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Abstract This paper gives a proof of convergence for a learning algorithm that de-

scribes how anoles (lizards found in the Caribbean) learn a foraging threshold distance.

An anole will pursue a prey if and only if it is within this threshold of the anole’s perch.

The learning algorithm was proposed by Roughgarden and his colleagues. They exper-

imentally determined that this algorithm quickly converges to the foraging threshold

that is predicted by optimal foraging theory. We provide analytic confirmation that the

optimal foraging behavior as predicted by Roughgarden’s model can be attained by a

lizard that follows this simple and zoologically plausible rule of thumb.

1. Introduction

Anolis lizards are lizards found in the Carribean that use a “sit-and-wait” predation

strategy. Anoles usually perch at a spot in their territory scanning the ground for prey.

If an anole sees a prey that it considers worth pursuing, it leaves its perch and returns

after the prey has been caught.

1 Part of this work was performed at Sandia National Laboratories and was supported

by the U.S. Department of Energy under contract DE-AC04-94AL85000.
2 Department of Computer Science, University of Warwick, Coventry CV4 7AL,

United Kingdom. leslie@dcs.warwick.ac.uk. This work was partially supported by

ESPRIT LTR Project no. 20244 — ALCOM-IT and Project no. 21726 — RAND-II and

by EPSRC grant GR/L60982.
3 Sandia National Laboratories, PO Box 5800, Albuquerque, NM 87185-1110 USA.

wehart@cs.sandia.gov.
4 Microsoft Corporation 31/3348, One Microsoft Way, Redmond, WA 98052. dbwil-

son@alum.mit.edu.

1



Optimal foraging [4,6] theory offers one approach to modeling the foraging behavior

of anoles. Optimal foraging theory begins with the choice of an optimization criterion,

which characterizes what it is that a lizard’s foraging behavior optimizes. Roughgar-

den [11] suggests that a lizard may minimize the average time used to capture a prey,

which is reasonable in circumstances of high predation. Roughgarden notes that mini-

mizing the average time to capture a prey leads to a tradeoff for the lizard:

...if a lizard chases a very distant item, it is away from its perch and cannot

see (or react) to prey that may appear while it is gone. Alternatively, a lizard

may ignore a very distant item, and yet nothing may actually appear during

the time it would have chased down that item. So, where should the lizard

draw the line? Clearly it should not chase extremely distant prey, for it would

be away from its perch all day, and it should chase extremely close prey.

Roughgarden computes the optimal foraging behavior of a lizard in a simple model in

which the lizard pursues all prey that are within a foraging threshold. This analysis

predicts an optimal foraging threshold, X∗ ; if the lizard only pursues prey that land

within distance X∗ of its perch, then the average time that the lizard uses to capture

its prey is minimized.

According to this analysis, X∗ is the foraging threshold that the lizard should use.

A natural question is how a lizard determines this foraging threshold [11, 3, 13]. Rough-

garden argues that it is unlikely that a particular foraging threshold (i.e., a particular

distance) is hard-wired into the brain of the lizard, because the rate a at which prey

appear and the speed v of the lizard, which both affect X∗ , depend upon where the

lizard lives. Any particular foraging threshold might be close to optimal if the lizard

lives in some places, and very far from optimal if it lives in other places. On the other

hand, it is unlikely lizards have the cognitive ability to compute X∗ from a and v since

this involves calculating cube roots [11].

Roughgarden [11] argues that a more realistic model of foraging is that a lizard

learns an appropriate foraging threshold based on its past experiences pursuing prey.

He proposes a learning algorithm that continually refines the lizard’s current foraging

threshold. This algorithm assumes that the lizard can store two quantities: the time

spent so far, and the total number of prey that have been captured.† Shafir and

† Shafir and Roughgarden [11, 13] actually divide the total time into two parts: the

total time spent pursuing and the total time spent waiting for prey. To execute their

learning algorithm, however, the lizard really only needs to keep track of the total time.
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Roughgarden [13] note that experimental evidence suggests that many animals can

conceptualize this type of information.

