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Abstract
This paper describes a numerical study of microwave reflectometry for
the measurement of turbulent fluctuations in tokamak-like plasmas with a
cylindrical geometry. Similarly to what was found previously in plane-stratified
plasmas, the results indicate that the characteristics of density fluctuations
cannot be uniquely determined from the reflected waves if the latter are allowed
to propagate freely to the point of detection, as in standard reflectometry. Again,
we find that if the amplitude of fluctuations is below a threshold that is set by
the spectrum of poloidal wave numbers, the local characteristics of density
fluctuations can be obtained from the phase of the reflected waves when these
are collected with a wide aperture antenna, and an image of the cut-off is formed
onto an array of phase-sensitive detectors.

1. Introduction

Microwave reflectometry [1], a radar technique for the detection of fluctuations using
the reflection of electromagnetic waves from a plasma cut-off, has found extensive use
for the detection of short-scale turbulent fluctuations in tokamaks—the probable cause of
anomalous transport in this type of magnetic configurations [2, 3]. However, the extraction
of any quantitative information from the measured signals is always very difficult and often
impossible. This is caused by two phenomena. First, the high sensitivity of reflectometry to
plasma fluctuations makes its response non-linear, as demonstrated by the very first application
of this technique to tokamaks [4]. The second reason, which is more subtle and was
not promptly understood [5], is due to the fact that when the plasma permittivity fluctuates
perpendicularly to the direction of propagation of the probing beam, as in the case of tokamak
plasmas, where turbulent fluctuations vary in both radial and poloidal directions, the spectral
components of the backward wave propagate in different directions. This may result in a
complicated interference pattern on the detection plane, from which it is very difficult to
extract any quantitative information about the fluctuations under investigation.
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This can be understood by considering a simple case where the wave permittivity has the
form ε = ε0(r) + ε̃(r, θ) (where ε̃ � 1 is the fluctuating component and (r, θ) is a system
of coordinates representing the radial and poloidal directions of a tokamak plasma), and by
assuming that the reflected wave near the cut-off can be cast in the form E = exp(iφ̃), with
φ̃(θ) given by the geometric optics approximation (phase screen model) [5, 6]. Since the phase
of the probing wave is the cumulative result of many random contributions, we may assume that
φ̃(θ) is a normal random variable with mean 〈φ̃〉 = 0, variance σ 2

φ ≡ 〈φ̃2〉 and autocorrelation
γφ(δ) ≡ 〈φ̃(θ)φ̃(θ + δ)〉/σ 2

φ . From this, we find that the first moment of the wave amplitude
(i.e. the amplitude of the coherent specular reflection) is 〈E〉 = exp(−σ 2

φ/2), and thus it is a
decreasing function of σφ . From the joint probability density [7]

P(φ̃1, φ̃2) = 1

2πσ 2
φ (1 − γ 2

φ )1/2
exp

[
−φ2

1 − 2γφφ1φ2 + φ2
2

2σ 2
φ (1 − γ 2

φ )

]
, (1)

where φ̃1 ≡ φ̃(θ) and φ̃2 ≡ φ̃(θ + δ), we get the second moment of the wave amplitude
〈E1E

∗
2 〉 = exp[−σ 2

φ (1−γφ)], which shows that the signal correlation length is also a decreasing
function of σφ . The normalized autocorrelation of E is then given by

γE ≡ 〈Ẽ1Ẽ
∗
2 〉

〈|Ẽ|2〉 = eσ 2
φ γφ − 1

eσ 2
φ − 1

. (2)

From this, we get γE ≈ γφ for σ 2
φ � 1. On the other hand, for σ 2

φ � 1, by taking
γφ ≈ exp(−δ2/2�2

φ) and making the approximation γφ ≈ 1 − δ2/2�2
φ for δ2 � �2

φ , we
obtain γE ≈ exp(−δ2σ 2

φ/2�2
φ). To summarize, when σ 2

φ � 1, the correlation length of the

wave amplitude is a factor of σφ smaller than the correlation length of φ̃.
In conclusion, γφ cannot be derived from the measured value of γE without a knowledge

of σφ . On the other hand, the latter cannot be measured when the reflected waves are allowed to
propagate freely to the detection plane, where they may form a chaotic interference pattern. In
a series of papers [8–10], the author has discussed the possibility of overcoming this difficulty
by collecting the reflected waves with a wide aperture optical system forming an image of
the cut-off onto an array of phase sensitive detectors. This should allow a measurement of
the autocorrelation function γφ , and hence information on the structure of plasma density
fluctuations near the cut-off. Such a reflectometry scheme—named microwave imaging
reflectometry—was the result of an extensive series of numerical simulations where, as in
the previous paragraph, a plane-stratified plasma equilibrium was used in conjunction with a
field of two-dimensional fluctuations. In this paper, we re-analyse the same problem using a
plasma equilibrium configuration with a more realistic cylindrical geometry.

