3\| | 6.7-6.7-6.7 | | | | | |
| December | moist | 0.0-0.0-0.0 | 1.3-2.1-3.8 | none | --- | none | --- | --- |
| | wet | 1.3-2.1-3.8 | 6.7-6.7-6.7 | | | | | |

Fram (5 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding
 frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | | |
|---|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0\| | \|4.1-5.4-6.7| | none | --- | none | --- | --- |
| | wet | \|4.1-5.4-6.7| | \|6.7-6.7-6.7| | | | | | |
| February | moist | \|0.0-0.0-0.0| | $\|4.9-5.9-6.7\|$ | none | --- | none | --- | --- |
| | wet | \|4.9-5.9-6.7| | $\|6.7-6.7-6.7\|$ | | | | | |
| March | moist | \|0.0-0.0-0.0| | $\|3.3-4.9-6.7\|$ | none | --- | none | --- | --- |
| | wet | \|3.3-4.9-6.7| | \mid 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | $\|1.6-2.5-4.1\|$ | none | --- | none | --- | --- |
| | wet | 1.6-2.5-4.1\| | \|6.7-6.7-6.7| | | | | | |
| May | moist | 0.0-0.0-0.0\| | $\|2.1-2.8-4.9\|$ | none | --- | none | --- | --- |
| | wet | \|2.1-2.8-4.9| | \|6.7-6.7-6.7| | | | | | |
| June | dry | \|0.0-0.0-0.0| | $\|0.0-0.0-0.3\|$ | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.0| | \|2.6-3.1-5.7| | | | | | |
| | wet | \|2.6-3.1-5.7| | $\|6.7-6.7-6.7\|$ | | | | | |
| July | dry | 0.0-0.0-0.0\| | $\|0.0-0.0-0.3\|$ | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | $\|3.3-5.7-6.7\|$ | | | | | |
| | wet | \|3.3-5.7-6.7| | $\|6.7-6.7-6.7\|$ | | | | | |
| August | dry | \|0.0-0.0-0.0| | $\|0.0-0.0-0.5\|$ | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.5| | $\|4.9-6.7-6.7\|$ | | | | | |
| | wet | \|4.9-6.7-6.7| | $\|6.7-6.7-6.7\|$ | | | | | |
| September | dry | \|0.0-0.0-0.0| | $\|0.0-0.0-0.3\|$ | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.0| | $\|3.6-4.9-6.7\|$ | | | | | |
| | wet | \|3.6-4.9-6.7| | $\|6.7-6.7-6.7\|$ | | | | | |
| October | moist | \|0.0-0.0-0.0| | \|3.0-4.3-5.7| | none | --- | none | --- | --- |
| | wet | \|3.0-4.3-5.7| | \mid 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | $\|2.3-3.3-4.9\|$ | none | --- | none | --- | --- |
| | wet | \|2.3-3.3-4.9| | \mid 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | $\|3.3-4.6-5.7\|$ | none | --- | none | --- | --- |
| | wet | \|3.3-4.6-5.7| | \|6.7-6.7-6.7| | | | | | |

I30A (continued)
Strathcona (5 percent of the map unit)

Haug (3 percent of the map unit)

| Month | Moisture status | $\left\lvert\, \begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}\right.$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \text { L - R - H } \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.8-1.6-3.3 | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0|1 | 1.6-2.5-4.1\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | $\|1.6-2.5-4.1\| 6$ | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 0.0-0.0-2.5\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-2.5| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 0.0-0.0-0.8\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-0.8| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.0-0.0-1.3\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-1.3 | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 0.0-0.5-1.6\| | none | --- | frequent | brief | 0.0-0.5-1.0 |
| | wet | \|0.0-0.5-1.6| | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 0.2-0.8-2.5\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | \|0.2-0.8-2.5| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0 | 0.8-1.6-3.3\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | $\|0.8-1.6-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0|0 | 0.5-1.3-3.0\| | none | --- | \|occasional | brief | 0.0-0.3-0.5 |
| | wet | $\|0.5-1.3-3.0\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 0.3-0.8-2.5\| | none | --- | \|occasional | brief | 0.0-0.5-1.0 |
| | wet | $\|0.3-0.8-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.0-0.3-1.6\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | $\|0.0-0.3-1.6\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 0.5-1.3-2.5\| | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | $\|0.5-1.3-2.5\| 6$ | 6.7-6.7-6.7\| | | | | | |

I30A (continued)
Strandquist (2 percent of the map unit)

I31A Hedman-Fram complex, 0 to 3 percent slopes
Hedman (50 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I31A (continued)
Fram (40 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 4.1-5.4-6.7\| | none | --- | none | --- | --- |
| | wet | \| 4.1-5.4-6.7|6 | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 4.9-5.9-6.7\| | none | --- | none | --- | --- |
| | wet | $\|4.9-5.9-6.7\| 6$ | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0|3 | 3.3-4.9-6.7\| | none | --- | none | --- | --- |
| | wet | $\|3.3-4.9-6.7\| 6$ | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0|1 | 1.6-2.5-4.1\| | none | --- | none | --- | --- |
| | wet | $\|1.6-2.5-4.1\| 6$ | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0|2 | 2.1-2.8-4.9\| | none | --- | none | --- | --- |
| | wet | \| 2.1-2.8-4.9|6 | 6.7-6.7-6.7\| | | | | | |
| June | dry | \|0.0-0.0-0.0|0 | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.0|2 | 2.6-3.1-5.7\| | | | | | |
| | wet | $\mid 2.6$-3.1-5.7\|6 | 6.7-6.7-6.7\| | | | | | |
| July | dry | \|0.0-0.0-0.0|0. | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.3\| 3$ | 3.3-5.7-6.7\| | | | | | |
| | wet | $\|3.3-5.7-6.7\| 6$ | 6.7-6.7-6.7\| | | | | | |
| August | dry | \|0.0-0.0-0.0|0. | 0.0-0.0-0.5\| | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.5\| 4$ | 4.9-6.7-6.7\| | | | | | |
| | wet | $\|4.9-6.7-6.7\| 6$ | 6.7-6.7-6.7\| | | | | | |
| September | dry | \|0.0-0.0-0.0|0. | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.0|3 | 3.6-4.9-6.7\| | | | | | |
| | wet | $\|3.6-4.9-6.7\| 6$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | $\|0.0-0.0-0.0\| 3$ | 3.0-4.3-5.7\| | none | --- | none | --- | --- |
| | wet | $\|3.0-4.3-5.7\| 6$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0|2 | 2.3-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | $\|2.3-3.3-4.9\| 6$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0|3 | 3.3-4.6-5.7\| | none | --- | none | --- | --- |
| | wet | $\|3.3-4.6-5.7\| 6$ | 6.7-6.7-6.7\| | | | | | |

Strathcona (5 percent of the map unit)

I31A (continued)
Haug (3 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0|0. | 0.8-1.6-3.3\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.8-1.6-3.3| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 1.6-2.5-4.1\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|1.6-2.5-4.1| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0|0 | 0.0-0.0-2.5\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-2.5| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0|0 | 0.0-0.0-0.8\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-0.8| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0|0 | 0.0-0.0-1.3\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-1.3| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0|0 | 0.0-0.5-1.6\| | none | --- | frequent | brief | 0.0-0.5-1.0 |
| | wet | \|0.0-0.5-1.6| | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0|0 | 0.2-0.8-2.5\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | \|0.2-0.8-2.5| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0|0 | 0.8-1.6-3.3\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | $\|0.8-1.6-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0|0 | 0.5-1.3-3.0\| | none | --- | \|occasional | brief | 10.0-0.3-0.5 |
| | wet | \|0.5-1.3-3.0| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0|0 | 0.3-0.8-2.5\| | none | --- | \|occasional | brief | 0.0-0.5-1.0 |
| | wet | $\|0.3-0.8-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0|0 | 0.0-0.3-1.6\| | none | --- | \|occasional
 \| | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.3-1.6| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 0.5-1.3-2.5\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.5-1.3-2.5| | 6.7-6.7-6.7\| | | | | | |

Strandquist (2 percent of the map unit)

I32A Hilaire fine sandy loam, 0 to 3 percent slopes
Hilaire (75 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0 | 4.6-5.4-6.7\| | none | --- | none | --- | --- |
| | wet | \|4.6-5.4-6.7 | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0 | 4.9-5.7-6.7\| | none | --- | none | --- | --- |
| | wet | \|4.9-5.7-6.7 | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0 | 3.3-4.6-6.7\| | none | --- | none | --- | --- |
| | wet | \|3.3-4.6-6.7 | \|6.7-6.7-6.7| | | | | | |
| April | moist | 0.0-0.0-0.0 | 1.6-2.5-4.6\| | none | --- | none | --- | --- |
| | wet | 1.6-2.5-4.6 | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0 | 2.3-3.0-5.2\| | none | --- | none | --- | --- |
| | wet | 2.3-3.0-5.2 | 6.7-6.7-6.7\| | | | | | |
| June | dry | 0.0-0.0-0.0 | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3 | 2.8-3.8-6.2\| | | | | | |
| | wet | 2.8-3.8-6.2 | 6.7-6.7-6.7\| | | | | | |
| July | dry | 0.0-0.0-0.0 | 0.0-0.0-0.5 | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.5 | 3.8-4.6-6.7\| | | | | | |
| | wet | \|3.8-4.6-6.7 | \mid 6.7-6.7-6.7\| | | | | | |
| August | dry | 0.0-0.0-0.0 | 0.0-0.0-0.7\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.7 | 5.2-6.7-6.7\| | | | | | |
| | wet | \|5.2-6.7-6.7 | \mid 6.7-6.7-6.7\| | | | | | |
| September | dry | 0.0-0.0-0.0 | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3 | 3.8-4.1-6.7\| | | | | | |
| | wet | 3.8-4.1-6.7 | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0 | 3.3-3.8-6.7\| | none | --- | none | --- | --- |
| | wet | \|3.3-3.8-6.7 | \|6.7-6.7-6.7| | | | | | |
| November | moist | 0.0-0.0-0.0 | $\|2.5-3.3-4.9\|$ | none | --- | none | --- | --- |
| | wet | 2.5-3.3-4.9 | \|6.7-6.7-6.7| | | | | | |
| December | moist | 0.0-0.0-0.0 | 3.8-4.1-5.7\| | none | --- | none | --- | --- |
| | wet | \| 3.8-4.1-5.7 | 6.7-6.7-6.7\| | | | | | |

Espelie (12 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | | |
|---|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 1.6-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.6-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 2.0-2.6-4.9\| | none | --- | none | --- | --- |
| | wet | \|2.0-2.6-4.9| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 1.5-2.3-4.9\| | none | --- | none | --- | --- |
| | wet | \|1.5-2.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 0.0-0.5-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | $\|0.0-0.5-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.5-0.8-3.3\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.5-0.8-3.3| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 0.8-1.6-4.1\| | none | --- | occasional | \|very brief | 0.0-0.3-0.5 |
| | wet | $\|0.8-1.6-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 1.6-3.0-4.9 | none | --- | none | --- | --- |
| | wet | \|1.6-3.0-4.9| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 2.5-3.8-5.7\| | none | --- | none | --- | --- |
| | wet | \| 2.5-3.8-5.7| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 1.6-3.3-4.9\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | \|1.6-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 1.3-2.5-4.1\| | none | --- | rare | \|very brief |very brief | 0.0-0.1-0.3 |
| | wet | $\|1.3-2.5-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | rare | | 0.0-0.1-0.3 |
| | wet | $\|0.8-1.6-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 1.3-2.0-3.9\| | none | --- | none | --- | --- |
| | wet | \|1.3-2.0-3.9| | 6.7-6.7-6.7\| | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I32A (continued)
Huot (5 percent of the map unit)

Flaming (2 percent of the map unit)

| Month | $\left\lvert\, \begin{array}{\|c\|} \mid \text { Moisture } \\ \mid \text { status } \end{array}\right.$ | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ L-R-H \end{gathered}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{gathered} \text { Ponding } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0 | 4.6-5.4-6.7\| | none | --- | none | --- | --- |
| | wet | 4.6-5.4-6.7 | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0 | 5.2-6.2-6.7\| | none | --- | none | --- | --- |
| | wet | 5.2-6.2-6.7\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0 | 3.3-4.1-6.7\| | none | --- | none | --- | --- |
| | wet | 3.3-4.1-6.7 | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0 | 2.1-2.5-6.7\| | none | -- - | none | --- | -- - |
| | wet | 2.1-2.5-6.7 | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0 | 2.5-2.8-5.7\| | none | --- | none | --- | --- |
| | wet | 2.5-2.8-5.7 | 6.7-6.7-6.7\| | | | | | |
| June | dry | 0.0-0.0-0.0 | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3 | 2.6-3.3-6.7\| | | | | | |
| | wet | 2.6-3.3-6.7 | 6.7-6.7-6.7\| | | | | | |
| July | dry | 0.0-0.0-0.0 | 0.0-0.0-0.7\| | none | -- - | none | --- | --- |
| | moist | 0.0-0.0-0.7 | 6.7-6.7-6.7\| | | | | | |
| August | dry | 0.0-0.0-0.0 | 0.0-0.0-1.0\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-1.0\| | 6.7-6.7-6.7\| | | | | | |
| September | dry | 0.0-0.0-0.0 | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | 4.1-4.9-6.7\| | | | | | |
| | wet | 4.1-4.9-6.7\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0 | 3.3-4.6-6.7\| | none | --- | none | --- | --- |
| | wet | 3.3-4.6-6.7\| | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0 | 2.5-4.1-5.7\| | none | -- - | none | --- | --- |
| | wet | 2.5-4.1-5.7 | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0 | 4.1-4.9-6.7\| | none | --- | none | --- | --- |
| | wet | 4.1-4.9-6.7\| | 6.7-6.7-6.7\| | | | | | |

I32A (continued)
Foxlake (2 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 0.8-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | $\|0.8-2.1-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 1.6-2.5-4.9 | none | --- | none | --- | --- |
| | wet | \|1.6-2.5-4.9| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 0.3-1.3-3.3\| | none | --- | none | --- | --- |
| | wet | $\|0.3-1.3-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 0.0-0.0-1.6\| | none | --- | occasional | brief | 10.0-0.3-0.5 |
| | wet | \|0.0-0.0-1.6| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.0-0.5-2.5 | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.0-0.5-2.5| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 0.8-1.3-3.3\| | none | --- | occasional | very brief | 0.0-0.3-0.5 |
| | wet | \|0.8-1.3-3.3| | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 1.3-2.1-4.1\| | none | --- | rare | \|very brief | 0.0-0.2-0.3 |
| | wet | $\|1.3-2.1-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 1.6-3.0-4.9 | none | --- | rare | very brief | 0.0-0.2-0.3 |
| | wet | \|1.6-3.0-4.9| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 1.3-2.5-4.1 | none | --- | rare | \|very brief | 0.0-0.2-0.3 |
| | wet | $\|1.3-2.5-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | occasional | \|very brief | 0.0-0.2-0.3 |
| | wet | \|0.8-1.6-3.3| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.5-1.3-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.5-1.3-2.5| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | none | --- | --- |
| | wet | \|0.8-1.6-3.3| | 6.7-6.7-6.7\| | | | | | |

Wheatville (2 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | $\begin{aligned} & \text { Ponding } \\ & \text { frequency } \end{aligned}$ | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0\| | 2.5-3.8-5.7\| | none | --- | none | --- | --- |
| | wet | 2.5-3.8-5.7\| | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 3.3-4.6-6.7\| | none | --- | none | --- | --- |
| | wet | 3.3-4.6-6.7\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0\| | 2.5-3.0-5.7\| | none | --- | none | --- | --- |
| | wet | 2.5-3.0-5.7\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 0.7-1.3-3.3\| | none | --- | none | --- | --- |
| | wet | 0.7-1.3-3.3 | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0\| | 1.0-1.6-4.1\| | none | --- | none | --- | --- |
| | wet | 1.0-1.6-4.1\| | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0\| | 1.6-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | 1.6-2.5-4.9\| | 6.7-6.7-6.7\| | | | | | |
| July | moist | 0.0-0.0-0.0\| | 2.5-3.8-6.2\| | none | --- | none | --- | --- |
| | wet | 2.5-3.8-6.2\| | 6.7-6.7-6.7\| | | | | | |
| August | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | 3.8-6.7-6.7\| | | | | | |
| | wet | 3.8-6.7-6.7\| | 6.7-6.7-6.7\| | | | | | |
| September\| | moist | 0.0-0.0-0.0\| | 2.5-3.8-6.2\| | none | --- | none | --- | --- |
| | wet | 2.5-3.8-6.2\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 2.0-3.0-5.6\| | none | --- | none | --- | --- |
| | wet | 2.0-3.0-5.6\| | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0\| | 1.6-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | 1.6-2.5-4.9\| | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 2.0-3.3-5.4\| | none | --- | none | --- | --- |
| | wet | 2.0-3.3-5.4\| | 6.7-6.7-6.7\| | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I32A (continued)
Thiefriver (1 percent of the map unit)

Wyandotte (1 percent of the map unit)

I33A Hilaire loamy fine sand, 0 to 3 percent slopes
Hilaire (75 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \text { L - R - H } \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0 | 4.6-5.4-6.7\| | none | --- | none | --- | --- |
| | wet | \|4.6-5.4-6.7| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 4.9-5.7-6.7\| | none | --- | none | --- | --- |
| | wet | \|4.9-5.7-6.7| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 3.3-4.6-6.7\| | none | --- | none | --- | --- |
| | wet | \|3.3-4.6-6.7| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 1.6-2.5-4.6\| | none | --- | none | --- | --- |
| | wet | \|1.6-2.5-4.6| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 2.3-3.0-5.2\| | none | --- | none | --- | --- |
| | wet | \|2.3-3.0-5.2| | 6.7-6.7-6.7\| | | | | | |
| June | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.3\|$ | 2.8-3.8-6.2\| | | | | | |
| | wet | $\mid 2.8$-3.8-6.2\| | 6.7-6.7-6.7\| | | | | | |
| July | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.5\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.5| | 3.8-4.6-6.7\| | | | | | |
| | wet | $\|3.8-4.6-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| August | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.7\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.7| | 5.2-6.7-6.7\| | | | | | |
| | wet | \|5.2-6.7-6.7| | 6.7-6.7-6.7\| | | | | | |
| September | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.5\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.5| | 3.8-4.1-6.7\| | | | | | |
| | wet | $\|3.8-4.1-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 3.3-3.8-6.7\| | none | --- | none | --- | --- |
| | wet | $\|3.3-3.8-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 2.5-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | \|2.5-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 3.8-4.1-5.7\| | none | --- | none | --- | --- |
| | wet | \|3.8-4.1-5.7| | 6.7-6.7-6.7\| | | | | | |

Espelie (12 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 1.6-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.6-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 2.0-2.6-4.9\| | none | --- | none | --- | --- |
| | wet | \|2.0-2.6-4.9| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 1.5-2.3-4.9 | none | --- | none | --- | --- |
| | wet | \|1.5-2.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 0.0-0.5-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.0-0.5-2.5| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.5-0.8-3.3\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.5-0.8-3.3| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 0.8-1.6-4.1\| | none | --- | occasional | very brief | 0.0-0.3-0.5 |
| | wet | $\|0.8-1.6-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 1.6-3.0-4.9 | none | --- | none | --- | --- |
| | wet | \|1.6-3.0-4.9| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 2.5-3.8-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.5-3.8-5.7| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 1.6-3.3-4.9 | none | --- | rare | very brief | 0.0-0.1-0.3 |
| | wet | $\|1.6-3.3-4.9\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 1.3-2.5-4.1\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | $\|1.3-2.5-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | \|0.8-1.6-3.3| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 1.3-2.0-3.9 | none | --- | none | --- | --- |
| | wet | $\|1.3-2.0-3.9\|$ | 6.7-6.7-6.7\| | | | | | |

I33A (continued)
Huot (5 percent of the map unit)

| Month | \mid Moisture
 status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0 | 4.6-5.4-6.7\| | none | --- | none | --- | --- |
| | wet | 4.6-5.4-6.7\| | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0 | 4.9-5.7-6.7\| | none | --- | none | --- | --- |
| | wet | 4.9-5.7-6.7\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0\| | 3.3-4.6-6.7\| | none | --- | none | --- | --- |
| | wet | 3.3-4.6-6.7\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0 | 1.6-2.5-4.6\| | none | --- | none | --- | --- |
| | wet | 1.6-2.5-4.6\| | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0 | 2.3-3.0-5.2\| | none | --- | none | --- | --- |
| | wet | 2.3-3.0-5.2 | 6.7-6.7-6.7\| | | | | | |
| June | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3 | 2.8-3.8-6.2\| | | | | | |
| | wet | 2.8-3.8-6.2 | 6.7-6.7-6.7\| | | | | | |
| July | dry | 0.0-0.0-0.0 | 0.0-0.0-0.5\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.5 | 3.8-4.6-6.7\| | | | | | |
| | wet | 3.8-4.6-6.7\| | 6.7-6.7-6.7\| | | | | | |
| August | dry | 0.0-0.0-0.0 | 0.0-0.0-0.7\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.7\| | 5.2-6.7-6.7\| | | | | | |
| | wet | 5.2-6.7-6.7\| | 6.7-6.7-6.7\| | | | | | |
| September | dry | 0.0-0.0-0.0\|0 | 0.0-0.0-0.5\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.5 | 3.8-4.1-6.7\| | | | | | |
| | wet | 3.8-4.1-6.7\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 3.3-3.8-6.7\| | none | --- | none | --- | --- |
| | wet | 3.3-3.8-6.7\| | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0 | 2.5-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | 2.5-3.3-4.9\| | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0 | 3.8-4.1-5.7\| | none | --- | none | --- | --- |
| | wet | 3.8-4.1-5.7 | 6.7-6.7-6.7\| | | | | | |

Flaming (2 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I33A (continued)
Foxlake (2 percent of the map unit)

Wheatville (2 percent of the map unit)

I33A (continued)
Thiefriver (1 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0\| | 1.6-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | 1.6-2.1-4.1\| | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 2.0-2.6-4.9\| | none | --- | none | --- | --- |
| | wet | 2.0-2.6-4.9\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0\| | 1.5-2.3-4.9\| | none | --- | none | --- | -- |
| | wet | 1.5-2.3-4.9 | 6.7-6.7-6.7 | | | | | |
| April | moist | 0.0-0.0-0.0\| | 0.0-0.5-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.0-0.5-2.5 | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0\| | 0.5-0.8-3.3\| | none | --- | \|occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.5-0.8-3.3\| | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0\| | 0.8-1.6-4.1\| | none | --- | \|occasional | \|very brief | 0.0-0.3-0.5 |
| | wet | 0.8-1.6-4.1\| | 6.7-6.7-6.7\| | | | | | |
| July | moist | 0.0-0.0-0.0\| | 1.6-3.0-4.9\| | none | --- | none | | --- |
| | wet | 1.6-3.0-4.9\| | 6.7-6.7-6.7\| | | | | | |
| August | moist | 0.0-0.0-0.0\| | 2.5-3.8-5.7\| | none | --- | none | --- | --- |
| | wet | 2.5-3.8-5.7\| | 6.7-6.7-6.7\| | | | | | |
| September | moist | 0.0-0.0-0.0\| | 1.6-3.3-4.9 | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | 1.6-3.3-4.9\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 1.3-2.5-4.1\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | 1.3-2.5-4.1\| | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0\| | 0.8-1.6-3.3\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | 0.8-1.6-3.3\| | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 1.3-2.0-3.9 | none | --- | none | --- | --- |
| | wet | 1.3-2.0-3.9 | 6.7-6.7-6.7\| | | | | | |

Wyandotte (1 percent of the map unit)

I34A Huot fine sandy loam, 0 to 3 percent slopes
Huot (75 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \text { L - R - H } \end{aligned}$ | | |
|---|---|---|---|---|---|---|---|---|---|---|
| January | moist | 10.0-0.0-0.0 | \|4.6-5.4-6.7| | none | --- | none | --- | --- |
| | wet | \|4.6-5.4-6.7 | \|6.7-6.7-6.7| | | | | | |
| February | moist | 0.0-0.0-0.0 | $\|4.9-5.7-6.7\|$ | none | --- | none | --- | --- |
| | wet | \|4.9-5.7-6.7| | \|6.7-6.7-6.7| | | | | | |
| March | moist | 10.0-0.0-0.0 | $\|3.3-4.6-6.7\|$ | none | --- | none | --- | --- |
| | wet | \|3.3-4.6-6.7 | \|6.7-6.7-6.7| | | | | | |
| April | moist | 0.0-0.0-0.0 | $\|1.6-2.5-4.6\|$ | none | --- | none | --- | --- |
| | wet | 1.6-2.5-4.6 | $\|6.7-6.7-6.7\|$ | | | | | |
| May | moist | $\|0.0-0.0-0.0\|$ | $\|2.3-3.0-5.2\|$ | none | --- | none | --- | --- |
| | wet | 2.3-3.0-5.2 | $\|6.7-6.7-6.7\|$ | | | | | |
| June | dry | 10.0-0.0-0.0 | $\|0.0-0.0-0.3\|$ | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.3\|$ | $\|2.8-3.8-6.2\|$ | | | | | |
| | wet | $\mid 2.8$-3.8-6.2\| | $\|6.7-6.7-6.7\|$ | | | | | |
| July | dry | 0.0-0.0-0.0 | $\|0.0-0.0-0.5\|$ | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.5| | $\|3.8-4.6-6.7\|$ | | | | | |
| | wet | \|3.8-4.6-6.7| | \|6.7-6.7-6.7| | | | | | |
| August | dry | 10.0-0.0-0.0 | $\|0.0-0.0-0.7\|$ | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.7\|$ | $\|5.2-6.7-6.7\|$ | | | | | |
| | wet | \| 5.2-6.7-6.7| | $\|6.7-6.7-6.7\|$ | | | | | |
| September | dry | 0.0-0.0-0.0 | $\|0.0-0.0-0.5\|$ | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.5\|$ | $\|3.8-4.1-6.7\|$ | | | | | |
| | wet | $\mid 3.8$-4.1-6.7\| | $\|6.7-6.7-6.7\|$ | | | | | |
| October | moist | 10.0-0.0-0.0 | $\|3.3-3.8-6.7\|$ | none | --- | none | --- | --- |
| | wet | \|3.3-3.8-6.7 | $\|6.7-6.7-6.7\|$ | | | | | |
| November | moist | 10.0-0.0-0.0 | $\|2.5-3.3-4.9\|$ | none | --- | none | --- | --- |
| | wet | 2.5-3.3-4.9 | $\|6.7-6.7-6.7\|$ | | | | | |
| December | moist | 10.0-0.0-0.0 | $\|3.8-4.1-5.7\|$ | none | --- | none | --- | --- |
| | wet | \|3.8-4.1-5.7| | \|6.7-6.7-6.7| | | | | | |

Thiefriver (12 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0\| | 1.6-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.6-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 2.0-2.6-4.9\| | none | --- | none | --- | --- |
| | wet | \|2.0-2.6-4.9| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 1.5-2.3-4.9\| | none | --- | none | --- | --- |
| | wet | \|1.5-2.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 0.0-0.5-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | $\|0.0-0.5-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.5-0.8-3.3\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.5-0.8-3.3| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 0.8-1.6-4.1\| | none | --- | occasional | very brief | 0.0-0.3-0.5 |
| | wet | \|0.8-1.6-4.1| | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 1.6-3.0-4.9 | none | --- | none | --- | --- |
| | wet | \|1.6-3.0-4.9| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 2.5-3.8-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.5-3.8-5.7| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 1.6-3.3-4.9 | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | \|1.6-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 1.3-2.5-4.1\| | none | --- | rare | very brief very brief | 0.0-0.1-0.3 |
| | wet | $\|1.3-2.5-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | rare | | 0.0-0.1-0.3 |
| | wet | \|0.8-1.6-3.3| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 1.3-2.0-3.9 | none | --- | none | --- | --- |
| | wet | \|1.3-2.0-3.9 ${ }^{\text {\| }}$ | 6.7-6.7-6.7\| | | | | | |

Hilaire (5 percent of the map unit)

| Month | $\text { \|Moisture\| } \mid \text { \| } \mid$ | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0\| | 4.6-5.4-6.7\| | none | --- | none | --- | --- |
| | wet | 4.6-5.4-6.7\| | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 4.9-5.7-6.7\| | none | --- | none | --- | --- |
| | wet | 4.9-5.7-6.7\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0\| | 3.3-4.6-6.7\| | none | --- | none | --- | --- |
| | wet | 3.3-4.6-6.7\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 1.6-2.5-4.6\| | none | --- | none | --- | --- |
| | wet | 1.6-2.5-4.6\| | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0\| | 2.3-3.0-5.2\| | none | --- | none | --- | --- |
| | wet | 2.3-3.0-5.2\| | 6.7-6.7-6.7\| | | | | | |
| June | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | 2.8-3.8-6.2\| | | | | | |
| | wet | 2.8-3.8-6.2\| | 6.7-6.7-6.7\| | | | | | |
| July | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.5\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.5\| | 3.8-4.6-6.7\| | | | | | |
| | wet | 3.8-4.6-6.7\| | 6.7-6.7-6.7\| | | | | | |
| August | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.7\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.7\| | 5.2-6.7-6.7\| | | | | | |
| | wet | 5.2-6.7-6.7\| | 6.7-6.7-6.7\| | | | | | |
| September | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | 3.8-4.1-6.7\| | | | | | |
| | wet | 3.8-4.1-6.7\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 3.3-3.8-6.7\| | none | --- | none | --- | --- |
| | wet | 3.3-3.8-6.7\| | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0\| | 2.5-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | 2.5-3.3-4.9\| | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 3.8-4.1-5.7\| | none | --- | none | --- | --- |
| | wet | 3.8-4.1-5.7\| | 6.7-6.7-6.7\| | | | | | |

Flaming (3 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I34A (continued)
Foxlake (3 percent of the map unit)

Ulen (2 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued

I35A Karlsruhe sandy loam, 0 to 3 percent slopes
Karlsruhe (70 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{gathered} \text { Ponding } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0 | 2.6-3.3-6.2\| | none | --- | none | --- | --- |
| | wet | 2.6-3.3-6.2\| | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 3.3-4.1-6.7\| | none | --- | none | -- - | --- |
| | wet | 3.3-4.1-6.7\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0\| | 2.6-3.3-5.9 | none | --- | none | -- - | --- |
| | wet | 2.6-3.3-5.9\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 1.5-2.0-3.3\| | none | --- | none | --- | --- |
| | wet | 1.5-2.0-3.3 | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0\| | 1.8-2.5-4.1\| | none | --- | none | --- | --- |
| | wet | 1.8-2.5-4.1\| | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0\| | 2.5-3.0-4.9\| | none | --- | none | --- | -- - |
| | wet | 2.5-3.0-4.9\| | 6.7-6.7-6.7\| | | | | | |
| July | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | 3.0-3.6-6.7\| | | | | | |
| | wet | 3.0-3.6-6.7\| | 6.7-6.7-6.7\| | | | | | |
| August | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.5\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.5 | 4.1-6.7-6.7\| | | | | | |
| | wet | 4.1-6.7-6.7\| | 6.7-6.7-6.7\| | | | | | |
| September | dry | 0.0-0.0-0.0\|0 | 0.0-0.0-0.3\| | none | --- | none | --- | -- - |
| | moist | 0.0-0.0-0.3\| | 2.6-4.1-6.7\| | | | | | |
| | wet | 2.6-4.1-6.7\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 3.0-4.3-5.7\| | none | --- | none | --- | --- |
| | wet | 3.0-4.3-5.7\| | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0\| | 2.0-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | 2.0-2.5-4.9\| | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 2.3-3.0-5.6\| | none | --- | none | --- | --- |
| | wet | 2.3-3.0-5.6\| | 6.7-6.7-6.7\| | | | | | |

Syrene (10 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ L-R-H \end{gathered}$ | Flooding frequency | Flooding duration | Ponding
 frequency | Ponding duration | $\begin{gathered} \text { Ponding } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0\| | 2.0-3.0-4.9 | none | --- | none | --- | --- |
| | wet | 2.0-3.0-4.9\| | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 2.5-3.3-5.7\| | none | --- | none | --- | --- |
| | wet | 2.5-3.3-5.7\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0\| | 1.6-2.5-4.1\| | none | --- | none | --- | -- - |
| | wet | 1.6-2.5-4.1\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 0.0-0.3-2.5\| | none | --- | occasional | very brief | 0.0-0.3-0.5 |
| | wet | 0.0-0.3-2.5 | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0\| | 0.5-0.8-3.3\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | 0.5-0.8-3.3\| | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0\| | 1.0-1.6-2.5\| | none | -- - | rare | very brief | 0.0-0.1-0.3 |
| | wet | 1.0-1.6-2.5 | 6.7-6.7-6.7\| | | | | | |
| July | moist | 0.0-0.0-0.0\| | 1.6-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | 1.6-2.5-4.9 | 6.7-6.7-6.7\| | | | | | |
| August | moist | 0.0-0.0-0.0\| | 2.5-3.3-5.7\| | none | --- | none | --- | --- |
| | wet | 2.5-3.3-5.7\| | 6.7-6.7-6.7\| | | | | | |
| September | moist | 0.0-0.0-0.0\| | 1.3-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | 1.3-2.5-4.9 | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 1.0-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | 1.0-2.1-4.1\| | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0\|0 | 0.8-1.6-3.3\| | none | --- | none | --- | --- |
| | wet | 0.8-1.6-3.3\| | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 1.6-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | 1.6-2.1-4.1 | 6.7-6.7-6.7\| | | | | | |

I35A (continued)
Ulen (10 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0\| | 2.6-3.3-5.9\| | none | --- | none | --- | --- |
| | wet | 2.6-3.3-5.9\| | \|6.7-6.7-6.7| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 3.3-4.1-6.7\| | none | --- | none | --- | --- |
| | wet | 3.3-4.1-6.7\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0\| | 2.6-3.3-5.7\| | none | --- | none | --- | --- |
| | wet | 2.6-3.3-5.7 | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 1.5-2.0-3.3\| | none | --- | none | --- | --- |
| | wet | 1.5-2.0-3.3\| | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0\| | 2.0-2.5-4.1\| | none | --- | none | --- | --- |
| | wet | 2.0-2.5-4.1\| | 6.7-6.7-6.7\| | | | | | |
| June | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | 2.5-3.0-4.9\| | | | | | |
| | wet | \|2.5-3.0-4.9| | 6.7-6.7-6.7\| | | | | | |
| July | dry | \|0.0-0.0-0.0| | 0.0-0.3-0.5\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.3-0.5| | 3.0-4.9-6.2\| | | | | | |
| | wet | \|3.0-4.9-6.2 | 6.7-6.7-6.7\| | | | | | |
| August | dry | \|0.0-0.0-0.0| | 0.0-0.3-0.7\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.3-0.7 \mid | 6.7-6.7-6.7\| | | | | | |
| September | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.5\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.5| | 2.6-4.9-6.7\| | | | | | |
| | wet | \|2.6-4.9-6.7| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 2.3-3.0-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.3-3.0-5.7| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 2.0-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | \|2.0-2.5-4.9| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 2.3-3.0-5.2\| | none | --- | none | --- | --- |
| | wet | \|2.3-3.0-5.2| | 6.7-6.7-6.7\| | | | | | |

Radium (5 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I35A (continued)
Rosewood (3 percent of the map unit)

Sandberg (2 percent of the map unit)

I36A Kittson loam, 0 to 3 percent slopes
Kittson (70 percent of the map unit)

| Month | \|Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \text { L }-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 4.1-5.4-6.7\| | none | --- | none | --- | --- |
| | wet | \|4.1-5.4-6.7| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 4.9-5.9-6.7\| | none | --- | none | --- | --- |
| | wet | \|4.9-5.9-6.7| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 3.3-4.9-6.7\| | none | --- | none | --- | --- |
| | wet | $\|3.3-4.9-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 1.6-2.5-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.6-2.5-4.1| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 2.1-2.8-4.9 | none | --- | none | --- | --- |
| | wet | \|2.1-2.8-4.9| | 6.7-6.7-6.7\| | | | | | |
| June | dry | $\|0.0-0.0-0.0\|$ | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | 2.6-3.1-5.7\| | | | | | |
| | wet | \|2.6-3.1-5.7| | 6.7-6.7-6.7\| | | | | | |
| July | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | 3.3-5.7-6.7\| | | | | | |
| | wet | $\|3.3-5.7-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| August | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.5\| | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.5\|$ | 4.9-6.7-6.7\| | | | | | |
| | wet | \|4.9-6.7-6.7| | 6.7-6.7-6.7\| | | | | | |
| September | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | 3.6-4.9-6.7\| | | | | | |
| | wet | \| 3.6-4.9-6.7| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 3.0-4.3-5.7\| | none | --- | none | --- | --- |
| | wet | $\|3.0-4.3-5.7\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 2.3-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | \| 2.3-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 3.3-4.6-5.7\| | none | --- | none | --- | --- |
| | wet | \|3.3-4.6-5.7| | 6.7-6.7-6.7\| | | | | | |

Roliss (12 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding
 frequency | Ponding duration | $\begin{gathered} \text { Ponding } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0 | 1.6-3.0-4.1 | none | --- | none | --- | --- |
| | wet | 1.6-3.0-4.1\| | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0 | 2.5-3.3-4.9 | none | --- | none | --- | --- |
| | wet | 2.5-3.3-4.9 | 6.7-6.7-6.7 | | | | | |
| March | moist | 0.0-0.0-0.0 | 1.3-2.1-3.3 | none | -- - | none | --- | --- |
| | wet | 1.3-2.1-3.3 | 6.7-6.7-6.7 | | | | | |
| April | moist | 0.0-0.0-0.0 | 0.0-0.5-2.5 | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.0-0.5-2.5 | 6.7-6.7-6.7 | | | | | |
| May | moist | 0.0-0.0-0.0 | 0.3-0.8-3.3 | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.3-0.8-3.3 | 6.7-6.7-6.7 | | | | | |
| June | moist | 0.0-0.0-0.0 | 0.7-1.3-4.1 | none | --- | occasional | very brief | 0.0-0.3-0.5 |
| | wet | 0.7-1.3-4.1\| | 6.7-6.7-6.7 | | | | | |
| July | moist | 0.0-0.0-0.0 | 1.6-3.0-4.9 | none | -- - | none | -- - | - - - |
| | wet | 1.6-3.0-4.9 | 6.7-6.7-6.7 | | | | | |
| August | moist | 0.0-0.0-0.0 | 2.5-3.8-5.7 | none | -- - | none | -- - | --- |
| | wet | 2.5-3.8-5.7 | 6.7-6.7-6.7 | | | | | |
| September | moist | 0.0-0.0-0.0 | 2.0-3.3-4.9\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | 2.0-3.3-4.9 | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 1.3-1.6-4.1 | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | 1.3-1.6-4.1\| | 6.7-6.7-6.7 | | | | | |
| November | moist | 0.0-0.0-0.0\| | 0.8-1.3-3.3 | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.8-1.3-3.3\| | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 1.3-2.1-3.8 | none | --- | none | --- | --- |
| | wet | 1.3-2.1-3.8\| | 6.7-6.7-6.7 | | | | | |

Hamerly (5 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | | |
|---|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | \|2.5-4.1-5.7| | none | --- | none | --- | --- |
| | wet | \|2.5-4.1-5.7| | \mid 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | $\|3.3-4.9-6.7\|$ | none | --- | none | --- | --- |
| | wet | $\|3.3-4.9-6.7\|$ | \|6.7-6.7-6.7| | | | | | |
| March | moist | \|0.0-0.0-0.0| | $\|2.5-3.8-5.7\|$ | none | --- | none | --- | --- |
| | wet | \|2.5-3.8-5.7| | $\|6.7-6.7-6.7\|$ | | | | | |
| April | moist | \|0.0-0.0-0.0|0 | \mid 0.7-1.3-3.3\| | none | --- | none | --- | --- |
| | wet | \|0.7-1.3-3.3| | \|6.7-6.7-6.7| | | | | | |
| May | moist | \|0.0-0.0-0.0| | $\|1.0-1.5-4.1\|$ | none | --- | none | --- | --- |
| | wet | \|1.0-1.5-4.1| | \|6.7-6.7-6.7| | | | | | |
| June | moist | \|0.0-0.0-0.0| | $\|1.6-2.0-4.9\|$ | none | --- | none | --- | --- |
| | wet | 1.6-2.0-4.9 | $\|6.7-6.7-6.7\|$ | | | | | |
| July | dry | \|0.0-0.0-0.0|0. | $\|0.0-0.0-0.3\|$ | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | $\|2.5-3.3-5.4\|$ | | | | | |
| | wet | \|2.5-3.3-5.4| | $\|6.7-6.7-6.7\|$ | | | | | |
| August | dry | \|0.0-0.0-0.0|0. | $\|0.0-0.0-0.5\|$ | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.5| | $\|3.3-6.7-6.7\|$ | | | | | |
| | wet | $\|3.3-6.7-6.7\|$ | $\|6.7-6.7-6.7\|$ | | | | | |
| September | dry | \|0.0-0.0-0.0|0. | $\|0.0-0.0-0.3\|$ | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | $\|2.5-4.6-5.7\|$ | | | | | |
| | wet | \|2.5-4.6-5.7| | \mid 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | $\|2.0-3.9-4.9\|$ | none | --- | none | --- | --- |
| | wet | 2.0-3.9-4.9 | \mid 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | $\|1.6-3.0-4.1\|$ | none | --- | none | --- | --- |
| | wet | \|1.6-3.0-4.1| | \mid 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | $\|2.0-3.8-4.9\|$ | none | --- | none | --- | --- |
| | wet | \|2.0-3.8-4.9| | \|6.7-6.7-6.7| | | | | | |