Experimental results with this learning algorithm are reported by Shafir and Rough-

garden [11, 13]. These results confirm that the optimal foraging threshold is found very

quickly by the learning algorithm. Menczer, Hart and Littman [8] prove that if the learn-

ing algorithm converges, then it converges to X∗ . While this provides confirmation that

the learning algorithm is reasonable, it does not constitute a proof of convergence.

Our analysis of Roughgarden’s learning algorithm shows that the lizard’s threshold

does indeed converge to X∗ with probability one. Our proof uses a potential function

argument to show that the probability that the foraging threshold remains far from X∗

goes to zero. The fact that the learning algorithm converges provides analytic confir-

mation that the problem of learning optimal foraging thresholds can be solved using

biologically plausible quantities. Thus, this work serves to strengthen the conclusions

concerning the learning algorithm of Roughgarden [11].

2. Formulation of the Model

In Roughgarden’s simulations, prey appear on the ground according to a Poisson

point process with intensity a .∗ In other words, if the ground is divided up into finite

patches, and time is divided up into intervals, then the number of prey landing on a given

patch of ground during a given time interval is a Poisson random variable whose mean is

the product of a , the area of the patch of ground, and the duration of the time interval;

furthermore, these various Poisson random variables are mutually independent. Recall

that a Poisson random variable with mean λ takes on the value k with probability

e−λλk/k! . One basic fact about this model is that with probability 1 no two prey arrive

at exactly the same instant.

Following Roughgarden, we assume that the lizard surveys an area in front of it

shaped like a wedge from a disk, with angle θ (Roughgarden used θ = π , making

the wedge a semicircle). Thus when the threshold radius is X , prey appear within

the surveyed area according to a temporal Poisson process with rate αX2 , where α =

θa/2. (Since X is a random function of time, the rate αX2 at which prey appear

∗ Technically, Roughgarden’s actual simulations didn’t use continuous time and

space, but rather discretized time into units of one second, and discretized space into

units of one square meter. But it is clear that this discretization was an artifact of the

simulation code rather than an intended feature of the model.
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will also be a random function of time.) It is easily seen that when a prey does arrive

within the surveyed region, its location is uniformly distributed within the region. In

Roughgarden’s model, the prey do not move while being chased, so the lizard always

catches any prey that it pursues. Again following Roughgarden, we assume that if a

prey arrives while the lizard is busy pursuing another prey, the new prey escapes instead

of waiting to be caught, and that if a prey arrives outside the lizard’s threshold, the

lizard does not pursue it, even if it later increases its threshold. Let v be the velocity

of the lizard. At time t , let nt be the number of prey the lizard has captured. For

convenience we will assume that nt increases when the lizard returns to its perch after

catching a prey (this assumption will not affect the lizard’s behavior). The process

starts with some initial threshold X0 with n0 = 1. (When the process is started, the

first prey has just been caught.)

If a lizard decides to pursue a prey that appears at distance d from its perch,

then the time taken to chase the prey, catch it, and return to the perch will be 2d/v .

Roughgarden’s analysis shows that the foraging threshold predicted by optimal foraging

theory is

X∗ =
(

3v

2α

)1/3

.

The learning algorithm proposed by Roughgarden specifies that the lizard will pursue

if
t + 2d/v

nt + 1
<

t

nt
.

This expression can be rewritten, to show that the lizard pursues if

d <
vt

2nt
.

Consequently, the learning rule specifies that Xt , the lizard’s current guess at the

optimal foraging threshold, is vt/(2nt). Note that Xt increases with time, but decreases

every time the lizard returns to its perch after capturing a prey. Let Ti denote the time

when the lizard starts looking for the ith prey. If the time that the lizard spends waiting

for and pursuing the ith prey is long then XTi+1 will be greater than XTi (so the lizard

is unlikely to spend as long waiting for the (i + 1)st prey, though it may spend longer

pursuing it) However, if the time that the lizard spends waiting for and pursuing the

ith prey is short then XTi+1 will be smaller than XTi (so the lizard is likely to wait

longer for the (i + 1)st prey, though it may spend less time pursuing it). Thus, it is

plausible, but not immediately clear, that the threshold values Xt converge over time.
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We can describe the distribution of the random variable Xt as follows. Let ti denote

the time at which the ith prey is seen within the lizard’s foraging threshold. Let

Wi denote the time spent waiting to see the ith prey, di denote the distance from the

perch to the ith prey, and Pi denote the time spent pursuing the ith prey. We can

describe the density functions of di , Pi , and Wi (implicitly conditional upon Xti
) as

follows.