2. Physical model

We assume that the density (n) of a cylindrically symmetric plasma is perturbed by a field of
two-dimensional density fluctuations (ñ) with the spatial distribution

ñ(r, θ)

n(r)
=

P∑
p=1

Q∑
q=1

δpq cos(pκr + ϕpq) cos(qθ) (3)

in the system of cylindrical coordinates (r , θ ). This spectrum consists of P × Q discrete
components with radial wave number kr = pκ (κ ≡ constant), poloidal number q, random
phase ϕpq and amplitudes δpq . As in previous simulations [8, 9], the rationale for choosing
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a poloidally symmetric spectrum of fluctuations is that it provides an extra check for the
calculated reflected wave, which obviously must display the same degree of symmetry.
However, the numerical code used in this paper could deal with odd symmetric fluctuations as
well, with results that are substantially similar to those described in this paper.

Similarly to [8], we take the amplitude distribution

δ2
pq ∝ p exp

[
−

(
pκ

κr

)2

−
(

q

q0

)2
]

, (4)

where the constants κr = κP/2 and q0 represent the spectral width of fluctuations in the radial
and poloidal directions, respectively. At the cut-off, the poloidal spectral width can also be
expressed in terms of the wave number κp = q0/rc. Throughout this paper we will use P = 21
and Q = 101.

The probing wave is launched from r = r0 with the Gaussian amplitude profile

E0(θ) = e−(θ/θ0)
2
, (5)

where θ0 is a constant. Since we assume θ0 � π , equation (5) can also be cast in the form

E0(θ) ≈ θ0

2
√

π

m=+∞∑
m=−∞

e−(mθ0/2)2
eimθ ≡

m=+∞∑
m=−∞

gmeimθ . (6)

The total amplitude (E) of the wave, which we will assume propagating in the ordinary mode,
is expressed as the sum of 2N + 1 independent solutions of the wave equation

E(r, θ) =
N∑

n=−N

cnEn(r, θ), (7)

where N � Q (to be determined). The functions En are cast in the form

En(r, θ) =
N∑

m=−N

fmn(r)e
imθ , (8)

where fmn(r) are solutions of the system of 2N + 1 ordinary differential equations

d2fmn

dr2
+

1

r

dfmn

dr
+ k2

0(ε0 − α2
m)fmn + k2

0(ε0 − 1)

×
P∑

p=1

Q∑
q=1

[
δpq

2
cos(pκr + ϕpq)(f(m−q)n + f(m+q)n)

]
= 0

(m = −N, −N + 1, . . . , N) (9)

with ε0 = 1 − (ωp/ω)2 (the unperturbed permittivity), ωp = (4πne2/me)
1/2 (the plasma

frequency), αm = m/k0r and k0 = ω/c (the probing wave number). These equations, which
are derived by inserting equations (3) and (8) into the wave equation and by performing a
Fourier expansion in θ , can be solved using the Runge–Kutta method.

The coefficients cn in equation (7) are obtained by imposing the condition that the wave
field at r = r0 is the sum of the incoming probing wave (equation (6)) and an outgoing
reflected wave

Er(θ) =
N∑

m=−N

ameimθ . (10)
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Figure 1. Plasma density profile; the cut-off is at r = rc for a probing wave with a frequency of
75 GHz and the ordinary mode of propagation.
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Figure 2. Contour plots of |Eb| for different values of the angular width θ0: 5˚ (a), 10˚ (b), 20˚ (c),
40˚ (d). Green line is the plasma boundary (rb = 80 cm), solid white line is the cut-off (rc = 40 cm),
dashed line is the virtual cut-off (rG = 26 cm). Fluctuations parameters: q0 = 40, κr = 1.0 cm−1

and σn = 1.0 × 10−2.
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Figure 3. Contour plots of |Eb| for different values of σn: 0.0 (a), 0.5 × 10−2 (b), 1.0 × 10−2 (c),
2.0 × 10−2 (d). Other parameters: q0 = 20, κr = 1.0 cm−1, θ0 = 40˚.