Kratka (5 percent of the map unit)

I36A (continued)
Grimstad (3 percent of the map unit)

| | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|
| Month | \|Moisture | Top | Bottom | Flooding | Flooding | Ponding | Ponding duration | $\begin{gathered} \text { Ponding } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ |
| | status | depth | depth | frequency | duration | frequency | | |
| | | L - R H | L - R H | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| January | moist | \|0.0-0.0-0.0| | 2.5-3.8-5.7 | none | --- | none | --- | --- |
| | wet | $\|2.5-3.8-5.7\|$ | 6.7-6.7-6.7 | | | | | |
| February | moist | $\|0.0-0.0-0.0\|$ | 3.3-4.6-6.7\| | none | -- - | none | --- | --- |
| | wet | $\|3.3-4.6-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 2.5-3.0-5.7 | none | -- - | none | --- | --- |
| | wet | $\|2.5-3.0-5.7\|$ | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 0.8-1.5-3.3 | none | --- | none | --- | --- |
| | wet | $\|0.8-1.5-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 1.1-1.8-4.1 | none | -- - | none | --- | --- |
| | wet | $\|1.1-1.8-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| June | moist | $\|0.0-0.0-0.0\|$ | 1.6-3.3-4.9 | none | --- | none | --- | --- |
| | wet | $\|1.6-3.3-4.9\|$ | 6.7-6.7-6.7\| | | | | | |
| July | dry | $\|0.0-0.0-0.0\|$ | 0.0-0.0-0.3 | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.3\|$ | 2.5-5.7-6.2 | | | | | |
| | wet | $\|2.5-5.7-6.2\|$ | 6.7-6.7-6.7 | | | | | |
| August | dry | $\|0.0-0.0-0.0\|$ | 0.0-0.0-0.5 | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.5\|$ | 6.7-6.7-6.7 | | | | | |
| September | dry | $\|0.0-0.0-0.0\|$ | 0.0-0.0-0.3 | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.3\|$ | 2.5-3.8-6.7 | | | | | |
| | wet | $\|2.5-3.8-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | $\|0.0-0.0-0.0\|$ | 2.0-3.0-5.6\| | none | --- | none | --- | --- |
| | wet | $\|2.0-3.0-5.6\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | $\|0.0-0.0-0.0\|$ | 1.6-2.5-4.9 | none | --- | none | -- - | --- |
| | wet | $\|1.6-2.5-4.9\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | $\|0.0-0.0-0.0\|$ | 2.0-3.3-5.4 | none | --- | none | --- | --- |
| | wet | $\|2.0-3.3-5.4\|$ | 6.7-6.7-6.7 | | | | | |
| | | | | | | | | |

Strandquist (3 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I36A (continued)
Foxhome (2 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \text { L-R - H } \end{aligned}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0 | 4.8-5.4-6.7\| | none | --- | none | --- | --- |
| | wet | \|4.8-5.4-6.7| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 5.2-5.7-6.7\| | none | --- | none | --- | --- |
| | wet | \|5.2-5.7-6.7| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 3.3-4.6-6.7\| | none | --- | none | --- | --- |
| | wet | \|3.3-4.6-6.7| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 1.3-2.5-4.9 | none | --- | none | --- | --- |
| | wet | \|1.3-2.5-4.9| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 2.0-3.0-5.6\| | none | --- | none | --- | --- |
| | wet | $\|2.0-3.0-5.6\|$ | 6.7-6.7-6.7\| | | | | | |
| June | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.5 | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.5| | 2.6-3.6-6.2\| | | | | | |
| | wet | \|2.6-3.6-6.2| | 6.7-6.7-6.7\| | | | | | |
| July | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.7\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.7| | 3.9-5.4-6.7\| | | | | | |
| | wet | \|3.9-5.4-6.7| | 6.7-6.7-6.7\| | | | | | |
| August | dry | \|0.0-0.0-0.0| | 0.0-0.0-1.0\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-1.0| | 5.4-6.7-6.7\| | | | | | |
| | wet | \| 5.4-6.7-6.7| | 6.7-6.7-6.7\| | | | | | |
| September | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | 4.1-4.6-6.7\| | | | | | |
| | wet | \|4.1-4.6-6.7| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 3.6-3.9-6.7\| | none | --- | none | --- | --- |
| | wet | \|3.6-3.9-6.7| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 2.5-3.3-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.5-3.3-5.7| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 3.9-4.6-6.2\| | none | --- | none | --- | --- |
| | wet | \|3.9-4.6-6.2| | 6.7-6.7-6.7\| | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued

I37A Kratka and Strathcona soils, depressional, 0 to 1 percent slopes
Kratka, depressional (45 percent of the map unit)

| Month | Moisture status | $\left\lvert\, \begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}\right.$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \text { L }-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | Ponding depth L - R - H | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 1.0-1.6-3.0\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | $\|1.0-1.6-3.0\|$ | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 1.6-2.5-3.6\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | $\|1.6-2.5-3.6\| 6$ | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 0.0-0.0-2.0\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | 10.0-0.0-2.0 | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 0.0-0.0-1.0\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-1.0| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0|0. | 0.0-0.0-2.0\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-2.0 | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 0.2-0.8-2.5\| | none | --- | \|occasional | brief | 0.0-0.5-1.0 |
| | wet | \|0.2-0.8-2.5| | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0|0. | 0.7-1.6-3.0\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | $\|0.7-1.6-3.0\|$ | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 1.6-2.5-3.6\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | $\|1.6-2.5-3.6\| 6$ | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 1.0-1.6-3.0\| | none | --- | rare | brief | 10.0-0.3-0.5 |
| | wet | $\|1.0-1.6-3.0\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 0.7-1.3-2.6\| | none | --- | \|occasional | brief | 0.0-0.3-0.5 |
| | wet | $\|0.7-1.3-2.6\| 6$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.3-0.8-1.6\| | none | --- | \|occasional | long | \|0.0-0.5-1.0 |
| | wet | \|0.3-0.8-1.6| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 0.7-1.3-2.3\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | $\|0.7-1.3-2.3\| 6$ | 6.7-6.7-6.7\| | | | | | |

Strathcona, depressional (45 percent of the map unit)

I37A (continued)
Northwood (5 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \text { L-R }-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \text { L - R - H } \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0 | 0.8-1.6-3.3\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | 0.8-1.6-3.3 | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 1.6-2.5-4.1\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | 1.6-2.5-4.1\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0 | 0.0-0.0-2.5\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-2.5\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0 | 0.0-0.0-0.8\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-0.8 | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0 | 0.0-0.0-1.3\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-1.3 | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0 | 0.0-0.5-1.6\| | none | --- | frequent | brief | 0.0-0.5-1.0 |
| | wet | 0.0-0.5-1.6 | 6.7-6.7-6.7\| | | | | | |
| July | moist | 0.0-0.0-0.0 | 0.2-0.8-2.5\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | 0.2-0.8-2.5 | 6.7-6.7-6.7\| | | | | | |
| August | moist | 0.0-0.0-0.0 | 0.8-1.6-3.3\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | 0.8-1.6-3.3 | 6.7-6.7-6.7\| | | | | | |
| September | moist | 0.0-0.0-0.0 | 0.5-1.3-3.0\| | none | --- | \|occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.5-1.3-3.0 | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 0.3-0.8-2.5\| | none | --- | \|occasional | brief | 0.0-0.5-1.0 |
| | wet | \|0.3-0.8-2.5| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.0-0.3-1.6\| | none | --- | occasional | long | \|0.0-0.5-1.0 |
| | wet | \|0.0-0.3-1.6| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 0.5-1.3-2.5\| | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.5-1.3-2.5| | 6.7-6.7-6.7\| | | | | | |

Kratka (2 percent of the map unit)

I37A (continued)
Strathcona (2 percent of the map unit)

Roliss (1 percent of the map unit)

I38A Kratka fine sandy loam, 0 to 2 percent slopes
Kratka (70 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding
 frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 1.6-3.0-4.1\| | none | --- | none | --- | --- |
| | wet | $\|1.6-3.0-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 2.5-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | \| 2.5-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 1.6-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.6-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0|0 | 0.0-0.5-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.0-0.5-2.5| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0|0 | 0.5-0.8-3.3\| | none | --- | \|occasional | \|very brief | 0.0-0.3-0.5 |
| | wet | \|0.5-0.8-3.3| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0|0 | 0.8-1.6-4.1\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | $\|0.8-1.6-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 1.6-3.3-4.9 | none | --- | none | --- | --- |
| | wet | \|1.6-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 2.5-4.1-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.5-4.1-5.7| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 1.6-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | \|1.6-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 1.3-2.5-4.1\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | \|1.3-2.5-4.1| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0|0 | 0.8-1.6-3.3\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | $\|0.8-1.6-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 1.3-2.1-3.8\| | none | --- | none | --- | --- |
| | wet | \|1.3-2.1-3.8| | 6.7-6.7-6.7\| | | | | | |

Smiley (7 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0 | 1.6-3.0-4.1\| | none | --- | none | --- | --- |
| | wet | $\|1.6-3.0-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 2.5-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | \|2.5-3.3-4.9 | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 1.3-2.1-3.3\| | none | --- | none | --- | --- |
| | wet | \|1.3-2.1-3.3 | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0 | 0.0-0.5-2.5\| | none | --- | \|occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.0-0.5-2.5 | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0 | 0.3-0.8-3.3\| | none | --- | \|occasional | brief | 0.0-0.3-0.5 |
| | wet | $\|0.3-0.8-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0 | 0.7-1.3-4.1\| | none | --- | \|occasional | \|very brief | 0.0-0.3-0.5 |
| | wet | \|0.7-1.3-4.1| | 6.7-6.7-6.7\| | | | | | |
| July | moist | 0.0-0.0-0.0 | 1.6-3.0-4.9\| | none | --- | none | --- | --- |
| | wet | \|1.6-3.0-4.9 | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 2.5-3.8-5.7\| | none | --- | none | --- | --- |
| | wet | \| 2.5-3.8-5.7| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 2.0-3.3-4.9\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | 2.0-3.3-4.9 | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 1.3-1.6-4.1\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | $\|1.3-1.6-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.8-1.3-3.3\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.8-1.3-3.3 | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0 | 1.3-2.1-3.8\| | none | --- | none | --- | --- |
| | wet | \|1.3-2.1-3.8 | 6.7-6.7-6.7\| | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I38A (continued)
Foldahl (5 percent of the map unit)

| Month | \|Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0 | 4.6-5.4-6.7\| | none | --- | none | --- | --- |
| | wet | 4.6-5.4-6.7\| | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0 | 4.9-5.7-6.7\| | none | --- | none | --- | --- |
| | wet | 4.9-5.7-6.7\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0 | 3.3-4.6-6.7\| | none | --- | none | --- | --- |
| | wet | 3.3-4.6-6.7 | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 1.3-2.5-4.6\| | none | --- | none | --- | --- |
| | wet | 1.3-2.5-4.6\| | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0\| | 2.0-3.1-5.2\| | none | --- | none | --- | --- |
| | wet | 2.0-3.1-5.2\| | 6.7-6.7-6.7\| | | | | | |
| June | dry | 0.0-0.0-0.0 | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | 2.6-3.8-6.2\| | | | | | |
| | wet | 2.6-3.8-6.2\| | 6.7-6.7-6.7\| | | | | | |
| July | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.5\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.5\| | 3.8-4.9-6.7\| | | | | | |
| | wet | 3.8-4.9-6.7\| | 6.7-6.7-6.7\| | | | | | |
| August | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.7\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.7\| | 5.2-6.7-6.7\| | | | | | |
| | wet | 5.2-6.7-6.7\| | 6.7-6.7-6.7\| | | | | | |
| September | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | 3.8-4.1-6.7\| | | | | | |
| | wet | 3.8-4.1-6.7\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 3.3-3.8-6.7\| | none | --- | none | --- | --- |
| | wet | 3.3-3.8-6.7\| | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0\| | 2.5-3.3-5.6\| | none | --- | none | --- | --- |
| | wet | 2.5-3.3-5.6\| | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 3.8-4.1-6.2\| | none | --- | none | --- | --- |
| | wet | 3.8-4.1-6.2 | 6.7-6.7-6.7\| | | | | | |

Kratka, very cobbly (5 percent of the map unit)

I38A (continued)
Strathcona (5 percent of the map unit)

Kratka, depressional (3 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding
 frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0\| | 1.0-1.6-3.0\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|1.0-1.6-3.0| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 1.6-2.5-3.6\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|1.6-2.5-3.6| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0|0 | 0.0-0.0-2.0\| | none | --- | \|occasional | long | 10.0-0.5-1.0 |
| | wet | \|0.0-0.0-2.0| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0|0 | 0.0-0.0-1.0\| | none | --- | frequent | long | 10.0-0.5-1.0 |
| | wet | \|0.0-0.0-1.0| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0|0 | 0.0-0.0-2.0\| | none | --- | frequent | long | 10.0-0.5-1.0 |
| | wet | \|0.0-0.0-2.0| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0|0 | 0.2-0.8-2.5\| | none | --- | \|occasional | brief | 10.0-0.5-1.0 |
| | wet | $\|0.2-0.8-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0|0 | 0.7-1.6-3.0\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | \|0.7-1.6-3.0| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 1.6-2.5-3.6\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | \|1.6-2.5-3.6| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 1.0-1.6-3.0\| | none | --- | rare | brief | 0.0-0.3-0.5 |
| | wet | \|1.0-1.6-3.0| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0|0 | 0.7-1.3-2.6\| | none | --- | \|occasional | brief | 0.0-0.3-0.5 |
| | wet | $\|0.7-1.3-2.6\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0|0 | 0.3-0.8-1.6\| | none | --- | \|occasional | long | 10.0-0.5-1.0 |
| | wet | \|0.3-0.8-1.6| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0|0 | 0.7-1.3-2.3\| | none | --- | \|occasional | long | 10.0-0.5-1.0 |
| | wet | \| 0.7-1.3-2.3| | 6.7-6.7-6.7\| | | | | | |

I38A (continued)
Strandquist (3 percent of the map unit)

| Month | $\begin{array}{\|} \mid \text { Moisture } \\ \mid \text { status } \end{array}$ | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{gathered} \text { Ponding } \\ \text { depth } \\ \text { L - R - H } \end{gathered}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0\| | 1.6-3.0-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.6-3.0-4.1| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 2.5-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | \|2.5-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 1.6-2.1-4.1 | none | --- | none | --- | --- |
| | wet | \|1.6-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0 | 0.0-0.5-2.5 | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.0-0.5-2.5| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.5-0.8-3.3\| | none | --- | occasional | very brief | 0.0-0.3-0.5 |
| | wet | \|0.5-0.8-3.3| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 0.8-1.6-4.1 | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | \|0.8-1.6-4.1| | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 1.6-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | \|1.6-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 2.5-4.1-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.5-4.1-5.7| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 1.6-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | \|1.6-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 1.3-2.5-4.1 | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | \|1.3-2.5-4.1| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | none | --- | --- |
| | wet | \|0.8-1.6-3.3| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 1.3-2.1-3.8 | none | --- | none | --- | --- |
| | wet | \|1.3-2.1-3.8| | 6.7-6.7-6.7\| | | | | | |

Linveldt (2 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued

I39A Linveldt fine sandy loam, 0 to 3 percent slopes
Linveldt (65 percent of the map unit)

| Month | $\left\lvert\, \begin{gathered} \text { Moisture } \\ \text { status } \end{gathered}\right.$ | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & L-R-H \end{aligned}$ | | |
|---|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 4.8-5.4-6.7\| | none | --- | none | --- | --- |
| | wet | \|4.8-5.4-6.7| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | \|5.2-5.7-6.7| | none | --- | none | --- | --- |
| | wet | \| 5.2-5.7-6.7| | \|6.7-6.7-6.7| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 3.3-4.6-6.7\| | none | --- | none | --- | --- |
| | wet | $\|3.3-4.6-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 1.3-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | $\|1.3-2.5-4.9\|$ | \|6.7-6.7-6.7| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 2.0-3.0-5.6\| | none | --- | none | --- | --- |
| | wet | \|2.0-3.0-5.6| | \|6.7-6.7-6.7| | | | | | |
| June | dry | $\|0.0-0.0-0.0\|$ | \|0.0-0.0-0.5| | none | --- | none | --- | -- - |
| | moist | \|0.0-0.0-0.5| | 2.6-3.6-6.2\| | | | | | |
| | wet | \|2.6-3.6-6.2| | \|6.7-6.7-6.7| | | | | | |
| July | dry | $\|0.0-0.0-0.0\|$ | \|0.0-0.0-0.7| | none | --- | none | --- | --- |
| | moist | \mid 0.0-0.0-0.7\| | $\|3.9-5.4-6.7\|$ | | | | | |
| | wet | $\|3.9-5.4-6.7\|$ | \|6.7-6.7-6.7| | | | | | |
| August | dry | \|0.0-0.0-0.0| | 0.0-0.0-1.0\| | none | --- | none | --- | --- |
| | moist | \mid 0.0-0.0-1.0\| | \| 5.4-6.7-6.7| | | | | | |
| | wet | $\|5.4-6.7-6.7\|$ | \|6.7-6.7-6.7| | | | | | |
| September | dry | $\|0.0-0.0-0.0\|$ | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.3\|$ | $\|4.1-4.6-6.7\|$ | | | | | |
| | wet | \|4.1-4.6-6.7| | \|6.7-6.7-6.7| | | | | | |
| October | moist | \|0.0-0.0-0.0| | \|3.6-3.9-6.7| | none | --- | none | --- | --- |
| | wet | $\|3.6-3.9-6.7\|$ | \|6.7-6.7-6.7| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 2.5-3.3-5.7\| | none | --- | none | --- | --- |
| | wet | $\|2.5-3.3-5.7\|$ | \|6.7-6.7-6.7| | | | | | |
| December | moist | \|0.0-0.0-0.0| | \|3.9-4.6-6.2| | none | -- - | none | --- | --- |
| | wet | $\|3.9-4.6-6.2\|$ | 6.7-6.7-6.7\| | | | | | |

Kratka (14 percent of the map unit)

I39A (continued)
Reiner (10 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0\| | 4.1-5.4-6.7\| | none | --- | none | --- | --- |
| | wet | 4.1-5.4-6.7\| | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 4.9-5.9-6.7\| | none | --- | none | --- | --- |
| | wet | 4.9-5.9-6.7\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0\| | 3.3-4.9-6.7\| | none | --- | none | --- | --- |
| | wet | 3.3-4.9-6.7\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 1.6-2.5-4.1\| | none | --- | none | --- | --- |
| | wet | 1.6-2.5-4.1\| | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0\| | 2.1-2.8-4.9 | none | --- | none | --- | --- |
| | wet | 2.1-2.8-4.9\| | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0\| | 2.6-3.1-5.7\| | none | --- | none | --- | --- |
| | wet | 2.6-3.1-5.7\| | 6.7-6.7-6.7\| | | | | | |
| July | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | 3.3-5.7-6.7\| | | | | | |
| | wet | 3.3-5.7-6.7\| | 6.7-6.7-6.7\| | | | | | |
| August | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.5\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.5\| | 4.9-6.7-6.7\| | | | | | |
| | wet | 4.9-6.7-6.7\| | 6.7-6.7-6.7\| | | | | | |
| September | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | 3.6-4.9-6.7\| | | | | | |
| | wet | 3.6-4.9-6.7\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 3.0-4.3-5.7\| | none | --- | none | --- | --- |
| | wet | 3.0-4.3-5.7\| | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0\| | 2.3-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | 2.3-3.3-4.9\| | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 3.3-4.6-5.7\| | none | --- | none | --- | --- |
| | wet | 3.3-4.6-5.7\| | 6.7-6.7-6.7\| | | | | | |

Smiley (5 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I39A (continued)
Eckvoll (3 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \text { L-R - H } \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 4.6-5.4-6.7\| | none | --- | none | --- | --- |
| | wet | \|4.6-5.4-6.7| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 4.9-5.7-6.7\| | none | --- | none | --- | --- |
| | wet | \|4.9-5.7-6.7| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 3.3-4.6-6.7\| | none | --- | none | --- | --- |
| | wet | $\|3.3-4.6-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 2.1-2.5-4.6\| | none | --- | none | --- | --- |
| | wet | \|2.1-2.5-4.6| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 2.6-3.1-5.2\| | none | --- | none | --- | --- |
| | wet | \|2.6-3.1-5.2| | 6.7-6.7-6.7\| | | | | | |
| June | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | 2.6-3.8-6.2\| | | | | | |
| | wet | \|2.6-3.8-6.2| | 6.7-6.7-6.7\| | | | | | |
| July | dry | \|0.0-0.0-0.0|0 | 0.0-0.0-0.5\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.5|3 | 3.8-4.9-6.7\| | | | | | |
| | wet | \| 3.8-4.9-6.7| | 6.7-6.7-6.7\| | | | | | |
| August | dry | \|0.0-0.0-0.0|0 | 0.0-0.0-0.8\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.8| | 5.2-6.7-6.7\| | | | | | |
| | wet | \| 5.2-6.7-6.7| | 6.7-6.7-6.7\| | | | | | |
| September\| | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | 3.8-4.1-6.7\| | | | | | |
| | wet | $\|3.8-4.1-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 3.3-3.8-6.7\| | none | --- | none | --- | --- |
| | wet | $\|3.3-3.8-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 2.5-3.3-5.6\| | none | --- | none | --- | --- |
| | wet | \|2.5-3.3-5.6| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 3.8-4.1-6.2\| | none | --- | none | --- | --- |
| | wet | \|3.8-4.1-6.2| | 6.7-6.7-6.7\| | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I39A (continued)
Foldahl (2 percent of the map unit)

| Month | \|Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 4.6-5.4-6.7\| | none | --- | none | --- | --- |
| | wet | $\|4.6-5.4-6.7\| 6$ | 6.7-6.7-6.7\| | | | | | |
| February | moist | $\|0.0-0.0-0.0\| 4$ | 4.9-5.7-6.7\| | none | --- | none | --- | --- |
| | wet | $\|4.9-5.7-6.7\| 6$ | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0|3 | 3.3-4.6-6.7\| | none | --- | none | --- | --- |
| | wet | $\|3.3-4.6-6.7\| 6$ | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 1.3-2.5-4.6\| | none | --- | none | --- | --- |
| | wet | $\|1.3-2.5-4.6\|$ | 6.7-6.7-6.7\| | | | | | |
| May | moist | $\|0.0-0.0-0.0\| 2$ | 2.0-3.1-5.2\| | none | --- | none | --- | --- |
| | wet | $\|2.0-3.1-5.2\| 6$ | 6.7-6.7-6.7\| | | | | | |
| June | dry | $\|0.0-0.0-0.0\| 0$ | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.3\| 2$ | 2.6-3.8-6.2\| | | | | | |
| | wet | $\mid 2.6$-3.8-6.2\| \mid | 6.7-6.7-6.7\| | | | | | |
| July | dry | \|0.0-0.0-0.0|0. | 0.0-0.0-0.5\| | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.5\| 3$ | 3.8-4.9-6.7\| | | | | | |
| | wet | $\|3.8-4.9-6.7\| 6$ | 6.7-6.7-6.7\| | | | | | |
| August | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.7\| | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.7\| 5$ | 5.2-6.7-6.7\| | | | | | |
| | wet | $\|5.2-6.7-6.7\| 6$ | 6.7-6.7-6.7\| | | | | | |
| September | dry | $\|0.0-0.0-0.0\| 0$ | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.3\| 3$ | 3.8-4.1-6.7\| | | | | | |
| | wet | $\|3.8-4.1-6.7\| 6$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0|3 | 3.3-3.8-6.7\| | none | --- | none | --- | --- |
| | wet | $\|3.3-3.8-6.7\| 6$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0|2 | 2.5-3.3-5.6\| | none | --- | none | --- | --- |
| | wet | \| 2.5-3.3-5.6|6 | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0|3 | 3.8-4.1-6.2\| | none | --- | none | --- | --- |
| | wet | $\|3.8-4.1-6.2\| 6$ | 6.7-6.7-6.7\| | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I39A (continued)
Pelan (1 percent of the map unit)

I40B Maddock loamy fine sand, 1 to 6 percent slopes
Maddock (85 percent of the map unit)

| Month | Moisture status | Top depth $L-R-H$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | Ponding depth $L-R-H$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0\| | 6.7-6.7-6.7 | none | --- | none | --- | --- |
| February | moist | 0.0-0.0-0.0\| | 6.7-6.7-6.7 | none | --- | none | --- | --- |
| March | moist | 0.0-0.0-0.0 | 6.7-6.7-6.7 | none | --- | none | --- | --- |
| April | moist | 0.0-0.0-0.0 | 6.7-6.7-6.7 | none | --- | none | --- | --- |
| May | moist | 0.0-0.0-0.0\| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| June | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | 6.7-6.7-6.7\| | | | | | |
| July | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.7\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.7\| | 6.7-6.7-6.7\| | | | | | |
| August | dry | 0.0-0.0-0.0 | 0.0-0.0-1.0\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-1.0\| | 6.7-6.7-6.7\| | | | | | |
| September | dry | 0.0-0.0-0.0\| | 0.0-0.0-1.0\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-1.0\| | 6.7-6.7-6.7 | | | | | |
| October | moist | 0.0-0.0-0.0\| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| November | moist | 0.0-0.0-0.0\| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| December | moist | 0.0-0.0-0.0\| | 6.7-6.7-6.7\| | none | --- | none | --- | - |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I40B (continued)
Flaming (5 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \text { L - R }-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0\| | 4.6-5.4-6.7\| | none | --- | none | --- | --- |
| | wet | 4.6-5.4-6.7\| | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 5.2-6.2-6.7\| | none | --- | none | --- | --- |
| | wet | 5.2-6.2-6.7\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0\| | 3.3-4.1-6.7\| | none | --- | none | --- | --- |
| | wet | 3.3-4.1-6.7\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 2.1-2.5-6.7\| | none | --- | none | --- | --- |
| | wet | 2.1-2.5-6.7\| | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0\| | 2.5-2.8-5.7\| | none | --- | none | --- | --- |
| | wet | 2.5-2.8-5.7\| | 6.7-6.7-6.7\| | | | | | |
| June | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | 2.6-3.3-6.7\| | | | | | |
| | wet | 2.6-3.3-6.7\| | 6.7-6.7-6.7\| | | | | | |
| July | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.7\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.7\| | 6.7-6.7-6.7\| | | | | | |
| August | dry | 0.0-0.0-0.0\| | 0.0-0.0-1.0\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-1.0\| | 6.7-6.7-6.7\| | | | | | |
| September\| | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | 4.1-4.9-6.7\| | | | | | |
| | wet | 4.1-4.9-6.7\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\|3 | 3.3-4.6-6.7\| | none | --- | none | --- | --- |
| | wet | 3.3-4.6-6.7\| | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0\| | 2.5-4.1-5.7\| | none | --- | none | --- | --- |
| | wet | 2.5-4.1-5.7 | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 4.1-4.9-6.7\| | none | --- | none | --- | --- |
| | wet | 4.1-4.9-6.7\| | 6.7-6.7-6.7\| | | | | | |

Sandberg (5 percent of the map unit)

Halverson (3 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| February | moist | \|0.0-0.0-0.0| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| March | moist | \|0.0-0.0-0.0| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| April | moist | \|0.0-0.0-0.0| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| May | moist | \|0.0-0.0-0.0| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| June | dry | \|0.0-0.0-0.0|0 | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | 6.7-6.7-6.7\| | | | | | |
| July | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.5 | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.5| | 6.7-6.7-6.7\| | | | | | |
| August | dry | \|0.0-0.0-0.0|0 | 0.0-0.0-0.8 | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.8| | 6.7-6.7-6.7\| | | | | | |
| September | dry | \|0.0-0.0-0.0|0 | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| November | moist | \|0.0-0.0-0.0| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| December | moist | \|0.0-0.0-0.0| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |

Hamar (2 percent of the map unit)

| Month | $\begin{aligned} & \mid \text { Moisture } \mid \\ & \mid \text { status } \end{aligned}$ | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding
 frequency | Flooding duration | Ponding
 frequency | $\|$Ponding
 duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0 | 2.0-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | \|2.0-2.5-4.9| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0|2 | 2.5-3.3-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.5-3.3-5.7|6 | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0 | 1.6-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.6-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0 | 0.0-0.5-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.0-0.5-2.5| | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0 | 0.5-1.3-3.3\| | none | --- | occasional | \|very brief| | 0.0-0.3-0.5 |
| | wet | \|0.5-1.3-3.3| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 0.8-1.6-4.1\| | none | --- | rare | \mid very brief | 0.0-0.3-0.5 |
| | wet | \|0.8-1.6-4.1| | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 1.6-3.3-4.9 | none | --- | none | --- | --- |
| | wet | 1.6-3.3-4.9 | 6.7-6.7-6.7\| | | | | | |
| August | moist | 0.0-0.0-0.0 | 2.5-4.9-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.5-4.9-5.7| | 6.7-6.7-6.7\| | | | | | |
| September\| | moist | \|0.0-0.0-0.0|1 | 1.3-3.0-4.9\| | none | --- | none | --- | --- |
| | wet | 1.3-3.0-4.9 | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 1.0-2.1-4.1\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | \|1.0-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0|0. | 0.8-1.6-3.3\| | none | --- | none | --- | --- |
| | wet | \|0.8-1.6-3.3| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 1.3-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.3-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |

I40F Maddock loamy fine sand, 12 to 30 percent slopes
Maddock (90 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \text { L - R - H } \end{aligned}$ | | |
|---|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0 | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| February | moist | \|0.0-0.0-0.0| | \|6.7-6.7-6.7| | none | --- | none | --- | --- |
| March | moist | \|0.0-0.0-0.0| | \|6.7-6.7-6.7| | none | --- | none | --- | --- |
| April | moist | \|0.0-0.0-0.0| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| May | moist | 0.0-0.0-0.0 | \|6.7-6.7-6.7| | none | --- | none | --- | --- |
| June | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | 6.7-6.7-6.7\| | | | | | |
| July | dry | 0.0-0.0-0.0 | 0.0-0.0-0.7\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.7| | 6.7-6.7-6.7\| | | | | | |
| August | dry | 0.0-0.0-0.0 | 0.0-0.0-1.0\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-1.0| | 6.7-6.7-6.7\| | | | | | |
| September | dry | \|0.0-0.0-0.0| | 0.0-0.0-1.0\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-1.0| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| November | moist | \|0.0-0.0-0.0| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| December | moist | \|0.0-0.0-0.0| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |

Flaming (5 percent of the map unit)

Sandberg (5 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0\| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| February | moist | 0.0-0.0-0.0\| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| March | moist | 0.0-0.0-0.0\| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| April | moist | 0.0-0.0-0.0\| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| May | moist | 0.0-0.0-0.0\| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| June | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | 6.7-6.7-6.7\| | | | | | |
| July | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.7\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.7\| | 6.7-6.7-6.7\| | | | | | |
| August | dry | 0.0-0.0-0.0\| | 0.0-0.0-1.0\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-1.0\| | 6.7-6.7-6.7\| | | | | | |
| September | dry | 0.0-0.0-0.0\| | 0.0-0.0-1.0\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-1.0\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| November | moist | 0.0-0.0-0.0\| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| December | moist | 0.0-0.0-0.0\| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |

I41A Markey muck, 0 to 1 percent slopes
Markey (80 percent of the map unit)

I41A (continued)
Deerwood (12 percent of the map unit)

| Month | Moisture status | Top depth $\mathrm{L}-\mathrm{R}-\mathrm{H}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \text { L - R - H } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0 | 0.8-1.6-3.3\| | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | 0.8-1.6-3.3 | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 1.6-2.5-4.1\| | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | 1.6-2.5-4.1\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0\| | 0.0-0.0-2.5\| | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-2.5\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 0.0-0.0-0.8 | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-0.8\| | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0\| | 0.0-0.0-1.3\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-1.3\| | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0 | 0.0-0.5-1.6\| | none | --- | frequent | brief | 0.0-0.5-1.0 |
| | wet | 0.0-0.5-1.6\| | 6.7-6.7-6.7\| | | | | | |
| July | moist | 0.0-0.0-0.0 | 0.2-0.8-2.5\| | none | --- | rare | very brief | 10.0-0.3-0.5 |
| | wet | 0.2-0.8-2.5\| | 6.7-6.7-6.7\| | | | | | |
| August | moist | 0.0-0.0-0.0\| | 0.8-1.6-3.3\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | 0.8-1.6-3.3\| | 6.7-6.7-6.7\| | | | | | |
| September | moist | 0.0-0.0-0.0\| | 0.5-1.3-3.0\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.5-1.3-3.0\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 0.3-0.8-2.5\| | none | --- | occasional | brief | 0.0-0.5-1.0 |
| | wet | 0.3-0.8-2.5\| | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0\| | 0.0-0.3-1.6\| | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.3-1.6\| | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 0.5-1.3-2.5\| | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | 0.5-1.3-2.5\| | 6.7-6.7-6.7\| | | | | | |

Berner (2 percent of the map unit)

| Month | \|Moisture
 status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \text { L }-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 0.5-1.3-3.3\| | none | --- | \|occasional | long | 0.0-0.3-0.5 |
| | wet | $\|0.5-1.3-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0|1 | 1.3-2.1-4.1\| | none | --- | \|occasional | long | 0.0-0.3-0.5 |
| | wet | $\|1.3-2.1-4.1\| 6$ | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0|0 | 0.0-0.0-2.5\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | $\|0.0-0.0-2.5\| 6$ | 6.7-6.7-6.7\| | | | | | |
| April | moist | $\|0.0-0.0-0.0\|$ | 0.0-0.0-0.8\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | $\|0.0-0.0-0.8\|$ | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.0-0.0-1.3\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | 10.0-0.0-1.3 | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 0.0-0.0-1.6\| | none | --- | \|occasional | brief | 10.0-0.5-1.0 |
| | wet | \|0.0-0.0-1.6| | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 0.2-0.8-2.5\| | none | --- | rare | very brief | 10.0-0.3-0.5 |
| | wet | \|0.2-0.8-2.5| | 6.7-6.7-6.7\| | | | | | |
| August | moist | $\|0.0-0.0-0.0\| 0$ | 0.8-1.6-3.3\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | $\|0.8-1.6-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| September | moist | $\|0.0-0.0-0.0\|$ | 0.3-1.1-3.0\| | none | --- | rare | brief | 10.0-0.3-0.5 |
| | wet | $\|0.3-1.1-3.0\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 0.2-0.5-2.5\| | none | --- | \|occasional | brief | 10.0-0.3-0.5 |
| | wet | $\|0.2-0.5-2.5\| 6$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.0-0.3-1.6\| | none | --- | \|occasional | long | 10.0-0.3-0.5 |
| | wet | $\|0.0-0.3-1.6\| 6$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0|0. | 0.5-0.8-2.5\| | none | --- | \|occasional | long | 0.0-0.3-0.5 |
| | wet | $\|0.5-0.8-2.5\| 6$ | 6.7-6.7-6.7\| | | | | | |

I41A (continued)
Hamar (2 percent of the map unit)

| Month | \|Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 2.0-2.5-4.9 | none | --- | none | --- | --- |
| | wet | \| 2.0-2.5-4.9| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 2.5-3.3-5.7\| | none | --- | none | --- | --- |
| | wet | \| 2.5-3.3-5.7| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 1.6-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.6-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 0.0-0.5-2.5\| | none | --- | \|occasional | brief | 0.0-0.3-0.5 |
| | wet | $\|0.0-0.5-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.5-1.3-3.3\| | none | --- | \|occasional | very brief | 0.0-0.3-0.5 |
| | wet | \|0.5-1.3-3.3| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 0.8-1.6-4.1\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | $\|0.8-1.6-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 1.6-3.3-4.9 | none | --- | none | --- | --- |
| | wet | \|1.6-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 2.5-4.9-5.7\| | none | --- | none | --- | --- |
| | wet | \| 2.5-4.9-5.7| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 1.3-3.0-4.9 | none | --- | none | --- | --- |
| | wet | $\|1.3-3.0-4.9\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 1.0-2.1-4.1 | none | --- | rare | very brief\| | 0.0-0.3-0.5 |
| | wet | \|1.0-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | none | --- | --- |
| | wet | \|0.8-1.6-3.3| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 1.3-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.3-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |

Seelyeville (2 percent of the map unit)

| Month | \|Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \text { L }-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{gathered} \text { Ponding } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 0.5-1.0-3.3\| | none | --- | \|occasional | long | 0.0-0.3-0.5 |
| | wet | 0.5-1.0-3.3 | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0 | 1.3-1.6-4.1\| | none | --- | \|occasional | long | 0.0-0.3-0.5 |
| | wet | \|1.3-1.6-4.1| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0 | 0.0-0.0-2.5\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-2.5 | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0 | 0.0-0.0-0.8 | none | --- | frequent | long | \|0.0-0.5-1.0 |
| | wet | 0.0-0.0-0.8 | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0 | 0.0-0.0-1.3\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-1.3 | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0 | 0.0-0.3-1.6\| | none | --- | frequent | brief | 0.0-0.5-1.0 |
| | wet | \|0.0-0.3-1.6| | 6.7-6.7-6.7\| | | | | | |
| July | moist | 0.0-0.0-0.0 | 0.0-0.8-2.5\| | none | --- | \|occasional | very brief\| | 0.0-0.3-0.5 |
| | wet | \|0.0-0.8-2.5| | 6.7-6.7-6.7\| | | | | | |
| August | moist | 0.0-0.0-0.0 | 0.5-1.6-3.3\| | none | --- | \|occasional | very brief | 0.0-0.3-0.5 |
| | wet | 0.5-1.6-3.3 | 6.7-6.7-6.7\| | | | | | |
| September | moist | 0.0-0.0-0.0 | 0.3-1.1-3.0\| | none | --- | \|occasional | very brief\| | 0.0-0.3-0.5 |
| | wet | 0.3-1.1-3.0 | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0 | 0.0-0.5-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.0-0.5-2.5| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.0-0.3-1.6\| | none | --- | \|occasional | long | 10.0-0.3-0.5 |
| | wet | \|0.0-0.3-1.6| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 0.5-0.8-2.5\| | none | --- | \|occasional | long | 0.0-0.3-0.5 |
| | wet | \|0.5-0.8-2.5| | 6.7-6.7-6.7\| | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
141A (continued)
Syrene (2 percent of the map unit)

I42A Markey muck, ponded, 0 to 1 percent slopes
Markey, ponded (85 percent of the map unit)

| | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Month | Moisture | Top | Bottom | Flooding | Flooding | Ponding | Ponding duration | $\begin{gathered} \text { Ponding } \\ \text { depth } \\ L-R-H \end{gathered}$ |
| | status | depth | depth | frequency | duration | frequency | | |
| | | L - R - H | L - R H | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| January | wet | 0.0-0.0-0.0 | 6.7-6.7-6.7\| | none | --- | frequent | very long | 0.0-1.0-4.0 |
| February | wet | 0.0-0.0-0.0 | 6.7-6.7-6.7\| | none | --- | frequent | very long | 0.0-1.0-4.0 |
| March | wet | 0.0-0.0-0.0 | 6.7-6.7-6.7\| | none | --- | frequent | very long | 0.0-1.0-4.0 |
| April | wet | 0.0-0.0-0.0 | 6.7-6.7-6.7\| | none | --- | frequent | very long | 0.0-1.0-4.0 |
| May | wet | 0.0-0.0-0.0 | 6.7-6.7-6.7\| | none | --- | frequent | very long | 0.0-1.0-4.0 |
| June | wet | 0.0-0.0-0.0 | 6.7-6.7-6.7\| | none | --- | frequent | very long | 0.0-1.0-4.0 |
| July | wet | 0.0-0.0-0.0 | 6.7-6.7-6.7\| | none | --- | frequent | very long | 0.0-1.0-4.0 |
| August | wet | $\|0.0-0.0-0.0\|$ | 6.7-6.7-6.7\| | none | --- | frequent | very long | 0.0-1.0-4.0 |
| September | wet | $\|0.0-0.0-0.0\|$ | 6.7-6.7-6.7\| | none | --- | frequent | very long | 0.0-1.0-4.0 |
| October | wet | \|0.0-0.0-0.0 | 6.7-6.7-6.7\| | none | --- | frequent | very long | 0.0-1.0-4.0 |
| November | wet | $\|0.0-0.0-0.0\|$ | 6.7-6.7-6.7\| | none | --- | frequent | very long | 0.0-1.0-4.0 |
| December | wet | $\|0.0-0.0-0.0\|$ | 6.7-6.7-6.7\| | none | --- | frequent | very long | 0.0-1.0-4.0 |
| | | | | | | | | |