Pr(di ≤ y) = Pr(r ≤ (y/Xti
)2) = Pr(Xti

√
r ≤ y),

where r is a random variable chosen uniformly from the range [0, 1). The first equality

follows from the observation that the ratio between the area within radius y and the

area within radius Xti is (y/Xti)
2 . Pi = 2di/v , so

Pr(Pi ≤ y) = Pr
(

2Xti

√
r

v
≤ y

)
.

We now compute Pr(Wi > y). Recall that Ti is the time when the lizard starts

looking for the ith prey (i.e., Ti = ti−1 + Pi−1 .) Let the random variable Cy be

the number of prey that appear within a radius of XTi + vs/2(i − 1) of the perch

at time Ti + s , as s goes from 0 to y . (This radius is the threshold radius at time

Ti + s provided no prey appear during between times Ti and Ti + s .) Note that

Pr(Wi > y) = Pr(Cy = 0). But Cy is a Poisson random variable, whose parameter is

a times the integral of the surveyed area over time. Thus,

Pr(Wi > y) = exp
[
−

∫ y

0

α(XTi + vs/2(i− 1))2ds

]
.

Using these definitions, we have

Pr(nt ≥ i) = Pr




i∑

j=2

(Wj + Pj) ≤ t


 ,

so

Pr(Xt ≤ y) = Pr



dvt/(2y)e∑

j=2

(Wj + Pj) ≤ t


 .

Let T (τ) denote the last time at which the lizard has been waiting for τ seconds.

(In other words, in addition to a clock measuring real time, there is another clock that
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only measures the time τ that the lizard spends sitting at its perch. When the waiting

time clock reads τ , the real time clock reads T (τ). When τ takes on certain special

values, of the form
∑n

i=2 Wi , the real time clock takes on many values due to the

positive time required to catch the prey — we break ties by taking the largest such

real time, i.e. the time at which the lizard returns to its perch.) Let mτ = nT (τ) and

Yτ = XT (τ) . Let τi be the total amount of time spent waiting before the ith prey is

seen within the foraging threshold. The probability that a prey arrives exactly when

the lizard returns to the perch after pursuing the ith prey is 0, so with probability 1,

τi < τi+1 . In this case, T (τi) is the time at which the lizard returns to its perch after

catching the ith prey, so mτi = i . Let X∗ = (3v/(2α))1/3 be the optimal threshold.

3. Overview

Our proof of convergence uses a potential function Φ given by

Φτ = (Yτ −X∗)4mτ
5/4.

We argue that the expected value of this potential does not get too big, which implies

that the threshold cannot deviate much from X∗ for too long. We define the potential

function in terms of Yτ and mτ rather than Xt and nt because (Yτ ,mτ ) is a Markov

process whereas (Xt, nt) is not, and the Markov property simplifies the analysis.

If at some point the foraging threshold is far from optimal, then it will tend to

move towards X∗ , causing the expected potential to decrease. If at some point the

threshold is exactly X∗ , then a short time later it will surely have changed, causing

the potential to increase. But the (Yτ −X∗)4 term is flat enough when the threshold

is near X∗ , that this increase in potential will be small. It will turn out that over time

the expected increase in potential grows more slowly than the mτ
5/4 term, implying

that the deviations from X∗ are likely to remain small.