From this we get a first set of 2N + 1 equations

N∑
n=−N

fmn(r0)cn − am = gm (m = −N, −N + 1, . . . , N). (11)

Another set of equations can be derived from the expressions

Ef (r, θ) =
m=∞∑

m=−∞
gm

H(2)
m (k0r)

H
(2)
m (k0r0)

eimθ (12)

and

Eb(r, θ) =
N∑

m=−N

am

H(1)
m (k0r)

H
(1)
m (k0r0)

eimθ , (13)

representing the solutions of the wave equation, which, at r = r0, coincide with equations (6)
and (10), respectively. In these expressions, H(1)

m ≡ Jm + iYm and H(2)
m ≡ Jm − iYm are the

Hankel functions [11] which satisfy the recurrence relation

2F ′
m(z) = Fm−1(z) − Fm+1(z).
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Figure 4. Profile of |Eb| at r = r0 (a) and r = rG (b) for the case of figure 3(c).

From the r-derivatives, then, we obtain a second set of equations

N∑
n=−N

f ′
mn(r0)cn − amk0H

(1)′
m (k0r0)

H
(1)
m (k0r0)

= g(m)k0H
(2)′
m (k0r0)

H
(2)
m (k0r0)

(m = −N, −N + 1, . . . , N),

(14)

which together with equation (11) determine the values of an and cn.
In the following, equation (13) will be referred to as the backward field. Outside of

the plasma region, Eb coincides with the reflected wave, while inside the plasma region, it
represents a virtual field that an observer in free space could measure by using an optical system
to map the plasma region onto an array of detectors located at the image plane.

Finally, the integer N must be chosen large enough to make the results significantly
unchanged by any increase in its value. This condition, verified a posteriori, allows the
closure of the system of equations by setting to zero all terms f(m±q)n with |m ± q| > N .
The numerical simulations of this paper have been performed using values of N in the range
200 � N � 250.
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Figure 5. Comparison of φ̃ (——) and φ̃GO (- - - -) at r = r0 (a) and r = rG (b) for the case of
figure 3(c). Note that the two curves in the bottom figure are almost identical.

3. Numerical results

The numerical results described in this section refer to the case of a cylindrical plasma with
a radius of rb = 80 cm and the density profile of figure 1 (derived from a typical plasma
equilibrium of the tokamak fusion test reactor [5]). The probing wave has a frequency of
75 GHz and is launched from r0 = 100 cm. The cut-off has a radius of rc = 40 cm where the
density scale length is Ln ≡ n/(dn/dr) = 25 cm.

Figure 2 displays the contour plot of the backward field amplitude |Eb| for different
values of the angular aperture of the probing beam (θ0). The field of turbulent fluctuations is
the same in all four cases, with σn ≡ 〈ñ2/n2〉1/2 = 1.0 × 10−2, κr = 1.0 cm−1 and q0 = 40
(κp = 1.0 cm−1). Figure 3 displays similar plots for a constant beam aperture (θ0 = 40˚)
but different values of σn. In all four cases, the fluctuations have the same value of q0 = 20
(κp = 0.5 cm−1) and κr = 1.0 cm−1, and identical sets of random phases (ϕpq).

The plots of figures 2 and 3 illustrate how the radiation pattern of the backward field
splits into several striations that seem to originate from a location behind the cut-off—a virtual
cut-off—where the fluctuations in the backward field amplitude are at their minimum. As noted
in the previous section, the backward field does not coincide with the reflected wave in the
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Figure 6. Power spectra of φ̃ at r = rG (——) and of ñ/n at r ≈ rc (- - - -) for different values
of σn. Other parameters are those of figure 3. Spectra are averaged over twenty realizations of the
turbulence field.