I42A (continued)
Markey (5 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0\| | 0.5-1.3-3.3\| | none | --- | \|occasional | long | 0.0-0.3-0.5 |
| | wet | 0.5-1.3-3.3\| | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 1.3-2.1-4.1\| | none | --- | \|occasional | long | 0.0-0.3-0.5 |
| | wet | 1.3-2.1-4.1\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0\| | 0.0-0.0-2.5\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-2.5\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\|0 | 0.0-0.0-0.8 | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-0.8 | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0\| | 0.0-0.0-1.3\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-1.3 | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0\| | 0.0-0.0-1.6\| | none | --- | \|occasional | brief | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-1.6\| | 6.7-6.7-6.7\| | | | | | |
| July | moist | 0.0-0.0-0.0\| | 0.2-0.8-2.5\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | 0.2-0.8-2.5\| | 6.7-6.7-6.7\| | | | | | |
| August | moist | 0.0-0.0-0.0\|0 | 0.8-1.6-3.3\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | 0.8-1.6-3.3\| | 6.7-6.7-6.7\| | | | | | |
| September | moist | 0.0-0.0-0.0\|0 | 0.3-1.1-3.0\| | none | --- | rare | brief | 0.0-0.3-0.5 |
| | wet | 0.3-1.1-3.0\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 0.2-0.5-2.5\| | none | --- | \|occasional | brief | 10.0-0.3-0.5 |
| | wet | 0.2-0.5-2.5\| | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0\|0 | 0.0-0.3-1.6\| | none | --- | \|occasional | long | 0.0-0.3-0.5 |
| | wet | 0.0-0.3-1.6\| | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 0.5-0.8-2.5\| | none | | \|occasional | long | 0.0-0.3-0.5 |
| | wet | 0.5-0.8-2.5 | 6.7-6.7-6.7 | | | | | |

Deerwood (4 percent of the map unit)

| Month | $\begin{aligned} & \mid \text { Moisture\| } \\ & \mid \text { status } \mid \end{aligned}$ | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 10.0-0.0-0.0 | 0.8-1.6-3.3\| | none | --- | \|occasional | long | 10.0-0.5-1.0 |
| | wet | \|0.8-1.6-3.3 | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0 | 1.6-2.5-4.1\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|1.6-2.5-4.1 | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0 | 0.0-0.0-2.5\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-2.5| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0 | 0.0-0.0-0.8\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | 10.0-0.0-0.8 | 6.7-6.7-6.7\| | | | | | |
| May | moist | 10.0-0.0-0.0 | 0.0-0.0-1.3\| | none | --- | frequent | long | 10.0-0.5-1.0 |
| | wet | 0.0-0.0-1.3 | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0 | 0.0-0.5-1.6\| | none | --- | frequent | brief | 10.0-0.5-1.0 |
| | wet | 0.0-0.5-1.6 | 6.7-6.7-6.7\| | | | | | |
| July | moist | 0.0-0.0-0.0 | 0.2-0.8-2.5\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | \|0.2-0.8-2.5 | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | $\|0.8-1.6-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| September | moist | 0.0-0.0-0.0 | 0.5-1.3-3.0\| | none | --- | \|occasional | brief | 10.0-0.3-0.5 |
| | wet | 0.5-1.3-3.0 | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0 | 0.3-0.8-2.5\| | none | --- | \|occasional | brief | 10.0-0.5-1.0 |
| | wet | $\|0.3-0.8-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0 | 0.0-0.3-1.6\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.3-1.6 | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0 | 0.5-1.3-2.5\| | none | --- | \|occasional | long | 10.0-0.5-1.0 |
| | wet | $\|0.5-1.3-2.5\|$ | 6.7-6.7-6.7\| | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I42A (continued)
Seelyeville, ponded (4 percent of the map unit)

| Month | \|Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \text { L - R - H } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | wet | 10.0-0.0-0.0 | 6.7-6.7-6.7\| | none | --- | frequent | \|very long | 0.0-1.0-4.0 |
| February | wet | 10.0-0.0-0.0 | 6.7-6.7-6.7\| | none | --- | frequent | \|very long | 10.0-1.0-4.0 |
| March | wet | 10.0-0.0-0.0 | 6.7-6.7-6.7\| | none | --- | frequent | \|very long | 0.0-1.0-4.0 |
| April | wet | 10.0-0.0-0.0 | 6.7-6.7-6.7\| | none | --- | frequent | \|very long | 0.0-1.0-4.0 |
| May | wet | 10.0-0.0-0.0 | 6.7-6.7-6.7\| | none | --- | frequent | \|very long | 0.0-1.0-4.0 |
| June | wet | 0.0-0.0-0.0 | 6.7-6.7-6.7\| | none | --- | frequent | \|very long | 0.0-1.0-4.0 |
| July | wet | 10.0-0.0-0.0 | 6.7-6.7-6.7\| | none | | frequent | \|very long | 0.0-1.0-4.0 |
| August | wet | 10.0-0.0-0.0 | 6.7-6.7-6.7\| | none | --- | frequent | \|very long | 0.0-1.0-4.0 |
| September\| | wet | \|0.0-0.0-0.0 | 6.7-6.7-6.7\| | none | --- | frequent | \|very long | \|0.0-1.0-4.0 |
| October | wet | 10.0-0.0-0.0 | 6.7-6.7-6.7\| | none | --- | frequent | \|very long | \|0.0-1.0-4.0 |
| November | wet | 10.0-0.0-0.0 | 6.7-6.7-6.7\| | none | --- | frequent | \|very long | 0.0-1.0-4.0 |
| December | wet | 10.0-0.0-0.0 | 6.7-6.7-6.7\| | none | --- | frequent | \|very long | 0.0-1.0-4.0 |

Hamar (1 percent of the map unit)

| Month | $\begin{aligned} & \mid \text { Moisture } \mid \\ & \mid \text { status } \mid \end{aligned}$ | $\left\lvert\, \begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}\right.$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0 | 2.0-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | \| 2.0-2.5-4.9| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 2.5-3.3-5.7\| | none | --- | none | --- | --- |
| | wet | \| 2.5-3.3-5.7| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 1.6-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | $\|1.6-2.1-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 0.0-0.5-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | $\|0.0-0.5-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.5-1.3-3.3\| | none | --- | occasional | very brief | 0.0-0.3-0.5 |
| | wet | $\|0.5-1.3-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| June | moist | $\|0.0-0.0-0.0\|$ | 0.8-1.6-4.1\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | $\|0.8-1.6-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 1.6-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | $\|1.6-3.3-4.9\|$ | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 2.5-4.9-5.7\| | none | --- | none | --- | --- |
| | wet | $\|2.5-4.9-5.7\|$ | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 1.3-3.0-4.9\| | none | --- | none | --- | --- |
| | wet | $\|1.3-3.0-4.9\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | $\|0.0-0.0-0.0\|$ | 1.0-2.1-4.1\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | $\|1.0-2.1-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | $\|0.0-0.0-0.0\|$ | 0.8-1.6-3.3\| | none | --- | none | --- | --- |
| | wet | $\|0.8-1.6-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 1.3-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | $\|1.3-2.1-4.1\|$ | 6.7-6.7-6.7\| | | | | | |

Hangaard (1 percent of the map unit)

I43A Mavie fine sandy loam, 0 to 2 percent slopes
Mavie (70 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 1.6-3.0-4.1 | none | --- | none | -- | --- |
| | wet | \|1.6-3.0-4.1| | 6.7-6.7-6.7 | | | | | |
| February | moist | \|0.0-0.0-0.0| | 2.5-3.3-4.9 | none | --- | none | --- | --- |
| | wet | \| 2.5-3.3-4.9| | 6.7-6.7-6.7 | | | | | |
| March | moist | \|0.0-0.0-0.0| | 1.6-2.1-4.1 | none | --- | none | --- | --- |
| | wet | \|1.6-2.1-4.1| | 6.7-6.7-6.7 | | | | | |
| April | moist | \|0.0-0.0-0.0| | 0.0-0.5-2.5 | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | $\|0.0-0.5-2.5\|$ | 6.7-6.7-6.7 | | | | | |
| May | moist | $\|0.0-0.0-0.0\|$ | 0.5-0.8-3.3 | none | --- | occasional | \|very brief | 0.0-0.3-0.5 |
| | wet | \|0.5-0.8-3.3| | 6.7-6.7-6.7 | | | | | |
| June | moist | \|0.0-0.0-0.0| | 0.8-1.6-4.1 | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | $\|0.8-1.6-4.1\|$ | 6.7-6.7-6.7 | | | | | |
| July | moist | \|0.0-0.0-0.0| | 1.6-3.3-4.9 | none | --- | none | --- | --- |
| | wet | \|1.6-3.3-4.9| | 6.7-6.7-6.7 | | | | | |
| August | moist | \|0.0-0.0-0.0| | 2.5-4.1-5.7 | none | --- | none | --- | --- |
| | wet | \| 2.5-4.1-5.7| | 6.7-6.7-6.7 | | | | | |
| September | moist | \|0.0-0.0-0.0| | 1.6-3.3-4.9 | none | --- | none | --- | --- |
| | wet | \|1.6-3.3-4.9| | 6.7-6.7-6.7 | | | | | |
| October | moist | \|0.0-0.0-0.0| | 1.3-2.5-4.1 | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | $\|1.3-2.5-4.1\|$ | 6.7-6.7-6.7 | | | | | |
| November | moist | $\|0.0-0.0-0.0\|$ | 0.8-1.6-3.3 | none | --- | none | --- | --- |
| | wet | \|0.8-1.6-3.3| | 6.7-6.7-6.7 | | | | | |
| December | moist | \|0.0-0.0-0.0| | 1.3-2.1-3.8 | none | --- | none | --- | --- |
| | wet | \|1.3-2.1-3.8| | 6.7-6.7-6.7 | | | | | |

I43A (continued)
Vallers (10 percent of the map unit)

Strandquist (7 percent of the map unit)

Strathcona (5 percent of the map unit)

Strathcona, depressional (3 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I43A (continued)
Foxhome (2 percent of the map unit)

| Month | \|Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 4.8-5.4-6.7\| | none | --- | none | --- | --- |
| | wet | $\mid 4.8$-5.4-6.7\| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 5.2-5.7-6.7\| | none | --- | none | --- | --- |
| | wet | \| 5.2-5.7-6.7| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 3.3-4.6-6.7\| | none | --- | none | --- | --- |
| | wet | $\|3.3-4.6-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 1.3-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | \|1.3-2.5-4.9| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 2.0-3.0-5.6\| | none | --- | none | --- | --- |
| | wet | $\|2.0-3.0-5.6\|$ | 6.7-6.7-6.7\| | | | | | |
| June | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.5\| | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.5\|$ | 2.6-3.6-6.2\| | | | | | |
| | wet | $\mid 2.6$-3.6-6.2\| | 6.7-6.7-6.7\| | | | | | |
| July | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.7\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.7| | 3.9-5.4-6.7\| | | | | | |
| | wet | $\|3.9-5.4-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| August | dry | $\|0.0-0.0-0.0\|$ | 0.0-0.0-1.0\| | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-1.0\|$ | 5.4-6.7-6.7\| | | | | | |
| | wet | \| 5.4-6.7-6.7| | 6.7-6.7-6.7\| | | | | | |
| September\| | dry | $\|0.0-0.0-0.0\|$ | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | 4.1-4.6-6.7\| | | | | | |
| | wet | \|4.1-4.6-6.7| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 3.6-3.9-6.7\| | none | --- | none | --- | --- |
| | wet | \| 3.6-3.9-6.7| | 6.7-6.7-6.7\| | | | | | |
| November | moist | $\|0.0-0.0-0.0\|$ | 2.5-3.3-5.7\| | none | --- | none | --- | --- |
| | wet | $\|2.5-3.3-5.7\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | $\|0.0-0.0-0.0\|$ | 3.9-4.6-6.2\| | none | --- | none | --- | --- |
| | wet | $\|3.9-4.6-6.2\|$ | 6.7-6.7-6.7\| | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I43A (continued)

Karlsruhe (2 percent of the map unit)

Grimstad (1 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0 | 2.5-3.8-5.7 | none | --- | none | --- | --- |
| | wet | 2.5-3.8-5.7 | 6.7-6.7-6.7 | | | | | |
| February | moist | 0.0-0.0-0.0 | 3.3-4.6-6.7 | none | --- | none | --- | --- |
| | wet | 3.3-4.6-6.7 | 6.7-6.7-6.7 | | | | | |
| March | moist | 0.0-0.0-0.0 | 2.5-3.0-5.7 | none | -- - | none | --- | --- |
| | wet | 2.5-3.0-5.7 | 6.7-6.7-6.7 | | | | | |
| April | moist | 0.0-0.0-0.0 | 0.8-1.5-3.3 | none | --- | none | --- | --- |
| | wet | 0.8-1.5-3.3 | 6.7-6.7-6.7 | | | | | |
| May | moist | 0.0-0.0-0.0 | 1.1-1.8-4.1 | none | --- | none | --- | --- |
| | wet | 1.1-1.8-4.1 | 6.7-6.7-6.7 | | | | | |
| June | moist | 0.0-0.0-0.0 | 1.6-3.3-4.9 | none | --- | none | --- | --- |
| | wet | 1.6-3.3-4.9 | 6.7-6.7-6.7 | | | | | |
| July | dry | 0.0-0.0-0.0 | 0.0-0.0-0.3 | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3 | 2.5-5.7-6.2 | | | | | |
| | wet | 2.5-5.7-6.2 | 6.7-6.7-6.7 | | | | | |
| August | dry | 0.0-0.0-0.0 | 0.0-0.0-0.5 | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.5 | 6.7-6.7-6.7 | | | | | |
| September | dry | 0.0-0.0-0.0 | 0.0-0.0-0.3 | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3 | 2.5-3.8-6.7 | | | | | |
| | wet | 2.5-3.8-6.7 | 6.7-6.7-6.7 | | | | | |
| October | moist | 0.0-0.0-0.0 | 2.0-3.0-5.6 | none | --- | none | --- | --- |
| | wet | 2.0-3.0-5.6 | 6.7-6.7-6.7 | | | | | |
| November | moist | 0.0-0.0-0.0 | 1.6-2.5-4.9 | none | --- | none | --- | --- |
| | wet | 1.6-2.5-4.9 | 6.7-6.7-6.7 | | | | | |
| December | moist | 0.0-0.0-0.0 | 2.0-3.3-5.4 | none | --- | none | --- | --- |
| | wet | 2.0-3.3-5.4 | 6.7-6.7-6.7 | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued

I44A Newfolden loam, 0 to 3 percent slopes
Newfolden (75 percent of the map unit)

| Month | \|Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0 | 4.1-5.4-6.7\| | none | --- | none | --- | --- |
| | wet | 4.1-5.4-6.7\| | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 4.9-5.9-6.7\| | none | --- | none | --- | --- |
| | wet | 4.9-5.9-6.7\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0 | 3.3-4.9-6.7\| | none | --- | none | --- | --- |
| | wet | 3.3-4.9-6.7\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 1.6-2.5-4.1\| | none | --- | none | --- | --- |
| | wet | 1.6-2.5-4.1\| | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0 | 2.1-2.8-4.9\| | none | --- | none | --- | --- |
| | wet | 2.1-2.8-4.9 | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0 | 2.6-3.1-5.7\| | none | --- | none | --- | --- |
| | wet | 2.6-3.1-5.7\| | 6.7-6.7-6.7\| | | | | | |
| July | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | 3.3-5.7-6.7\| | | | | | |
| | wet | 3.3-5.7-6.7\| | 6.7-6.7-6.7\| | | | | | |
| August | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.5\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.5\| | 4.9-6.7-6.7\| | | | | | |
| | wet | 4.9-6.7-6.7\| | 6.7-6.7-6.7\| | | | | | |
| September | dry | 0.0-0.0-0.0 | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | 3.6-4.9-6.7\| | | | | | |
| | wet | 3.6-4.9-6.7\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 3.0-4.3-5.7\| | none | --- | none | --- | --- |
| | wet | 3.0-4.3-5.7\| | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0\| | 2.3-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | 2.3-3.3-4.9\| | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 3.3-4.6-5.7\| | none | --- | none | --- | --- |
| | wet | 3.3-4.6-5.7\| | 6.7-6.7-6.7\| | | | | | |

Smiley (12 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ L-R-H \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding
 frequency | Ponding duration | Ponding depth
 L - R - H |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0\| | 1.6-3.0-4.1 | none | --- | none | --- | --- |
| | wet | 1.6-3.0-4.1\| | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 2.5-3.3-4.9 | none | --- | none | --- | --- |
| | wet | 2.5-3.3-4.9\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0\| | 1.3-2.1-3.3 | none | --- | none | --- | --- |
| | wet | 1.3-2.1-3.3\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 0.0-0.5-2.5 | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.0-0.5-2.5\| | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0\| | 0.3-0.8-3.3 | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.3-0.8-3.3\| | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0\| | 0.7-1.3-4.1\| | none | --- | occasional | very brief | 0.0-0.3-0.5 |
| | wet | 0.7-1.3-4.1\| | 6.7-6.7-6.7\| | | | | | |
| July | moist | 0.0-0.0-0.0\| | 1.6-3.0-4.9 | none | --- | none | --- | --- |
| | wet | 1.6-3.0-4.9\| | 6.7-6.7-6.7\| | | | | | |
| August | moist | 0.0-0.0-0.0\| | 2.5-3.8-5.7\| | none | --- | none | -- - | -- - |
| | wet | 2.5-3.8-5.7\| | 6.7-6.7-6.7\| | | | | | |
| September | moist | 0.0-0.0-0.0\| | 2.0-3.3-4.9\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | 2.0-3.3-4.9\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 1.3-1.6-4.1\| | none | -- - | rare | very brief | 0.0-0.3-0.5 |
| | wet | 1.3-1.6-4.1\| | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0\| | 0.8-1.3-3.3\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.8-1.3-3.3\| | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 1.3-2.1-3.8\| | none | --- | none | --- | --- |
| | wet | 1.3-2.1-3.8\| | 6.7-6.7-6.7\| | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I44A (continued)

Boash (8 percent of the map unit)

Linveldt (4 percent of the map unit)

| Month | Moisture status | Top depth $\mathrm{L}-\mathrm{R}-\mathrm{H}$ | Bottom depth
 L - R - H | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0 | 4.8-5.4-6.7 | none | --- | none | -- - | --- |
| | wet | 4.8-5.4-6.7\| | 6.7-6.7-6.7 | | | | | |
| February | moist | 0.0-0.0-0.0\| | 5.2-5.7-6.7\| | none | --- | none | -- - | --- |
| | wet | 5.2-5.7-6.7\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0\| | 3.3-4.6-6.7 | none | --- | none | --- | --- |
| | wet | 3.3-4.6-6.7\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 1.3-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | 1.3-2.5-4.9\| | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0\| | 2.0-3.0-5.6\| | none | --- | none | --- | --- |
| | wet | 2.0-3.0-5.6\| | 6.7-6.7-6.7\| | | | | | |
| June | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.5 | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.5\| | 2.6-3.6-6.2\| | | | | | |
| | wet | 2.6-3.6-6.2\| | 6.7-6.7-6.7\| | | | | | |
| July | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.7\| | none | -- - | none | --- | --- |
| | moist | 0.0-0.0-0.7\| | 3.9-5.4-6.7\| | | | | | |
| | wet | \|3.9-5.4-6.7| | 6.7-6.7-6.7\| | | | | | |
| August | dry | 0.0-0.0-0.0\| | 0.0-0.0-1.0\| | none | -- - | none | --- | --- |
| | moist | 0.0-0.0-1.0\| | 5.4-6.7-6.7\| | | | | | |
| | wet | 5.4-6.7-6.7\| | 6.7-6.7-6.7\| | | | | | |
| September | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | 4.1-4.6-6.7\| | | | | | |
| | wet | 4.1-4.6-6.7\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 3.6-3.9-6.7\| | none | --- | none | --- | --- |
| | wet | 3.6-3.9-6.7\| | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0\| | 2.5-3.3-5.7\| | none | -- - | none | --- | --- |
| | wet | 2.5-3.3-5.7\| | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 3.9-4.6-6.2\| | none | --- | none | --- | --- |
| | wet | \|3.9-4.6-6.2| | 6.7-6.7-6.7\| | | | | | |
| | | | | | | | | |

144A (continued)
Hapludolls (1 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \text { L - R - H } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| February | moist | 0.0-0.0-0.0\| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| March | moist | 0.0-0.0-0.0\| | 5.7-6.7-6.7\| | rare | brief | none | --- | --- |
| | wet | 5.7-6.7-6.7\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 4.9-6.7-6.7\| | rare | brief | none | --- | --- |
| | wet | 4.9-6.7-6.7\| | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0\| | 5.7-6.7-6.7\| | rare | brief | none | --- | -- |
| | wet | 5.7-6.7-6.7\| | 6.7-6.7-6.7\| | | | | | |
| June | dry | 0.0-0.0-0.0 | 0.0-0.0-0.3\| | rare | very brief | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | 6.7-6.7-6.7\| | | | | | |
| July | dry | 0.0-0.0-0.0 | 0.0-0.0-0.5\| | very rare | very brief | none | --- | --- |
| | moist | 0.0-0.0-0.5\| | 6.7-6.7-6.7\| | | | | | |
| August | dry | 0.0-0.0-0.0 | 0.0-0.0-0.5\| | very rare | very brief | none | --- | --- |
| | moist | 0.0-0.0-0.5\| | 6.7-6.7-6.7\| | | | | | |
| September\| | dry | 0.0-0.0-0.0 | 0.0-0.0-0.5\| | rare | very brief | none | --- | --- |
| | moist | 0.0-0.0-0.5\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 6.7-6.7-6.7\| | rare | brief | none | --- | --- |
| November | moist | 0.0-0.0-0.0\| | 6.7-6.7-6.7\| | rare | brief | none | --- | --- |
| | wet | 5.7-6.7-6.7\| | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0 | 6.7-6.7-6.7\| | none | --- | none | --- | --- |

I45A Northwood muck, 0 to 1 percent slopes
Northwood (75 percent of the map unit)

I45A (continued)
Hamre (10 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | $\|0.8-1.6-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 1.6-2.5-4.1\| | none | --- | \|occasional | long | \|0.0-0.5-1.0 |
| | wet | $\|1.6-2.5-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 0.0-0.0-2.5\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | $\|0.0-0.0-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 0.0-0.0-0.8\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-0.8| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.0-0.0-1.3\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-1.3| | 6.7-6.7-6.7\| | | | | | |
| June | moist | $\|0.0-0.0-0.0\|$ | 0.0-0.5-1.6\| | none | --- | frequent | brief | 0.0-0.5-1.0 |
| | wet | $\|0.0-0.5-1.6\|$ | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 0.2-0.8-2.5\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | $\|0.2-0.8-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | $\|0.8-1.6-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 0.5-1.3-3.0\| | none | --- | \|occasional | brief | 10.0-0.3-0.5 |
| | wet | \|0.5-1.3-3.0| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 0.3-0.8-2.5\| | none | --- | \|occasional | brief | \|0.0-0.5-1.0 |
| | wet | $\|0.3-0.8-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.0-0.3-1.6\| | none | --- | \|occasional | long | 10.0-0.5-1.0 |
| | wet | $\|0.0-0.3-1.6\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 0.5-1.3-2.5\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.5-1.3-2.5| | 6.7-6.7-6.7\| | | | | | |

Berner (5 percent of the map unit)

I45A (continued)
Kratka (5 percent of the map unit)

Strandquist (3 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I45A (continued)
Roliss (2 percent of the map unit)

I46A Pits, gravel and sand
Pits (85 percent of the map unit) (not applicable)
Udipsamments (10 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| February | moist | \|0.0-0.0-0.0| | 6.7-6.7-6.7\| | none | --- | none | --- | |
| March | moist | \|0.0-0.0-0.0| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| April | moist | \|0.0-0.0-0.0| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| May | moist | \|0.0-0.0-0.0| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| June | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.7\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.7| | 6.7-6.7-6.7\| | | | | | |
| July | dry | \|0.0-0.0-0.0| | 0.0-0.0-1.0\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-1.0| | 6.7-6.7-6.7\| | | | | | |
| August | dry | \|0.0-0.0-0.0| | 0.0-0.0-1.3\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-1.3| | 6.7-6.7-6.7\| | | | | | |
| September | dry | \|0.0-0.0-0.0| | 0.0-0.0-1.0\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-1.0| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| November | moist | \|0.0-0.0-0.0| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| December | moist | \|0.0-0.0-0.0| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I46A (continued)
Radium (2 percent of the map unit)

Maddock (1 percent of the map unit)

| Month | Moisture status | Top depth $L-R-H$ | ```Bottom depth L - R - H``` | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | ```Ponding depth L - R - H``` |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | |
| January | moist | 0.0-0.0-0.0 | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| February | moist | 0.0-0.0-0.0 | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| March | moist | 0.0-0.0-0.0 | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| April | moist | 0.0-0.0-0.0 | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| May | moist | 0.0-0.0-0.0 | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| June | dry | 0.0-0.0-0.0 | 0.0-0.2-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.2-0.3 | 6.7-6.7-6.7\| | | | | | |
| July | dry | 0.0-0.0-0.0 | 0.0-0.3-0.7\| | none | --- | none | --- | --- |
| | moist | 0.0-0.3-0.7 | 6.7-6.7-6.7\| | | | | | |
| August | dry | 0.0-0.0-0.0 | 0.0-0.7-1.0\| | none | --- | none | --- | --- |
| | moist | 0.0-0.7-1.0 | \| $6.7-6.7-6.7 \mid$ | | | | | |
| September | dry | 0.0-0.0-0.0 | 0.0-0.5-1.0\| | none | --- | none | --- | --- |
| | moist | 0.0-0.5-1.0 | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0 | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| November | moist | 0.0-0.0-0.0\| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| December | moist | 0.0-0.0-0.0 | 6.7-6.7-6.7\| | none | - | none | -- | - |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I46A (continued)
Marquette (1 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0\|6. | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| February | moist | 0.0-0.0-0.0\|6. | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| March | moist | 0.0-0.0-0.0\|6. | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| April | moist | 0.0-0.0-0.0\|6. | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| May | moist | 0.0-0.0-0.0\|6. | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| June | dry | 0.0-0.0-0.0\|0. | 0.0-0.0-0.7\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.7\|6. | 6.7-6.7-6.7\| | | | | | |
| July | dry | 0.0-0.0-0.0\| | 0.0-0.0-1.0\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-1.0\|6. | 6.7-6.7-6.7\| | | | | | |
| August | dry | 0.0-0.0-0.0\|0. | 0.0-0.0-1.1\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-1.1\|6. | 6.7-6.7-6.7\| | | | | | |
| September | dry | 0.0-0.0-0.0\|0. | 0.0-0.0-1.0\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-1.0\|6. | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\|6. | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| November | moist | 0.0-0.0-0.0\|6. | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| December | moist | 0.0-0.0-0.0\|6. | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.0\|6. | 6.7-6.7-6.7\| | | | | | |

Sandberg (1 percent of the map unit)

| | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|
| Month | Moisture | Top | Bottom | Flooding | Flooding | Ponding | Ponding duration | Ponding depth |
| | status | depth | depth | frequency | duration | frequency | | |
| | | L - R - H | L - R H | | | | | L - R - H |
| | | | | | | | | |
| | | | | | | | | |
| January | moist | 0.0-0.0-0.0 | 6.7-6.7-6.7\| | none | --- | none | -- | - |
| February | moist | 0.0-0.0-0.0 | 6.7-6.7-6.7\| | none | - | none | --- | --- |
| March | moist | 0.0-0.0-0.0 | 6.7-6.7-6.7\| | none | - | none | -- | --- |
| April | moist | 0.0-0.0-0.0 | \|6.7-6.7-6.7| | none | - | none | --- | --- |
| May | moist | 0.0-0.0-0.0 | \|6.7-6.7-6.7| | none | --- | none | - | - |
| June | dry | 0.0-0.0-0.0 | 0.0-0.0-0.3\| | none | -- - | none | --- | --- |
| | moist | 0.0-0.0-0.3 | \|6.7-6.7-6.7| | | | | | |
| July | dry | 0.0-0.0-0.0 | 0.0-0.0-0.7\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.7\| | \|6.7-6.7-6.7| | | | | | |
| August | dry | 0.0-0.0-0.0 | 0.0-0.0-1.0\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-1.0 | \|6.7-6.7-6.7| | | | | | |
| September\| | dry | 0.0-0.0-0.0\| | 0.0-0.0-1.0\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-1.0 | \|6.7-6.7-6.7| | | | | | |
| October | moist | 0.0-0.0-0.0 | 6.7-6.7-6.7\| | none | -- | none | -- | -- |
| November | moist | 0.0-0.0-0.0\| | 6.7-6.7-6.7\| | none | - | none | -- | --- |
| December | moist | 0.0-0.0-0.0 | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| | | | | | | | | |

147A Poppleton fine sand, 0 to 2 percent slopes

Poppleton (75 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \text { L - R - H } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0\| | 4.6-5.4-6.7\| | none | --- | none | --- | --- |
| | wet | 4.6-5.4-6.7\| | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 5.2-6.2-6.7\| | none | --- | none | --- | --- |
| | wet | 5.2-6.2-6.7\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0\| | 3.3-4.1-6.7\| | none | --- | none | --- | --- |
| | wet | 3.3-4.1-6.7\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 2.1-2.5-6.7\| | none | --- | none | --- | --- |
| | wet | 2.1-2.5-6.7\| | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0\| | 2.5-2.8-5.7\| | none | --- | none | --- | --- |
| | wet | 2.5-2.8-5.7\| | 6.7-6.7-6.7\| | | | | | |
| June | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | 2.6-3.3-6.7\| | | | | | |
| | wet | 2.6-3.3-6.7\| | 6.7-6.7-6.7\| | | | | | |
| July | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.7\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.7\| | 6.7-6.7-6.7\| | | | | | |
| August | dry | 0.0-0.0-0.0\| | 0.0-0.0-1.0\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-1.0\| | 6.7-6.7-6.7\| | | | | | |
| September\| | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | 4.1-4.9-6.7\| | | | | | |
| | wet | 4.1-4.9-6.7\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 3.3-4.6-6.7\| | none | --- | none | --- | --- |
| | wet | 3.3-4.6-6.7\| | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0\| | 2.5-4.1-5.7\| | none | --- | none | --- | --- |
| | wet | 2.5-4.1-5.7\| | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 4.1-4.9-6.7\| | none | --- | none | --- | --- |
| | wet | 4.1-4.9-6.7\| | 6.7-6.7-6.7\| | | | | | |

Flaming (12 percent of the map unit)

I47A (continued)
Garborg (5 percent of the map unit)

Hamar (3 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I47A (continued)
Radium (2 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0\| | 4.9-5.4-6.7\| | none | --- | none | --- | --- |
| | wet | 4.9-5.4-6.7 | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 5.7-6.2-6.7\| | none | --- | none | --- | --- |
| | wet | 5.7-6.2-6.7\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0\| | 3.3-4.1-6.7\| | none | --- | none | --- | --- |
| | wet | 3.3-4.1-6.7 | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 2.1-3.0-4.9 | none | --- | none | --- | --- |
| | wet | 2.1-3.0-4.9 | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0 | 2.6-3.8-5.7\| | none | --- | none | --- | --- |
| | wet | 2.6-3.8-5.7 | 6.7-6.7-6.7\| | | | | | |
| June | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3 | 3.3-4.4-6.7\| | | | | | |
| | wet | 3.3-4.4-6.7 | 6.7-6.7-6.7\| | | | | | |
| July | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.7\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.7\| | 6.7-6.7-6.7\| | | | | | |
| August | dry | 0.0-0.0-0.0\| | 0.0-0.0-1.0\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-1.0 | 6.7-6.7-6.7\| | | | | | |
| September | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.7\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.7\| | 4.1-4.9-6.7\| | | | | | |
| | wet | 4.1-4.9-6.7 | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 3.3-4.6-6.7\| | none | --- | none | --- | --- |
| | wet | 3.3-4.6-6.7 | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0\| | 2.5-4.1-5.7\| | none | --- | none | --- | --- |
| | wet | 2.5-4.1-5.7 | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 4.1-4.9-6.7\| | none | --- | none | --- | -- |
| | wet | 4.1-4.9-6.7\| | 6.7-6.7-6.7\| | | | | | |

Ulen (2 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0\| | 2.6-3.3-5.9 | none | --- | none | --- | --- |
| | wet | 2.6-3.3-5.9\| | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 3.3-4.1-6.7\| | none | --- | none | --- | --- |
| | wet | 3.3-4.1-6.7\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0\| | 2.6-3.3-5.7\| | none | --- | none | --- | --- |
| | wet | 2.6-3.3-5.7\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 1.5-2.0-3.3\| | none | --- | none | --- | --- |
| | wet | 1.5-2.0-3.3\| | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0\| | 2. 0-2.5-4.1\| | none | --- | none | --- | --- |
| | wet | 2.0-2.5-4.1\| | 6.7-6.7-6.7\| | | | | | |
| June | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.3 | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | 2.5-3.0-4.9\| | | | | | |
| | wet | 2.5-3.0-4.9\| | \|6.7-6.7-6.7| | | | | | |
| July | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.5\| | none | --- | none | - - - | --- |
| | moist | 0.0-0.0-0.5\| | 3.0-4.9-6.2\| | | | | | |
| | wet | 3.0-4.9-6.2\| | 6.7-6.7-6.7\| | | | | | |
| August | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.7\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.7\| | 6.7-6.7-6.7\| | | | | | |
| September | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.5\| | none | --- | none | -- - | -- - |
| | moist | 0.0-0.0-0.5\| | 2.6-4.9-6.7 | | | | | |
| | wet | 2.6-4.9-6.7\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 2.3-3.0-5.7\| | none | -- - | none | -- - | --- |
| | wet | 2.3-3.0-5.7\| | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0\| | 2.0-2.5-4.9\| | none | --- | none | --- | -- - |
| | wet | 2.0-2.5-4.9\| | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 2.3-3.0-5.2\| | none | --- | none | --- | --- |
| | wet | 2.3-3.0-5.2\| | 6.7-6.7-6.7\| | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I47A (continued)
Maddock (1 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0\| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| February | moist | 0.0-0.0-0.0\| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| March | moist | 0.0-0.0-0.0\| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| April | moist | 0.0-0.0-0.0\| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| May | moist | 0.0-0.0-0.0\| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| June | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | 6.7-6.7-6.7\| | | | | | |
| July | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.7\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.7\| | 6.7-6.7-6.7\| | | | | | |
| August | dry | 0.0-0.0-0.0\| | 0.0-0.0-1.0\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-1.0\| | 6.7-6.7-6.7\| | | | | | |
| September | dry | 0.0-0.0-0.0\| | 0.0-0.0-1.0\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-1.0\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| November | moist | 0.0-0.0-0.0\| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |
| December | moist | 0.0-0.0-0.0\| | 6.7-6.7-6.7\| | none | --- | none | --- | --- |

I48A Radium loamy sand, 0 to 3 percent slopes
Radium (75 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I48A (continued)
Sandberg (7 percent of the map unit)

Oylen (5 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I48A (continued)
Flaming (4 percent of the map unit)

Garborg (3 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I48A (continued)
Hangaard (3 percent of the map unit)

Hamar (2 percent of the map unit)

I48A (continued)
Poppleton (1 percent of the map unit)

I49A Rauville silty clay loam, 0 to 2 percent slopes
Rauville (80 percent of the map unit)

I49A (continued)
Fluvaquents (12 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0 | 0.5-1.3-2.5 | none | --- | frequent | \|very long | 0.0-0.5-1.0 |
| | wet | 0.5-1.3-2.5 | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0 | 0.8-1.6-3.0\| | none | --- | frequent | \|very long | 0.0-0.5-1.0 |
| | wet | 0.8-1.6-3.0\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0 | 0.0-0.0-1.6\| | frequent | very long | frequent | \|very long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-1.6 | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0 | 0.0-0.0-0.8 | very frequent\| | very long | frequent | \|very long | \|0.0-0.7-1.3 |
| | wet | 0.0-0.0-0.8\| | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0\| | 0.0-0.0-1.3\| | \|very frequent| | long | frequent | \|very long | \|0.0-0.7-1.3 |
| | wet | 0.0-0.0-1.3 | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0 | 0.0-0.5-1.6\| | frequent | long | frequent | \|very long | \|0.0-0.5-1.0 |
| | wet | 0.0-0.5-1.6 | 6.7-6.7-6.7\| | | | | | |
| July | moist | 0.0-0.0-0.0 | 0.5-1.3-2.5\| | frequent | brief | occasional | long | 10.0-0.5-1.0 |
| | wet | 0.5-1.3-2.5\| | 6.7-6.7-6.7\| | | | | | |
| August | moist | 0.0-0.0-0.0\| | 0.8-1.6-3.0\| | frequent | brief | occasional | brief | \|0.0-0.5-1.0 |
| | wet | 0.8-1.6-3.0 | 6.7-6.7-6.7\| | | | | | |
| September | moist | 0.0-0.0-0.0\| | 0.5-1.3-2.5\| | frequent | long | occasional | brief | 10.0-0.5-1.0 |
| | wet | 0.5-1.3-2.5\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 0.3-0.8-2.0\| | frequent | long | occasional | long | 0.0-0.5-1.0 |
| | wet | 0.3-0.8-2.0 | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0 | 0.2-0.5-1.6\| | rare | long | \|occasional | long | 10.0-0.5-1.0 |
| | wet | 0.2-0.5-1.6\| | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0 | 0.3-0.8-2.0\| | none | --- | frequent | \|very long | 0.0-0.5-1.0 |
| | wet | 0.3-0.8-2.0 | 6.7-6.7-6.7\| | | | | | |

Water (5 percent of the map unit) (not applicable)
Lamoure (3 percent of the map unit)

I50A Reiner fine sandy loam, 0 to 3 percent slopes
Reiner (70 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 4.1-5.4-6.7\| | none | --- | none | --- | --- |
| | wet | \|4.1-5.4-6.7| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 4.9-5.9-6.7\| | none | --- | none | --- | --- |
| | wet | \|4.9-5.9-6.7| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 3.3-4.9-6.7\| | none | --- | none | --- | --- |
| | wet | \|3.3-4.9-6.7| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 1.6-2.5-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.6-2.5-4.1| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 2.1-2.8-4.9\| | none | --- | none | --- | --- |
| | wet | \|2.1-2.8-4.9| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 2.6-3.1-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.6-3.1-5.7| | 6.7-6.7-6.7\| | | | | | |
| July | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | 3.3-5.7-6.7\| | | | | | |
| | wet | \|3.3-5.7-6.7| | 6.7-6.7-6.7\| | | | | | |
| August | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.5\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.5| | 4.9-6.7-6.7\| | | | | | |
| | wet | \|4.9-6.7-6.7| | 6.7-6.7-6.7\| | | | | | |
| September | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | 3.6-4.9-6.7\| | | | | | |
| | wet | \|3.6-4.9-6.7| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 3.0-4.3-5.7\| | none | --- | none | --- | --- |
| | wet | \|3.0-4.3-5.7| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 2.3-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | \|2.3-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 3.3-4.6-5.7\| | none | --- | none | --- | --- |
| | wet | \|3.3-4.6-5.7| | 6.7-6.7-6.7\| | | | | | |