We will argue that regardless of the current threshold radius at a given time, the

expected increase in potential in a short interval cannot be too large. Thus, we get

a bound on E[Φτi ] . After many prey are found, if Yτi deviated from X∗ by more

than εi (with εi slowly approaching zero), the potential would be large, so this event

cannot be too likely. The potential would need to be large enough to make these events

sufficiently unlikely to ensure that they occur for only finitely many i . This constrains

the exponent of the mτ term in the potential to be larger than 1. On the other hand,
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if the exponent of the mτ term were larger than 4/3, then the expected increase in

potential would be too large. Hence, we used 5/4.

Theorem 1 shows that (with probability 1) limi→∞ Yτi
exists and is X∗ , from which

it follows that limτ→∞ Yτ exists, implying that Xt converges to X∗ . Our argument

uses the expected number of τi ’s for which Yτi
deviates far from X∗ , since the expected

number of τ ’s for which Yτ deviates far from X∗ is infinite. The proof of Theorem 1

uses Lemma 5, which shows that the expected value of the potential function at τi is

bounded by a constant that does not depend on τ .

The proof of Lemma 5 uses Lemmas 3 and 4. Lemma 3 bounds the expected

difference between Φτ at two times in an interval given the state of the lizard at the

first time. Lemma 4 defines a potential Ψn
τ that equals Φτ in the interval [τn, τn+1)

and equals Φτn and Φτn+1 respectively before and after the interval. Lemma 4 shows

that the expected difference between Ψn
τ at two times in an interval is bounded by

the expected difference between Φτ given that n prey have been captured, times the

probability that n prey have been captured. Together, Lemmas 3 and 4 are used to show

that the expected difference between Φτn+1 and Φτn is less than a slowly decreasing

function times the expected waiting time after the nth prey is seen and before the

(n + 1)st prey is seen within the foraging threshold, from which the result follows.

Lemmas 1 and 2 provide technical details for the proofs of Lemmas 3 and 4.

Lemma 3 follows from the definition of Φτ . Lemma 4 follows from a case analysis

of the number of prey that have been pursued before and during the interval that is

being considered.

4. Technical Results

We will use the following technical lemma.

Lemma 1: If P is a Poisson random variable with parameter λ , then

Pr(P ≥ k) ≤ λk/k!.

Proof:

Pr(P ≥ k) = e−λ
∞∑

i=k

λi

i!
= e−λ λk

k!

∞∑

i=0

λik!
(i + k)!

≤ e−λ λk

k!

∞∑

i=0

λi

i!
=

λk

k!
.
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Lemma 2: For any fixed finite time interval, there is an upper bound Y such that for

all τ in the interval, Yτ ≤ Y . Furthermore, if τb and τe are drawn from the interval,

and ∆τ denotes |τe − τb| , then the probability that at least k prey arrive within the

lizard’s foraging threshold between time τb and τe is at most O((∆τ)k), where the

constant depends only upon the interval.+

Proof: The number of prey that appear per unit area per second is a Poisson random

variable with parameter a . Thus, the number of prey that appear within the lizard’s

foraging threshold is dominated by a Poisson random variable with parameter αY 2∆τ .

The lemma follows from Lemma 1.

Lemma 3: There is a function g(n) with g(n) = O(n−7/4) such that the following

is true for any fixed finite time interval: If τb and τe are drawn from the interval with

τb ≤ τe and mτb
= n , then

E[Φτe | state at time τb]− Φτb

is at most

(τe − τb)g(n) + O((τe − τb)2),

where the constants in the O((τe − τb)2) term depend upon n and the interval (in

particular upon its maximum foraging radius from Lemma 2) but not upon τb or τe .

Proof: We start by making a preliminary observation. Suppose that after waiting

τ seconds, the lizard sees a prey at time T ′ within its foraging threshold Y ′ . By the

probability density function of dmτ , the distance of the prey from the perch is the

random variable Y ′√r , where r is uniformly distributed between 0 and 1. The lizard

pursues the prey and returns to its perch. The pursuit time for this prey is 2Y ′√r/v .

The new foraging threshold after the prey is caught is

Yτ =
v(T ′ + 2Y ′√r/v)

2mτ
=

v(2(mτ − 1)Y ′/v) + 2Y ′√r

2mτ
= Y ′ + Y ′

(√
r − 1
mτ

)
.

(Note that the prey will be caught before the time that the lizard has spent waiting, τ ,

increases.)

+ See the appendix for a brief description of the asymptotic notation used in this

paper.
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Now consider the finite interval in the statement of Lemma 3 and let Y be

the interval’s foraging threshold bound from Lemma 2. Suppose that τb and τe

are drawn from the interval with τb ≤ τe and that mτb
= n . Let ∆ denote

E[Φτe
| state at time τb ]− Φτb

. We wish to show that

∆ ≤ (τe − τb)g(n) + O((τe − τb)2),

where the constant in the term O((τe − τb)2) depends upon the interval but not upon τb

or τe and g(n) = O(n−7/4) does not depend upon the interval (or upon τb or τe ).

Consider the time period (τb, τe] (the period of time between τb and τe ), and let

∆τ = τe − τb . Either a prey appears during this period, or not. If no prey appears, the

foraging threshold expands by v∆τ/(2n). If exactly one prey appears, then, (by the

preliminary observation), the lizard pursues the prey and adjusts the foraging threshold

by adding Zτb
= (Yτb

+ O(∆τ))(
√

r − 1)/(n + 1); meanwhile the foraging threshold

expands by O(∆τ). Let f(y) = (y −X∗)4 and let W denote the probability that prey

appears during the period. Putting all of this together, we have

E[Φτe | state at time τb, choice of r] ≤

(1−W )n5/4f

(
Yτb

+
v∆τ

2n

)
+ W (n + 1)5/4f (Yτb

+ Zτb
+ O(∆τ)) + O((∆τ)2).

So, conditioned on the choice of r ,

∆ ≤ n5/4f

(
Yτb

+
v∆τ

2n

)
− n5/4f(Yτb

)

+ W

[
(n + 1)5/4

f (Yτb
+ Zτb

+ O(∆τ))− n5/4f

(
Yτb

+
v∆τ

2n

)]
+ O(∆τ2).

We now derive an upper bound for W . Let Y ∗ denote Yτb
+ v∆τ/(2n) and note

that the lizard’s foraging threshold does not exceed Y ∗ during the period between τb

and τe . The number of prey that appear within the lizard’s foraging threshold during

this period is dominated by a Poisson random variable with parameter α∆τY ∗2 . So by

Lemma 1, W ≤ α∆τY ∗2 , which is at most α∆τ(Y 2
τb

+ Y v∆τ/n + (v∆τ/2n)2). Thus,

W ≤ αY 2
τb

∆τ + O((∆τ)2) where the constants in the O((∆τ)2) depend upon the fixed

interval (and therefore, on Y ), but not upon τb and τe . In the interval the second
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derivative of f is bounded, so by Taylor’s theorem the value of ∆/∆τ conditioned on

the choice of r is as follows:

∆/∆τ ≤ n5/4f ′(Yτb
)
( v

2n

)

+ αYτb

2

[
(n + 1)5/4f

(
Yτb

+ Yτb

√
r − 1

n + 1

)
− n5/4f(Yτb

)
]

+ O(∆τ).
(1)

Equation 1 led us to choose the exponent 5/4 in the definition of Φτb
. We want the

derivative in Equation 1 to be small even when Yτb
is large. This makes it necessary to

have the exponent less than 4/3. Note that the constants in the O(∆τ) can be chosen

uniformly for any τb and τe in the fixed interval.

Integrating with respect to r , and evaluating Equation 1 at Yτb
= X∗(1 + z) yields

a polynomial in z whose coefficients are functions of n . We need only concern ourselves

with the behavior of these functions when n is large enough. Using Maple [10], we find

that ∆/∆τ evaluated at Yτb
= X∗(1 + z) is equal to the following.

∆/∆τ = αX∗6
[
− 1 + o(1)

12
n1/4z6 − 3 + o(1)

2
n1/4z5 − 11 + o(1)

4
n1/4z4 +

11 + o(1)
3

n−3/4z3

+
1 + o(1)

1
n−3/4z2 − 2 + o(1)

5
n−7/4z +

1 + o(1)
15

n−11/4

]
+ O(∆τ).