Smiley (12 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0 | 1.6-3.0-4.1\| | none | --- | none | --- | -- |
| | wet | 1.6-3.0-4.1\| | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 2.5-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | 2.5-3.3-4.9\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0\| | 1.3-2.1-3.3\| | none | --- | none | --- | --- |
| | wet | 1.3-2.1-3.3\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 0.0-0.5-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.0-0.5-2.5\| | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0\| | 0.3-0.8-3.3\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.3-0.8-3.3\| | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0\| | 0.7-1.3-4.1\| | none | --- | occasional | very brief | 0.0-0.3-0.5 |
| | wet | 0.7-1.3-4.1\| | 6.7-6.7-6.7\| | | | | | |
| July | moist | 0.0-0.0-0.0\| | 1.6-3.0-4.9\| | none | --- | none | --- | -- |
| | wet | 1.6-3.0-4.9 | 6.7-6.7-6.7\| | | | | | |
| August | moist | 0.0-0.0-0.0\| | 2.5-3.8-5.7\| | none | --- | none | --- | --- |
| | wet | 2.5-3.8-5.7\| | 6.7-6.7-6.7\| | | | | | |
| September | moist | 0.0-0.0-0.0\| | 2.0-3.3-4.9\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | 2.0-3.3-4.9\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0 | 1.3-1.6-4.1\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | 1.3-1.6-4.1 | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0 | 0.8-1.3-3.3\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.8-1.3-3.3 | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0 | 1.3-2.1-3.8\| | none | --- | none | --- | -- |
| | wet | 1.3-2.1-3.8 | 6.7-6.7-6.7\| | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I50A (continued)
Reiner, very cobbly (7 percent of the map unit)

| Month | \|Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \text { L - R - H } \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 4.1-5.4-6.7\| | none | --- | none | --- | --- |
| | wet | \|4.1-5.4-6.7| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 4.9-5.9-6.7\| | none | --- | none | --- | --- |
| | wet | \|4.9-5.9-6.7| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 3.3-4.9-6.7\| | none | --- | none | --- | --- |
| | wet | \|3.3-4.9-6.7| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 1.6-2.5-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.6-2.5-4.1| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 2.1-2.8-4.9\| | none | --- | none | --- | --- |
| | wet | \|2.1-2.8-4.9| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 2.6-3.1-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.6-3.1-5.7| | 6.7-6.7-6.7\| | | | | | |
| July | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | 3.3-5.7-6.7\| | | | | | |
| | wet | \|3.3-5.7-6.7| | 6.7-6.7-6.7\| | | | | | |
| August | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.5\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.5| | 4.9-6.7-6.7\| | | | | | |
| | wet | \|4.9-6.7-6.7| | 6.7-6.7-6.7\| | | | | | |
| September\| | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | 3.6-4.9-6.7\| | | | | | |
| | wet | \|3.6-4.9-6.7| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 3.0-4.3-5.7\| | none | --- | none | --- | --- |
| | wet | $\|3.0-4.3-5.7\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 2.3-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | \|2.3-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 3.3-4.6-5.7\| | none | --- | none | --- | --- |
| | wet | \|3.3-4.6-5.7| | 6.7-6.7-6.7\| | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I50A (continued)
Linveldt (5 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 4.8-5.4-6.7\| | none | --- | none | --- | --- |
| | wet | \|4.8-5.4-6.7| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 5.2-5.7-6.7\| | none | --- | none | --- | --- |
| | wet | \| 5.2-5.7-6.7| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 3.3-4.6-6.7\| | none | --- | none | --- | --- |
| | wet | \| 3.3-4.6-6.7| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 1.3-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | \|1.3-2.5-4.9| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 2.0-3.0-5.6\| | none | --- | none | --- | --- |
| | wet | \|2.0-3.0-5.6| | 6.7-6.7-6.7\| | | | | | |
| June | dry | \| 0.0-0.0-0.0|0 | 0.0-0.0-0.5\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.5| | 2.6-3.6-6.2\| | | | | | |
| | wet | \|2.6-3.6-6.2| | 6.7-6.7-6.7\| | | | | | |
| July | dry | \|0.0-0.0-0.0|0 | 0.0-0.0-0.7\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.7| | 3.9-5.4-6.7\| | | | | | |
| | wet | \| 3.9-5.4-6.7| | 6.7-6.7-6.7\| | | | | | |
| August | dry | \|0.0-0.0-0.0|0 | 0.0-0.0-1.0\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-1.0| | 5.4-6.7-6.7\| | | | | | |
| | wet | \| 5.4-6.7-6.7| | 6.7-6.7-6.7\| | | | | | |
| September\| | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | 4.1-4.6-6.7\| | | | | | |
| | wet | \|4.1-4.6-6.7| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 3.6-3.9-6.7\| | none | --- | none | --- | --- |
| | wet | \| 3.6-3.9-6.7| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 2.5-3.3-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.5-3.3-5.7| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 3.9-4.6-6.2\| | none | --- | none | --- | --- |
| | wet | $\|3.9-4.6-6.2\|$ | 6.7-6.7-6.7\| | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I50A (continued)
Eckvoll (3 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{gathered} \text { Ponding } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0 | \|4.6-5.4-6.7| | none | --- | none | --- | --- |
| | wet | 4.6-5.4-6.7 | \|6.7-6.7-6.7| | | | | | |
| February | moist | 0.0-0.0-0.0 | $\|4.9-5.7-6.7\|$ | none | --- | none | --- | --- |
| | wet | 4.9-5.7-6.7 | $\|6.7-6.7-6.7\|$ | | | | | |
| March | moist | 0.0-0.0-0.0 | $\|3.3-4.6-6.7\|$ | none | --- | none | --- | --- |
| | wet | 3.3-4.6-6.7 | \|6.7-6.7-6.7| | | | | | |
| April | moist | 0.0-0.0-0.0\| | $\|2.1-2.5-4.6\|$ | none | --- | none | --- | --- |
| | wet | 2.1-2.5-4.6 | $\|6.7-6.7-6.7\|$ | | | | | |
| May | moist | 0.0-0.0-0.0 | $\|2.6-3.1-5.2\|$ | none | --- | none | --- | --- |
| | wet | 2.6-3.1-5.2 | $\|6.7-6.7-6.7\|$ | | | | | |
| June | dry | 0.0-0.0-0.0 | $\|0.0-0.0-0.3\|$ | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3 | $\|2.6-3.8-6.2\|$ | | | | | |
| | wet | 2.6-3.8-6.2 | \mid 6.7-6.7-6.7\| | | | | | |
| July | dry | 0.0-0.0-0.0\| | $\|0.0-0.0-0.5\|$ | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.5\| | $\|3.8-4.9-6.7\|$ | | | | | |
| | wet | 3.8-4.9-6.7\| | $\|6.7-6.7-6.7\|$ | | | | | |
| August | dry | 0.0-0.0-0.0 | $\|0.0-0.0-0.8\|$ | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.8\| | $\|5.2-6.7-6.7\|$ | | | | | |
| | wet | 5.2-6.7-6.7\| | $\|6.7-6.7-6.7\|$ | | | | | |
| September | dry | 0.0-0.0-0.0\| | $\|0.0-0.0-0.3\|$ | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | $\|3.8-4.1-6.7\|$ | | | | | |
| | wet | 3.8-4.1-6.7\| | $\|6.7-6.7-6.7\|$ | | | | | |
| October | moist | 0.0-0.0-0.0\| | $\|3.3-3.8-6.7\|$ | none | --- | none | --- | --- |
| | wet | 3.3-3.8-6.7\| | $\|6.7-6.7-6.7\|$ | | | | | |
| November | moist | 0.0-0.0-0.0\| | $\|2.5-3.3-5.6\|$ | none | --- | none | --- | --- |
| | wet | 2.5-3.3-5.6\| | $\|6.7-6.7-6.7\|$ | | | | | |
| December | moist | 0.0-0.0-0.0\| | $\|3.8-4.1-6.2\|$ | none | --- | none | --- | --- |
| | wet | 3.8-4.1-6.2 | $\|6.7-6.7-6.7\|$ | | | | | |

Kratka (3 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued

I51A Reiner loamy fine sand, 0 to 3 percent slopes
Reiner (65 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Bottom depth
 L - R - H | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | Ponding depth
 L - R - H | | |
|---|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0 | \|4.1-5.4-6.7| | none | --- | none | --- | --- |
| | wet | \|4.1-5.4-6.7| | \|6.7-6.7-6.7| | | | | | |
| February | moist | 0.0-0.0-0.0 | \|4.9-5.9-6.7| | none | --- | none | --- | --- |
| | wet | \|4.9-5.9-6.7| | \|6.7-6.7-6.7| | | | | | |
| March | moist | 0.0-0.0-0.0 | $\|3.3-4.9-6.7\|$ | none | --- | none | --- | --- |
| | wet | \|3.3-4.9-6.7| | $\|6.7-6.7-6.7\|$ | | | | | |
| April | moist | \|0.0-0.0-0.0| | $\|1.6-2.5-4.1\|$ | none | --- | none | --- | --- |
| | wet | 1.6-2.5-4.1 | \|6.7-6.7-6.7| | | | | | |
| May | moist | \|0.0-0.0-0.0| | $\|2.1-2.8-4.9\|$ | none | --- | none | --- | --- |
| | wet | 2.1-2.8-4.9\| | \mid 6.7-6.7-6.7\| | | | | | |
| June | dry | 0.0-0.0-0.0 | $\|0.0-0.0-0.3\|$ | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | \|2.6-3.1-5.7| | | | | | |
| | wet | \|2.6-3.1-5.7| | $\|6.7-6.7-6.7\|$ | | | | | |
| July | dry | \|0.0-0.0-0.0|0. | $\|0.0-0.0-0.5\|$ | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.5|3 | \|3.3-5.7-6.7| | | | | | |
| | wet | $\|3.3-5.7-6.7\|$ | $\|6.7-6.7-6.7\|$ | | | | | |
| August | dry | \|0.0-0.0-0.0|0. | $\|0.0-0.0-0.7\|$ | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.7| | $\|4.9-6.7-6.7\|$ | | | | | |
| | wet | \|4.9-6.7-6.7| | $\|6.7-6.7-6.7\|$ | | | | | |
| September | dry | \|0.0-0.0-0.0|0. | $\|0.0-0.0-0.3\|$ | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | \|3.6-4.9-6.7| | | | | | |
| | wet | \|3.6-4.9-6.7| | $\|6.7-6.7-6.7\|$ | | | | | |
| October | moist | \|0.0-0.0-0.0| | $\|3.0-4.3-5.7\|$ | none | --- | none | --- | --- |
| | wet | 3.0-4.3-5.7 | \|6.7-6.7-6.7| | | | | | |
| November | moist | 0.0-0.0-0.0 | $\|2.3-3.3-4.9\|$ | none | --- | none | --- | --- |
| | wet | 2.3-3.3-4.9 | \|6.7-6.7-6.7| | | | | | |
| December | moist | 0.0-0.0-0.0 | \|3.3-4.6-5.7| | none | --- | none | --- | --- |
| | wet | \|3.3-4.6-5.7| | \|6.7-6.7-6.7| | | | | | |

Smiley (9 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0 | 1.6-3.0-4.1\| | none | --- | none | --- | -- |
| | wet | 1.6-3.0-4.1\| | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 2.5-3.3-4.9\| | none | --- | none | --- | -- |
| | wet | 2.5-3.3-4.9\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0\| | 1.3-2.1-3.3\| | none | --- | none | --- | --- |
| | wet | 1.3-2.1-3.3\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 0.0-0.5-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.0-0.5-2.5\| | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0\| | 0.3-0.8-3.3\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.3-0.8-3.3\| | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0\| | 0.7-1.3-4.1\| | none | --- | occasional | very brief | 0.0-0.3-0.5 |
| | wet | 0.7-1.3-4.1\| | 6.7-6.7-6.7\| | | | | | |
| July | moist | 0.0-0.0-0.0\| | 1.6-3.0-4.9 | none | --- | none | --- | -- |
| | wet | 1.6-3.0-4.9\| | 6.7-6.7-6.7\| | | | | | |
| August | moist | 0.0-0.0-0.0\| | 2.5-3.8-5.7\| | none | --- | none | | -- |
| | wet | 2.5-3.8-5.7\| | 6.7-6.7-6.7\| | | | | | |
| September | moist | 0.0-0.0-0.0\| | 2.0-3.3-4.9 | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | 2.0-3.3-4.9\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 1.3-1.6-4.1\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | 1.3-1.6-4.1\| | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0\| | 0.8-1.3-3.3\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.8-1.3-3.3\| | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 1.3-2.1-3.8\| | none | --- | none | --- | --- |
| | wet | 1.3-2.1-3.8\| | 6.7-6.7-6.7\| | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I51A (continued)
Reiner fine sandy loam (8 percent of the map unit)

Linveldt (7 percent of the map unit)

| Month | $\begin{array}{\|} \mid \text { Moisture } \mid \\ \mid \text { status } \end{array}$ | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L} \quad \mathrm{R}-\mathrm{H} \end{gathered}$ | Bottom depth
 L - R - H | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | | |
|---|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0 | \|4.8-5.4-6.7| | none | --- | none | --- | --- |
| | wet | 4.8-5.4-6.7 | \|6.7-6.7-6.7| | | | | | |
| February | moist | 0.0-0.0-0.0 | \|5.2-5.7-6.7| | none | --- | none | --- | --- |
| | wet | \|5.2-5.7-6.7 | \|6.7-6.7-6.7| | | | | | |
| March | moist | 0.0-0.0-0.0 | $\|3.3-4.6-6.7\|$ | none | --- | none | --- | --- |
| | wet | \|3.3-4.6-6.7| | \|6.7-6.7-6.7| | | | | | |
| April | moist | 0.0-0.0-0.0 | 1.3-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | 1.3-2.5-4.9 | $\|6.7-6.7-6.7\|$ | | | | | |
| May | moist | \|0.0-0.0-0.0| | \|2.0-3.0-5.6| | none | --- | none | --- | --- |
| | wet | 2.0-3.0-5.6\| | \|6.7-6.7-6.7| | | | | | |
| June | dry | \|0.0-0.0-0.0|0 | $\|0.0-0.0-0.5\|$ | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.5| | \|2.6-3.6-6.2| | | | | | |
| | wet | \|2.6-3.6-6.2| | \|6.7-6.7-6.7| | | | | | |
| July | dry | \|0.0-0.0-0.0|0 | $\|0.0-0.0-0.7\|$ | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.7|3 | $\|3.9-5.4-6.7\|$ | | | | | |
| | wet | \|3.9-5.4-6.7| | \|6.7-6.7-6.7| | | | | | |
| August | dry | \|0.0-0.0-0.0|0 | $\|0.0-0.0-1.0\|$ | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-1.0| | \|5.4-6.7-6.7| | | | | | |
| | wet | \|5.4-6.7-6.7| | $\|6.7-6.7-6.7\|$ | | | | | |
| September | dry | \|0.0-0.0-0.0| | $\|0.0-0.0-0.3\|$ | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | \|4.1-4.6-6.7| | | | | | |
| | wet | \|4.1-4.6-6.7| | \|6.7-6.7-6.7| | | | | | |
| October | moist | \|0.0-0.0-0.0| | \|3.6-3.9-6.7| | none | --- | none | --- | --- |
| | wet | \|3.6-3.9-6.7| | $\|6.7-6.7-6.7\|$ | | | | | |
| November | moist | \|0.0-0.0-0.0| | $\|2.5-3.3-5.7\|$ | none | --- | none | --- | --- |
| | wet | \|2.5-3.3-5.7| | \|6.7-6.7-6.7| | | | | | |
| December | moist | 0.0-0.0-0.0\| | $\|3.9-4.6-6.2\|$ | none | --- | none | --- | --- |
| | wet | $\|3.9-4.6-6.2\|$ | $\|6.7-6.7-6.7\|$ | | | | | |

Kratka (5 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \text { L }-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0\| | 1.6-3.0-4.1\| | none | --- | none | --- | --- |
| | wet | 1.6-3.0-4.1\| | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 2.5-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | \|2.5-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 1.6-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | 1.6-2.1-4.1\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 0.0-0.5-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.0-0.5-2.5| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.5-0.8-3.3\| | none | --- | \|occasional | \|very brief | 0.0-0.3-0.5 |
| | wet | \|0.5-0.8-3.3| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 0.8-1.6-4.1\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | $\|0.8-1.6-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 1.6-3.3-4.9\| | none | --- | none | | --- |
| | wet | \|1.6-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 2.5-4.1-5.7\| | none | --- | none | --- | -- - |
| | wet | \|2.5-4.1-5.7| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 1.6-3.3-4.9\| | none | --- | none | | --- |
| | wet | \|1.6-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 1.3-2.5-4.1\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | 1.3-2.5-4.1 | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | \|0.8-1.6-3.3| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 1.3-2.1-3.8\| | none | --- | none | - | --- |
| | wet | \|1.3-2.1-3.8| | 6.7-6.7-6.7\| | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I51A (continued)
Eckvoll (3 percent of the map unit)

| Month | Moisture status | Top depth $\mathrm{L}-\mathrm{R}-\mathrm{H}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \text { L - R - H } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0\| | 4.6-5.4-6.7\| | none | --- | none | --- | --- |
| | wet | 4.6-5.4-6.7\|6. | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 4.9-5.7-6.7\| | none | --- | none | --- | --- |
| | wet | 4.9-5.7-6.7\|6.7 | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0\|3 | 3.3-4.6-6.7\| | none | --- | none | --- | --- |
| | wet | 3.3-4.6-6.7\|6. | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\|2 | 2.1-2.5-4.6\| | none | --- | none | --- | --- |
| | wet | 2.1-2.5-4.6\|6. | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0\| | 2.6-3.1-5.2\| | none | --- | none | --- | --- |
| | wet | 2.6-3.1-5.2\|6. | 6.7-6.7-6.7\| | | | | | |
| June | dry | 0.0-0.0-0.0\|0. | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3\|2 | 2.6-3.8-6.2\| | | | | | |
| | wet | 2.6-3.8-6.2\|6. | 6.7-6.7-6.7\| | | | | | |
| July | dry | 0.0-0.0-0.0\|0. | 0.0-0.0-0.5\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.5\|3 | 3.8-4.9-6.7\| | | | | | |
| | wet | 3.8-4.9-6.7\|6. | 6.7-6.7-6.7\| | | | | | |
| August | dry | 0.0-0.0-0.0\|0. | 0.0-0.0-0.8\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.8\|5 | 5.2-6.7-6.7\| | | | | | |
| | wet | 5.2-6.7-6.7\|6. | 6.7-6.7-6.7\| | | | | | |
| September\| | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3\|3 | 3.8-4.1-6.7\| | | | | | |
| | wet | 3.8-4.1-6.7\|6. | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\|3 | 3.3-3.8-6.7\| | none | --- | none | --- | --- |
| | wet | 3.3-3.8-6.7\|6. | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0\|2 | 2.5-3.3-5.6\| | none | --- | none | --- | --- |
| | wet | 2.5-3.3-5.6\|6. | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\|3. | 3.8-4.1-6.2\| | none | --- | none | --- | --- |
| | wet | 3.8-4.1-6.2\|6. | 6.7-6.7-6.7\| | | | | | |

I51A (continued)
Reiner, very cobbly (3 percent of the map unit)

| Month | Moisture status | Top depth
 L - R - H | Bottom depth
 L - R - H | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0\| | 4.1-5.4-6.7\| | none | --- | none | --- | --- |
| | wet | 4.1-5.4-6.7\| | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0 | 4.9-5.9-6.7\| | none | --- | none | --- | --- |
| | wet | 4.9-5.9-6.7\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0 | 3.3-4.9-6.7\| | none | -- - | none | -- - | --- |
| | wet | 3.3-4.9-6.7 | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 1.6-2.5-4.1\| | none | --- | none | --- | --- |
| | wet | 1.6-2.5-4.1\| | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0\| | 2.1-2.8-4.9\| | none | --- | none | -- - | --- |
| | wet | 2.1-2.8-4.9\| | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0 | 2.6-3.1-5.7\| | none | --- | none | --- | --- |
| | wet | $\|2.6-3.1-5.7\|$ | 6.7-6.7-6.7\| | | | | | |
| July | dry | 0.0-0.0-0.0 | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | 3.3-5.7-6.7\| | | | | | |
| | wet | \|3.3-5.7-6.7| | 6.7-6.7-6.7\| | | | | | |
| August | dry | \|0.0-0.0-0.0 | 0.0-0.0-0.5\| | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.5\|$ | 4.9-6.7-6.7\| | | | | | |
| | wet | \|4.9-6.7-6.7| | 6.7-6.7-6.7\| | | | | | |
| September | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.3\| | none | --- | none | -- - | --- |
| | moist | \|0.0-0.0-0.3| | 3.6-4.9-6.7\| | | | | | |
| | wet | \|3.6-4.9-6.7| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 3.0-4.3-5.7\| | none | --- | none | --- | --- |
| | wet | $\|3.0-4.3-5.7\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | $\|0.0-0.0-0.0\|$ | 2.3-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | $\|2.3-3.3-4.9\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 3.3-4.6-5.7\| | none | --- | none | --- | --- |
| | wet | \|3.3-4.6-5.7| | 6.7-6.7-6.7\| | | | | | |
| | | | | | | | | |

I52A Reis-Clearwater complex, 0 to 2 percent slopes
Reis (55 percent of the map unit)

| Month | Moisture status | | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{gathered} \text { Ponding } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0 | 1.6-2.1-4.1 | none | --- | none | --- | --- |
| | wet | 1.6-2.1-4.1 | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0 | 2.0-2.6-4.9 | none | --- | none | --- | --- |
| | wet | 2.0-2.6-4.9 | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0 | 0.8-2.0-3.9 | none | --- | none | --- | --- |
| | wet | 0.8-2.0-3.9 | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0 | 0.0-0.5-2.5\| | none | --- | none | --- | --- |
| | wet | 0.0-0.5-2.5 | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0 | 0.3-0.8-3.0\| | none | --- | none | --- | --- |
| | wet | 0.3-0.8-3.0 | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0 | 0.8-1.6-3.6 | none | --- | none | --- | --- |
| | wet | 0.8-1.6-3.6 | 6.7-6.7-6.7 | | | | | |
| July | moist | 0.0-0.0-0.0 | 1.6-2.8-4.6 | none | --- | none | --- | --- |
| | wet | 1.6-2.8-4.6 | 6.7-6.7-6.7 | | | | | |
| August | moist | 0.0-0.0-0.0 | 2.5-3.6-5.4 | none | --- | none | --- | --- |
| | wet | 2.5-3.6-5.4 | 6.7-6.7-6.7 | | | | | |
| September | moist | 0.0-0.0-0.0 | 1.6-3.1-4.6 | none | --- | none | --- | --- |
| | wet | 1.6-3.1-4.6 | 6.7-6.7-6.7 | | | | | |
| October | moist | 0.0-0.0-0.0 | 1.1-2.0-4.1 | none | --- | none | --- | --- |
| | wet | 1.1-2.0-4.1 | 6.7-6.7-6.7 | | | | | |
| November | moist | 0.0-0.0-0.0 | 0.7-1.6-3.3 | none | --- | none | --- | --- |
| | wet | 0.7-1.6-3.3 | 6.7-6.7-6.7 | | | | | |
| December | moist | 0.0-0.0-0.0 | 1.1-2.0-3.8 | none | --- | none | --- | --- |
| | wet | 1.1-2.0-3.8 | 6.7-6.7-6.7 | | | | | |

I52A (continued)
Clearwater (30 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0\| | 0.8-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | 0.8-2.1-4.1\| | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 1.6-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | 1.6-2.5-4.9\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0\| | 0.3-1.3-3.3\| | none | --- | none | --- | --- |
| | wet | 0.3-1.3-3.3\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 0.0-0.0-1.6\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.0-0.0-1.6\| | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0 | 0.0-0.5-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.0-0.5-2.5\| | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0 | 0.8-1.3-3.3\| | none | --- | occasional | very brief | 0.0-0.3-0.5 |
| | wet | 0.8-1.3-3.3 | 6.7-6.7-6.7\| | | | | | |
| July | moist | 0.0-0.0-0.0\| | 1.3-2.1-4.1\| | none | --- | rare | very brief | 0.0-0.2-0.3 |
| | wet | 1.3-2.1-4.1\| | 6.7-6.7-6.7\| | | | | | |
| August | moist | 0.0-0.0-0.0\| | 1.6-3.0-4.9\| | none | --- | rare | very brief | 0.0-0.2-0.3 |
| | wet | 1.6-3.0-4.9\| | 6.7-6.7-6.7\| | | | | | |
| September | moist | 0.0-0.0-0.0\| | 1.3-2.5-4.1\| | none | --- | rare | very brief | 0.0-0.2-0.3 |
| | wet | 1.3-2.5-4.1\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 0.8-1.6-3.3\| | none | --- | occasional | \|very brief | 0.0-0.2-0.3 |
| | wet | 0.8-1.6-3.3 | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0\| | 0.5-1.3-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.5-1.3-2.5\| | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 0.8-1.6-3.3\| | none | --- | none | --- | --- |
| | wet | 0.8-1.6-3.3\| | 6.7-6.7-6.7\| | | | | | |

Clearwater, very cobbly (5 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \text { L-R - H } \end{gathered}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 0.8-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | $\|0.8-2.1-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 1.6-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | $\|1.6-2.5-4.9\|$ | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 0.3-1.3-3.3\| | none | --- | none | --- | --- |
| | wet | $\|0.3-1.3-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 0.0-0.0-1.6\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.0-0.0-1.6| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.0-0.5-2.5\| | none | --- | \|occasional | brief | 0.0-0.3-0.5 |
| | wet | $\|0.0-0.5-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 0.8-1.3-3.3\| | none | --- | \|occasional | \|very brief | 0.0-0.3-0.5 |
| | wet | $\|0.8-1.3-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 1.3-2.1-4.1\| | none | --- | rare | \|very brief | 0.0-0.2-0.3 |
| | wet | $\|1.3-2.1-4.1\| 6$ | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 1.6-3.0-4.9 | none | --- | rare | \|very brief | 0.0-0.2-0.3 |
| | wet | $\|1.6-3.0-4.9\|$ | 6.7-6.7-6.7\| | | | | | |
| September\| | moist | \|0.0-0.0-0.0| | 1.3-2.5-4.1\| | none | --- | rare | \|very brief | 10.0-0.2-0.3 |
| | wet | $\|1.3-2.5-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | occasional | \|very brief | 0.0-0.2-0.3 |
| | wet | $\|0.8-1.6-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.5-1.3-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | $\|0.5-1.3-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | none | --- | --- |
| | wet | $\|0.8-1.6-3.3\| 6$ | 6.7-6.7-6.7\| | | | | | |

Clearwater, depressional (3 percent of the map unit)

Espelie (3 percent of the map unit)

| Month | $\begin{aligned} & \mid \text { Moisture } \mid \\ & \mid \text { status } \mid \end{aligned}$ | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \text { L }-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{gathered} \text { Ponding } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 1.6-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | 1.6-2.1-4.1\| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 2.0-2.6-4.9 | none | --- | none | --- | --- |
| | wet | \|2.0-2.6-4.9| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 1.5-2.3-4.9 | none | --- | none | --- | --- |
| | wet | 1.5-2.3-4.9 | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0 | 0.0-0.5-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.0-0.5-2.5| | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0 | 0.5-0.8-3.3\| | none | --- | \|occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.5-0.8-3.3 | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 0.8-1.6-4.1\| | none | --- | occasional | \|very brief | 0.0-0.3-0.5 |
| | wet | \|0.8-1.6-4.1| | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 1.6-3.0-4.9 | none | --- | none | --- | --- |
| | wet | \|1.6-3.0-4.9| | 6.7-6.7-6.7\| | | | | | |
| August | moist | 0.0-0.0-0.0 | 2.5-3.8-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.5-3.8-5.7| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 1.6-3.3-4.9 | none | --- | rare | very brief | 0.0-0.1-0.3 |
| | wet | \|1.6-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 1.3-2.5-4.1\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | \|1.3-2.5-4.1| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | \|0.8-1.6-3.3| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 1.3-2.0-3.9 | none | --- | none | --- | --- |
| | wet | \|1.3-2.0-3.9| | 6.7-6.7-6.7\| | | | | | |

I52A (continued)
Hattie (3 percent of the map unit)

Wyandotte (1 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued

I53A Roliss loam, 0 to 2 percent slopes
Roliss (75 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding
 frequency | Flooding duration | Ponding
 frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \text { L-R - H } \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 1.6-3.0-4.1\| | none | --- | none | --- | --- |
| | wet | $\|1.6-3.0-4.1\| 6$ | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0|2 | 2.5-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | \|2.5-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 1.3-2.1-3.3\| | none | --- | none | --- | --- |
| | wet | \|1.3-2.1-3.3| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0|0. | 0.0-0.5-2.5\| | none | --- | occasional | brief | 10.0-0.3-0.5 |
| | wet | \|0.0-0.5-2.5| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.3-0.8-3.3\| | none | --- | \|occasional | brief | 10.0-0.3-0.5 |
| | wet | \|0.3-0.8-3.3| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0|0. | 0.7-1.3-4.1\| | none | --- | \|occasional | \|very brief | 0.0-0.3-0.5 |
| | wet | \|0.7-1.3-4.1| | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 1.6-3.0-4.9\| | none | --- | none | --- | --- |
| | wet | \|1.6-3.0-4.9| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0|2 | 2.5-3.8-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.5-3.8-5.7| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 2.0-3.3-4.9\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | \|2.0-3.3-4.9|6 | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0|1 | 1.3-1.6-4.1\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | $\|1.3-1.6-4.1\| 6$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0|0 | 0.8-1.3-3.3\| | none | --- | \|occasional | brief | 10.0-0.3-0.5 |
| | wet | \|0.8-1.3-3.3| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0|1 | 1.3-2.1-3.8\| | none | --- | none | --- | --- |
| | wet | \|1.3-2.1-3.8| | 6.7-6.7-6.7\| | | | | | |

Kratka (8 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 1.6-3.0-4.1\| | none | --- | none | --- | --- |
| | wet | $\|1.6-3.0-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 2.5-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | \|2.5-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 1.6-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.6-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0|0. | 0.0-0.5-2.5\| | none | --- | \|occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.0-0.5-2.5| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0|0 | 0.5-0.8-3.3\| | none | --- | \|occasional | \|very brief | 0.0-0.3-0.5 |
| | wet | \|0.5-0.8-3.3| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0|0 | 0.8-1.6-4.1\| | none | --- | rare | \|very brief | 10.0-0.1-0.3 |
| | wet | $\|0.8-1.6-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 1.6-3.3-4.9 | none | --- | none | --- | --- |
| | wet | \|1.6-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 2.5-4.1-5.7\| | none | --- | none | --- | --- |
| | wet | \| 2.5-4.1-5.7| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 1.6-3.3-4.9 | none | --- | none | --- | --- |
| | wet | \|1.6-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 1.3-2.5-4.1\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | $\|1.3-2.5-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0|0 | 0.8-1.6-3.3\| | none | --- | rare | \|very brief | 10.0-0.1-0.3 |
| | wet | $\|0.8-1.6-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 1.3-2.1-3.8\| | none | --- | none | --- | --- |
| | wet | \|1.3-2.1-3.8| | 6.7-6.7-6.7\| | | | | | |

I53A (continued)
Roliss, very cobbly (7 percent of the map unit)

Kittson (5 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding
 frequency | Flooding duration | Ponding
 frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0\| | 4.1-5.4-6.7\| | none | --- | none | --- | --- |
| | wet | 4.1-5.4-6.7\| | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 4.9-5.9-6.7\| | none | --- | none | --- | --- |
| | wet | 4.9-5.9-6.7\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0\| | 3.3-4.9-6.7\| | none | --- | none | --- | -- - |
| | wet | 3.3-4.9-6.7\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 1.6-2.5-4.1\| | none | --- | none | --- | --- |
| | wet | 1.6-2.5-4.1\| | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0\| | 2.1-2.8-4.9\| | none | --- | none | --- | --- |
| | wet | 2.1-2.8-4.9\| | 6.7-6.7-6.7\| | | | | | |
| June | dry | 0.0-0.0-0.0\|0 | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | 2.6-3.1-5.7\| | | | | | |
| | wet | 2.6-3.1-5.7\| | 6.7-6.7-6.7\| | | | | | |
| July | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | 3.3-5.7-6.7\| | | | | | |
| | wet | 3.3-5.7-6.7\| | 6.7-6.7-6.7\| | | | | | |
| August | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.5\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.5\| | 4.9-6.7-6.7\| | | | | | |
| | wet | 4.9-6.7-6.7\| | 6.7-6.7-6.7\| | | | | | |
| September | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | 3.6-4.9-6.7\| | | | | | |
| | wet | 3.6-4.9-6.7\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 3.0-4.3-5.7\| | none | --- | none | --- | --- |
| | wet | 3.0-4.3-5.7\| | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0\| | 2.3-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | 2.3-3.3-4.9 | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 3.3-4.6-5.7\| | none | --- | none | --- | -- - |
| | wet | 3.3-4.6-5.7\| | 6.7-6.7-6.7\| | | | | | |

Roliss, depressional (3 percent of the map unit)

Smiley (2 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued

I54A Roliss loam, depressional, 0 to 1 percent slopes
Roliss, depressional (80 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \text { L }-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0|0 | 0.8-1.6-3.0\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.8-1.6-3.0| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0|1 | 1.6-2.5-3.3\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|1.6-2.5-3.3| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0|0. | 0.0-0.0-1.6\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-1.6| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 0.0-0.0-0.8\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | $\|0.0-0.0-0.8\|$ | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.0-0.0-1.6\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-1.6| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 0.2-0.8-2.5\| | none | --- | \|occasional | brief | 0.0-0.5-1.0 |
| | wet | \|0.2-0.8-2.5| | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0|0 | 0.8-1.6-3.0\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | \|0.8-1.6-3.0| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 1.6-2.1-3.3\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | \|1.6-2.1-3.3| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0|0 | 0.8-1.6-3.0\| | none | --- | rare | brief | 10.0-0.3-0.5 |
| | wet | \|0.8-1.6-3.0| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 0.5-1.3-2.5\| | none | --- | \|occasional | brief | 0.0-0.3-0.5 |
| | wet | $\|0.5-1.3-2.5\| 6$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0|0. | 0.2-0.5-1.6\| | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | $\|0.2-0.5-1.6\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 0.3-0.8-2.0\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.3-0.8-2.0|6. | 6.7-6.7-6.7\| | | | | | |

Roliss (12 percent of the map unit)

I54A (continued)
Hamre (5 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0 | 0.8-1.6-3.3\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.8-1.6-3.3 | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 1.6-2.5-4.1\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|1.6-2.5-4.1| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 0.0-0.0-2.5\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-2.5| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 0.0-0.0-0.8\| | none | -- | frequent | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-0.8| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.0-0.0-1.3\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | $\|0.0-0.0-1.3\|$ | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 0.0-0.5-1.6\| | none | --- | frequent | brief | 0.0-0.5-1.0 |
| | wet | \|0.0-0.5-1.6| | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 0.2-0.8-2.5\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | \|0.2-0.8-2.5| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0|0. | 0.8-1.6-3.3\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | $\|0.8-1.6-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 0.5-1.3-3.0\| | none | --- | \|occasional | brief | 10.0-0.3-0.5 |
| | wet | \|0.5-1.3-3.0| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0|0 | 0.3-0.8-2.5\| | none | --- | \|occasional | brief | 10.0-0.5-1.0 |
| | wet | $\|0.3-0.8-2.5\| 6$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.0-0.3-1.6\| | none | --- | \|occasional | long | 10.0-0.5-1.0 |
| | wet | \|0.0-0.3-1.6| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 0.5-1.3-2.5\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | $\|0.5-1.3-2.5\| 6$ | 6.7-6.7-6.7\| | | | | | |

Kratka (3 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued

I55A Rosewood fine sandy loam, 0 to 2 percent slopes
Rosewood (75 percent of the map unit)

Ulen (10 percent of the map unit)

I55A (continued)
Hamar (6 percent of the map unit)

| Month | \|Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 2.0-2.5-4.9 | none | --- | none | --- | --- |
| | wet | \| 2.0-2.5-4.9| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 2.5-3.3-5.7\| | none | --- | none | --- | --- |
| | wet | \| 2.5-3.3-5.7| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 1.6-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.6-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 0.0-0.5-2.5\| | none | --- | \|occasional | brief | 0.0-0.3-0.5 |
| | wet | $\|0.0-0.5-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.5-1.3-3.3\| | none | --- | \|occasional | \|very brief | 0.0-0.3-0.5 |
| | wet | \|0.5-1.3-3.3| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 0.8-1.6-4.1\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | $\|0.8-1.6-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 1.6-3.3-4.9 | none | --- | none | --- | --- |
| | wet | \|1.6-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 2.5-4.9-5.7\| | none | --- | none | --- | --- |
| | wet | \| 2.5-4.9-5.7| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 1.3-3.0-4.9 | none | --- | none | --- | --- |
| | wet | $\|1.3-3.0-4.9\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 1.0-2.1-4.1 | none | --- | rare | very brief\| | 0.0-0.3-0.5 |
| | wet | \|1.0-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | none | --- | --- |
| | wet | \|0.8-1.6-3.3| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 1.3-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.3-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |

Rosewood, depressional (3 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \text { L }-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding
 frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0|0 | 0.8-1.6-3.0\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.8-1.6-3.0| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 2.0-3.0-3.6\| | none | --- | \|occasional | long | 10.0-0.5-1.0 |
| | wet | \|2.0-3.0-3.6| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0|0 | 0.0-0.5-2.0\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.5-2.0| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0|0 | 0.0-0.0-1.0\| | none | --- | frequent | long | 10.0-0.5-1.0 |
| | wet | \|0.0-0.0-1.0| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0|0 | 0.0-0.5-2.0\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.5-2.0| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0|0 | 0.3-1.3-2.6\| | none | --- | \|occasional | brief | 10.0-0.5-1.0 |
| | wet | \|0.3-1.3-2.6| | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 1.0-2.1-3.3\| | none | --- | rare | \|very brief | 10.0-0.3-0.5 |
| | wet | \|1.0-2.1-3.3| | 6.7-6.7-6.7\| | | | | | |
| August | moist | $\|0.0-0.0-0.0\|$ | 2.0-3.0-3.8\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | \|2.0-3.0-3.8| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 1.0-2.1-3.3\| | none | --- | rare | brief | 0.0-0.3-0.5 |
| | wet | $\|1.0-2.1-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0|0 | 0.7-1.6-2.6\| | none | --- | \|occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.7-1.6-2.6| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0|0 | 0.3-1.3-2.0\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | $\|0.3-1.3-2.0\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0|0 | 0.7-1.6-2.5\| | none | --- | \|occasional | long | 10.0-0.5-1.0 |
| | wet | \| 0.7-1.6-2.5| | 6.7-6.7-6.7\| | | | | | |

I55A (continued)
Syrene (3 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0\| | 2.0-3.0-4.9 | none | --- | none | --- | --- |
| | wet | 2.0-3.0-4.9\| | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 2.5-3.3-5.7\| | none | --- | none | --- | --- |
| | wet | 2.5-3.3-5.7\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0\| | 1.6-2.5-4.1\| | none | --- | none | --- | --- |
| | wet | 1.6-2.5-4.1\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 0.0-0.3-2.5\| | none | --- | occasional | very brief | 0.0-0.3-0.5 |
| | wet | 0.0-0.3-2.5\| | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0 | 0.5-0.8-3.3\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | 0.5-0.8-3.3\| | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0\| | 1.0-1.6-2.5\| | none | --- | rare | very brief | 0.0-0.1-0.3 |
| | wet | 1.0-1.6-2.5\| | 6.7-6.7-6.7\| | | | | | |
| July | moist | 0.0-0.0-0.0\| | 1.6-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | 1.6-2.5-4.9\| | 6.7-6.7-6.7\| | | | | | |
| August | moist | 0.0-0.0-0.0\| | 2.5-3.3-5.7\| | none | --- | none | --- | --- |
| | wet | 2.5-3.3-5.7\| | 6.7-6.7-6.7\| | | | | | |
| September\| | moist | 0.0-0.0-0.0\| | 1.3-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | 1.3-2.5-4.9\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 1.0-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | 1.0-2.1-4.1\| | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0\| | 0.8-1.6-3.3\| | none | --- | none | --- | --- |
| | wet | 0.8-1.6-3.3\| | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 1.6-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | 1.6-2.1-4.1 | 6.7-6.7-6.7\| | | | | | |

Karlsruhe (1 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I55A (continued)
Strathcona (1 percent of the map unit)

| Month | $\begin{aligned} & \text { \|Moisture } \\ & \text { \| status } \end{aligned}$ | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | | |
|---|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0 | 1.6-3.0-4.1\| | none | --- | none | --- | --- |
| | wet | $\|1.6-3.0-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 2.5-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | \|2.5-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 1.6-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.6-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 0.0-0.5-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.0-0.5-2.5| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.5-0.8-3.3\| | none | --- | occasional | very brief | 0.0-0.3-0.5 |
| | wet | \|0.5-0.8-3.3| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 0.8-1.6-4.1\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | \|0.8-1.6-4.1| | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 1.6-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | \|1.6-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 2.5-4.1-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.5-4.1-5.7| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 1.6-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | \|1.6-3.3-4.9| | \|6.7-6.7-6.7| | | | | | |
| October | moist | \|0.0-0.0-0.0| | $\|1.3-2.5-4.1\|$ | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | \|1.3-2.5-4.1| | \|6.7-6.7-6.7| | | | | | |
| November | moist | \|0.0-0.0-0.0| | $\|0.8-1.6-3.3\|$ | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | \|0.8-1.6-3.3| | \|6.7-6.7-6.7| | | | | | |
| December | moist | \|0.0-0.0-0.0| | \|1.3-2.1-3.8| | none | --- | none | --- | --- |
| | wet | \|1.3-2.1-3.8| | \|6.7-6.7-6.7| | | | | | |

Thiefriver (1 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued

I56A Rosewood-Venlo complex, 0 to 1 percent slopes
Rosewood (50 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding
 frequency | Flooding duration | Ponding
 frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 2.0-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | \|2.0-2.5-4.9| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 2.5-3.3-5.7\| | none | --- | none | --- | --- |
| | wet | \| 2.5-3.3-5.7| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 1.6-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.6-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 0.0-0.5-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.0-0.5-2.5| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.5-1.3-3.3\| | none | --- | occasional | very brief | 0.0-0.3-0.5 |
| | wet | \|0.5-1.3-3.3| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 0.8-1.6-4.1\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | \|0.8-1.6-4.1| | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 1.6-3.3-4.9\| | none | --- | none | | --- |
| | wet | \|1.6-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 2.5-4.9-5.7\| | none | -- | none | --- | --- |
| | wet | \| 2.5-4.9-5.7| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 1.3-3.0-4.9\| | none | --- | none | | -- |
| | wet | \|1.3-3.0-4.9| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 1.0-2.1-4.1\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | \|1.0-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | none | --- | -- |
| | wet | \|0.8-1.6-3.3| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 1.3-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.3-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |

Venlo (40 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | ```Bottom depth L - R - H``` | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | ```Ponding depth L - R - H``` | |
|---|---|---|---|---|---|---|---|---|---|
| | | | | none | --- | | | 0.0-0.5-1.0 |
| January | moist | 10.0-0.0-0.0 | 0.8-1.6-3.0\| | | | \|occasional | long | |
| | wet | \|0.8-1.6-3.0 | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0 | 2.0-3.0-3.6\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|2.0-3.0-3.6| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0 | 0.0-0.5-2.0\| | none | --- | \|occasional | long | 10.0-0.5-1.0 |
| | wet | $\|0.0-0.5-2.0\|$ | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0 | 0.0-0.0-1.0\| | none | --- | frequent | long | 10.0-0.5-1.0 |
| | wet | \|0.0-0.0-1.0 | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0 | 0.0-0.5-2.0\| | none | --- | frequent | long | 10.0-0.5-1.0 |
| | wet | $\|0.0-0.5-2.0\|$ | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0 | 0.3-1.3-2.6\| | none | --- | \|occasional | brief | 10.0-0.5-1.0 |
| | wet | $\|0.3-1.3-2.6\|$ | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0 | 1.0-2.1-3.3\| | none | --- | rare | \| very brief | 0.0-0.3-0.5 |
| | wet | $\mid 1.0-2.1-3.3$ | \|6.7-6.7-6.7| | | | | | |
| August | moist | \|0.0-0.0-0.0 | 2.0-3.0-3.8\| | none | -- - | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | \|2.0-3.0-3.8| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0 | 1.0-2.1-3.3\| | none | --- | rare | brief | 10.0-0.3-0.5 |
| | wet | $\|1.0-2.1-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 0.7-1.6-2.6\| | none | --- | \|occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.7-1.6-2.6| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.3-1.3-2.0\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | $\|0.3-1.3-2.0\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0 | 0.7-1.6-2.5\| | none | --- | \|occasional | long | 10.0-0.5-1.0 |
| | wet | $\|0.7-1.6-2.5\|$ | 6.7-6.7-6.7\| | | | | | |

Deerwood (3 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \text { L-R }-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \text { L - R - H } \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0 | 0.8-1.6-3.3\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | 0.8-1.6-3.3 | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 1.6-2.5-4.1\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | 1.6-2.5-4.1\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0 | 0.0-0.0-2.5\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-2.5\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0 | 0.0-0.0-0.8\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-0.8 | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0 | 0.0-0.0-1.3\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-1.3 | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0 | 0.0-0.5-1.6\| | none | --- | frequent | brief | 0.0-0.5-1.0 |
| | wet | 0.0-0.5-1.6 | 6.7-6.7-6.7\| | | | | | |
| July | moist | 0.0-0.0-0.0 | 0.2-0.8-2.5\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | 0.2-0.8-2.5 | 6.7-6.7-6.7\| | | | | | |
| August | moist | 0.0-0.0-0.0 | 0.8-1.6-3.3\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | 0.8-1.6-3.3 | 6.7-6.7-6.7\| | | | | | |
| September | moist | 0.0-0.0-0.0 | 0.5-1.3-3.0\| | none | --- | \|occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.5-1.3-3.0 | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 0.3-0.8-2.5\| | none | --- | \|occasional | brief | 0.0-0.5-1.0 |
| | wet | \|0.3-0.8-2.5| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.0-0.3-1.6\| | none | --- | occasional | long | \|0.0-0.5-1.0 |
| | wet | \|0.0-0.3-1.6| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 0.5-1.3-2.5\| | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.5-1.3-2.5| | 6.7-6.7-6.7\| | | | | | |

Syrene (3 percent of the map unit)

I56A (continued)
Ulen (2 percent of the map unit)

| Month | \|Moisture status | $\left\lvert\, \begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}\right.$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \text { L - R - H } \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0 | 2.6-3.3-5.9 | none | --- | none | --- | --- |
| | wet | \| 2.6-3.3-5.9| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 3.3-4.1-6.7\| | none | --- | none | --- | --- |
| | wet | $\|3.3-4.1-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0 | 2.6-3.3-5.7\| | none | --- | none | --- | --- |
| | wet | \| 2.6-3.3-5.7| | 6.7-6.7-6.7\| | | | | | |
| April | moist | $\|0.0-0.0-0.0\|$ | 1.5-2.0-3.3\| | none | --- | none | --- | --- |
| | wet | $\|1.5-2.0-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| May | moist | $\|0.0-0.0-0.0\|$ | 2.0-2.5-4.1\| | none | --- | none | --- | --- |
| | wet | $\|2.0-2.5-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| June | dry | $\|0.0-0.0-0.0\|$ | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | 2.5-3.0-4.9\| | | | | | |
| | wet | $\|2.5-3.0-4.9\|$ | 6.7-6.7-6.7\| | | | | | |
| July | dry | $\|0.0-0.0-0.0\|$ | 0.0-0.0-0.5\| | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.5\|$ | 3.0-4.9-6.2\| | | | | | |
| | wet | $\|3.0-4.9-6.2\|$ | 6.7-6.7-6.7\| | | | | | |
| August | dry | $\|0.0-0.0-0.0\|$ | 0.0-0.0-0.7\| | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.7\|$ | 6.7-6.7-6.7\| | | | | | |
| September | dry | $\|0.0-0.0-0.0\|$ | 0.0-0.0-0.5 | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.5\|$ | 2.6-4.9-6.7\| | | | | | |
| | wet | \| 2.6-4.9-6.7| | 6.7-6.7-6.7\| | | | | | |
| October | moist | $\|0.0-0.0-0.0\|$ | 2.3-3.0-5.7\| | none | --- | none | --- | --- |
| | wet | $\|2.3-3.0-5.7\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 2.0-2.5-4.9 | none | --- | none | --- | --- |
| | wet | $\|2.0-2.5-4.9\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | $\|0.0-0.0-0.0\|$ | 2.3-3.0-5.2\| | none | --- | none | --- | --- |
| | wet | \|2.3-3.0-5.2| | 6.7-6.7-6.7\| | | | | | |

Strathcona (1 percent of the map unit)

I56A (continued)
Thiefriver (1 percent of the map unit)

I57B Sandberg-Radium complex, 1 to 6 percent slopes
Sandberg (50 percent of the map unit)

I57B (continued)
Radium (25 percent of the map unit)

Sioux (8 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I57B (continued)
Oylen (7 percent of the map unit)

Flaming (5 percent of the map unit)

I57B (continued)
Garborg (5 percent of the map unit)

I58A Seelyeville muck, 0 to 1 percent slopes
Seelyeville (90 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0\| | 0.5-1.0-3.3\| | none | --- | occasional | long | 0.0-0.3-0.5 |
| | wet | 0.5-1.0-3.3 | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0 | 1.3-1.6-4.1 | none | --- | occasional | long | 0.0-0.3-0.5 |
| | wet | 1.3-1.6-4.1 | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0\| | 0.0-0.0-2.5\| | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-2.5\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0 | 0.0-0.0-0.8 | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-0.8 | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0\| | 0.0-0.0-1.3\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-1.3 | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0\|0 | 0.0-0.3-1.6\| | none | --- | frequent | brief | 0.0-0.5-1.0 |
| | wet | 0.0-0.3-1.6\| | 6.7-6.7-6.7\| | | | | | |
| July | moist | 0.0-0.0-0.0 | 0.0-0.8-2.5\| | none | --- | occasional | very brief | 0.0-0.3-0.5 |
| | wet | 0.0-0.8-2.5\| | 6.7-6.7-6.7\| | | | | | |
| August | moist | 0.0-0.0-0.0\| | 0.5-1.6-3.3\| | none | --- | occasional | \|very brief | 0.0-0.3-0.5 |
| | wet | 0.5-1.6-3.3 | 6.7-6.7-6.7\| | | | | | |
| September | moist | 0.0-0.0-0.0\| | 0.3-1.1-3.0\| | none | --- | occasional | very brief | 0.0-0.3-0.5 |
| | wet | 0.3-1.1-3.0\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0 | 0.0-0.5-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.0-0.5-2.5 | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0\| | 0.0-0.3-1.6\| | none | --- | occasional | long | 0.0-0.3-0.5 |
| | wet | 0.0-0.3-1.6\| | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 0.5-0.8-2.5\| | none | --- | occasional | long | 0.0-0.3-0.5 |
| | wet | 0.5-0.8-2.5\| | 6.7-6.7-6.7\| | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I58A (continued)
Cathro (3 percent of the map unit)

| Month | \|Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \text { L-R }-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \text { L - R - H } \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0 | 0.5-1.3-3.3\| | none | --- | \|occasional | long | 10.0-0.3-0.5 |
| | wet | \|0.5-1.3-3.3| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 1.3-2.1-4.1\| | none | --- | \|occasional | long | 0.0-0.3-0.5 |
| | wet | \|1.3-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0 | 0.0-0.0-2.5\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-2.5| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0 | 0.0-0.0-0.8 | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-0.8 | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0 | 0.0-0.0-1.3\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-1.3 | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0 | 0.0-0.0-1.6\| | none | --- | \|occasional | brief | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-1.6 | 6.7-6.7-6.7\| | | | | | |
| July | moist | 0.0-0.0-0.0 | 0.2-0.8-2.5\| | none | --- | rare | \|very brief | 10.0-0.3-0.5 |
| | wet | \|0.2-0.8-2.5| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | 0.8-1.6-3.3 | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 0.3-1.1-3.0\| | none | --- | rare | brief | 0.0-0.3-0.5 |
| | wet | 0.3-1.1-3.0 | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0 | 0.2-0.5-2.5\| | none | --- | \|occasional | brief | 10.0-0.3-0.5 |
| | wet | \|0.2-0.5-2.5| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.0-0.3-1.6\| | none | --- | occasional | long | 0.0-0.3-0.5 |
| | wet | \|0.0-0.3-1.6| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 0.5-0.8-2.5\| | none | --- | \|occasional | long | 10.0-0.3-0.5 |
| | wet | \|0.5-0.8-2.5| | 6.7-6.7-6.7\| | | | | | |

Dora (3 percent of the map unit)

I58A (continued)
Markey (3 percent of the map unit)

Berner (1 percent of the map unit)

| | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|
| Month | \|Moisture| | Top | Bottom | Flooding | Flooding | Ponding | Ponding duration | $\begin{gathered} \text { Ponding } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ |
| | status | depth | depth | frequency | duration | frequency | | |
| | | L - R - H | L - R H | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| January | moist | 0.0-0.0-0.0 | 0.5-1.3-3.3\| | none | --- | \|occasional | long | 10.0-0.3-0.5 |
| | wet | 0.5-1.3-3.3 | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0 | 1.3-2.1-4.1\| | none | --- | \|occasional | long | 0.0-0.3-0.5 |
| | wet | 1.3-2.1-4.1 | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0 | 0.0-0.0-2.5\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-2.5\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0 | 0.0-0.0-0.8\| | none | --- | frequent | long | 10.0-0.5-1.0 |
| | wet | 0.0-0.0-0.8 | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0 | 0.0-0.0-1.3\| | none | -- - | frequent | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-1.3 | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0 | 0.0-0.0-1.6\| | none | --- | \|occasional | brief | 10.0-0.5-1.0 |
| | wet | 0.0-0.0-1.6 | 6.7-6.7-6.7\| | | | | | |
| July | moist | 0.0-0.0-0.0 | 0.2-0.8-2.5\| | none | --- | rare | very brief | 10.0-0.3-0.5 |
| | wet | 0.2-0.8-2.5 | 6.7-6.7-6.7\| | | | | | |
| August | moist | 0.0-0.0-0.0 | 0.8-1.6-3.3\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | 0.8-1.6-3.3\| | 6.7-6.7-6.7\| | | | | | |
| September | moist | 0.0-0.0-0.0\| | 0.3-1.1-3.0\| | none | --- | rare | brief | 10.0-0.3-0.5 |
| | wet | 0.3-1.1-3.0 | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 0.2-0.5-2.5\| | none | --- | \|occasional | brief | 10.0-0.3-0.5 |
| | wet | 0.2-0.5-2.5 | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0 | 0.0-0.3-1.6\| | none | -- - | \|occasional | long | 10.0-0.3-0.5 |
| | wet | 0.0-0.3-1.6\| | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 0.5-0.8-2.5\| | none | -- - | \|occasional | long | 10.0-0.3-0.5 |
| | wet | 0.5-0.8-2.5\| | 6.7-6.7-6.7\| | | | | | |
| | | | | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued

I59A Smiley loam, 0 to 2 percent slopes
Smiley (65 percent of the map unit)

Smiley, very cobbly (10 percent of the map unit)

I59A (continued)
Kratka (9 percent of the map unit)

Roliss (5 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I59A (continued)
Reiner (4 percent of the map unit)

| Month | $\begin{aligned} & \text { \|Moisture } \\ & \text { \| status } \end{aligned}$ | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \text { L - R - } \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0\| | 4.1-5.4-6.7\| | none | --- | none | --- | --- |
| | wet | \|4.1-5.4-6.7| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 4.9-5.9-6.7\| | none | --- | none | --- | --- |
| | wet | \|4.9-5.9-6.7|6. | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0|3 | 3.3-4.9-6.7\| | none | --- | none | --- | --- |
| | wet | \|3.3-4.9-6.7| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0|1 | 1.6-2.5-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.6-2.5-4.1| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0|2 | 2.1-2.8-4.9\| | none | --- | none | --- | --- |
| | wet | \|2.1-2.8-4.9| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0|2 | 2.6-3.1-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.6-3.1-5.7| | 6.7-6.7-6.7\| | | | | | |
| July | dry | \|0.0-0.0-0.0|0. | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.3|3 | 3.3-5.7-6.7\| | | | | | |
| | wet | $\|3.3-5.7-6.7\| 6$ | 6.7-6.7-6.7\| | | | | | |
| August | dry | \|0.0-0.0-0.0|0. | 0.0-0.0-0.5\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.5| | 4.9-6.7-6.7\| | | | | | |
| | wet | \|4.9-6.7-6.7| | 6.7-6.7-6.7\| | | | | | |
| September\| | dry | \|0.0-0.0-0.0|0. | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.3|3 | 3.6-4.9-6.7\| | | | | | |
| | wet | \|3.6-4.9-6.7| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0|3 | 3.0-4.3-5.7\| | none | --- | none | --- | --- |
| | wet | \|3.0-4.3-5.7| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0|2 | 2.3-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | \|2.3-3.3-4.9|6. | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0|3 | 3.3-4.6-5.7\| | none | --- | none | --- | --- |
| | wet | \|3.3-4.6-5.7|6 | 6.7-6.7-6.7\| | | | | | |

I59A (continued)

Linveldt (3 percent of the map unit)

Smiley, depressional (3 percent of the map unit)

I59A (continued)
Strandquist (1 percent of the map unit)

I60A Smiley mucky loam, depressional, 0 to 1 percent slopes
Smiley, depressional (80 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0 | 0.8-1.6-3.0 | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | 0.8-1.6-3.0 | 6.7-6.7-6.7 | | | | | |
| February | moist | 0.0-0.0-0.0 | 1.6-2.5-3.3 | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | 1.6-2.5-3.3 | 6.7-6.7-6.7 | | | | | |
| March | moist | 0.0-0.0-0.0 | 0.0-0.0-1.6 | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-1.6 | 6.7-6.7-6.7 | | | | | |
| April | moist | 0.0-0.0-0.0 | 0.0-0.0-0.8 | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-0.8 | 6.7-6.7-6.7 | | | | | |
| May | moist | 0.0-0.0-0.0 | 0.0-0.0-1.6 | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-1.6 | 6.7-6.7-6.7 | | | | | |
| June | moist | 0.0-0.0-0.0 | 0.2-0.8-2.5 | none | --- | occasional | brief | 0.0-0.5-1.0 |
| | wet | 0.2-0.8-2.5 | 6.7-6.7-6.7 | | | | | |
| July | moist | 0.0-0.0-0.0 | 0.8-1.6-3.0 | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | 0.8-1.6-3.0 | 6.7-6.7-6.7 | | | | | |
| August | moist | 0.0-0.0-0.0 | 1.6-2.1-3.3 | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | 1.6-2.1-3.3 | 6.7-6.7-6.7 | | | | | |
| September | moist | 0.0-0.0-0.0 | 0.8-1.6-3.0 | none | --- | rare | brief | 0.0-0.3-0.5 |
| | wet | 0.8-1.6-3.0 | 6.7-6.7-6.7 | | | | | |
| October | moist | 0.0-0.0-0.0 | 0.5-1.3-2.5 | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.5-1.3-2.5 | 6.7-6.7-6.7 | | | | | |
| November | moist | 0.0-0.0-0.0 | 0.2-0.5-1.6 | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | 0.2-0.5-1.6 | 6.7-6.7-6.7 | | | | | |
| December | moist | 0.0-0.0-0.0 | 0.3-0.8-2.0 | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | 0.3-0.8-2.0 | 6.7-6.7-6.7 | | | | | |

I60A (continued)
Smiley (10 percent of the map unit)

Hamre (5 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | Ponding depth L - R - H | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | $\|0.8-1.6-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 1.6-2.5-4.1\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | $\|1.6-2.5-4.1\| 6$ | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 0.0-0.0-2.5\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-2.5| | 6.7-6.7-6.7\| | | | | | |
| April | moist | $\|0.0-0.0-0.0\|$ | 0.0-0.0-0.8\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-0.8| | 6.7-6.7-6.7\| | | | | | |
| May | moist | $\|0.0-0.0-0.0\| 0$ | 0.0-0.0-1.3\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-1.3 | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 0.0-0.5-1.6\| | none | --- | frequent | brief | 0.0-0.5-1.0 |
| | wet | \|0.0-0.5-1.6| | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0|0 | 0.2-0.8-2.5\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | \|0.2-0.8-2.5| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | $\|0.8-1.6-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| September | moist | $\|0.0-0.0-0.0\|$ | 0.5-1.3-3.0\| | none | --- | \|occasional | brief | 10.0-0.3-0.5 |
| | wet | $\|0.5-1.3-3.0\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 0.3-0.8-2.5\| | none | --- | \|occasional | brief | 0.0-0.5-1.0 |
| | wet | $\|0.3-0.8-2.5\| 6$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.0-0.3-1.6\| | none | --- | \|occasional | long | \|0.0-0.5-1.0 |
| | wet | $\|0.0-0.3-1.6\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0|0. | 0.5-1.3-2.5\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | $\|0.5-1.3-2.5\| 6$ | 6.7-6.7-6.7\| | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I60A (continued)
Kratka (5 percent of the map unit)

I61A Strandquist loam, 0 to 2 percent slopes
Strandquist (70 percent of the map unit)

| Month | $\begin{array}{\|l\|} \mid \text { Moisture\| } \\ \text { status } \end{array}$ | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | \qquad | Flooding frequency | Flooding duration | Ponding
 frequency | Ponding duration | Ponding depth
 L - R - H | | |
|---|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0 | 1.6-3.0-4.1 | none | --- | none | --- | --- |
| | wet | 1.6-3.0-4.1 | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 2.5-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | 2.5-3.3-4.9 | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 1.6-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | 1.6-2.1-4.1\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 0.0-0.5-2.5\| | none | -- - | occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.0-0.5-2.5| | \|6.7-6.7-6.7| | | | | | |
| May | moist | \|0.0-0.0-0.0 | 0.5-0.8-3.3\| | none | --- | occasional | very brief | 0.0-0.3-0.5 |
| | wet | \|0.5-0.8-3.3| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0 | 0.8-1.6-4.1\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | \|0.8-1.6-4.1 | \|6.7-6.7-6.7| | | | | | |
| July | moist | 0.0-0.0-0.0 | 1.6-3.3-4.9\| | none | -- - | none | --- | --- |
| | wet | \|1.6-3.3-4.9 | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | \|2.5-4.1-5.7| | none | --- | none | --- | --- |
| | wet | \|2.5-4.1-5.7| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 1.6-3.3-4.9\| | none | --- | none | -- - | -- - |
| | wet | \|1.6-3.3-4.9 | \|6.7-6.7-6.7| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 1.3-2.5-4.1\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | \|1.3-2.5-4.1| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0 | \|0.8-1.6-3.3| | none | --- | none | --- | --- |
| | wet | \|0.8-1.6-3.3| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 1.3-2.1-3.8\| | none | --- | none | --- | --- |
| | wet | 1.3-2.1-3.8\| | 6.7-6.7-6.7\| | | | | | |

I61A (continued)
Mavie (8 percent of the map unit)

Roliss (7 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I61A (continued)
Kratka (5 percent of the map unit)

Foxhome (4 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0 | 4.8-5.4-6.7 | none | --- | none | --- | --- |
| | wet | 4.8-5.4-6.7\| | 6.7-6.7-6.7 | | | | | |
| February | moist | 0.0-0.0-0.0 | 5.2-5.7-6.7 | none | --- | none | --- | --- |
| | wet | 5.2-5.7-6.7\| | 6.7-6.7-6.7 | | | | | |
| March | moist | 0.0-0.0-0.0\| | 3.3-4.6-6.7 | none | -- - | none | --- | -- - |
| | wet | 3.3-4.6-6.7 | 6.7-6.7-6.7 | | | | | |
| April | moist | 0.0-0.0-0.0 | 1.3-2.5-4.9 | none | --- | none | --- | --- |
| | wet | 1.3-2.5-4.9 | 6.7-6.7-6.7 | | | | | |
| May | moist | 0.0-0.0-0.0\| | 2.0-3.0-5.6 | none | --- | none | --- | --- |
| | wet | 2.0-3.0-5.6\| | 6.7-6.7-6.7 | | | | | |
| June | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.5 | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.5 | 2.6-3.6-6.2 | | | | | |
| | wet | 2.6-3.6-6.2 | 6.7-6.7-6.7 | | | | | |
| July | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.7 | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.7\| | 3.9-5.4-6.7 | | | | | |
| | wet | 3.9-5.4-6.7 | 6.7-6.7-6.7 | | | | | |
| August | dry | 0.0-0.0-0.0\| | 0.0-0.0-1.0 | none | --- | none | --- | --- |
| | moist | 0.0-0.0-1.0\| | 5.4-6.7-6.7 | | | | | |
| | wet | 5.4-6.7-6.7\| | 6.7-6.7-6.7 | | | | | |
| September | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.3 | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | 4.1-4.6-6.7 | | | | | |
| | wet | 4.1-4.6-6.7\| | 6.7-6.7-6.7 | | | | | |
| October | moist | 0.0-0.0-0.0\| | 3.6-3.9-6.7 | none | --- | none | --- | --- |
| | wet | 3.6-3.9-6.7 | 6.7-6.7-6.7 | | | | | |
| November | moist | 0.0-0.0-0.0\| | 2.5-3.3-5.7 | none | --- | none | --- | --- |
| | wet | 2.5-3.3-5.7 | 6.7-6.7-6.7 | | | | | |
| December | moist | 0.0-0.0-0.0\| | 3.9-4.6-6.2 | none | --- | none | --- | --- |
| | wet | 3.9-4.6-6.2 | 6.7-6.7-6.7 | | | | | |

I61A (continued)
Hangaard (3 percent of the map unit)

Northwood (3 percent of the map unit)

| Month | $\begin{aligned} & \mid \text { Moisture } \mid \\ & \mid \text { status } \mid \end{aligned}$ | $\left\lvert\, \begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}\right.$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0 | 0.8-1.6-3.3\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.8-1.6-3.3 | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 1.6-2.5-4.1\| | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | $\|1.6-2.5-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0 | 0.0-0.0-2.5\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | $\|0.0-0.0-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| April | moist | $\|0.0-0.0-0.0\|$ | 0.0-0.0-0.8\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-0.8 | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0 | 0.0-0.0-1.3\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | $\|0.0-0.0-1.3\|$ | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0 | 0.0-0.5-1.6\| | none | --- | frequent | brief | 0.0-0.5-1.0 |
| | wet | $\|0.0-0.5-1.6\|$ | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 0.2-0.8-2.5\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | $\|0.2-0.8-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0 | 0.8-1.6-3.3\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | \|0.8-1.6-3.3 | 6.7-6.7-6.7\| | | | | | |
| September | moist | $\|0.0-0.0-0.0\|$ | 0.5-1.3-3.0\| | none | --- | occasional | brief | 10.0-0.3-0.5 |
| | wet | $\|0.5-1.3-3.0\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0 | 0.3-0.8-2.5\| | none | --- | occasional | brief | 0.0-0.5-1.0 |
| | wet | $\|0.3-0.8-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | $\|0.0-0.0-0.0\|$ | 0.0-0.3-1.6\| | none | --- | occasional | long | \|0.0-0.5-1.0 |
| | wet | $\|0.0-0.3-1.6\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | $\|0.0-0.0-0.0\|$ | 0.5-1.3-2.5\| | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | $\|0.5-1.3-2.5\|$ | 6.7-6.7-6.7\| | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued

162A Syrene sandy loam, 0 to 2 percent slopes
Syrene (70 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 2.0-3.0-4.9 | none | --- | none | -- | --- |
| | wet | $\|2.0-3.0-4.9\|$ | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 2.5-3.3-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.5-3.3-5.7| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 1.6-2.5-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.6-2.5-4.1| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 0.0-0.3-2.5\| | none | --- | \|occasional | \|very brief | 0.0-0.3-0.5 |
| | wet | \|0.0-0.3-2.5| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.5-0.8-3.3\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | 0.5-0.8-3.3 | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 1.0-1.6-2.5\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | 1.0-1.6-2.5\| | 6.7-6.7-6.7\| | | | | | |
| July | moist | 0.0-0.0-0.0\| | 1.6-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | 1.6-2.5-4.9\| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 2.5-3.3-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.5-3.3-5.7| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0|1 | 1.3-2.5-4.9 | none | --- | none | --- | --- |
| | wet | \|1.3-2.5-4.9| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 1.0-2.1-4.1\| | none | --- | none | --- | -- |
| | wet | \|1.0-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0|0. | 0.8-1.6-3.3\| | none | --- | none | --- | --- |
| | wet | \|0.8-1.6-3.3| | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 1.6-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.6-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |

Rosewood (11 percent of the map unit)

| Month | Moisture status | Top depth $\mathrm{L}-\mathrm{R}-\mathrm{H}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding
 frequency | Flooding duration | Ponding
 frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \text { L - R - H } \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0\| | 2.0-2.5-4.9 | none | --- | none | --- | --- |
| | wet | \| 2.0-2.5-4.9| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 2.5-3.3-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.5-3.3-5.7| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 1.6-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.6-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0|0 | 0.0-0.5-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.0-0.5-2.5| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0|0 | 0.5-1.3-3.3\| | none | --- | \|occasional | very brief | 0.0-0.3-0.5 |
| | wet | $\|0.5-1.3-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0|0 | 0.8-1.6-4.1\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | $\|0.8-1.6-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 1.6-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | \|1.6-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 2.5-4.9-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.5-4.9-5.7| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 1.3-3.0-4.9\| | none | --- | none | --- | --- |
| | wet | \|1.3-3.0-4.9| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 1.0-2.1-4.1\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | \|1.0-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0|0 | 0.8-1.6-3.3\| | none | --- | none | --- | --- |
| | wet | $\|0.8-1.6-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 1.3-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.3-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I62A (continued)
Hangaard (5 percent of the map unit)

Karlsruhe (4 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ L-R-H \end{gathered}$ | Flooding
 frequency | Flooding duration | Ponding
 frequency | Ponding duration | $\begin{gathered} \text { Ponding } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 2.6-3.3-6.2 | none | --- | none | --- | --- |
| | wet | $\|2.6-3.3-6.2\|$ | 6.7-6.7-6.7 | | | | | |
| February | moist | \|0.0-0.0-0.0| | 3.3-4.1-6.7\| | none | --- | none | --- | --- |
| | wet | \|3.3-4.1-6.7| | 6.7-6.7-6.7 | | | | | |
| March | moist | \|0.0-0.0-0.0| | 2.6-3.3-5.9 | none | --- | none | --- | --- |
| | wet | \|2.6-3.3-5.9| | 6.7-6.7-6.7 | | | | | |
| April | moist | \|0.0-0.0-0.0| | 1.5-2.0-3.3 | none | --- | none | -- - | --- |
| | wet | \|1.5-2.0-3.3| | 6.7-6.7-6.7 | | | | | |
| May | moist | \|0.0-0.0-0.0| | 1.8-2.5-4.1 | none | --- | none | --- | --- |
| | wet | $\|1.8-2.5-4.1\|$ | 6.7-6.7-6.7 | | | | | |
| June | moist | \|0.0-0.0-0.0| | 2.5-3.0-4.9 | none | --- | none | --- | --- |
| | wet | \|2.5-3.0-4.9| | 6.7-6.7-6.7 | | | | | |
| July | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.3 | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | 3. 0-3.6-6.7 | | | | | |
| | wet | $\|3.0-3.6-6.7\|$ | 6.7-6.7-6.7 | | | | | |
| August | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.5 | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.5| | 4.1-6.7-6.7 | | | | | |
| | wet | \|4.1-6.7-6.7| | 6.7-6.7-6.7 | | | | | |
| September | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.3 | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | 2.6-4.1-6.7 | | | | | |
| | wet | \|2.6-4.1-6.7| | 6.7-6.7-6.7 | | | | | |
| October | moist | \|0.0-0.0-0.0| | 3. 0-4.3-5.7 | none | --- | none | --- | --- |
| | wet | $\|3.0-4.3-5.7\|$ | 6.7-6.7-6.7 | | | | | |
| November | moist | \|0.0-0.0-0.0| | 2.0-2.5-4.9 | none | --- | none | -- - | --- |
| | wet | \|2.0-2.5-4.9| | 6.7-6.7-6.7 | | | | | |
| December | moist | $\|0.0-0.0-0.0\|$ | 2.3-3.0-5.6\| | none | --- | none | --- | --- |
| | wet | $\|2.3-3.0-5.6\|$ | 6.7-6.7-6.7 | | | | | |

Deerwood (3 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \text { L-R - H } \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0|0 | 0.8-1.6-3.3\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.8-1.6-3.3| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 1.6-2.5-4.1\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|1.6-2.5-4.1| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0|0 | 0.0-0.0-2.5\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-2.5| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0|0 | 0.0-0.0-0.8\| | none | -- | frequent | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-0.8| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0|0 | 0.0-0.0-1.3\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-1.3| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0|0 | 0.0-0.5-1.6\| | none | --- | frequent | brief | 0.0-0.5-1.0 |
| | wet | \|0.0-0.5-1.6| | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0|0 | 0.2-0.8-2.5\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | \|0.2-0.8-2.5| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0|0 | 0.8-1.6-3.3\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | \|0.8-1.6-3.3| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0|0 | 0.5-1.3-3.0\| | none | --- | \|occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.5-1.3-3.0| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0|0 | 0.3-0.8-2.5\| | none | --- | \|occasional | brief | 10.0-0.5-1.0 |
| | wet | \|0.3-0.8-2.5| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0|0. | 0.0-0.3-1.6\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.3-1.6| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0|0 | 0.5-1.3-2.5\| | none | --- | \|occasional | long | \|0.0-0.5-1.0 |
| | wet | \|0.5-1.3-2.5| | 6.7-6.7-6.7\| | | | | | |

Hamar (3 percent of the map unit)

I62A (continued)
Strandquist (2 percent of the map unit)

Radium (1 percent of the map unit)

Wyandotte (1 percent of the map unit)

I63A Thiefriver fine sandy loam, 0 to 2 percent slopes
Thiefriver (70 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0\| | \|1.6-2.1-4.1| | none | --- | none | --- | --- |
| | wet | 1.6-2.1-4.1\| | \|6.7-6.7-6.7| | | | | | |
| February | moist | 0.0-0.0-0.0\| | $\|2.0-2.6-4.9\|$ | none | --- | none | --- | --- |
| | wet | 2.0-2.6-4.9 | $\|6.7-6.7-6.7\|$ | | | | | |
| March | moist | 0.0-0.0-0.0\| | $\|1.5-2.3-4.9\|$ | none | --- | none | --- | --- |
| | wet | 1.5-2.3-4.9\| | \|6.7-6.7-6.7| | | | | | |
| April | moist | 0.0-0.0-0.0\| | \mid 0.0-0.5-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.0-0.5-2.5\| | $\|6.7-6.7-6.7\|$ | | | | | |
| May | moist | 0.0-0.0-0.0\| | $\|0.5-0.8-3.3\|$ | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.5-0.8-3.3\| | \mid 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0\| | \mid 0.8-1.6-4.1\| | none | --- | occasional | very brief | 0.0-0.3-0.5 |
| | wet | 0.8-1.6-4.1\| | \|6.7-6.7-6.7| | | | | | |
| July | moist | 0.0-0.0-0.0\| | $\|1.6-3.0-4.9\|$ | none | --- | none | --- | --- |
| | wet | 1.6-3.0-4.9\| | \|6.7-6.7-6.7| | | | | | |
| August | moist | 0.0-0.0-0.0\| | $\|2.5-3.8-5.7\|$ | none | --- | none | --- | --- |
| | wet | 2.5-3.8-5.7\| | $\|6.7-6.7-6.7\|$ | | | | | |
| September | moist | 0.0-0.0-0.0\| | $\|1.6-3.3-4.9\|$ | none | --- | rare | very brief | 0.0-0.1-0.3 |
| | wet | 1.6-3.3-4.9\| | \mid 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | $\|1.3-2.5-4.1\|$ | none | --- | rare | very brief | 0.0-0.1-0.3 |
| | wet | 1.3-2.5-4.1\| | \|6.7-6.7-6.7| | | | | | |
| November | moist | 0.0-0.0-0.0\| | \mid 0.8-1.6-3.3\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | 0.8-1.6-3.3\| | \|6.7-6.7-6.7| | | | | | |
| December | moist | 0.0-0.0-0.0\| | $\|1.3-2.0-3.9\|$ | none | --- | none | --- | --- |
| | wet | 1.3-2.0-3.9 | \|6.7-6.7-6.7| | | | | | |

I63A (continued)
Espelie (10 percent of the map unit)

Foxlake (7 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I63A (continued)
Huot (5 percent of the map unit)

Clearwater, depressional (3 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ L-R-H \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0\| | 0.5-1.3-2.5 | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | 0.5-1.3-2.5 | 6.7-6.7-6.7 | | | | | |
| February | moist | 0.0-0.0-0.0\| | 0.8-1.6-3.0 | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | 0.8-1.6-3.0\| | 6.7-6.7-6.7 | | | | | |
| March | moist | 0.0-0.0-0.0\| | 0.0-0.0-1.6 | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-1.6\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\|0 | 0.0-0.0-0.8 | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-0.8\| | 6.7-6.7-6.7 | | | | | |
| May | moist | 0.0-0.0-0.0\| | 0.0-0.0-1.3 | none | -- - | frequent | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.0-1.3\| | 6.7-6.7-6.7 | | | | | |
| June | moist | 0.0-0.0-0.0\| | 0.0-0.5-1.6 | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | 0.0-0.5-1.6\| | 6.7-6.7-6.7 | | | | | |
| July | moist | 0.0-0.0-0.0\| | 0.5-1.3-2.5 | none | --- | \|occasional | brief | 0.0-0.5-1.0 |
| | wet | 0.5-1.3-2.5 | 6.7-6.7-6.7 | | | | | |
| August | moist | 0.0-0.0-0.0\| | 0.8-1.6-3.0 | none | --- | \|occasional | brief | 0.0-0.5-1.0 |
| | wet | 0.8-1.6-3.0\| | 6.7-6.7-6.7 | | | | | |
| September | moist | 0.0-0.0-0.0\| | 0.5-1.3-2.5 | none | --- | \|occasional | brief | 0.0-0.5-1.0 |
| | wet | 0.5-1.3-2.5 | 6.7-6.7-6.7 | | | | | |
| October | moist | 0.0-0.0-0.0\| | 0.3-0.8-2.0 | none | --- | occasional | brief | 0.0-0.5-1.0 |
| | wet | 0.3-0.8-2.0\| | 6.7-6.7-6.7 | | | | | |
| November | moist | 0.0-0.0-0.0\| | 0.2-0.5-1.6 | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | 0.2-0.5-1.6\| | 6.7-6.7-6.7 | | | | | |
| December | moist | 0.0-0.0-0.0\| | 0.3-0.8-2.0 | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | 0.3-0.8-2.0\| | 6.7-6.7-6.7 | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I63A (continued)
Rosewood (3 percent of the map unit)

Ulen (1 percent of the map unit)

| Month | $\left\lvert\, \begin{array}{\|c\|} \mid \text { Moisture } \\ \text { status } \end{array}\right.$ | Top depth L-R - H | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ L-R-H \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 2.6-3.3-5.9\| | none | --- | none | --- | --- |
| | wet | \|2.6-3.3-5.9| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 3.3-4.1-6.7\| | none | --- | none | --- | --- |
| | wet | \| 3.3-4.1-6.7| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 2.6-3.3-5.7\| | none | --- | none | -- - | --- |
| | wet | \|2.6-3.3-5.7| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 1.5-2.0-3.3\| | none | --- | none | --- | --- |
| | wet | $\|1.5-2.0-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 2.0-2.5-4.1\| | none | --- | none | --- | --- |
| | wet | $\|2.0-2.5-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| June | dry | $\|0.0-0.0-0.0\|$ | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.3\|$ | 2.5-3.0-4.9\| | | | | | |
| | wet | $\|2.5-3.0-4.9\|$ | 6.7-6.7-6.7\| | | | | | |
| July | dry | $\|0.0-0.0-0.0\|$ | 0.0-0.0-0.5\| | none | -- - | none | --- | --- |
| | moist | $\|0.0-0.0-0.5\|$ | 3.0-4.9-6.2\| | | | | | |
| | wet | $\|3.0-4.9-6.2\|$ | 6.7-6.7-6.7\| | | | | | |
| August | dry | $\|0.0-0.0-0.0\|$ | 0.0-0.0-0.7\| | none | -- - | none | --- | --- |
| | moist | $\|0.0-0.0-0.7\|$ | 6.7-6.7-6.7\| | | | | | |
| September | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.3\| | none | --- | none | -- - | -- - |
| | moist | \|0.0-0.0-0.3| | 2.6-4.9-6.7\| | | | | | |
| | wet | \|2.6-4.9-6.7| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 2.3-3.0-5.7\| | none | --- | none | --- | --- |
| | wet | $\|2.3-3.0-5.7\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | $\|0.0-0.0-0.0\|$ | 2.0-2.5-4.9\| | none | --- | none | -- - | --- |
| | wet | $\|2.0-2.5-4.9\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | $\|0.0-0.0-0.0\|$ | 2.3-3.0-5.2\| | none | --- | none | --- | --- |
| | wet | $\|2.3-3.0-5.2\|$ | 6.7-6.7-6.7\| | | | | | |

I63A (continued)
Wyandotte (1 percent of the map unit)

I64A Ulen fine sandy loam, 0 to 3 percent slopes
Ulen (70 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0 | 2.6-3.3-5.9 | none | --- | none | --- | --- |
| | wet | 2.6-3.3-5.9 | 6.7-6.7-6.7 | | | | | |
| February | moist | 0.0-0.0-0.0 | 3.3-4.1-6.7 | none | --- | none | --- | --- |
| | wet | 3.3-4.1-6.7 | 6.7-6.7-6.7 | | | | | |
| March | moist | 0.0-0.0-0.0 | 2.6-3.3-5.7 | none | --- | none | --- | --- |
| | wet | 2.6-3.3-5.7 | 6.7-6.7-6.7 | | | | | |
| April | moist | 0.0-0.0-0.0 | 1.5-2.0-3.3 | none | --- | none | --- | --- |
| | wet | 1.5-2.0-3.3 | 6.7-6.7-6.7 | | | | | |
| May | moist | 0.0-0.0-0.0 | 2.0-2.5-4.1 | none | --- | none | --- | --- |
| | wet | 2.0-2.5-4.1 | 6.7-6.7-6.7 | | | | | |
| June | dry | 0.0-0.0-0.0 | 0.0-0.0-0.3 | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3 | 2.5-3.0-4.9 | | | | | |
| | wet | 2.5-3.0-4.9 | 6.7-6.7-6.7 | | | | | |
| July | dry | 0.0-0.0-0.0 | 0.0-0.0-0.5 | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.5 | 3.0-4.9-6.2 | | | | | |
| | wet | 3.0-4.9-6.2 | 6.7-6.7-6.7 | | | | | |
| August | dry | 0.0-0.0-0.0 | 0.0-0.0-0.7 | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.7 | 6.7-6.7-6.7 | | | | | |
| September | dry | 0.0-0.0-0.0 | 0.0-0.0-0.3 | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3 | 2.6-4.9-6.7 | | | | | |
| | wet | 2.6-4.9-6.7 | 6.7-6.7-6.7 | | | | | |
| October | moist | 0.0-0.0-0.0 | 2.3-3.0-5.7 | none | --- | none | --- | --- |
| | wet | 2.3-3.0-5.7 | 6.7-6.7-6.7 | | | | | |
| November | moist | 0.0-0.0-0.0 | 2.0-2.5-4.9 | none | --- | none | --- | --- |
| | wet | 2.0-2.5-4.9 | 6.7-6.7-6.7 | | | | | |
| December | moist | 0.0-0.0-0.0 | 2.3-3.0-5.2 | none | --- | none | --- | --- |
| | wet | 2.3-3.0-5.2 | 6.7-6.7-6.7 | | | | | |