(2)

where the o(1) terms are functions of n converging to 0 as n → ∞ (independently

of z ).

Suppose that n is sufficiently large. Ignoring the O(∆τ) term for the moment, let

β denote the first term. We consider the following cases.

Case 1

z ≥ 3n−1/2

In this case, the term

[(11 + o(1))/4]n1/4z4 is at

least three times as large as

each of the three positive

terms, so β ≤ 0.

Case 2

−1 ≤ z ≤ −3n−1/2

In this case, the term

[(11 + o(1))/4]n1/4z4 is at

least 3/2 times as large as

the term [(3 + o(1))/2]n1/4z5

and at least nine times as

large as each of the three

other positive terms. Thus,

β ≤ 0.

Case 3

|z| ≤ 3n−1/2

In this case, each term is

O(n−7/4), so β = O(n−7/4).
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Note that z ≥ −1. Thus we have that ∆/∆τ = O(n−7/4) + O(∆τ) for all values

of z , for all values of τb and τe contained in a given finite interval.

We will find it convenient to define

Ψn
τ =





Φτn , if τ < τn;

Φτ , if τn ≤ τ < τn+1;

Φτn+1 , if τn+1 ≤ τ .

As a function of τ , Ψn
τ is discontinuous at τn+1 but it is continuous elsewhere.

Lemma 4: For any fixed finite time interval, if τb and τe are drawn from that interval

then

E
[
Ψn

τe
−Ψn

τb

]
= E

[
Φτe − Φτb

∣∣∣ mτb
= n

]
· Pr(mτb

= n) + O((∆τ)2),

where the constants in the O((∆τ)2) term depend upon n and the fixed interval’s

maximum foraging radius from Lemma 2.

Proof: Let Y be the interval’s maximum foraging radius from Lemma 2 and let

γr = E
[
Ψn

τe
−Ψn

τb
| mτb

= r
]
. By the linearity of expectation,

E
[
Ψn

τe
−Ψn

τb

]
=

∞∑
r=1

γr Pr(mτb
= r). (3)

We now consider possible values of r .

Case 1: r > n : In this case, γr = 0.

Case 2: r ≤ n − 1: In this case, if no prey are seen then Ψn
τe
− Ψn

τb
= 0. If one

prey is seen (by Lemma 2, this happens with probability O(∆τ)), then |Ψn
τe
−Ψn

τb
| =

O(∆τ). Even if two or more prey are seen (by Lemma 2, this happens with probability

O((∆τ)2)), |Ψn
τe
−Ψn

τb
| is still O(1). Hence γr = O((∆τ)2).

Case 3: r = n : In this case, let ∆Φ = Φτe − Φτb
and ∆Ψ = Ψn

τe
− Ψn

τb
. If k prey

are found, then |∆Φ| ≤ Y 4(n + k)5/4 and |∆Ψ| ≤ Y 4(n + 1)5/4 , so

|∆Ψ−∆Φ| ≤ 2Y 4(n + k)5/4.

If k = 0, then ∆Ψ = ∆Φ. If k = 1 (with probability O(∆τ), by Lemma 2) then

|∆Ψ−∆Φ| = O(∆τ). Using Lemmas 1 and 2,

|E[∆Ψ | mτb
= n]− E[∆Φ | mτb

= n]| ≤ O((∆τ)2) + 2Y 4
∞∑

k=2

(n + k)5/4(αY 2∆τ)k/k!

= O((∆τ)2).
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Since γr = E[∆Ψ | mτb
= r] ,

γr = E
[
Φτe

− Φτb

∣∣∣ mτb
= r

]
+ O((∆τ)2).

Summing over r according to Equation 3, we get

E
[
Ψn

τe
−Ψn

τb

]
= E

[
Φτe

− Φτb

∣∣∣ mτb
= n

]
· Pr(mτb

= n) + O((∆τ)2),

where the constants in the O((∆τ)2) term depend upon n and upon the fixed interval.