I64A (continued)
Rosewood (10 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 2.0-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | \| 2.0-2.5-4.9| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 2.5-3.3-5.7\| | none | --- | none | --- | --- |
| | wet | $\|2.5-3.3-5.7\|$ | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 1.6-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | $\|1.6-2.1-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 0.0-0.5-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | $\|0.0-0.5-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| May | moist | $\|0.0-0.0-0.0\|$ | 0.5-1.3-3.3\| | none | --- | \|occasional | \|very brief | 0.0-0.3-0.5 |
| | wet | $\|0.5-1.3-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| June | moist | $\|0.0-0.0-0.0\|$ | 0.8-1.6-4.1\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | $\|0.8-1.6-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 1.6-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | \|1.6-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 2.5-4.9-5.7\| | none | --- | none | --- | --- |
| | wet | \| 2.5-4.9-5.7| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 1.3-3.0-4.9\| | none | --- | none | --- | --- |
| | wet | $\|1.3-3.0-4.9\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 1.0-2.1-4.1\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | $\|1.0-2.1-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | none | --- | --- |
| | wet | $\|0.8-1.6-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 1.3-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.3-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |

Flaming (8 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I64A (continued)
Karlsruhe (5 percent of the map unit)

| Month | \mid Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{gathered} \text { Ponding } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0\| | 2.6-3.3-6.2\| | none | --- | none | --- | --- |
| | wet | 2.6-3.3-6.2\| | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 3.3-4.1-6.7\| | none | --- | none | --- | -- - |
| | wet | 3.3-4.1-6.7\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0\| | 2.6-3.3-5.9\| | none | --- | none | --- | --- |
| | wet | 2.6-3.3-5.9\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 1.5-2.0-3.3\| | none | --- | none | --- | --- |
| | wet | 1.5-2.0-3.3\| | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0\| | 1.8-2.5-4.1\| | none | --- | none | --- | --- |
| | wet | 1.8-2.5-4.1\| | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0\| | 2.5-3.0-4.9\| | none | --- | none | --- | --- |
| | wet | 2.5-3.0-4.9\| | 6.7-6.7-6.7\| | | | | | |
| July | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | 3.0-3.6-6.7\| | | | | | |
| | wet | 3.0-3.6-6.7\| | 6.7-6.7-6.7\| | | | | | |
| August | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.5\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.5\| | 4.1-6.7-6.7\| | | | | | |
| | wet | 4.1-6.7-6.7\| | 6.7-6.7-6.7\| | | | | | |
| September | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | 2.6-4.1-6.7\| | | | | | |
| | wet | 2.6-4.1-6.7\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 3.0-4.3-5.7\| | none | --- | none | --- | --- |
| | wet | 3.0-4.3-5.7\| | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0\| | 2.0-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | 2.0-2.5-4.9\| | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 2.3-3.0-5.6\| | none | --- | none | --- | --- |
| | wet | 2.3-3.0-5.6\| | 6.7-6.7-6.7\| | | | | | |
| | | | | | | | | |

Radium (3 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I64A (continued)
Strathcona (2 percent of the map unit)

Thiefriver (2 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued

I65A Ulen loamy fine sand, 0 to 3 percent slopes
Ulen (70 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \text { L }-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \text { L - R - H } \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0\| | 2.6-3.3-5.9\| | none | --- | none | --- | --- |
| | wet | \|2.6-3.3-5.9| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 3.3-4.1-6.7\| | none | --- | none | --- | --- |
| | wet | \|3.3-4.1-6.7| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 2.6-3.3-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.6-3.3-5.7| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 1.5-2.0-3.3\| | none | --- | none | --- | --- |
| | wet | 1.5-2.0-3.3\| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 2.0-2.5-4.1\| | none | --- | none | --- | --- |
| | wet | \|2.0-2.5-4.1| | 6.7-6.7-6.7\| | | | | | |
| June | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | 2.5-3.0-4.9\| | | | | | |
| | wet | \|2.5-3.0-4.9| | 6.7-6.7-6.7\| | | | | | |
| July | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.5\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.5| | 3.0-4.9-6.2\| | | | | | |
| | wet | $\|3.0-4.9-6.2\|$ | 6.7-6.7-6.7\| | | | | | |
| August | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.7\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.7| | 6.7-6.7-6.7\| | | | | | |
| September | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.5\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.5\| | 2.6-4.9-6.7\| | | | | | |
| | wet | \|2.6-4.9-6.7| | 6.7-6.7-6.7\| | | | | | |
| October | moist | $\|0.0-0.0-0.0\|$ | 2.3-3.0-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.3-3.0-5.7| | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0\| | 2.0-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | \|2.0-2.5-4.9| | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 2.3-3.0-5.2\| | none | --- | none | --- | --- |
| | wet | \|2.3-3.0-5.2| | 6.7-6.7-6.7\| | | | | | |

Rosewood (10 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0\| | 2.0-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | \|2.0-2.5-4.9| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 2.5-3.3-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.5-3.3-5.7| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 1.6-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.6-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 0.0-0.5-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.0-0.5-2.5| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.5-1.3-3.3\| | none | --- | occasional | \|very brief | 0.0-0.3-0.5 |
| | wet | $\|0.5-1.3-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 0.8-1.6-4.1\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | \|0.8-1.6-4.1| | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 1.6-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | \|1.6-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| August | moist | 0.0-0.0-0.0\| | 2.5-4.9-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.5-4.9-5.7| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 1.3-3.0-4.9\| | none | --- | none | --- | --- |
| | wet | $\|1.3-3.0-4.9\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 1.0-2.1-4.1\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | 1.0-2.1-4.1\| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.3\| | none | --- | none | --- | --- |
| | wet | \|0.8-1.6-3.3| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 1.3-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | 1.3-2.1-4.1\| | 6.7-6.7-6.7\| | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I65A (continued)
Flaming (6 percent of the map unit)

Poppleton (4 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I65A (continued)
Karlsruhe (3 percent of the map unit)

| Month | \mid Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{gathered} \text { Ponding } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0\| | 2.6-3.3-6.2\| | none | --- | none | --- | --- |
| | wet | 2.6-3.3-6.2\| | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 3.3-4.1-6.7\| | none | --- | none | --- | -- - |
| | wet | 3.3-4.1-6.7\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0\| | 2.6-3.3-5.9\| | none | --- | none | --- | --- |
| | wet | 2.6-3.3-5.9\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 1.5-2.0-3.3\| | none | --- | none | --- | --- |
| | wet | 1.5-2.0-3.3\| | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0\| | 1.8-2.5-4.1\| | none | --- | none | --- | --- |
| | wet | 1.8-2.5-4.1\| | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0\| | 2.5-3.0-4.9\| | none | --- | none | --- | --- |
| | wet | 2.5-3.0-4.9\| | 6.7-6.7-6.7\| | | | | | |
| July | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | 3.0-3.6-6.7\| | | | | | |
| | wet | 3.0-3.6-6.7\| | 6.7-6.7-6.7\| | | | | | |
| August | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.5\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.5\| | 4.1-6.7-6.7\| | | | | | |
| | wet | 4.1-6.7-6.7\| | 6.7-6.7-6.7\| | | | | | |
| September | dry | 0.0-0.0-0.0\| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3\| | 2.6-4.1-6.7\| | | | | | |
| | wet | 2.6-4.1-6.7\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 3.0-4.3-5.7\| | none | --- | none | --- | --- |
| | wet | 3.0-4.3-5.7\| | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0\| | 2.0-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | 2.0-2.5-4.9\| | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 2.3-3.0-5.6\| | none | --- | none | --- | --- |
| | wet | 2.3-3.0-5.6\| | 6.7-6.7-6.7\| | | | | | |
| | | | | | | | | |

Radium (3 percent of the map unit)

I65A (continued)
Strathcona (2 percent of the map unit)

Thiefriver (2 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued

I66A Vallers loam, 0 to 2 percent slopes
Vallers (75 percent of the map unit)

Vallers, very cobbly (7 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I66A (continued)
Hamerly (6 percent of the map unit)

| Month | Moisture status | | Bottom depth
 L - R - H | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | Ponding depth
 L - R - H |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0 | 2.5-4.1-5.7\| | none | --- | none | --- | --- |
| | wet | 2.5-4.1-5.7 | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0 | 3.3-4.9-6.7\| | none | --- | none | --- | --- |
| | wet | 3.3-4.9-6.7 | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0 | 2.5-3.8-5.7\| | none | --- | none | --- | --- |
| | wet | 2.5-3.8-5.7 | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0 | 0.7-1.3-3.3\| | none | --- | none | --- | --- |
| | wet | 0.7-1.3-3.3 | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0 | 1.0-1.5-4.1\| | none | --- | none | --- | --- |
| | wet | 1.0-1.5-4.1\| | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0 | 1.6-2.0-4.9\| | none | --- | none | --- | --- |
| | wet | 1.6-2.0-4.9 | 6.7-6.7-6.7\| | | | | | |
| July | dry | 0.0-0.0-0.0 | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3 | 2.5-3.3-5.4\| | | | | | |
| | wet | 2.5-3.3-5.4\| | 6.7-6.7-6.7\| | | | | | |
| August | dry | 0.0-0.0-0.0 | 0.0-0.0-0.5\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.5\| | 3.3-6.7-6.7\| | | | | | |
| | wet | 3.3-6.7-6.7 | 6.7-6.7-6.7\| | | | | | |
| September | dry | 0.0-0.0-0.0 | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | 0.0-0.0-0.3 | 2.5-4.6-5.7\| | | | | | |
| | wet | 2.5-4.6-5.7 | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 2.0-3.9-4.9 | none | --- | none | --- | --- |
| | wet | 2.0-3.9-4.9\| | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0\| | 1.6-3.0-4.1\| | none | --- | none | --- | --- |
| | wet | 1.6-3.0-4.1\| | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 2.0-3.8-4.9 | none | --- | none | --- | --- |
| | wet | 2.0-3.8-4.9 | 6.7-6.7-6.7\| | | | | | |

Grimstad (3 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I66A (continued)
Mavie (3 percent of the map unit)

Roliss, depressional (3 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \text { L }-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding
 frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0|0 | 0.8-1.6-3.0\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.8-1.6-3.0| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 1.6-2.5-3.3\| | none | --- | \|occasional | long | 10.0-0.5-1.0 |
| | wet | \|1.6-2.5-3.3| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0|0 | 0.0-0.0-1.6\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-1.6| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0|0 | 0.0-0.0-0.8\| | none | --- | frequent | long | 10.0-0.5-1.0 |
| | wet | \|0.0-0.0-0.8| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0|0. | 0.0-0.0-1.6\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-1.6| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0|0 | 0.2-0.8-2.5\| | none | --- | \|occasional | brief | 10.0-0.5-1.0 |
| | wet | \|0.2-0.8-2.5| | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0|0. | 0.8-1.6-3.0\| | none | --- | rare | \|very brief | 10.0-0.3-0.5 |
| | wet | \|0.8-1.6-3.0| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 1.6-2.1-3.3\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | \|1.6-2.1-3.3| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0|0 | 0.8-1.6-3.0\| | none | --- | rare | brief | 0.0-0.3-0.5 |
| | wet | \|0.8-1.6-3.0| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0|0 | 0.5-1.3-2.5\| | none | --- | \|occasional | brief | 0.0-0.3-0.5 |
| | wet | $\|0.5-1.3-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0|0 | 0.2-0.5-1.6\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.2-0.5-1.6| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0|0 | 0.3-0.8-2.0\| | none | --- | \|occasional | long | 10.0-0.5-1.0 |
| | wet | \|0.3-0.8-2.0| | 6.7-6.7-6.7\| | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I66A (continued)
Strathcona (3 percent of the map unit)

I67A Wheatville loam, 0 to 3 percent slopes
Wheatville (70 percent of the map unit)

I67A (continued)
Augsburg (13 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0\| | 1.6-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | 1.6-2.1-4.1\| | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 2.0-2.6-4.9\| | none | --- | none | | --- |
| | wet | 2.0-2.6-4.9\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0\| | 1.5-2.3-4.9\| | none | --- | none | -- | -- |
| | wet | 1.5-2.3-4.9\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 0.0-0.5-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.0-0.5-2.5\| | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0\| | 0.5-0.8-3.3\| | none | --- | \|occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.5-0.8-3.3\| | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0\| | 0.8-1.6-4.1\| | none | --- | \|occasional | \|very brief | 0.0-0.3-0.5 |
| | wet | 0.8-1.6-4.1\| | 6.7-6.7-6.7\| | | | | | |
| July | moist | 0.0-0.0-0.0\| | 1.6-3.0-4.9\| | none | --- | none | | -- |
| | wet | 1.6-3.0-4.9\| | 6.7-6.7-6.7\| | | | | | |
| August | moist | 0.0-0.0-0.0\| | 2.5-3.8-5.7\| | none | --- | none | -- | -- |
| | wet | 2.5-3.8-5.7\| | 6.7-6.7-6.7\| | | | | | |
| September | moist | 0.0-0.0-0.0\| | 1.6-3.3-4.9\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | 1.6-3.3-4.9\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 1.3-2.5-4.1 | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 1.3-2.5-4.1\| | 6.7-6.7-6.7 | | | | | |
| November | moist | 0.0-0.0-0.0\| | 0.8-1.6-3.3 | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.8-1.6-3.3\| | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 1.3-2.0-3.9 | none | --- | none | --- | -- |
| | wet | 1.3-2.0-3.9\| | 6.7-6.7-6.7 | | | | | |

Glyndon (8 percent of the map unit)

| Month | \|Moisture
 status | $\|$
 Top
 depth
 $L-R-H$ | Bottom depth $L-R-H$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{gathered} \text { Ponding } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | |
| January | moist wet | $\left\|\begin{array}{l} \mid 0.0-0.0-0.0 \\ \mid 2.5-4.1-6.7 \end{array}\right\|$ | $\begin{aligned} & 2.5-4 \cdot 1-6.7 \\ & 6.7-6.7-6.7 \end{aligned}$ | none | --- | none | --- | --- |
| February | moist wet | $\left\|\begin{array}{l} \mid 0.0-0.0-0.0 \\ \mid 3.3-4.9-6.7 \end{array}\right\|$ | $\begin{aligned} & 3.3-4.9-6.7 \\ & 6.7-6.7-6.7 \end{aligned}$ | none | - | none | --- | --- |
| March | moist wet | $\left\|\begin{array}{l} \mid 0.0-0.0-0.0 \\ \mid 2.5-3.9-5.7 \end{array}\right\|$ | $\begin{aligned} & 2.5-3.9-5.7 \\ & 6.7-6.7-6.7 \end{aligned}$ | none | -- | none | --- | --- |
| April | moist wet | $\|0.0-0.0-0.0\|$ | $\begin{aligned} & 0.7-1.0-3.3 \\ & 6.7-6.7-6.7 \end{aligned}$ | none | --- | none | --- | -- |
| May | moist wet | $\left\|\begin{array}{\|c} \mid 0.0-0.0-0.0 \\ \mid 1.0-1.6-4.1 \end{array}\right\|$ | $\begin{aligned} & 1.0-1.6-4.1 \\ & 6.7-6.7-6.7 \end{aligned}$ | none | -- | none | --- | --- |
| June | moist wet | $\|0.0-0.0-0.0\|$ | $\begin{aligned} & 1.6-2.5-4.9 \\ & 6.7-6.7-6.7 \end{aligned}$ | none | --- | none | --- | --- |
| July | ```dry moist wet``` | $\left\|\begin{array}{l} \mid 0.0-0.0-0.0 \\ \mid 0.0-0.0-0.2 \\ \mid 2.5-3.9-6.7 \end{array}\right\|$ | $\begin{aligned} & 0.0-0.0-0.2 \\ & 2.5-3.9-6.7 \\ & 6.7-6.7-6.7 \end{aligned}$ | none | --- | none | --- | --- |
| August | ```dry moist wet``` | $\left\|\begin{array}{l} 0.0-0.0-0.0 \\ \mid 0.0-0.0-0.3 \\ \mid 3.3-6.7-6.7 \end{array}\right\|$ | $\begin{aligned} & 0.0-0.0-0.3 \\ & 3.3-6.7-6.7 \\ & 6.7-6.7-6.7 \end{aligned}$ | none | --- | none | --- | -- |
| September | moist wet | $\|0.0-0.0-0.0\|$ | $\begin{aligned} & 2.5-4.6-6.2 \\ & 6.7-6.7-6.7 \end{aligned}$ | none | -- | none | --- | -- |
| October | moist wet | $\left\|\begin{array}{l} \mid 0.0-0.0-0.0 \\ \mid 2.0-4.1-5.7 \end{array}\right\|$ | $\begin{aligned} & 2.0-4.1-5.7 \\ & 6.7-6.7-6.7 \end{aligned}$ | none | --- | none | --- | -- |
| November | moist wet | $\left\|\begin{array}{l} \mid 0.0-0.0-0.0 \\ \mid 1.6-3.0-4.1 \end{array}\right\|$ | $\begin{aligned} & 1.6-3.0-4.1 \\ & 6.7-6.7-6.7 \end{aligned}$ | none | --- | none | --- | -- |
| December | moist wet | $\left\|\begin{array}{l} \mid 0.0-0.0-0.0 \\ \mid 2.0-3.8-4.9 \end{array}\right\|$ | $\begin{aligned} & 2.0-3.8-4.9 \\ & 6.7-6.7-6.7 \end{aligned}$ | none | --- | none | --- | --- |

167A (continued)
Foxlake (5 percent of the map unit)

Hilaire (2 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I67A (continued)
Ulen (2 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{gathered} \text { Ponding } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 2.6-3.3-5.9\| | none | --- | none | --- | --- |
| | wet | \|2.6-3.3-5.9| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 3.3-4.1-6.7\| | none | --- | none | --- | --- |
| | wet | \|3.3-4.1-6.7| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 2.6-3.3-5.7\| | none | --- | none | --- | --- |
| | wet | $\mid 2.6$-3.3-5.7\|6 | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0| | 1.5-2.0-3.3\| | none | --- | none | --- | --- |
| | wet | $\|1.5-2.0-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 2.0-2.5-4.1\| | none | --- | none | --- | --- |
| | wet | $\|2.0-2.5-4.1\| 6$ | 6.7-6.7-6.7\| | | | | | |
| June | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | 2.5-3.0-4.9\| | | | | | |
| | wet | \| 2.5-3.0-4.9| | 6.7-6.7-6.7\| | | | | | |
| July | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.5\| | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.5\|$ | 3.0-4.9-6.2\| | | | | | |
| | wet | $\|3.0-4.9-6.2\|$ | 6.7-6.7-6.7\| | | | | | |
| August | dry | $\|0.0-0.0-0.0\|$ | 0.0-0.0-0.7\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.7| | 6.7-6.7-6.7\| | | | | | |
| September\| | dry | $\|0.0-0.0-0.0\|$ | 0.0-0.0-0.5 | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.5\|$ | 2.6-4.9-6.7\| | | | | | |
| | wet | \| 2.6-4.9-6.7| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 2.3-3.0-5.7\| | none | --- | none | --- | --- |
| | wet | $\|2.3-3.0-5.7\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 2.0-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | \| 2.0-2.5-4.9| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 2.3-3.0-5.2\| | none | --- | none | --- | --- |
| | wet | \|2.3-3.0-5.2| | 6.7-6.7-6.7\| | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued

I68A Wheatville very fine sandy loam, 0 to 3 percent slopes
Wheatville (70 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding
 frequency | Flooding duration | Ponding
 frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \text { L - R - H } \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 2.5-3.8-5.7\| | none | --- | none | --- | --- |
| | wet | $\mid 2.5-3.8$-5.7\| \mid | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 3.3-4.6-6.7\| | none | --- | none | --- | --- |
| | wet | $\|3.3-4.6-6.7\| 6$ | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 2.5-3.0-5.7\| | none | --- | none | --- | --- |
| | wet | \| 2.5-3.0-5.7| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0|0 | 0.7-1.3-3.3\| | none | --- | none | --- | --- |
| | wet | $\|0.7-1.3-3.3\| 6$ | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 1.0-1.6-4.1\| | none | --- | none | --- | --- |
| | wet | $\|1.0-1.6-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 1.6-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | $\|1.6-2.5-4.9\|$ | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 2.5-3.8-6.2\| | none | --- | none | --- | --- |
| | wet | $\mid 2.5-3.8$-6.2\| | 6.7-6.7-6.7\| | | | | | |
| August | dry | $\|0.0-0.0-0.0\| 0$ | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.3\| 3$ | 3.8-6.7-6.7\| | | | | | |
| | wet | $\|3.8-6.7-6.7\| 6$ | 6.7-6.7-6.7\| | | | | | |
| September | moist | $\|0.0-0.0-0.0\|$ | 2.5-3.8-6.2\| | none | --- | none | --- | --- |
| | wet | $\mid 2.5-3.8$-6.2\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | $\|0.0-0.0-0.0\|$ | 2.0-3.0-5.6\| | none | --- | none | --- | --- |
| | wet | $\|2.0-3.0-5.6\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 1.6-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | $\|1.6-2.5-4.9\| 6$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 2.0-3.3-5.4\| | none | --- | none | --- | --- |
| | wet | $\|2.0-3.3-5.4\| 6$ | 6.7-6.7-6.7\| | | | | | |

Augsburg (13 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0 | 1.6-2.1-4.1 | none | --- | none | --- | --- |
| | wet | 1.6-2.1-4.1 | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0 | 2.0-2.6-4.9\| | none | --- | none | --- | --- |
| | wet | 2.0-2.6-4.9 | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0 | 1.5-2.3-4.9\| | none | --- | none | --- | --- |
| | wet | 1.5-2.3-4.9 | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0 | 0.0-0.5-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.0-0.5-2.5 | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0 | 0.5-0.8-3.3\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.5-0.8-3.3 | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0 | 0.8-1.6-4.1\| | none | --- | occasional | very brief | 0.0-0.3-0.5 |
| | wet | 0.8-1.6-4.1 | 6.7-6.7-6.7\| | | | | | |
| July | moist | 0.0-0.0-0.0\| | 1.6-3.0-4.9\| | none | --- | none | --- | --- |
| | wet | 1.6-3.0-4.9 | 6.7-6.7-6.7\| | | | | | |
| August | moist | 0.0-0.0-0.0\| | 2.5-3.8-5.7\| | none | --- | none | \|very brief | --- |
| | wet | 2.5-3.8-5.7 | 6.7-6.7-6.7\| | | | | | |
| September | moist | 0.0-0.0-0.0 | 1.6-3.3-4.9\| | none | --- | rare | | 0.0-0.3-0.5 |
| | wet | 1.6-3.3-4.9 | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0 | 1.3-2.5-4.1\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 1.3-2.5-4.1\| | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0 | 0.8-1.6-3.3\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.8-1.6-3.3 | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0 | 1.3-2.0-3.9 | none | --- | none | --- | --- |
| | wet | 1.3-2.0-3.9 | 6.7-6.7-6.7\| | | | | | |

I68A (continued)
Glyndon (8 percent of the map unit)

| Month | \|Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0 | 2.5-4.1-6.7\| | none | --- | none | --- | --- |
| | wet | \|2.5-4.1-6.7| | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 3.3-4.9-6.7\| | none | --- | none | --- | --- |
| | wet | \|3.3-4.9-6.7| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 2.5-3.9-5.7\| | none | --- | none | --- | --- |
| | wet | 2.5-3.9-5.7 | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0 | 0.7-1.0-3.3\| | none | --- | none | --- | --- |
| | wet | \|0.7-1.0-3.3| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 1.0-1.6-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.0-1.6-4.1| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0| | 1.6-2.5-4.9 | none | --- | none | --- | --- |
| | wet | \|1.6-2.5-4.9| | 6.7-6.7-6.7\| | | | | | |
| July | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.2\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.2| | 2.5-3.9-6.7\| | | | | | |
| | wet | \|2.5-3.9-6.7| | 6.7-6.7-6.7\| | | | | | |
| August | dry | \|0.0-0.0-0.0| | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | \|0.0-0.0-0.3| | 3.3-6.7-6.7\| | | | | | |
| | wet | \|3.3-6.7-6.7| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 2.5-4.6-6.2\| | none | --- | none | --- | --- |
| | wet | \|2.5-4.6-6.2| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 2.0-4.1-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.0-4.1-5.7| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 1.6-3.0-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.6-3.0-4.1| | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 2.0-3.8-4.9 | none | --- | none | --- | --- |
| | wet | \|2.0-3.8-4.9| | 6.7-6.7-6.7\| | | | | | |

Foxlake (5 percent of the map unit)

| Month | Moisture status | Top depth $\mathrm{L}-\mathrm{R}-\mathrm{H}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0\| | 0.8-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | \|0.8-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0|1 | 1.6-2.5-4.9 | none | --- | none | --- | --- |
| | wet | \|1.6-2.5-4.9| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 0.3-1.3-3.3\| | none | --- | none | --- | --- |
| | wet | $\|0.3-1.3-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0|0. | 0.0-0.0-1.6\| | none | --- | occasional | brief | 10.0-0.3-0.5 |
| | wet | 0.0-0.0-1.6 | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0| | 0.0-0.5-2.5\| | none | --- | occasional | brief | 10.0-0.3-0.5 |
| | wet | \|0.0-0.5-2.5| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0|0. | 0.8-1.3-3.3\| | none | --- | \|occasional | \|very brief | 0.0-0.3-0.5 |
| | wet | 0.8-1.3-3.3 | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 1.3-2.1-4.1\| | none | --- | rare | \|very brief | 0.0-0.2-0.3 |
| | wet | \|1.3-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0|1 | 1.6-3.0-4.9\| | none | --- | rare | \|very brief | 10.0-0.2-0.3 |
| | wet | \|1.6-3.0-4.9| | 6.7-6.7-6.7\| | | | | | |
| September | moist | 0.0-0.0-0.0\| | 1.3-2.5-4.1\| | none | --- | rare | \|very brief | 0.0-0.2-0.3 |
| | wet | \|1.3-2.5-4.1|6. | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0|0 | 0.8-1.6-3.3\| | none | --- | \|occasional | \|very brief | 0.0-0.2-0.3 |
| | wet | \|0.8-1.6-3.3| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0|0. | 0.5-1.3-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.5-1.3-2.5|6. | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0|0 | 0.8-1.6-3.3\| | none | --- | none | --- | --- |
| | wet | $\|0.8-1.6-3.3\| 6$ | 6.7-6.7-6.7\| | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I68A (continued)
Hilaire (2 percent of the map unit)

I68A (continued)
Ulen (2 percent of the map unit)

I69A Wyandotte clay loam, 0 to 2 percent slopes
Wyandotte (65 percent of the map unit)

| Month | Moisture status | Top depth $L-R-H$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ L-R-H \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | moist | 0.0-0.0-0.0\| | 1.6-2.1-4.1 | none | --- | none | --- | --- |
| | wet | 1.6-2.1-4.1\| | 6.7-6.7-6.7 | | | | | |
| February | moist | 0.0-0.0-0.0\| | 2.0-2.6-4.9 | none | --- | none | --- | --- |
| | wet | 2.0-2.6-4.9\| | 6.7-6.7-6.7 | | | | | |
| March | moist | 0.0-0.0-0.0\| | 1.5-2.3-4.1 | none | -- - | none | -- - | --- |
| | wet | 1.5-2.3-4.1\| | 6.7-6.7-6.7 | | | | | |
| April | moist | 0.0-0.0-0.0\| | 0.0-0.5-2.5 | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.0-0.5-2.5\| | 6.7-6.7-6.7 | | | | | |
| May | moist | 0.0-0.0-0.0\| | 0.5-0.8-3.3 | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | 0.5-0.8-3.3\| | 6.7-6.7-6.7 | | | | | |
| June | moist | 0.0-0.0-0.0\| | 0.8-1.6-4.1 | none | --- | occasional | very brief | 0.0-0.3-0.5 |
| | wet | 0.8-1.6-4.1\| | 6.7-6.7-6.7 | | | | | |
| July | moist | 0.0-0.0-0.0\| | 1.6-3.0-4.9 | none | --- | none | --- | --- |
| | wet | 1.6-3.0-4.9\| | 6.7-6.7-6.7 | | | | | |
| August | moist | 0.0-0.0-0.0\| | 2.5-3.8-5.7 | none | --- | none | --- | --- |
| | wet | 2.5-3.8-5.7\| | 6.7-6.7-6.7\| | | | | | |
| September | moist | 0.0-0.0-0.0\| | 1.6-3.3-4.9 | none | --- | none | - - - | -- - |
| | wet | 1.6-3.3-4.9 | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 1.3-2.5-4.1 | none | -- - | rare | very brief | 0.0-0.1-0.3 |
| | wet | 1.3-2.5-4.1\| | 6.7-6.7-6.7 | | | | | |
| November | moist | 0.0-0.0-0.0\|0 | 0.8-1.6-3.3 | none | -- - | none | --- | --- |
| | wet | 0.8-1.6-3.3\| | 6.7-6.7-6.7 | | | | | |
| December | moist | 0.0-0.0-0.0\| | 1.3-2.0-3.9 | none | --- | none | --- | --- |
| | wet | 1.3-2.0-3.9 | 6.7-6.7-6.7 | | | | | |

I69A (continued)
Foxlake (10 percent of the map unit)

Espelie (8 percent of the map unit)

I69A (continued)
Clearwater, depressional (5 percent of the map unit)

| Month | Moisture status | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \text { L - R - H } \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 0.5-1.3-2.5\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | $\|0.5-1.3-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.0\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.8-1.6-3.0| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 0.0-0.0-1.6\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-1.6 | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0 | 0.0-0.0-0.8\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-0.8| | 6.7-6.7-6.7\| | | | | | |
| May | moist | $\|0.0-0.0-0.0\|$ | 0.0-0.0-1.3\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-1.3| | 6.7-6.7-6.7\| | | | | | |
| June | moist | $\|0.0-0.0-0.0\|$ | 0.0-0.5-1.6\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | $\|0.0-0.5-1.6\|$ | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 0.5-1.3-2.5\| | none | --- | \|occasional | brief | 0.0-0.5-1.0 |
| | wet | \|0.5-1.3-2.5| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 0.8-1.6-3.0\| | none | --- | \|occasional | brief | 0.0-0.5-1.0 |
| | wet | $\|0.8-1.6-3.0\|$ | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 0.5-1.3-2.5\| | none | --- | \|occasional | brief | 0.0-0.5-1.0 |
| | wet | $\|0.5-1.3-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 0.3-0.8-2.0\| | none | --- | \|occasional | brief | 0.0-0.5-1.0 |
| | wet | \|0.3-0.8-2.0| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0| | 0.2-0.5-1.6\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | $\|0.2-0.5-1.6\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 0.3-0.8-2.0\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.3-0.8-2.0| | 6.7-6.7-6.7\| | | | | | |

Thiefriver (5 percent of the map unit)

I69A (continued)
Karlsruhe (4 percent of the map unit)

| Month | Moisture status | $\left\{\begin{array}{c} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{array}\right.$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 2.6-3.3-6.2\| | none | --- | none | --- | --- |
| | wet | $\mid 2.6$-3.3-6.2\| | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 3.3-4.1-6.7\| | none | --- | none | --- | --- |
| | wet | $\|3.3-4.1-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| March | moist | $\|0.0-0.0-0.0\|$ | 2.6-3.3-5.9\| | none | --- | none | --- | --- |
| | wet | $\mid 2.6$-3.3-5.9\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | $\|0.0-0.0-0.0\|$ | 1.5-2.0-3.3\| | none | --- | none | --- | --- |
| | wet | \|1.5-2.0-3.3| | 6.7-6.7-6.7\| | | | | | |
| May | moist | $\|0.0-0.0-0.0\|$ | 1.8-2.5-4.1\| | none | --- | none | --- | --- |
| | wet | $\|1.8-2.5-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| June | moist | $\|0.0-0.0-0.0\|$ | 2.5-3.0-4.9\| | none | --- | none | --- | --- |
| | wet | $\|2.5-3.0-4.9\|$ | 6.7-6.7-6.7\| | | | | | |
| July | dry | $\|0.0-0.0-0.0\|$ | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.3\|$ | 3.0-3.6-6.7\| | | | | | |
| | wet | $\|3.0-3.6-6.7\|$ | 6.7-6.7-6.7\| | | | | | |
| August | dry | $\|0.0-0.0-0.0\|$ | 0.0-0.0-0.5\| | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.5\|$ | 4.1-6.7-6.7\| | | | | | |
| | wet | $\mid 4.1$-6.7-6.7\| | 6.7-6.7-6.7\| | | | | | |
| September\| | dry | $\|0.0-0.0-0.0\|$ | 0.0-0.0-0.3\| | none | --- | none | --- | --- |
| | moist | $\|0.0-0.0-0.3\|$ | 2.6-4.1-6.7\| | | | | | |
| | wet | \| 2.6-4.1-6.7| | 6.7-6.7-6.7\| | | | | | |
| October | moist | $\|0.0-0.0-0.0\|$ | 3.0-4.3-5.7\| | none | --- | none | --- | --- |
| | wet | $\|3.0-4.3-5.7\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | $\|0.0-0.0-0.0\|$ | 2.0-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | $\|2.0-2.5-4.9\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | $\|0.0-0.0-0.0\|$ | 2.3-3.0-5.6\| | none | --- | none | --- | --- |
| | wet | \| 2.3-3.0-5.6| | 6.7-6.7-6.7\| | | | | | |

Syrene (3 percent of the map unit)

| Month | Moisture status | Top depth
 L - R - H | Bottom depth
 L - R - H | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | Ponding depth
 L - R - H | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | 0.0-0.0-0.0\| | 2.0-3.0-4.9 | none | --- | none | --- | --- |
| | wet | 2.0-3.0-4.9\| | 6.7-6.7-6.7\| | | | | | |
| February | moist | 0.0-0.0-0.0\| | 2.5-3.3-5.7\| | none | --- | none | --- | --- |
| | wet | 2.5-3.3-5.7\| | 6.7-6.7-6.7\| | | | | | |
| March | moist | 0.0-0.0-0.0\| | 1.6-2.5-4.1\| | none | --- | none | --- | --- |
| | wet | 1.6-2.5-4.1\| | 6.7-6.7-6.7\| | | | | | |
| April | moist | 0.0-0.0-0.0\| | 0.0-0.3-2.5\| | none | -- - | occasional | very brief | 0.0-0.3-0.5 |
| | wet | 0.0-0.3-2.5\| | 6.7-6.7-6.7\| | | | | | |
| May | moist | 0.0-0.0-0.0\| | 0.5-0.8-3.3\| | none | --- | rare | very brief | 0.0-0.3-0.5 |
| | wet | 0.5-0.8-3.3\| | 6.7-6.7-6.7\| | | | | | |
| June | moist | 0.0-0.0-0.0\| | 1.0-1.6-2.5\| | none | --- | rare | very brief | 0.0-0.1-0.3 |
| | wet | 1.0-1.6-2.5\| | 6.7-6.7-6.7\| | | | | | |
| July | moist | 0.0-0.0-0.0\| | 1.6-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | 1.6-2.5-4.9\| | 6.7-6.7-6.7\| | | | | | |
| August | moist | 0.0-0.0-0.0\| | 2.5-3.3-5.7\| | none | --- | none | --- | --- |
| | wet | 2.5-3.3-5.7\| | 6.7-6.7-6.7\| | | | | | |
| September | moist | 0.0-0.0-0.0\| | 1.3-2.5-4.9\| | none | --- | none | --- | --- |
| | wet | 1.3-2.5-4.9\| | 6.7-6.7-6.7\| | | | | | |
| October | moist | 0.0-0.0-0.0\| | 1.0-2.1-4.1\| | none | --- | none | --- | -- - |
| | wet | 1.0-2.1-4.1\| | 6.7-6.7-6.7\| | | | | | |
| November | moist | 0.0-0.0-0.0\| | \|0.8-1.6-3.3| | none | --- | none | --- | --- |
| | wet | 0.8-1.6-3.3\| | 6.7-6.7-6.7\| | | | | | |
| December | moist | 0.0-0.0-0.0\| | 1.6-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | 1.6-2.1-4.1\| | 6.7-6.7-6.7\| | | | | | |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued

I70A Strathcona fine sandy loam, 0 to 2 percent slopes
Strathcona (70 percent of the map unit)

| Month | $\left\lvert\, \begin{array}{\|l\|} \mid \text { Moisture } \mid \\ \mid \text { status } \end{array}\right.$ | $\begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \text { L }-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding
 frequency | Ponding duration | Ponding depth
 L - R - H | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 1.6-3.0-4.1\| | none | --- | none | --- | --- |
| | wet | $\|1.6-3.0-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 2.5-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | \|2.5-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 1.6-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.6-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0|0. | 0.0-0.5-2.5\| | none | --- | \|occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.0-0.5-2.5| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0|0 | 0.5-0.8-3.3\| | none | --- | \|occasional | \|very brief | 0.0-0.3-0.5 |
| | wet | \|0.5-0.8-3.3| | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0|0 | 0.8-1.6-4.1\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | $\|0.8-1.6-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 1.6-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | \|1.6-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 2.5-4.1-5.7\| | none | --- | none | --- | --- |
| | wet | \| 2.5-4.1-5.7| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 1.6-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | \|1.6-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 1.3-2.5-4.1\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | \|1.3-2.5-4.1| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0|0 | 0.8-1.6-3.3\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | $\|0.8-1.6-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 1.3-2.1-3.8\| | none | --- | none | --- | --- |
| | wet | \|1.3-2.1-3.8| | 6.7-6.7-6.7\| | | | | | |

Kratka (10 percent of the map unit)

| Month | Moisture status | Top depth $\mathrm{L}-\mathrm{R}-\mathrm{H}$ | $\begin{aligned} & \text { Bottom } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | Flooding
 frequency | Flooding duration | Ponding
 frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0| | 1.6-3.0-4.1\| | none | --- | none | --- | --- |
| | wet | $\|1.6-3.0-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| February | moist | \|0.0-0.0-0.0| | 2.5-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | \|2.5-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0| | 1.6-2.1-4.1\| | none | --- | none | --- | --- |
| | wet | \|1.6-2.1-4.1| | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0|0 | 0.0-0.5-2.5\| | none | --- | occasional | brief | 0.0-0.3-0.5 |
| | wet | \|0.0-0.5-2.5| | 6.7-6.7-6.7\| | | | | | |
| May | moist | \|0.0-0.0-0.0|0 | 0.5-0.8-3.3\| | none | --- | \|occasional | \|very brief | 0.0-0.3-0.5 |
| | wet | $\|0.5-0.8-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| June | moist | \|0.0-0.0-0.0|0 | 0.8-1.6-4.1\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | $\|0.8-1.6-4.1\|$ | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0| | 1.6-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | \|1.6-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0| | 2.5-4.1-5.7\| | none | --- | none | --- | --- |
| | wet | \|2.5-4.1-5.7| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0| | 1.6-3.3-4.9\| | none | --- | none | --- | --- |
| | wet | \|1.6-3.3-4.9| | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0| | 1.3-2.5-4.1\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | \|1.3-2.5-4.1| | 6.7-6.7-6.7\| | | | | | |
| November | moist | \|0.0-0.0-0.0|0 | 0.8-1.6-3.3\| | none | --- | rare | \|very brief | 0.0-0.1-0.3 |
| | wet | $\|0.8-1.6-3.3\|$ | 6.7-6.7-6.7\| | | | | | |
| December | moist | \|0.0-0.0-0.0| | 1.3-2.1-3.8\| | none | --- | none | --- | --- |
| | wet | \|1.3-2.1-3.8| | 6.7-6.7-6.7\| | | | | | |

I70A (continued)
Roliss (6 percent of the map unit)

Grimstad (5 percent of the map unit)

| Month | Moisture status | | Bottom depth $L-R-H$ | Flooding
 frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | |
| January | moist wet | $\left\lvert\, \begin{aligned} & \|0.0-0.0-0.0\| \\ & \|2.5-3.8-5.7\| \end{aligned}\right.$ | $\begin{aligned} & 2.5-3.8-5.7 \\ & 6.7-6.7-6.7 \end{aligned}$ | none | --- | none | --- | --- |
| February | moist wet | $\|0.0-0.0-0.0\|$ | $\begin{aligned} & 3.3-4.6-6.7 \\ & 6.7-6.7-6.7 \end{aligned}$ | none | --- | none | - | - |
| March | moist wet | $\left\lvert\, \begin{aligned} & \|0.0-0.0-0.0\| \\ & \|2.5-3.0-5.7\| \end{aligned}\right.$ | $\begin{aligned} & 2 \cdot 5-3 \cdot 0-5 \cdot 7 \\ & 6 \cdot 7-6 \cdot 7-6 \cdot 7 \end{aligned}$ | none | --- | none | -- | --- |
| April | moist wet | $\|0.0-0.0-0.0\|$ | $\begin{array}{\|c} 0.8-1.5-3.3 \\ 6.7-6.7-6.7 \end{array}$ | none | --- | none | -- | --- |
| May | moist wet | $\left\lvert\, \begin{aligned} & 0.0-0.0-0.0 \\ & \mid 1.1-1.8-4.1 \end{aligned}\right.$ | $\begin{aligned} & 1.1-1.8-4.1 \\ & 6.7-6.7-6.7 \end{aligned}$ | none | --- | none | -- | --- |
| June | moist wet | $\|0.0-0.0-0.0\|$ | $\begin{aligned} & 1.6-3.3-4.9 \\ & 6.7-6.7-6.7 \end{aligned}$ | none | - | none | --- | --- |
| July | ```dry moist wet``` | $\left\lvert\, \begin{aligned} & \mid 0.0-0.0-0.0 \\ & \|0.0-0.0-0.3\| \\ & \|2.5-5.7-6.2\| \end{aligned}\right.$ | $\begin{aligned} & 0.0-0.0-0.3 \\ & 2.5-5.7-6.2 \\ & 6.7-6.7-6.7 \end{aligned}$ | none | -- | none | --- | --- |
| August | dry moist | $\|0.0-0.0-0.0\|$ | $\begin{aligned} & 0.0-0.0-0.5 \\ & 6.7-6.7-6.7 \end{aligned}$ | none | - | none | --- | -- |
| September | $\begin{gathered} \text { dry } \\ \text { moist } \\ \text { wet } \end{gathered}$ | $\left\|\begin{array}{l} \mid 0.0-0.0-0.0 \\ \|0.0-0.0-0.3\| \\ \mid 2.5-3.8-6.7 \end{array}\right\|$ | $\begin{aligned} & 0.0-0.0-0.3 \\ & 2.5-3.8-6.7 \\ & 6.7-6.7-6.7 \end{aligned}$ | none | --- | none | -- | -- |
| October | moist wet | $\|0.0-0.0-0.0\|$ | $\begin{aligned} & 2.0-3.0-5.6 \\ & 6.7-6.7-6.7 \end{aligned}$ | none | --- | none | --- | -- |
| November | moist wet | $\left\lvert\, \begin{aligned} & \|0.0-0.0-0.0\| \\ & \|1.6-2.5-4.9\| \end{aligned}\right.$ | $\begin{aligned} & 1.6-2.5-4.9 \\ & 6.7-6.7-6.7 \end{aligned}$ | none | --- | none | --- | -- |
| December | moist wet | $\|0.0-0.0-0.0\|$ | $\begin{aligned} & 2 \cdot 0-3 \cdot 3-5 \cdot 4 \\ & 6 \cdot 7-6 \cdot 7-6 \cdot 7 \end{aligned}$ | none | --- | none | --- | --- |

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I70A (continued)
Mavie (3 percent of the map unit)

Rosewood (3 percent of the map unit)

Table 25.--Soil Moisture, Ponding, and Flooding--Continued
I70A (continued)
Strathcona, depressional (3 percent of the map unit)

| Month | Moisture status | $\left\lvert\, \begin{gathered} \text { Top } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}\right.$ | $\begin{gathered} \text { Bottom } \\ \text { depth } \\ \mathrm{L}-\mathrm{R}-\mathrm{H} \end{gathered}$ | Flooding frequency | Flooding duration | Ponding frequency | Ponding duration | $\begin{aligned} & \text { Ponding } \\ & \text { depth } \\ & \mathrm{L}-\mathrm{R}-\mathrm{H} \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|
| January | moist | \|0.0-0.0-0.0 | 1.0-1.6-3.0\| | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | $\|1.0-1.6-3.0\|$ | 6.7-6.7-6.7\| | | | | | |
| February | moist | $\|0.0-0.0-0.0\|$ | 1.6-2.5-3.3\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | \|1.6-2.5-3.3 | 6.7-6.7-6.7\| | | | | | |
| March | moist | \|0.0-0.0-0.0 | 0.0-0.0-2.0\| | none | --- | \|occasional | long | 0.0-0.5-1.0 |
| | wet | $\|0.0-0.0-2.0\|$ | 6.7-6.7-6.7\| | | | | | |
| April | moist | \|0.0-0.0-0.0 | 0.0-0.0-1.0\| | none | --- | frequent | long | 0.0-0.5-1.0 |
| | wet | \|0.0-0.0-1.0 | 6.7-6.7-6.7\| | | | | | |
| May | moist | 10.0-0.0-0.0 | 0.0-0.0-2.0\| | none | --- | frequent | long | 10.0-0.5-1.0 |
| | wet | \|0.0-0.0-2.0 | 6.7-6.7-6.7\| | | | | | |
| June | moist | 10.0-0.0-0.0 | 0.2-0.8-2.5\| | none | --- | occasional | brief | 0.0-0.5-1.0 |
| | wet | $\|0.2-0.8-2.5\|$ | 6.7-6.7-6.7\| | | | | | |
| July | moist | \|0.0-0.0-0.0 | 0.7-1.6-3.0\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | \|0.7-1.6-3.0 | 6.7-6.7-6.7\| | | | | | |
| August | moist | \|0.0-0.0-0.0 | 1.6-2.5-3.6\| | none | --- | rare | \|very brief | 0.0-0.3-0.5 |
| | wet | \|1.6-2.5-3.6| | 6.7-6.7-6.7\| | | | | | |
| September | moist | \|0.0-0.0-0.0 | 1.0-1.6-3.0\| | none | --- | rare | brief | 0.0-0.3-0.5 |
| | wet | \|1.0-1.6-3.0 | 6.7-6.7-6.7\| | | | | | |
| October | moist | \|0.0-0.0-0.0 | 0.7-1.3-2.6\| | none | --- | occasional | brief | 10.0-0.3-0.5 |
| | wet | $\|0.7-1.3-2.6\|$ | 6.7-6.7-6.7\| | | | | | |
| November | moist | $\|0.0-0.0-0.0\|$ | 0.3-0.8-1.6\| | none | --- | occasional | long | 0.0-0.5-1.0 |
| | wet | \|0.3-0.8-1.6 | 6.7-6.7-6.7\| | | | | | |
| December | moist | $\|0.0-0.0-0.0\|$ | 0.7-1.3-2.3\| | none | --- | occasional | long | 10.0-0.5-1.0 |
| | wet | \|0.7-1.3-2.3| | 6.7-6.7-6.7\| | | | | | |

M-W Miscellaneous water
Miscellaneous water (100 percent of the map unit) (not applicable)
w Water
Water (100 percent of the map unit) (not applicable)

Table 26.--Soil Features
(See text for definitions of terms used in this table. Absence of an entry indicates that the feature is not a concern or that data were not estimated)

| Map symbol and soil name | $\begin{aligned} & \text { Pct. of } \\ & \text { map unit } \end{aligned}$ | Depth to re-strictive layer | Subsidence | | \qquad | Risk of corrosion | | |
|---|---|---|---|---|---|---|---|---|
| | | | | | | |
| | | | | | | Uncoated | |
| | | | Initial\| | Total | | steel | Concrete |
| | | In | In | In | | | \| | |
| | | | | | | | |
| B109A: | | | | | | | |
| Bowstring-------------\| | 45 | >80 | 0-12 | 12-45 | \| High | High | \| Low |
| | | | | | | | |
| Fluvaquents-----------\| | 40 | >80 | --- | --- | \| High | High | \| Low |
| | | | | | | | |
| Hapludalfs------------\| | 5 | >80 | --- | --- | \| High | Moderate | \| Low |
| | | | | | | | |
| Seelyeville-----------\| | 5 | >80 | 2-12 | 12-50 | \| High | High | \| Moderate |
| | | | | | | | |
| Water------------------ \| | 5 | --- | --- | --- | --- | --- | --- |
| | | | | | | | |
| B200A: | | | | | | | |
| Garnes---------------- \| | 70 | >80 | --- | --- | \| High | Moderate | \| Low |
| | | | | | | | |
| Chilgren-------------- \| | 13 | >80 | --- \| | --- | \| High | High | \| Low |
| | | | | | | | |
| Eckvoll---------------- \| | 5 | >80 | --- | -- | \| Moderate | Moderate | Low |
| | | | | | | | |
| Garnes, very stony-----\| | 5 | >80 | --- | --- | \| High | Moderate | \| Low |
| | | | | | | | |
| Grygla----------------\| | 4 | >80 | --- | --- | \| High | High | Low |
| | | | | | | | |
| Pelan----------------- \| | 3 | >80 | --- \| | - | \| Moderate | Moderate | Low |
| | | | | | | | |
| B201A: | | | | | | | |
| Chilgren--------------\| | 75 | >80 | --- | --- | \| High | High | Low |
| | | | | | | | |
| Garnes----------------\| | 9 | >80 | --- | - | \| High | Moderate | Low |
| | | | | | | | |
| Grygla----------------- \| | 5 | >80 | --- \| | --- | \| High | High | Low |
| | | | | | | | |
| Grygla, depressional---\| | 5 | >80 | - | --- | \| High | High | \| Low |
| | | | | | | | |
| Hamre----------------- \| | 5 | >80 | 2-8 | 2-12 | \| High | High | Low |
| | | | | | | | |
| Pelan----------------- \| | 1 | >80 | --- | - | \| Moderate | Moderate | \| Low |
| | | | | | | | |
| B202A: | | | | | | | |
| Cathro----------------- \| | 80 | >80 | 2-12 | 12-45 | \| High | High | \| Low |
| | | | | | | | |
| Hamre------------------ \| | 8 | >80 | 2-8 | 2-12 | \| High | High | Low |
| | | | | | | | |
| Chilgren-------------- \| | 3 | >80 | --- \| | - | \| High | High | \| Low |
| | | | | | | | |
| Northwood------------- \| | 3 | >80 | 2-8 | 2-12 | \| High | High | Low |
| | | | | | | | |
| Berner----------------- \| | 2 | >80 | 2-12 | 12-45 | \| High | High | \| Moderate |
| | | | | | | | |
| Grygla----------------\| | 2 | >80 | --- | --- | \| High | High | \| Low |
| | | | | | | | |
| Seelyeville-----------\| | 2 | >80 | 2-12 | 12-50 | \| High | High | \| Moderate |
| | | | | | | | |
| B203A: | | | | | | | |
| Northwood-------------- \| | 75 | >80 | 2-8 | 2-12 | \| High | High | \| Low |
| | | | | | | | |
| Hamre------------------ \| | 10 | >80 | 2-8 | 2-12 | \| High | High | \| Low |
| - | | | \| | | | | |

Table 26.--Soil Features--Continued

| Map symbol and soil name | Pct. of map unit | Depth to re- | Subsidence | | Potential for | Risk of corrosion | | |
|---|---|---|---|---|---|---|---|---|
| | | $\begin{array}{\|l\|l} \mid \text { stric- } \\ \text { tive } \\ \text { layer } \end{array}$ | | | Uncoated steel | |
| | | | Initial | | | Concrete |
| | | | | Total | | | \|frost action| |
| | 7 | In | In | In | | \| | |
| | | | | | | | \| |
| B203A: | | >80 | --- | --- | \| High | | |
| Grygla----------------- \| | | | | | | High | \| Low |
| | | | | | | | |
| Berner---------------- \| | 5 | >80 | 2-12 | 12-45 | \| High | \| High | \| Moderate |
| | | | | | | | |
| Chilgren | 3 | >80 | --- | --- | \| High | \| High | \| Low |
| | | | | | | | |
| B204A: | 75 | >80 | --- | --- | , | \| | Low |
| Roliss---------------- \| | | | | | \| High | \| High | |
| | | | | | | | |
| Grygla---------------- \| | 8 | >80 | --- | --- | \| High | \| High | \| Low |
| | | | | | | | |
| Chilgren-------------- \| | 5 | >80 | | --- | \| High | \| High | \| Low |
| | | | | | | | |
| Garnes----------------- \| | 5 | >80 | | --- | \| High | \| Moderate | \| Low |
| | | | | | | | |
| Roliss, depressional---\| | 5 | >80 | --- | --- | \|High | $\mid \mathrm{High}$ | \| Low |
| | | | | | | | |
| Hamre----------------- | 2 | >80 | 2-8 | 2-12 | \| High | \| High | \| Low |
| | | | | | | | |
| B205A: | | | 2-12 | 12-45 | \| High | \| High | \| Moderate |
| Berner- | 80 | >80 | | | | | |
| | | | | | | | |
| Northwood- | 7 | >80 | 2-8 | 2-12 | \|High | $\mid \mathrm{High}$ | \| Low |
| | | | | | | | |
| Grygla----------------- \| | 5 | >80 | --- | --- | \| High | \mid High | \| Low |
| | | | | | | | |
| Cathro---------------- | 3 | >80 | 2-12 | $12-45$ | \|High | \| High | \| Low |
| | | | | | | | |
| Hamre------------------ \| | 3 | >80 | 2-8 | 2-12 | \|High | $\mid \mathrm{High}$ | \| Low |
| | | | | | | | |
| Seelyeville---------- | 2 | >80 | 2-12 | 12-50 | \|High | \| High | Moderate |
| | | | | | | | |
| B206A: | | >80 | 2-8 | 2-12 | \| | High | \| Low |
| Hamre----------------- \| | 80 | | | | \| High | | |
| | | >80 | --- | | | | |
| Chilgren-------------- \| | 8 | | | --- | \|High | High | \| Low |
| | | | | | | | |
| Northwood- | 5 | >80 | 2-8 | 2-12 | \|High | \| High | \| Low |
| | | | | | | | |
| Cathro- | 3 | >80 | 2-12 | 12-45 | \|High | \| High | \| Low |
| | | | | | | | |
| Grygla---------------- \| | 2 | >80 | | --- | \|High | \| High | \| Low |
| | | | | | | | |
| Roliss---------------- | 2 | >80 | --- | --- | \| High | \| High | Low |
| | | | | | | | |
| I1A: | | | \| | | \| | | \| |
| Augsburg-------------- \| | 75 | >80 | --- | --- | \| High | \| High | \| Low |
| | | | | | | | \| |
| Borup----------------- | 10 | >80 | --- | --- | \| High | \| High | \| Low |
| | | | | | | | |
| Foxlake--------------- \| | 5 | >80 | - | --- | \| High | \| High | \| Low |
| | | | | | | | |
| Augsburg, depressional | 3 | >80 | - | --- | \| High | \| High | \| Low |
| | | | | | | | |
| Wheatville------------- | 3 | >80 | --- | --- | \| High | \| High | Low |
| | | | | | | | |
| Glyndon--------------- \| | 2 | >80 | --- | --- | \| High | \| High | Low |
| | | | | | | | |
| Espelie--------------- | 1 | >80 | --- | --- | \| High | \| High | Low |
| | | | | | | | |
| Hattie---------------- \| | 1 | >80 | --- | --- | \| Moderate | \| High | \| Low |
| | | | | | | | |

Table 26.--Soil Features--Continued

Table 26.--Soil Features--Continued

Table 26.--Soil Features--Continued

| Map symbol and soil name | Pct. of map unit | \| Depth |to re-|strictive layer | Subsidence | | $\begin{gathered} \text { Potential } \\ \text { for } \\ \text { frost action } \end{gathered}$ | Risk of corrosion | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | Initial\| | Total | | Uncoated steel | Concrete |
| | | In | In | In | | | |
| | | | | | | | |
| I11A: | | | | | | | |
| Deerwood- | 85 | >80 | 2-8 | 2-12 | \| High | \| High | \| Low |
| | | | | | | | |
| Rosewood- | 6 | >80 | --- | --- | \| Moderate | \| High | \| Low |
| | | | | | | | |
| Markey-- | 3 | >80 | 2-12 | 12-45 | \| High | \| High | \| Low |
| | | | | | | | |
| Strathcona- | 2 | >80 | --- | --- | \| High | \| High | \| Low |
| | | | | | | | |
| Syrene-- | 2 | >80 | - | --- | \| Moderate | \| High | \| Low |
| | | | | | | | |
| Venlo-- | 2 | >80 | --- | --- | \| Moderate | \| High | \| Low |
| | | | | | | | |
| I12A: | | | | | | | |
| Eckvoll | 70 | >80 | --- | --- | \| Moderate | \| Moderate | \| Low |
| | | | | | | | |
| Kratka- | 8 | >80 | --- | --- | \| High | \| High | \| Low |
| | | | | | | | |
| Smiley- | 7 | >80 | --- | - | \| High | \| High | \| Low |
| | | | | | | | |
| Linveldt- | 5 | >80 | --- | --- | \| Moderate | \| Moderate | \| Low |
| | | | | | | | |
| Reiner- | 5 | >80 | --- | --- | \| Moderate | \| Moderate | Low |
| | | | | | | | |
| Foldahl--- | 2 | >80 | --- \| | --- | \| Moderate | \| Moderate | \| Low |
| | | | | | | | |
| Pelan---- | 2 | >80 | - | --- | \| Moderate | \| Moderate | |
| | | | | | | | |
| Poppleton- | 1 | >80 | --- | -- | \| Low | \| Low | \| Low |
| | | | | | | | |
| I13A: | | | | | | | |
| Espelie-- | 75 | >80 | --- | --- | \| High | \| High | \| Low |
| | | | | | | | |
| Foxlake-- | 8 | >80 | --- | - | \| High | \| High | |
| 退 | | | | | | | |
| Hilaire-- | 7 | >80 | --- | --- | \| Moderate | \| Moderate | \| Low |
| | | | | | | | |
| Clearwater, | | | | | | | |
| depressional- | 5 | >80 | --- | --- | \| High | \| High | \| Low |
| | | | | | | | |
| Thiefriver- | 5 | >80 | --- | -- | \| High | \| High | \| Low |
| | | | | | | | |
| I14B: | | | | | | | |
| Fairdale- | 85 | >80 | --- | - | \| Moderate | \| Moderate | \| Low |
| | | | | | | | |
| Fluvaquents---- | 6 | >80 | --- | --- | \| High | \| High | \| Low |
| | | | | | | | |
| Hapludolls- | 5 | >80 | --- | --- | \| Moderate | \| Moderate | \| Low |
| | | | | | | | |
| Hapludalfs------ | 2 | >80 | --- | --- | \mid High | \| Moderate | \| Low |
| | | | | | | | |
| Zell------- | 2 | >80 | --- | --- | \mid High | \| High | \| Low |
| | | | | | | | |
| I14D: | | | | | | | |
| Fairdale-- | 85 | >80 | --- | --- | \| Moderate | \| Moderate | \| Low |
| | | | | | | | \| |
| Fluvaquents------ | 6 | >80 | -- | --- | \| High | \| High | \| Low |
| | | | | | | | |
| Hapludolls-----------------------Zell--- | 4 | >80 | --- | --- | \| Moderate | \| Moderate | \| Low |
| | | | | | | | |
| | 3 | >80 | --- | --- | \| High | \| High | \| Low |
| | | | | | | | |

Table 26.--Soil Features--Continued

Table 26.--Soil Features--Continued

| Map symbol and soil name | Pct. of map unit | Depth to re-strictive layer | Subsidence | | Potentialforfrost action | Risk of corrosion | | |
|---|---|---|---|---|---|---|---|---|
| | | | \| Initial| | Total | | Uncoated steel | Concrete |
| | | In | In | In | | | |
| | | | | | | | |
| I18A: | | | | | | | |
| Grimstad-------------- \| | 2 | >80 | --- | - | \| High | \| Moderate | Low |
| | | | | | | | |
| Linveldt-------------- \| | 2 | >80 | --- | --- | \| Moderate | \| Moderate | Low |
| Eckvoll--------------- \| | 1 | >80 | --- | --- | \| Moderate | \| Moderate | Low |
| | | | | | | | |
| Strathcona------------\| | 1 | >80 | --- | --- | \| High | \| High | Low |
| | | | | | | | |
| I19A: | | | | | | | |
| Foxhome--------------- \| | 65 | >80 | --- | - | \| Moderate | \| Moderate | Low |
| | | | | | | | |
| Kittson--------------- \| | 10 | >80 | \| --- | --- | \| Moderate | \mid High | Low |
| Strandquist-----------\| | 10 | >80 | --- | --- | \| High | \| High | Low |
| | | | | | | | |
| Foldahl--------------- \| | 5 | >80 | \| --- | --- | \| Moderate | \| Moderate | Low |
| Grimstad--------------\| | 5 | >80 | --- | - | \| High | \| Moderate | Low |
| | | | | | | | |
| Roliss | 3 | >80 | \| --- | --- | \| High | \| High | Low |
| | | | | | | | |
| Mavie----------------- \| | 2 | >80 | --- | - | \| High | \| High | \| Low |
| | | | | | | | |
| I20A: | | | | | | | |
| Foxlake--------------- \| | 75 | >80 | --- | --- | \| High | \| High | Low |
| | | | | | | | |
| Clearwater------------ \| | 5 | >80 | \| --- | --- | \| High | \| High | Low |
| Foxlake, very cobbly---\| | | | | | | | |
| Foxlake, very cobbly---\| | 5 | >80 | -- | --- | High | High | |
| Augsburg--------------- \| | 3 | >80 | --- | - | High | \| High | Low |
| | | | | | | | |
| Clearwater, | | | | | | | |
| depressional--------- \| | 3 | >80 | \| --- | --- | High | \| High | Low |
| | | | | | | | |
| Espelie-------------- \| | 3 | >80 | --- | - | High | \| High | Low |
| | | | | | | | |
| Hilaire---------------\| | 2 | >80 | - | --- | \| Moderate | \| Moderate | \| Low |
| | | | | | | | |
| Reis------------------ \| | 2 | >80 | --- | - | High | \| High | Low |
| | | | | | | | |
| Wheatville------------\| | 2 | >80 | -- | --- | \| High | \| High | Low |
| | | | | | | | |
| I21A: | | | | | | | |
| Fram | 85 | >80 | \| --- | --- | \| High | \| High | Low |
| | | | | | | | |
| Hedman--------------- \| | 12 | >80 | - | -- | High | \| High | \| Low |
| | | | \| | | | | |
| Strathcona------------ \| | 2 | >80 | --- | --- | \| High | \| High | \| Low |
| | | | | | | | |
| Foxhome--------------- \| | 1 | >80 | --- | --- | \| Moderate | \| Moderate | Low |
| | | | | | | | |
| I22A: | | | | | | | |
| Glyndon--------------- \| | 75 | >80 | - | --- | \| High | \| High | \| Low |
| | | | \| | | | | |
| Borup---------------- | 10 | >80 | --- | --- | \| High | \| High | \| Low |
| Augsburg--------------\| | 5 | >80 | --- | --- | \| High | \| High | \| Low |
| | | | | | | | |
| Ulen------------------ \| | 5 | >80 | --- | --- | \| Moderate | \| Low | \| Low |
| | | | | | | | |

Table 26.--Soil Features--Continued

Table 26.--Soil Features--Continued

Table 26.--Soil Features--Continued

| Map symbol and soil name | Pct. of map unit\| | Depth to re-strictive layer | Subsidence | | Potential for | Risk of corrosion | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | Uncoated | |
| | | | Initial | Total | \|frost action | steel | Concrete |
| | | In | In | In | | | |
| | | | | | | | |
| I30A: | | | | | | | |
| Haug- | 3 | >80 | 2-8 | 2-12 | \| High | \| High | Low |
| | | | | | | | |
| Strandquist- | 2 | >80 | --- | --- | \| High | \| High | Low |
| | | | | | | | |
| I31A: | | | | | | | |
| Hedman- | 50 | >80 | - | - | \| High | \| High | \| Low |
| | | | | | | | |
| Fram-- | 40 | >80 | --- | --- | \| High | \| High | Low |
| | | | | | | | |
| Strathcona- | 5 | >80 | --- | --- | \| High | \| High | Low |
| | | | | | | | |
| Haug---- | 3 | >80 | 2-8 | 2-12 | \| High | \| High | Low |
| | | | | | | | |
| Strandquist- | 2 | >80 | --- | --- | \| High | \| High | Low |
| | | | | | | | |
| I32A: | | | | | | | |
| Hilaire- | 75 | >80 | --- | --- | \| Moderate | \| Moderate | Low |
| | | | | | | | |
| Espelie-------------------------- | 12 | >80 | - | - | \| High | \| High | Low |
| | | | | | | | |
| | 5 | >80 | - | - | \| Moderate | \| High | Low |
| | | | | | | | |
| Flaming----------Foxlake--------- | 2 | >80 | -- | --- | \| Low | \| Low | Low |
| | | | | | | | |
| | 2 | >80 | --- | --- | \| High | \| High | Low |
| Foxlake----------Wheatville------- | | | | | | | |
| | 2 | >80 | --- | --- | \| High | \| High | \| Low |
| | | | | | | | |
| Thiefriver-------Wyandotte-------- | 1 | >80 | --- | --- | \| High | \| High | \| Low |
| | | | | | | | 1 |
| | 1 | >80 | --- | --- | \| High | \| High | \| Low |
| | | | | | | | |
| 133A: | | | | | | | |
| Hilaire- | 75 | >80 | - | -- | \| Moderate | \| Moderate | Low |
| | | | | | | | |
| Espelie---------- | 12 | >80 | --- | --- | \| High | \| High | Low |
| | | | | | | | |
| | 5 | >80 | --- | - | \| Moderate | \| High | Low |
| | | | | | | | |
| Flaming----------------- | 2 | >80 | --- | --- | \| Low | \| Low | Low |
| | | | | | | | |
| | 2 | >80 | --- | --- | \| High | \| High | Low |
| Foxlake----------Wheatville------- | | | | | | \mid | I |
| | 2 | >80 | --- | --- | \| High | \| High | \| Low |
| Wheatville-------Thiefriver-------- | | | | | | \mid | \| |
| | 1 | >80 | --- | --- | \| High | \| High | \| Low |
| Thiefriver-------Wyandotte-------- | | | | | | | |
| | 1 | >80 | --- | --- | \| High | \| High | Low |
| Wyandotte--------I34A: | | | | | | | |
| | I34A : | | | | | | |
| Huot------------- | 75 | >80 | - | --- | \| Moderate | \| High | \| Low |
| | | | | | | | |
| | 12 | >80 | -- | --- | \| High | \| High | Low |
| Thiefriver------- | | | | | | | |
| | 5 | >80 | --- | --- | \| Moderate | \| Moderate | Low |
| Hilaire---------------------Flaming---- | | | | | | | |
| | 3 | >80 | --- | --- | \| Low | \| Low | \| Low |
| Flaming- | | | | | | | \| |
| Foxlake----------Ulen-------------- | 3 | >80 | --- | --- | \| High | \| High | \| Low |
| | | | | | | | |
| | 2 | >80 | --- \| | --- | \| Moderate | \| Low | \| Low |
| | | | | | | | |

Table 26.--Soil Features--Continued

Table 26.--Soil Features--Continued

Table 26.--Soil Features--Continued

| Map symbol and soil name | $\begin{aligned} & \text { Pct. of } \\ & \text { map unit } \end{aligned}$ | Depth to re-strictive layer | Subsidence | | Potential for | Risk of corrosion | | |
|---|---|---|---|---|---|---|---|---|
| | | | \|Initial| | Total | | Uncoated steel | \| Concrete |
| | | In | In | In | | | \| |
| | | | | | | | \| |
| I43A: | | | | | | | |
| Strandquist-- | 7 | >80 | --- | --- | \| High | \| High | \| Low |
| | | | | | | | |
| Strathcona----- | 5 | >80 | --- | --- | \| High | \mid High | Low |
| | | | | | | | |
| Strathcona, | | | | | | | |
| depressional- | 3 | >80 | -- | --- | \| High | \mid High | Low |
| | | | | | | | |
| Foxhome--- | 2 | >80 | \| --- | --- | \| Moderate | \| Moderate | \| Low |
| | | | | | | | |
| Karlsruhe- | 2 | >80 | --- | -- | \| Moderate | \mid High | \| Low |
| Grimstad---- | 1 | >80 | -- | --- | \| High | \| Moderate | \| Low |
| | | | | | | | |
| I44A: | | | | | | | |
| Newfolden- | 75 | >80 | --- | --- | \| Moderate | \| Moderate | Low |
| | | | | | | | |
| Smiley- | 12 | >80 | --- | - | \| High | \mid High | Low |
| Boash-- | 8 | >80 | --- | --- | High | \| High | \| Low |
| | | | | | | | |
| Linveldt-- | 4 | >80 | --- | - | Moderate | \| Moderate | Low |
| | | | | | | | |
| Hapludolls---- | 1 | >80 | --- | --- | Moderate | \| Moderate | Low |
| | | | | | | | |
| I45A: | | | | | | | |
| Northwood-- | 75 | >80 | 2-8 | 2-12 | \| High | \mid High | |
| | | | | | | | |
| Hamre- | 10 | >80 | 2-8 | 2-12 | \| High | \mid High | \| Low |
| | | | | | | | |
| Berner--- | 5 | >80 | 2-12 | 12-45 | \| High | \mid High | \| Moderate |
| | | | | | | | |
| Kratka------- | 5 | >80 | --- | - | \| High | \mid High | \| Low |
| | | | | | | | |
| Strandquist--- | 3 | >80 | --- | - | High | \mid High | Low |
| | | | | | | | |
| Roliss--- | 2 | >80 | --- | --- | \| High | \mid High | \| Low |
| | | | | | | | |
| I46A: | | | | | | | |
| Pits---------- | 85 | --- | --- | --- | --- | --- | --- |
| | | | | | | | |
| Udipsamments--- | 10 | >80 | --- | --- | \| Low | \| Low | Low |
| | | | | | | | |
| Radium-------- | 2 | >80 | --- | - | \| Low | \| Moderate | \| Low |
| | | | | | | | |
| Maddock--------- | 1 | >80 | --- | --- | \| Low | \| Low | \| Low |
| | | | | | | | |
| Marquette------ | 1 | >80 | - | --- | \| Low | \| Low | \| Low |
| | | | | | | | |
| Sandberg-------- | 1 | >80 | --- | --- | \| Low | \| Moderate | \| Low |
| | | | | | | | \| |
| I47A: | | | | | | | |
| Poppleton------ | 75 | >80 | --- | --- | \| Low | \| Low | \| Low |
| | | | | | | | |
| Flaming---------------\| | 12 | >80 | --- | --- | \| Low | \| Low | \| Low |
| | | | | | | | |
| Garborg--------------- \| | 5 | >80 | --- | --- | \| Moderate | \mid High | \| Low |
| | | | | | | | |
| Hamar------------ | 3 | >80 | --- | --- | \| Moderate | \| High | \| Low |
| | | | | | | | |

Table 26.--Soil Features--Continued

References

American Association of State Highway and Transportation Officials (AASHTO). 2000. Standard specifications for transportation materials and methods of sampling and testing. 20th edition, 2 volumes.

American Society for Testing and Materials (ASTM). 2001. Standard classification of soils for engineering purposes. ASTM Standard D-2487.

Harris, Kenneth L. 1987. The Quaternary geology of the Red Lake Falls area. Minnesota and North Dakota Geological Survey.

Harris, Kenneth L., R. Moran, and Lee Clayton. 1974. Late Quaternary stratigraphic nomenclature, Red River Valley, North Dakota and Minnesota. North Dakota Geological Survey, Miscellaneous Series 52.

Hunst, Michael A., and George Howse. 1999. Minnesota agriculture statistics.
International Coalition for Land and Water Stewardship in the Red River Basin. 1990. Red Lake County comprehensive local water plan.

Nikiforoff, C.C. 1939. Soil survey (reconnaissance) of the Red River Valley Area. Minnesota Bureau of Chemistry and Soils, Soil Survey Division, Series 1933, number 25.

Red Lake County Historical Society. 1976. A history of Red Lake County.
Sims, P.K., and G.B. Morey. 1972. Geology of Minnesota: A centennial volume. Minnesota Geological Survey.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18.

Soil Survey Staff. 1998. Keys to soil taxonomy. 8th edition. U.S. Department of Agriculture, Natural Resources Conservation Service.

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service. U.S. Department of Agriculture Handbook 436.

United States Department of Agriculture. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210.

United States Department of Agriculture. 1999. Soil biology primer. PA-1637.

United States Department of Agriculture. 1981. Land resource regions and major land resource areas of the United States. Soil Conservation Service. U.S. Department of Agriculture Handbook 296.

United States Department of Agriculture. 2003. National soil survey handbook, title 430-VI. [Online] http://soils.usda.gov/technical/handbook/.

Wright, H.E., Jr. 1972. Quaternary history of Minnesota. In Geology of Minnesota: A centennial volume. Minnesota Geological Survey.

Glossary

Ablation till. Loose, permeable till deposited during the final downwasting of glacial ice. Lenses of crudely sorted sand and gravel are common.
Aeration, soil. The exchange of air in soil with air from the atmosphere. The air in a well aerated soil is similar to that in the atmosphere; the air in a poorly aerated soil is considerably higher in carbon dioxide and lower in oxygen.
Aggregate, soil. Many fine particles held in a single mass or cluster. Natural soil aggregates, such as granules, blocks, or prisms, are called peds. Clods are aggregates produced by tillage or logging.
Alluvium. Material, such as sand, silt, or clay, deposited on land by streams.
Alpha,alpha-dipyridyl. A dye that when dissolved in 1 N ammonium acetate is used to detect the presence of reduced iron (Fe II) in the soil. A positive reaction indicates a type of redoximorphic feature.
Animal unit month (AUM). The amount of forage required by one mature cow of approximately 1,000 pounds weight, with or without a calf, for 1 month.
Aquic conditions. Current soil wetness characterized by saturation, reduction, and redoximorphic features.
Argillic horizon. A subsoil horizon characterized by an accumulation of illuvial clay.
Aspect. The direction in which a slope faces.
Available water capacity (available moisture capacity). The capacity of soils to hold water available for use by most plants. It is commonly defined as the difference between the amount of soil water at field moisture capacity and the amount at wilting point. It is commonly expressed as inches of water per inch of soil. The capacity, in inches, in a 60 -inch profile or to a limiting layer is expressed as:

Backslope. The position that forms the steepest and generally linear, middle portion of a hillslope. In profile, backslopes are commonly bounded by a convex shoulder above and a concave footslope below.
Basal till. Compact glacial till deposited beneath the ice.
Base saturation. The degree to which material having cation-exchange properties is saturated with exchangeable bases (sum of $\mathrm{Ca}, \mathrm{Mg}, \mathrm{Na}$, and K), expressed as a percentage of the total cation-exchange capacity.
Base slope. A geomorphic component of hills consisting of the concave to linear (perpendicular to the contour) slope that, regardless of the lateral shape, forms an apron or wedge at the bottom of a hillside dominated by colluvium and slope-wash sediments (for example, slope alluvium).
Beach deposits. Material, such as sand and gravel, that is generally laid down parallel to an active or relict shoreline of a postglacial or glacial lake.
Bedding planes. Fine strata, less than 5 millimeters thick, in unconsolidated alluvial, eolian, lacustrine, or marine sediment.

Bedrock. The solid rock that underlies the soil and other unconsolidated material or that is exposed at the surface.
Bedrock-controlled topography. A landscape where the configuration and relief of the landforms are determined or strongly influenced by the underlying bedrock.
Bench terrace. A raised, level or nearly level strip of earth constructed on or nearly on a contour, supported by a barrier of rocks or similar material, and designed to make the soil suitable for tillage and to prevent accelerated erosion.
Bisequum. Two sequences of soil horizons, each of which consists of an illuvial horizon and the overlying eluvial horizons.
Blowout. A shallow depression from which all or most of the soil material has been removed by the wind. A blowout has a flat or irregular floor formed by a resistant layer or by an accumulation of pebbles or cobbles. In some blowouts the water table is exposed.
Bog. Waterlogged, spongy ground, consisting primarily of mosses, containing acidic, decaying vegetation (such as sphagnum, sedges, and heaths) that develops into peat.
Boulders. Rock fragments larger than 2 feet (60 centimeters) in diameter.
Brush management. Use of mechanical, chemical, or biological methods to make conditions favorable for reseeding or to reduce or eliminate competition from woody vegetation and thus allow understory grasses and forbs to recover. Brush management increases forage production and thus reduces the hazard of erosion. It can improve the habitat for some species of wildlife.
Calcareous soil. A soil containing enough calcium carbonate (commonly combined with magnesium carbonate) to effervesce visibly when treated with cold, dilute hydrochloric acid.
Canopy. The leafy crown of trees or shrubs. (See Crown.)
Capillary water. Water held as a film around soil particles and in tiny spaces between particles. Surface tension is the adhesive force that holds capillary water in the soil.
Catena. A sequence, or "chain," of soils on a landscape that formed in similar kinds of parent material but have different characteristics as a result of differences in relief and drainage.
Cation. An ion carrying a positive charge of electricity. The common soil cations are calcium, potassium, magnesium, sodium, and hydrogen.
Cation-exchange capacity. The total amount of exchangeable cations that can be held by the soil, expressed in terms of milliequivalents per 100 grams of soil at neutrality (pH 7.0) or at some other stated pH value. The term, as applied to soils, is synonymous with base-exchange capacity but is more precise in meaning.
Catsteps. Very small, irregular terraces on steep hillsides, especially in pasture, formed by the trampling of cattle or the slippage of saturated soil.
Channery soil material. Soil material that has, by volume, 15 to 35 percent thin, flat fragments of sandstone, shale, slate, limestone, or schist as much as 6 inches (15 centimeters) along the longest axis. A single piece is called a channer.
Chemical treatment. Control of unwanted vegetation through the use of chemicals.
Chiseling. Tillage with an implement having one or more soil-penetrating points that shatter or loosen hard, compacted layers to a depth below normal plow depth.
Clay. As a soil separate, the mineral soil particles less than 0.002 millimeter in diameter. As a soil textural class, soil material that is 40 percent or more clay, less than 45 percent sand, and less than 40 percent silt.
Clay depletions. Low-chroma zones having a low content of iron, manganese, and clay because of the chemical reduction of iron and manganese and the removal of iron, manganese, and clay. A type of redoximorphic depletion.
Clay film. A thin coating of oriented clay on the surface of a soil aggregate or lining pores or root channels. Synonyms: clay coating, clay skin.

Climax plant community. The stabilized plant community on a particular site. The plant cover reproduces itself and does not change so long as the environment remains the same.
Coarse textured soil. Sand or loamy sand.
Cobble (or cobblestone). A rounded or partly rounded fragment of rock 3 to 10 inches (7.6 to 25 centimeters) in diameter.
Cobbly soil material. Material that has 15 to 35 percent, by volume, rounded or partially rounded rock fragments 3 to 10 inches (7.6 to 25 centimeters) in diameter. Very cobbly soil material has 35 to 60 percent of these rock fragments, and extremely cobbly soil material has more than 60 percent.
COLE (coefficient of linear extensibility). See Linear extensibility.
Colluvium. Soil material or rock fragments, or both, moved by creep, slide, or local wash and deposited at the base of steep slopes.
Complex slope. Irregular or variable slope. Planning or establishing terraces, diversions, and other water-control structures on a complex slope is difficult.
Complex, soil. A map unit of two or more kinds of soil or miscellaneous areas in such an intricate pattern or so small in area that it is not practical to map them separately at the selected scale of mapping. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas.
Concretions. Cemented bodies with crude internal symmetry organized around a point, a line, or a plane. They typically take the form of concentric layers visible to the naked eye. Calcium carbonate, iron oxide, and manganese oxide are common compounds making up concretions. If formed in place, concretions of iron oxide or manganese oxide are generally considered a type of redoximorphic concentration.
Conservation cropping system. Growing crops in combination with needed cultural and management practices. In a good conservation cropping system, the soilimproving crops and practices more than offset the effects of the soil-depleting crops and practices. Cropping systems are needed on all tilled soils. Soilimproving practices in a conservation cropping system include the use of rotations that contain grasses and legumes and the return of crop residue to the soil. Other practices include the use of green manure crops of grasses and legumes, proper tillage, adequate fertilization, and weed and pest control.
Conservation tillage. A tillage system that does not invert the soil and that leaves a protective amount of crop residue on the surface throughout the year.
Consistence, soil. Refers to the degree of cohesion and adhesion of soil material and its resistance to deformation when ruptured. Consistence includes resistance of soil material to rupture and to penetration; plasticity, toughness, and stickiness of puddled soil material; and the manner in which the soil material behaves when subject to compression. Terms describing consistence are defined in the "Soil Survey Manual."
Contour stripcropping. Growing crops in strips that follow the contour. Strips of grass or close-growing crops are alternated with strips of clean-tilled crops or summer fallow.
Control section. The part of the soil on which classification is based. The thickness varies among different kinds of soil, but for many it is that part of the soil profile between depths of 10 inches and 40 or 80 inches.
Coprogenous earth (sedimentary peat). Fecal material deposited in water by aquatic organisms.
Corrosion. Soil-induced electrochemical or chemical action that dissolves or weakens concrete or uncoated steel.
Cover crop. A close-growing crop grown primarily to improve and protect the soil between periods of regular crop production, or a crop grown between trees and vines in orchards and vineyards.
Crop residue management. Returning crop residue to the soil, which helps to
maintain soil structure, organic matter content, and fertility and helps to control erosion.
Cropping system. Growing crops according to a planned system of rotation and management practices.
Cross-slope farming. Deliberately conducting farming operations on sloping farmland in such a way that tillage is across the general slope.
Crown. The upper part of a tree or shrub, including the living branches and their foliage.
Cutbanks cave (in tables). The walls of excavations tend to cave in or slough.
Decreasers. The most heavily grazed climax range plants. Because they are the most palatable, they are the first to be destroyed by overgrazing.
Deferred grazing. Postponing grazing or resting grazing land for a prescribed period.
Delta. A body of alluvium having a surface that is nearly flat and fan shaped; deposited at or near the mouth of a river or stream where it enters a body of relatively quiet water, generally a sea or lake.
Depression. Any relatively sunken part of the earth's surface; especially a low-lying area surrounded by higher ground. A closed depression has no natural outlet for surface drainage.
Depth, soil. Generally, the thickness of the soil over bedrock. Very deep soils are more than 60 inches deep over bedrock; deep soils, 40 to 60 inches; moderately deep, 20 to 40 inches; shallow, 10 to 20 inches; and very shallow, less than 10 inches.
Disintegration moraine. A drift topography characterized by chaotic mounds and pits, generally randomly oriented, developed in supraglacial drift by collapse and flow as the underlying stagnant ice melted. Slopes may be steep and unstable. Abrupt changes between materials of differing lithology are common.
Diversion (or diversion terrace). A ridge of earth, generally a terrace, built to protect downslope areas by diverting runoff from its natural course.
Drainage class (natural). Refers to the frequency and duration of wet periods under conditions similar to those under which the soil formed. Alterations of the water regime by human activities, either through drainage or irrigation, are not a consideration unless they have significantly changed the morphology of the soil. Seven classes of natural soil drainage are recognized-excessively drained, somewhat excessively drained, well drained, moderately well drained, somewhat poorly drained, poorly drained, and very poorly drained. These classes are defined in the "Soil Survey Manual."
Drainage, surface. Runoff, or surface flow of water, from an area.
Drainageway. A relatively small, linear depression that, at some time, moves concentrated water and either does not have a defined channel or has only a small defined channel.
Drumlin. A low, smooth, elongated oval hill, mound, or ridge of compact glacial till. The longer axis is parallel to the path of the glacier and commonly has a blunt nose pointing in the direction from which the ice approached.
Duff. A generally firm organic layer on the surface of mineral soils. It consists of fallen plant material that is in the process of decomposition and includes everything from the litter on the surface to underlying pure humus.
Eluviation. The movement of material in true solution or colloidal suspension from one place to another within the soil. Soil horizons that have lost material through eluviation are eluvial; those that have received material are illuvial.
End moraine. A ridgelike accumulation that is being or was produced at the outer margin of an actively flowing glacier at any given time.
Endosaturation. A type of saturation of the soil in which all horizons between the upper boundary of saturation and a depth of 2 meters are saturated.
Eolian soil material. Earthy parent material accumulated through wind action; commonly refers to sandy material in dunes or to loess in blankets on the surface.