Lemma 5: For all n , E[Φτn ] ≤ Φ0 + O(1) . (The O(1) term does not depend on τ .)

Proof: We start by computing Φτn+1 − Φτn
= Ψn

∞ − Ψn
0 . To do this, we will use

Lemmas 3 and 4. Both lemmas may be applied to any finite interval, so we will apply

them to the intervals [0, 1], [1, 2], . . . . Any interval [i, i + 1] may be subdivided into

subintervals of size 1/M (for any M > 1). Applying lemmas 3 and 4 to each subinterval

and summing gives

E
[
Ψn

i+1 −Ψn
i

]
=

M∑

j=1

E
[
Ψn

i+j/M −Ψn
i+(j−1)/M

]

≤
M∑

j=1

[(
g(n)/M + O(1/M2)

)
Pr(mi+(j−1)/M = n) + O(1/M2)

]
,

where the constants in the O(1/M2) terms depend on the interval [i, i + 1] and on n

but not the subintervals. Taking the limit of both sides as M → ∞ gives

E
[
Ψn

i+1 −Ψn
i

] ≤ g(n)
∫ i+1

i

Pr(mτ = n)dτ.

Summing over all i we get

E[Φτn+1 − Φτn ] ≤ g(n)
∫ ∞

0

Pr(mτ = n) dτ. (4)

The integral in Equation 4 is the expected waiting time after the nth prey is seen before

the (n + 1)st prey is seen. We will show that this is O(n2/3). To see this, note that if

the lizard has been waiting at least n2/3 seconds, then the foraging threshold, vt
2nt

, is

at least
vn2/3

2n
=

v

2
n−1/3.
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Thus, the area of the region that the lizard surveys is at least (θv2/8)n−2/3 . Now

consider each subsequent interval of d(8/θv2)n2/3e seconds. In each such interval, the

probabilty that the lizard sees a prey is at least 1 − e−a . Thus, the expected waiting

time of the lizard is at most

n2/3 + d(8/θv2)n2/3e+
∞∑

i=1

e−aid(8/θv2)n2/3e = O(n2/3).

Since g(n) = O(n−7/4) (from Lemma 3), we conclude that E[Φτn+1 − Φτn
] =

O(n−13/12). Since n−13/12 is a convergent series, the expected value of the potential

just after the nth prey is caught is at most Φ1 plus some constant independent of n .

Theorem 1: With probability one Xt → X∗ .

Proof: First note that if the lizard returns to the perch at time t after catching the

nth prey and the lizard returns to the perch at time t′ after catching the (n + 1)st prey,

then the foraging threshold during the time interval [t, t′] stays in the interval [vt/(2(n +

1)), vt′/(2n)] . Equivalently, the foraging threshold during the time interval [t, t′] stays

in the range [(vt/(2n))(1 − 1/(n + 1)), (vt′/(2(n + 1))(1 + 1/n)] . Note that for all j ,

with probability 1, Yτj is the foraging threshold just after the j th prey is caught.

Thus, Yτn = vt/(2n) and Yτn+1 = vt′/(2(n + 1)). Thus, if n is sufficiently large,

then the foraging threshold during the time interval [t, t′] stays in the interval [X∗ −
1/n1/33, X∗ + 1/n1/33] unless either Yτn 6∈ [X∗ − 1/n1/32, X∗ + 1/n1/32] or Yτn+1 6∈
[X∗ − 1/(n + 1)1/32

, X∗ + 1/(n + 1)1/32] .

Therefore we focus on the subsequence of foraging thresholds Yτn just after the

nth prey was caught.

Using Markov’s inequality and recalling that, with probability 1, mτn = n , we get

Pr(|X∗ − Yτn | > ε) = Pr(n5/4 |X∗ − Yτn |4 > n5/4ε4)

= Pr(Φτn > n5/4ε4)

≤ E[Φτn ]n−5/4ε−4.

If we take ε = n−1/32 and note that, by Lemma 5, E[Φτn ] is bounded from above by

a constant, then we get

Pr(|X∗ − Yτn | > n−1/32) = O(n−9/8).