Ephemeral stream. A stream, or reach of a stream, that flows only in direct response to precipitation. It receives no long-continued supply from melting snow or other source, and its channel is above the water table at all times.
Episaturation. A type of saturation indicating a perched water table in a soil in which saturated layers are underlain by one or more unsaturated layers within 2 meters of the surface.
Erosion. The wearing away of the land surface by water, wind, ice, or other geologic agents and by such processes as gravitational creep.
Erosion (geologic). Erosion caused by geologic processes acting over long geologic periods and resulting in the wearing away of mountains and the building up of such landscape features as flood plains and coastal plains. Synonym: natural erosion.
Erosion (accelerated). Erosion much more rapid than geologic erosion, mainly as a result of human or animal activities or of a catastrophe in nature, such as a fire, that exposes the surface.
Erosion pavement. A layer of gravel or stones that remains on the surface after fine particles are removed by sheet or rill erosion.
Escarpment. A relatively continuous and steep slope or cliff breaking the general continuity of more gently sloping land surfaces and resulting from erosion or faulting. Synonym: scarp.
Esker. A narrow, winding ridge of stratified gravelly and sandy drift deposited by a stream flowing in a tunnel beneath a glacier.
Fan terrace. A relict alluvial fan, no longer a site of active deposition, incised by younger and lower alluvial surfaces.
Fertility, soil. The quality that enables a soil to provide plant nutrients, in adequate amounts and in proper balance, for the growth of specified plants when light, moisture, temperature, tilth, and other growth factors are favorable.
Fibric soil material (peat). The least decomposed of all organic soil material. Peat contains a large amount of well preserved fiber that is readily identifiable according to botanical origin. Peat has the lowest bulk density and the highest water content at saturation of all organic soil material.
Field moisture capacity. The moisture content of a soil, expressed as a percentage of the ovendry weight, after the gravitational, or free, water has drained away; the field moisture content 2 or 3 days after a soaking rain; also called normal field capacity, normal moisture capacity, or capillary capacity.
Fine textured soil. Sandy clay, silty clay, or clay.
Firebreak. An area cleared of flammable material to stop or help control creeping or running fires. It also serves as a line from which to work and to facilitate the movement of firefighters and equipment. Designated roads also serve as firebreaks.
First bottom. The normal flood plain of a stream, subject to frequent or occasional flooding.
Flaggy soil material. Material that has, by volume, 15 to 35 percent flagstones. Very flaggy soil material has 35 to 60 percent flagstones, and extremely flaggy soil material has more than 60 percent flagstones.
Flagstone. A thin fragment of sandstone, limestone, slate, shale, or (rarely) schist 6 to 15 inches (15 to 38 centimeters) long.
Flood plain. A nearly level alluvial plain that borders a stream and is subject to flooding unless protected artificially.
Footslope. The position that forms the inner, gently inclined surface at the base of a hillslope. In profile, footslopes are commonly concave. A footslope is a transition zone between upslope sites of erosion and transport (shoulders and backslopes) and downslope sites of deposition (toeslopes).
Forb. Any herbaceous plant not a grass or a sedge.

Forest cover. All trees and other woody plants (underbrush) covering the ground in a forest.
Forest type. A stand of trees similar in composition and development because of given physical and biological factors by which it may be differentiated from other stands.
Fragipan. A loamy, brittle subsurface horizon low in porosity and content of organic matter and low or moderate in clay but high in silt or very fine sand. A fragipan appears cemented and restricts roots. When dry, it is hard or very hard and has a higher bulk density than the horizon or horizons above. When moist, it tends to rupture suddenly under pressure rather than to deform slowly.
Frost action (in tables). Freezing and thawing of soil moisture. Frost action can damage roads, buildings and other structures, and plant roots.
Genesis, soil. The mode of origin of the soil. Refers especially to the processes or soil-forming factors responsible for the formation of the solum, or true soil, from the unconsolidated parent material.
Geomorphology. The science that treats the general configuration of the earth's surface; specifically, the study of the classification, description, nature, origin, and development of landforms and their relationships to underlying structures, and the history of geologic changes as recorded by these surface features. The term is especially applied to the genetic interpretation of landforms.
Glacial drift. Pulverized and other rock material transported by glacial ice and then deposited. Also, the sorted and unsorted material deposited by streams flowing from glaciers.
Glacial outwash. Gravel, sand, and silt, commonly stratified, deposited by glacial meltwater.
Glacial till. Unsorted, nonstratified glacial drift consisting of clay, silt, sand, and boulders transported and deposited by glacial ice.
Glaciofluvial deposits. Material moved by glaciers and subsequently sorted and deposited by streams flowing from the melting ice. The deposits are stratified and occur as kames, eskers, deltas, and outwash plains.
Glaciolacustrine deposits. Material ranging from fine clay to sand derived from glaciers and deposited in glacial lakes mainly by glacial meltwater. Many deposits are interbedded or laminated.
Gleyed soil. Soil that formed under poor drainage, resulting in the reduction of iron and other elements in the profile and in gray colors.
Graded stripcropping. Growing crops in strips that grade toward a protected waterway.
Grassed waterway. A natural or constructed waterway, typically broad and shallow, seeded to grass as protection against erosion. Conducts surface water away from cropland.
Gravel. Rounded or angular fragments of rock as much as 3 inches (2 millimeters to 7.6 centimeters) in diameter. An individual piece is a pebble.

Gravelly soil material. Material that has 15 to 35 percent, by volume, rounded or angular rock fragments, not prominently flattened, as much as 3 inches (7.6 centimeters) in diameter.
Green manure crop (agronomy). A soil-improving crop grown to be plowed under in an early stage of maturity or soon after maturity.
Ground water. Water filling all the unblocked pores of the material below the water table.
Gully. A miniature valley with steep sides cut by running water and through which water ordinarily runs only after rainfall. The distinction between a gully and a rill is one of depth. A gully generally is an obstacle to farm machinery and is too deep to be obliterated by ordinary tillage; a rill is of lesser depth and can be smoothed over by ordinary tillage.

Hard bedrock. Bedrock that cannot be excavated except by blasting or by the use of special equipment that is not commonly used in construction.
Hard to reclaim (in tables). Reclamation is difficult after the removal of soil for construction and other uses. Revegetation and erosion control are extremely difficult.
Head slope. A geomorphic component of hills consisting of a laterally concave area of a hillside, especially at the head of a drainageway. The overland waterflow is converging.
Hemic soil material (mucky peat). Organic soil material intermediate in degree of decomposition between the less decomposed fibric material and the more decomposed sapric material.
Herbaceous peat. An accumulation of organic material, decomposed to some degree, that is predominantly the remains of sedges, reeds, cattails, and other herbaceous plants.
High-chroma zones. Zones having chroma of 3 or more. Typical color in areas of iron concentrations.
High-residue crops. Such crops as small grain and corn used for grain. If properly managed, residue from these crops can be used to control erosion until the next crop in the rotation is established. These crops return large amounts of organic matter to the soil.
Hill. A natural elevation of the land surface, rising as much as 1,000 feet above surrounding lowlands, commonly of limited summit area and having a well defined outline; hillsides generally have slopes of more than 15 percent. The distinction between a hill and a mountain is arbitrary and is dependent on local usage.
Horizon, soil. A layer of soil, approximately parallel to the surface, having distinct characteristics produced by soil-forming processes. In the identification of soil horizons, an uppercase letter represents the major horizons. Numbers or lowercase letters that follow represent subdivisions of the major horizons. An explanation of the subdivisions is given in the "Soil Survey Manual." The major horizons of mineral soil are as follows:
O horizon.-An organic layer of fresh and decaying plant residue.
A horizon.-The mineral horizon at or near the surface in which an accumulation of humified organic matter is mixed with the mineral material. Also, a plowed surface horizon, most of which was originally part of a B horizon.
E horizon.-The mineral horizon in which the main feature is loss of silicate clay, iron, aluminum, or some combination of these.
B horizon.-The mineral horizon below an A horizon. The B horizon is in part a layer of transition from the overlying A to the underlying C horizon. The B horizon also has distinctive characteristics, such as (1) accumulation of clay, sesquioxides, humus, or a combination of these; (2) prismatic or blocky structure; (3) redder or browner colors than those in the A horizon; or (4) a combination of these.
C horizon.-The mineral horizon or layer, excluding indurated bedrock, that is little affected by soil-forming processes and does not have the properties typical of the overlying soil material. The material of a C horizon may be either like or unlike that in which the solum formed. If the material is known to differ from that in the solum, an Arabic numeral, commonly a 2 , precedes the letter C .
Cr horizon.-Soft, consolidated bedrock beneath the soil.
R layer.-Consolidated bedrock beneath the soil. The bedrock commonly underlies a C horizon, but it can be directly below an A or a B horizon.
Humus. The well decomposed, more or less stable part of the organic matter in mineral soils.
Hydrologic soil groups. Refers to soils grouped according to their runoff potential. The soil properties that influence this potential are those that affect the minimum rate of water infiltration on a bare soil during periods after prolonged wetting when
the soil is not frozen. These properties are depth to a seasonal high water table, the infiltration rate and permeability after prolonged wetting, and depth to a very slowly permeable layer. The slope and the kind of plant cover are not considered but are separate factors in predicting runoff.
Ice-walled lake plain. A relict surface marking the floor of an extinct lake basin that was formed on solid ground and surrounded by stagnant ice in a stable or unstable superglacial environment on stagnation moraines. As the ice melted, the lake plain became perched above the adjacent landscape. The lake plain is well sorted, generally fine textured, stratified deposits.
Igneous rock. Rock formed by solidification from a molten or partially molten state. Major varieties include plutonic and volcanic rock. Examples are andesite, basalt, and granite.
Illuviation. The movement of soil material from one horizon to another in the soil profile. Generally, material is removed from an upper horizon and deposited in a lower horizon.
Impervious soil. A soil through which water, air, or roots penetrate slowly or not at all. No soil is absolutely impervious to air and water all the time.
Increasers. Species in the climax vegetation that increase in amount as the more desirable plants are reduced by close grazing. Increasers commonly are the shorter plants and the less palatable to livestock.
Infiltration. The downward entry of water into the immediate surface of soil or other material, as contrasted with percolation, which is movement of water through soil layers or material.
Infiltration capacity. The maximum rate at which water can infiltrate into a soil under a given set of conditions.
Infiltration rate. The rate at which water penetrates the surface of the soil at any given instant, usually expressed in inches per hour. The rate can be limited by the infiltration capacity of the soil or the rate at which water is applied at the surface.
Intake rate. The average rate of water entering the soil under irrigation. Most soils have a fast initial rate; the rate decreases with application time. Therefore, intake rate for design purposes is not a constant but is a variable depending on the net irrigation application. The rate of water intake, in inches per hour, is expressed as follows:

| Less than 0.2 .. very low | |
| :---: | :---: |
| 0.2 to 0.4 | .. low |
| 0.4 to 0.75 moderately low | |
| 0.75 to 1.25 ... moderate | |
| 1.25 to 1.75 moderately high | |
| 1.75 to 2.5 | |
| More than 2.5 | very high |

Interfluve. An elevated area between two drainageways that sheds water to those drainageways.
Intermittent stream. A stream, or reach of a stream, that flows for prolonged periods only when it receives ground-water discharge or long, continued contributions from melting snow or other surface and shallow subsurface sources.
Invaders. On range, plants that encroach into an area and grow after the climax vegetation has been reduced by grazing. Generally, plants invade following disturbance of the surface.
Iron concentrations. High-chroma zones having a high content of iron and manganese oxide because of chemical oxidation and accumulation, but having a clay content similar to that of the adjacent matrix. A type of redoximorphic concentration.
Iron depletions. Low-chroma zones having a low content of iron and manganese
oxide because of chemical reduction and removal, but having a clay content similar to that of the adjacent matrix. A type of redoximorphic depletion.
Irrigation. Application of water to soils to assist in production of crops. Methods of irrigation are:
Basin.-Water is applied rapidly to nearly level plains surrounded by levees or dikes.
Border.-Water is applied at the upper end of a strip in which the lateral flow of water is controlled by small earth ridges called border dikes, or borders.
Controlled flooding.-Water is released at intervals from closely spaced field ditches and distributed uniformly over the field.
Corrugation.-Water is applied to small, closely spaced furrows or ditches in fields of close-growing crops or in orchards so that it flows in only one direction.
Drip (or trickle).-Water is applied slowly and under low pressure to the surface of the soil or into the soil through such applicators as emitters, porous tubing, or perforated pipe.
Furrow.-Water is applied in small ditches made by cultivation implements.
Furrows are used for tree and row crops.
Sprinkler.-Water is sprayed over the soil surface through pipes or nozzles from a pressure system.
Subirrigation.-Water is applied in open ditches or tile lines until the water table is raised enough to wet the soil.
Wild flooding.-Water, released at high points, is allowed to flow onto an area without controlled distribution.
Kame. An irregular, short ridge or hill of stratified glacial drift.
Kame moraine. An end moraine that contains numerous kames. A group of kames along the front of a stagnant glacier, commonly comprising the slumped remnants of a formerly continuous outwash plain built up over the foot of rapidly wasting or stagnant ice.
Karst (topography). The relief of an area underlain by limestone that dissolves in differing degrees, thus forming numerous depressions or small basins.
Knoll. A small, low, rounded hill rising above adjacent landforms.
$\mathbf{K}_{\text {sat }}$. Saturated hydraulic conductivity. (See Permeability.)
Lacustrine deposit. Material deposited in lake water and exposed when the water level is lowered or the elevation of the land is raised.
Lake bed. The bottom of a lake; a lake basin.
Lake plain. A nearly level surface marking the floor of an extinct lake filled by well sorted, generally fine textured, stratified deposits, commonly containing varves.
Lake terrace. A narrow shelf, partly cut and partly built, produced along a lakeshore in front of a scarp line of low cliffs and later exposed when the water level falls.
Lakeshore. A narrow strip of land in contact with or bordering a lake; especially the beach of a lake.
Lamella. A thin (commonly less than 1 cm thick), discontinuous or continuous, generally horizontal layer of fine material (especially clay and iron oxides) that has been pedogenically concentrated (illuviated within a coarser textured eluviated layer several centimeters to several decimeters thick).
Landslide. The rapid downhill movement of a mass of soil and loose rock, generally when wet or saturated. The speed and distance of movement, as well as the amount of soil and rock material, vary greatly.
Leaching. The removal of soluble material from soil or other material by percolating water.
Linear extensibility. Refers to the change in length of an unconfined clod as moisture content is decreased from a moist to a dry state. Linear extensibility is used to determine the shrink-swell potential of soils. It is an expression of the volume change between the water content of the clod at $1 / 3$ - or ${ }^{1 / 10}$-bar tension (33 kPa or

10kPa tension) and oven dryness. Volume change is influenced by the amount and type of clay minerals in the soil. The volume change is the percent change for the whole soil. If it is expressed as a fraction, the resulting value is COLE, coefficient of linear extensibility.
Liquid limit. The moisture content at which the soil passes from a plastic to a liquid state.
Loam. Soil material that is 7 to 27 percent clay particles, 28 to 50 percent silt particles, and less than 52 percent sand particles.
Loess. Fine grained material, dominantly of silt-sized particles, deposited by wind.
Low strength. The soil is not strong enough to support loads.
Low-chroma zones. Zones having chroma of 2 or less. Typical color in areas of iron depletions.
Low-residue crops. Such crops as corn used for silage, peas, beans, and potatoes. Residue from these crops is not adequate to control erosion until the next crop in the rotation is established. These crops return little organic matter to the soil.
Marl. An earthy, unconsolidated deposit consisting chiefly of calcium carbonate mixed with clay in approximately equal amounts.
Masses. Concentrations of substances in the soil matrix that do not have a clearly defined boundary with the surrounding soil material and cannot be removed as a discrete unit. Common compounds making up masses are calcium carbonate, gypsum or other soluble salts, iron oxide, and manganese oxide. Masses consisting of iron oxide or manganese oxide generally are considered a type of redoximorphic concentration.
Mechanical treatment. Use of mechanical equipment for seeding, brush management, and other management practices.
Medium textured soil. Very fine sandy loam, loam, silt loam, or silt.
Metamorphic rock. Rock of any origin altered in mineralogical composition, chemical composition, or structure by heat, pressure, and movement. Nearly all such rocks are crystalline.
Mineral soil. Soil that is mainly mineral material and low in organic material. Its bulk density is more than that of organic soil.
Minimum tillage. Only the tillage essential to crop production and prevention of soil damage.
Miscellaneous area. An area that has little or no natural soil and supports little or no vegetation.
Moderately coarse textured soil. Coarse sandy loam, sandy loam, or fine sandy loam.
Moderately fine textured soil. Clay loam, sandy clay loam, or silty clay loam.
Mollic epipedon. A thick, dark, humus-rich surface horizon (or horizons) that has high base saturation and pedogenic soil structure. It may include the upper part of the subsoil.
Moraine. An accumulation of earth, stones, and other debris deposited by a glacier. Some types are terminal, lateral, medial, and ground.
Morphology, soil. The physical makeup of the soil, including the texture, structure, porosity, consistence, color, and other physical, mineral, and biological properties of the various horizons, and the thickness and arrangement of those horizons in the soil profile.
Mottling, soil. Irregular spots of different colors that vary in number and size. Descriptive terms are as follows: abundance-few, common, and many; size-fine, medium, and coarse; and contrast-faint, distinct, and prominent. The size measurements are of the diameter along the greatest dimension. Fine indicates less than 5 millimeters (about 0.2 inch); medium, from 5 to 15 millimeters (about 0.2 to 0.6 inch); and coarse, more than 15 millimeters (about 0.6 inch).

Muck. Dark, finely divided, well decomposed organic soil material. (See Sapric soil material.)
Mucky peat. Unconsolidated soil material consisting primarily of organic matter that is in an intermediate stage of decomposition such that a significant part of the material can be recognized and a significant part of the material cannot be recognized.
Mudstone. Sedimentary rock formed by induration of silt and clay in approximately equal amounts.
Munsell notation. A designation of color by degrees of three simple variables-hue, value, and chroma. For example, a notation of $10 \mathrm{YR} 6 / 4$ is a color with hue of 10 YR , value of 6 , and chroma of 4 .
Neutral soil. A soil having a pH value of 6.6 to 7.3. (See Reaction, soil.)
Nodules. Cemented bodies lacking visible internal structure. Calcium carbonate, iron oxide, and manganese oxide are common compounds making up nodules. If formed in place, nodules of iron oxide or manganese oxide are considered types of redoximorphic concentrations.
Nose slope. A geomorphic component of hills consisting of the projecting end (laterally convex area) of a hillside. The overland waterflow is predominantly divergent.
Nutrient, plant. Any element taken in by a plant essential to its growth. Plant nutrients are mainly nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, iron, manganese, copper, boron, and zinc obtained from the soil and carbon, hydrogen, and oxygen obtained from the air and water.
Organic matter. Plant and animal residue in the soil in various stages of decomposition. The content of organic matter in the surface layer is described as follows:

Outwash plain. A landform of mainly sandy or coarse textured material of glaciofluvial origin. An outwash plain is commonly smooth; where pitted, it generally is low in relief.
Paleoterrace. An erosional remnant of a terrace that retains the surface form and alluvial deposits of its origin but was not emplaced by, and commonly does not grade to, a present-day stream or drainage network.
Parent material. The unconsolidated organic and mineral material in which soil forms.
Peat. Unconsolidated material, largely undecomposed organic matter, that has accumulated under excess moisture. (See Fibric soil material.)
Ped. An individual natural soil aggregate, such as a granule, a prism, or a block.
Pedisediment. A thin layer of alluvial material that mantles an erosion surface and has been transported to its present position from higher lying areas of the erosion surface.
Pedon. The smallest volume that can be called "a soil." A pedon is three dimensional and large enough to permit study of all horizons. Its area ranges from about 10 to 100 square feet (1 square meter to 10 square meters), depending on the variability of the soil.
Percolation. The movement of water through the soil.
Permeability. The quality of the soil that enables water or air to move downward through the profile. The rate at which a saturated soil transmits water is accepted
as a measure of this quality. In soil physics, the rate is referred to as "saturated hydraulic conductivity," which is defined in the "Soil Survey Manual." In line with conventional usage in the engineering profession and with traditional usage in published soil surveys, this rate of flow continues to be expressed as "permeability." Terms describing permeability, measured in inches per hour, are as follows:

| permeable less than 0.0015 inch | |
| :---: | :---: |
| Very slow 0.0015 to 0.06 inch | |
| Slow .. 0.06 to 0.2 inch | |
| Moderately slow 0.2 to 0.6 inch | |
| Moderate 0.6 inch to 2.0 inches | |
| Moderately rapid 2.0 to 6.0 inches | |
| Rapid ... 6.0 to 20 inches | |
| Very rapid. | than 20 inches |

pH value. A numerical designation of acidity and alkalinity in soil. (See Reaction, soil.)
Phase, soil. A subdivision of a soil series based on features that affect its use and management, such as slope, stoniness, and flooding.
Piping (in tables). Formation of subsurface tunnels or pipelike cavities by water moving through the soil.
Pitted outwash plain. An outwash plain marked by many irregular depressions, such as kettles, shallow pits, and potholes, which formed by melting of incorporated ice masses; common in Wisconsin and Minnesota.
Plastic limit. The moisture content at which a soil changes from semisolid to plastic.
Plasticity index. The numerical difference between the liquid limit and the plastic limit; the range of moisture content within which the soil remains plastic.
Plateau. An extensive upland mass with relatively flat summit area that is considerably elevated (more than 100 meters) above adjacent lowlands and separated from them on one or more sides by escarpments.
Ponding. Standing water on soils in closed depressions. Unless the soils are artificially drained, the water can be removed only by percolation or evapotranspiration.
Poorly graded. Refers to a coarse grained soil or soil material consisting mainly of particles of nearly the same size. Because there is little difference in size of the particles, density can be increased only slightly by compaction.
Potential native plant community. See Climax plant community.
Potential rooting depth (effective rooting depth). Depth to which roots could penetrate if the content of moisture in the soil were adequate. The soil has no properties restricting the penetration of roots to this depth.
Prescribed burning. Deliberately burning an area for specific management purposes, under the appropriate conditions of weather and soil moisture and at the proper time of day.
Productivity, soil. The capability of a soil for producing a specified plant or sequence of plants under specific management.
Profile, soil. A vertical section of the soil extending through all its horizons and into the parent material.
Proper grazing use. Grazing at an intensity that maintains enough cover to protect the soil and maintain or improve the quantity and quality of the desirable vegetation. This practice increases the vigor and reproduction capacity of the key plants and promotes the accumulation of litter and mulch necessary to conserve soil and water.
Reaction, soil. A measure of acidity or alkalinity of a soil, expressed in pH values. A soil that tests to pH 7.0 is described as precisely neutral in reaction because it is
neither acid nor alkaline. The degrees of acidity or alkalinity, expressed as pH values, are:

| Ultra acid | less than 3.5 |
| :---: | :---: |
| Extremely acid | 3.5 to 4.4 |
| Very strongly acid | 4.5 to 5.0 |
| Strongly acid | 5.1 to 5.5 |
| Moderately acid | .. 5.6 to 6.0 |
| Slightly acid | 6.1 to 6.5 |
| Neutral | 6.6 to 7.3 |
| Slightly alkaline | 7.4 to 7.8 |
| Moderately alkaline | 7.9 to 8.4 |
| Strongly alkaline | .. 8.5 to 9.0 |
| Very strongly alkalin | 9.1 and higher |

Redoximorphic concentrations. Nodules, concretions, soft masses, pore linings, and other features resulting from the accumulation of iron or manganese oxide. An indication of chemical reduction and oxidation resulting from saturation.
Redoximorphic depletions. Low-chroma zones from which iron and manganese oxide or a combination of iron and manganese oxide and clay has been removed. These zones are indications of the chemical reduction of iron resulting from saturation.
Redoximorphic features. Redoximorphic concentrations, redoximorphic depletions, reduced matrices, a positive reaction to alpha, alpha-dipyridyl, and other features indicating the chemical reduction and oxidation of iron and manganese compounds resulting from saturation.
Reduced matrix. A soil matrix that has low chroma in situ because of chemically reduced iron (Fe II). The chemical reduction results from nearly continuous wetness. The matrix undergoes a change in hue or chroma within 30 minutes after exposure to air as the iron is oxidized (Fe III). A type of redoximorphic feature.
Regolith. The unconsolidated mantle of weathered rock and soil material on the earth's surface; the loose earth material above the solid rock.
Relief. The elevations or inequalities of a land surface, considered collectively.
Residuum (residual soil material). Unconsolidated, weathered or partly weathered mineral material that accumulated as consolidated rock disintegrated in place.
Rill. A steep-sided channel resulting from accelerated erosion. A rill generally is a few inches deep and not wide enough to be an obstacle to farm machinery.
Rise. A slight increase in elevation of the land surface, typically with a broad summit and gently sloping sides.
Road cut. A sloping surface produced by mechanical means during road construction. It is commonly on the uphill side of the road.
Rock fragments. Rock or mineral fragments having a diameter of 2 millimeters or more; for example, pebbles, cobbles, stones, and boulders.
Root zone. The part of the soil that can be penetrated by plant roots.
Runoff. The precipitation discharged into stream channels from an area. The water that flows off the surface of the land without sinking into the soil is called surface runoff. Water that enters the soil before reaching surface streams is called groundwater runoff or seepage flow from ground water.
Saline soil. A soil containing soluble salts in an amount that impairs growth of plants. A saline soil does not contain excess exchangeable sodium.
Sand. As a soil separate, individual rock or mineral fragments from 0.05 millimeter to 2.0 millimeters in diameter. Most sand grains consist of quartz. As a soil textural class, a soil that is 85 percent or more sand and not more than 10 percent clay.
Sandstone. Sedimentary rock containing dominantly sand-sized particles.

Sapric soil material (muck). The most highly decomposed of all organic soil material. Muck has the least amount of plant fiber, the highest bulk density, and the lowest water content at saturation of all organic soil material.
Saprolite. Unconsolidated residual material underlying the soil and grading to hard bedrock below.
Saturated hydraulic conductivity ($\mathrm{K}_{\text {sat }}$). See Permeability.
Saturation. Wetness characterized by zero or positive pressure of the soil water. Under conditions of saturation, the water will flow from the soil matrix into an unlined auger hole.
Scarification. The act of abrading, scratching, loosening, crushing, or modifying the surface to increase water absorption or to provide a more tillable soil.
Second bottom. The first terrace above the normal flood plain (or first bottom) of a river.
Sedimentary rock. Rock made up of particles deposited from suspension in water. The chief kinds of sedimentary rock are conglomerate, formed from gravel; sandstone, formed from sand; shale, formed from clay; and limestone, formed from soft masses of calcium carbonate. There are many intermediate types. Some wind-deposited sand is consolidated into sandstone.
Seepage (in tables). The movement of water through the soil adversely affects the specified use.
Sequum. A sequence consisting of an illuvial horizon and the overlying eluvial horizon. (See Eluviation.)
Series, soil. A group of soils that have profiles that are almost alike, except for differences in texture of the surface layer. All the soils of a series have horizons that are similar in composition, thickness, and arrangement.
Shale. Sedimentary rock formed by the hardening of a clay deposit.
Sheet erosion. The removal of a fairly uniform layer of soil material from the land surface by the action of rainfall and surface runoff.
Shoulder. The position that forms the uppermost inclined surface near the top of a hillslope. It is a transition from backslope to summit. The surface is dominantly convex in profile and erosional in origin.
Shrink-swell (in tables). The shrinking of soil when dry and the swelling when wet. Shrinking and swelling can damage roads, dams, building foundations, and other structures. It can also damage plant roots.
Side slope. A geomorphic component of hills consisting of a laterally planar area of a hillside. The overland waterflow is predominantly parallel.
Silica. A combination of silicon and oxygen. The mineral form is called quartz.
Silt. As a soil separate, individual mineral particles that range in diameter from the upper limit of clay (0.002 millimeter) to the lower limit of very fine sand (0.05 millimeter). As a soil textural class, soil that is 80 percent or more silt and less than 12 percent clay.
Siltstone. Sedimentary rock made up of dominantly silt-sized particles.
Similar soils. Soils that share limits of diagnostic criteria, behave and perform in a similar manner, and have similar conservation needs or management requirements for the major land uses in the survey area.
Sinkhole. A depression in the landscape where limestone has been dissolved.
Slickensides. Polished and grooved surfaces produced by one mass sliding past another. In soils, slickensides may occur at the bases of slip surfaces on the steeper slopes; on faces of blocks, prisms, and columns; and in swelling clayey soils, where there is marked change in moisture content.
Slope. The inclination of the land surface from the horizontal. Percentage of slope is the vertical distance divided by horizontal distance, then multiplied by 100. Thus, a slope of 20 percent is a drop of 20 feet in 100 feet of horizontal distance.

Slope (in tables). Slope is great enough that special practices are required to ensure satisfactory performance of the soil for a specific use.
Sloughed till. Water-saturated till that has flowed slowly downhill from its original place of deposit by glacial ice. It may rest on other till, on glacial outwash, or on a glaciolacustrine deposit.
Slow refill (in tables). The slow filling of ponds, resulting from restricted permeability in the soil.
Sodium adsorption ratio (SAR). A measure of the amount of sodium (Na) relative to calcium (Ca) and magnesium (Mg) in the water extract from saturated soil paste. It is the ratio of the Na concentration divided by the square root of one-half of the $\mathrm{Ca}+\mathrm{Mg}$ concentration.
Soft bedrock. Bedrock that can be excavated with trenching machines, backhoes, small rippers, and other equipment commonly used in construction.
Soil. A natural, three-dimensional body at the earth's surface. It is capable of supporting plants and has properties resulting from the integrated effect of climate and living matter acting on earthy parent material, as conditioned by relief and by the passage of time.
Soil separates. Mineral particles less than 2 millimeters in equivalent diameter and ranging between specified size limits. The names and sizes, in millimeters, of separates recognized in the United States are as follows:

| Very coarse sand 2.0 to 1.0 | |
| :---: | :---: |
| Coarse sand ... 1.0 to 0.5 | |
| Medium sand 0.5 to 0.25 | |
| Fine sand .. 0.25 to 0.10 | |
| Very fine sand 0.10 to 0.05 | |
| Silt .. 0.05 to 0.002 | |
| | ss than 0.002 |

Solum. The upper part of a soil profile, above the C horizon, in which the processes of soil formation are active. The solum in soil consists of the A, E, and B horizons. Generally, the characteristics of the material in these horizons are unlike those of the material below the solum. The living roots and plant and animal activities are largely confined to the solum.
Stagnation moraine. A body of drift released by the melting of a glacier that ceased flowing. Commonly, but not always, occurs near ice margins; composed of till, icecontact stratified drift, and small areas of glacial lake sediment. Typical landforms are knob-and-kettle topography, locally including ice-walled lake plains.
Stone line. A concentration of rock fragments in a soil. Generally, it is indicative of an old weathered surface. In a cross section, the line may be one fragment or more thick. It generally overlies material that weathered in place and is overlain by recent sediment of variable thickness.
Stones. Rock fragments 10 to 24 inches (25 to 60 centimeters) in diameter if rounded or 15 to 24 inches (38 to 60 centimeters) in length if flat.
Stony. Refers to a soil containing stones in numbers that interfere with or prevent tillage.
Stripcropping. Growing crops in a systematic arrangement of strips or bands that provide vegetative barriers to wind erosion and water erosion.
Structure, soil. The arrangement of primary soil particles into compound particles or aggregates. The principal forms of soil structure are—platy (laminated), prismatic (vertical axis of aggregates longer than horizontal), columnar (prisms with rounded tops), blocky (angular or subangular), and granular. Structureless soils are either single grained (each grain by itself, as in dune sand) or massive (the particles adhering without any regular cleavage, as in many hardpans).

Stubble mulch. Stubble or other crop residue left on the soil or partly worked into the soil. It protects the soil from wind erosion and water erosion after harvest, during preparation of a seedbed for the next crop, and during the early growing period of the new crop.
Subsidence. The potential decrease in surface elevation as a result of the drainage of wet soils that have organic layers or semifluid mineral layers. Subsidence, as a result of drainage, is attributed to (1) shrinkage from drying, (2) consolidation because of the loss of ground-water buoyancy, (3) compaction from tillage or manipulation, (4) wind erosion, (5) burning, and (6) biochemical oxidation.
Subsoil. Technically, the B horizon; roughly, the part of the solum below plow depth.
Subsoiling. Tilling a soil below normal plow depth, ordinarily to shatter or loosen a layer that restricts roots.
Substratum. The part of the soil below the solum.
Subsurface layer. Any surface soil horizon (A, E, AB, or EB) below the surface layer.
Summit. The topographically highest position of a hillslope. It has a nearly level (planar or only slightly convex) surface.
Surface layer. The soil ordinarily moved in tillage, or its equivalent in uncultivated soil, ranging in depth from 4 to 10 inches (10 to 25 centimeters). Frequently designated as the "plow layer," or the "Ap horizon."
Surface soil. The A, E, AB, and EB horizons, considered collectively. It includes all subdivisions of these horizons.
Swale. A slight depression in the midst of generally level land. A shallow depression in an undulating ground moraine caused by uneven glacial deposition.
Terminal moraine. A belt of thick glacial drift that generally marks the termination of important glacial advances.
Terrace. An embankment, or ridge, constructed across sloping soils on the contour or at a slight angle to the contour. The terrace intercepts surface runoff so that water soaks into the soil or flows slowly to a prepared outlet. A terrace in a field generally is built so that the field can be farmed. A terrace intended mainly for drainage has a deep channel that is maintained in permanent sod.
Terrace (geologic). An old alluvial plain, ordinarily flat or undulating, bordering a river, a lake, or the sea.
Texture, soil. The relative proportions of sand, silt, and clay particles in a mass of soil. The basic textural classes, in order of increasing proportion of fine particles, are sand, loamy sand, sandy loam, loam, silt loam, silt, sandy clay loam, clay loam, silty clay loam, sandy clay, silty clay, and clay. The sand, loamy sand, and sandy loam classes may be further divided by specifying "coarse," "fine," or "very fine."
Till plain. An extensive area of nearly level to undulating soils underlain by glacial till.
Tilth, soil. The physical condition of the soil as related to tillage, seedbed preparation, seedling emergence, and root penetration.
Toeslope. The position that forms the gently inclined surface at the base of a hillslope. Toeslopes in profile are commonly gentle and linear and are constructional surfaces forming the lower part of a hillslope continuum that grades to valley or closed-depression floors.
Topsoil. The upper part of the soil, which is the most favorable material for plant growth. It is ordinarily rich in organic matter and is used to topdress roadbanks, lawns, and land affected by mining.
Trace elements. Chemical elements, for example, zinc, cobalt, manganese, copper, and iron, in soils in extremely small amounts. They are essential to plant growth.
Upland. Land at a higher elevation, in general, than the alluvial plain or stream terrace; land above the lowlands along streams.
Valley fill. In glaciated regions, material deposited in stream valleys by glacial meltwater. In nonglaciated regions, alluvium deposited by heavily loaded streams.

Variegation. Refers to patterns of contrasting colors assumed to be inherited from the parent material rather than to be the result of poor drainage.
Water bars. Smooth, shallow ditches or depressional areas that are excavated at an angle across a sloping road. They are used to reduce the downward velocity of water and divert it off and away from the road surface. Water bars can easily be driven over if constructed properly.
Weathering. All physical and chemical changes produced in rocks or other deposits at or near the earth's surface by atmospheric agents. These changes result in disintegration and decomposition of the material.
Well graded. Refers to soil material consisting of coarse grained particles that are well distributed over a wide range in size or diameter. Such soil normally can be easily increased in density and bearing properties by compaction. Contrasts with poorly graded soil.
Wilting point (or permanent wilting point). The moisture content of soil, on an ovendry basis, at which a plant (specifically a sunflower) wilts so much that it does not recover when placed in a humid, dark chamber.
Windthrow. The uprooting and tipping over of trees by the wind.
Woody peat. An accumulation of organic material that is predominantly composed of trees, shrubs, and other woody plants.

[^0]: Drainage class: Poorly drained
 Parent material: Glaciolacustrine deposits over till
 Flooding: None
 Shallowest depth to wet zone: 0.5 foot (April)
 Deepest depth to wet zone: 4.1 feet (August)
 Months when ponding does not occur: January, February, March, July, August, September, December
 Deepest ponding: 0.3 foot (April, May)
 Available water capacity to a depth of 60 inches: 9 inches
 Content of organic matter in the upper 10 inches: 6 percent
 Typical profile:
 Ap-0 to 10 inches; fine sandy loam
 Bkg-10 to 17 inches; fine sandy loam
 Cg1-17 to 28 inches; fine sand
 2Cg2,2Cg3-28 to 80 inches; loam

 ## Seelyeville

 Extent: 2 percent of the unit
 Geomorphic component: Depressions on lake plains
 Slope range: 0 to 1 percent
 Texture of the surface layer: Muck
 Depth to restrictive feature: Very deep (more than 60 inches)
 Drainage class: Very poorly drained
 Parent material: Organic material
 Flooding: None
 Shallowest depth to wet zone: At the surface (March, April, May)
 Deepest depth to wet zone: 1.6 feet (February, August)
 Shallowest ponding: 0.3 foot (January, February, July, August, September, October,
 November, December)
 Deepest ponding: 0.5 foot (March, April, May, June)
 Available water capacity to a depth of 60 inches: 25.1 inches
 Content of organic matter in the upper 10 inches: 90 percent
 Typical profile:
 Oa1-0 to 10 inches; muck
 Oa2-Oa5-10 to 80 inches; muck

[^1]: Hangaard
 Extent: 2 percent of the unit
 Geomorphic component: Flats and swales on beach plains
 Slope range: 0 to 2 percent
 Texture of the surface layer: Sandy loam
 Depth to restrictive feature: Very deep (more than 60 inches)
 Drainage class: Poorly drained
 Parent material: Beach deposits
 Flooding: None
 Shallowest depth to wet zone: 0.3 foot (April)
 Deepest depth to wet zone: 3.3 feet (February, August)
 Months when ponding does not occur: January, February, March, July, August,
 September, October, November, December
 Deepest ponding: 0.3 foot (April, May)
 Available water capacity to a depth of 60 inches: 3 inches
 Content of organic matter in the upper 10 inches: 6 percent
 Typical profile:
 Ap-0 to 10 inches; sandy loam
 A-10 to 15 inches; loamy sand
 Cg1-Cg5-15 to 80 inches; coarse sand

 ## Kratka

 Extent: 1 percent of the unit
 Geomorphic component: Flats and swales on lake plains
 Slope range: 0 to 2 percent
 Texture of the surface layer: Fine sandy loam
 Depth to restrictive feature: Very deep (more than 60 inches)
 Drainage class: Poorly drained
 Parent material: Glaciolacustrine deposits over till
 Flooding: None
 Shallowest depth to wet zone: 0.5 foot (April)
 Deepest depth to wet zone: 4.1 feet (August)
 Months when ponding does not occur: January, February, March, July, August,
 September, December
 Deepest ponding: 0.3 foot (April, May)
 Available water capacity to a depth of 60 inches: 9.1 inches
 Content of organic matter in the upper 10 inches: 6 percent
 Typical profile:
 Ap,A-0 to 11 inches; fine sandy loam
 Bg1,Bg2-11 to 18 inches; loamy fine sand
 Cg1-18 to 25 inches; fine sand
 2Cg2-2Cg4-25 to 80 inches; loam