13



Thus, as the process runs, the expected number of integers n such that the Yτn

deviates from X∗ by more than n−1/32 is O(1). Almost surely, there are a finite number

of such integers n , so with probability one, there are only a finite number of integers n

such that during the time between the catching of the nth prey and the (n + 1)st prey,

the foraging threshold goes outside of the range [X∗ − 1/n1/33, X∗ + 1/n1/33] .

5. Discussion

We have analyzed a simplified version of the general learning problem that faces

the anole. Using very weak assumptions on the distribution of prey, we are able to prove

that the sequence of foraging thresholds used by the lizard converges to the foraging

threshold predicted by optimal foraging theory. This analysis confirms the conclusions

made by Roughgarden [11] concerning the ability of this learning rule to optimize a

lizard’s foraging behavior.

Roughgarden [11] describes a more general version of this problem that includes

more details concerning the energy expenditures of the lizard. Specifically, Roughgarden

assumes that a lizard expends ew energy per time while waiting and ep energy per time

while pursuing a prey. The energy obtained from a prey is e . An optimal threshold

similar to X∗ can be derived for this model. An important difference of this model

is that the lizard’s behavior aims to maximize the current energy gained from a prey.

The model that we have analyzed assumes that ep = ew = 0 and e = 1, in which

case minimizing the time is equivalent to maximizing the energy. For other parameters,

this equivalence does not apply and a different learning rule and convergence analysis

is needed.

This limits the generality of the result that we have presented. The type of “sit-

and-wait” predation model that we have analyzed may be applicable to a wide range

of other organisms. Minimizing the average time spent per prey captured may be

reasonable model of optimal behavior in many contexts, and the the main challenge for

adapting our analysis to such organisms would be to account for the specific distribution

of prey in the organism’s environment. However, this model is not appropriate for

mammals, which spend a substantial amount of energy waiting for prey. Consequently,

the more general model described by Roughgarden [11] would need to be analyzed for

these organisms.

Two other generalizations considered by Roughgarden model are (i) the ability of

prey to escape from the lizard and (ii) the existence of different categories of prey that
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have differing energetic value. From Roughgarden’s discussion of model (ii), it is clear

that a convergence proof for the previous model would immediately generalize to this

model. However, for model (i) a convergence analysis will be much more difficult. In

fact, Roughgarden is unable to determine an analytic value for the foraging threshold

predicted by optimal foraging for a specific model of prey behavior.

One assumption made by these models is that the lizard does not compete with

other lizards while learning its optimal foraging threshold. While Roughgarden has

considered models that allow this competition [12], his justification for the current

model is that the foraging threshold simply determines how many lizards there can be

in a region.

Finally, we note that other learning rules might yield simpler analysis. Erik Or-

dentlich [9] has observed that the time that the lizard would take to run to the threshold

and back is equal to the average time that the lizard has spent per prey. We suspect

that other learning rules based on this observation might also converge. Nick Littlestone

has observed [5] that the time that the lizard spends waiting is, in the limit, half of the

time that the lizard spends running. This suggests a simple learning rule – adjust the

radius whenever the ratio between the running time and waiting time is wrong. This

learning rule only requires division by two and and not general division, which may be

more biologically plausible.

Appendix

In this paper, we use asymptotic notation to specify bounds on how functions

behave in the limit. For details about this notation see (for example) Chapter 2 of [1].

To aid the reader, we give brief definitions of the notation (from [1]) here.

In particular, for functions f and g , we say that f(n) = o(g(n)) if and only

if limn→∞
f(n)
g(n) = 0. We say that f(n) = O(g(n)) if and only if there are positive

constants c and n0 such that for all n ≥ n0 we have f(n) ≤ cg(n).

When we say that a quantity is “at most O(g(n))”, we mean that there is a function

f(n) such that f(n) = O(g(n)) and the quantity is at most f(n). Similarly, when we

say “f(n) = g(n) + O(h(n))”, we mean that there is a function j(n) = O(h(n)) such

that f(n) = g(n) + j(n).
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