plasma region. It is simply how the reflected wave, after crossing the region between the cut-off
and the plasma edge, would appear to an observer in free space. Since the refractive index of this
region is lower than one, the striations seem to start from a radial location (rG) behind the cut-
off, at a distance from the latter of the order of the density scale length (Ln), i.e. where the rays
of waves originating near the real cut-off seem to intersect when observed in free space. This
phenomenon is similar to what makes the bottom of a swimming pool to appear artificially
close to the surface, the only difference in this case being a refractive index larger than one.
In figures 2 and 3, the distance between the real and the virtual cut-off is approximately half
(∼Ln/2) of what was found (∼Ln) previously in plane geometry [8, 9]. This is explained by
the fact that in a cylindrical plasma the conservation of the poloidal m-number causes a strong
bending in the rays of reflected waves, which therefore appear to originate closer to the cut-off
than in a plane plasma configuration with similar density gradients.

As described in the introduction, interference of the spectral components of the reflected
wave may result in a chaotic wave pattern in free space—the only place where we can
perform reflectometry measurements. This is demonstrated in figure 4(a), which shows that
the amplitude of the backward field at r = r0 is strongly modulated by the fluctuations of
figure 3(c). Furthermore, the fluctuating component (φ̃) of the phase of Eb (i.e. the change in
the phase of the backward field due to the presence of fluctuations) is completely different from
the phase of geometric optics φ̃GO(θ) = k0

∫ rb

rc
ε̃/

√
ε0 dr (figure 5(a)). In contrast, plasma

fluctuations have a small effect on the value of |Eb| near the virtual cut-off (figure 4(b)), where
φ̃ coincides with φ̃GO (figure 5(b)). Consequently, since most of the contribution to φ̃GO comes
from a narrow region in front of the cut-off, the poloidal power spectrum of φ̃ at r = rG must
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Figure 7. Power spectra of Eb at r = r0 (——) and of ñ/n at r ≈ rc (- - - -) for the fluctuations
of figure 6. Spectra are averaged over twenty realizations of the turbulence field (density spectra
are renormalized).

be similar to that of ñ/n at r = rc. This is indeed the case, as demonstrated in figure 6 where
the spectrum of ñ/n is normalized by the factor κr/πk2

0Ln (derived from the approximation of
geometric optics [5, 6]). Similarly to the results of previous simulations [9], we find that the
best agreement is obtained using the value of ñ/n at a small distance from the cut-off (∼0.5 cm
in figure 6).

Apart from a few rare cases, such as that of [5], a normal procedure of standard
reflectometry is to identify the spectrum of plasma turbulence with the spectrum of measured
signals. This leads to erroneous results, as demonstrated by figure 7 showing the power
spectra of Eb at r = r0 and of ñ/n at r = rc (the latter being renormalized for facilitating
the comparison with the backward field spectra). These results show very clearly that, as
plasma fluctuations rise to the level found in tokamaks, the spectrum of reflected waves in free
space—the main product of standard reflectometry—becomes considerably broader than the
spectrum of fluctuations.

As in previous simulations [8, 9], we find that the possibility of inferring the spectrum of
plasma turbulence from the phase of the backward field breaks down at large levels of plasma
fluctuations. This is explained by the fact that, since each spectral component of the backward
wave originates near the corresponding reflecting point, the breakdown occurs when the set of
these points is distributed over a distance δr that is comparable to the radial scale of plasma
fluctuations (κ−1

r ). This occurs when [8, 9]

σn <
1

π3/4Lnκp

. (15)
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Figure 8. (a) Profile of |Eb| at r = rG. (b) Poloidal power spectrum of φ̃ at r = rG (——) and
of ñ/n at r ≈ rc (- - - -). Parameters are those of figure 3 with σn = 3.0 × 10−2. Spectra are
averaged over twenty realizations of the turbulence field.

When this condition is not satisfied, we expect large fluctuations in the value of |Eb| at the virtual
cut-off and a departure of the spectrum of φ̃ (at r = rG) from that of ñ/n (at r = rc). This is
indeed what figure 8 shows when the value of σn is raised to 3.0×10−2 for fluctuations similar to
those of figure 6 (κp = 0.5 cm−1 and Ln = 25 cm), in agreement with equation (15) that gives
σn < 3.4×10−2. Another demonstration of the validity of this criterion is provided by figure 9,
where the breakdown occurs for a value of σn smaller than 2 × 10−2 when κp = 1.0 cm−1,
again in agreement with equation (15), which for this case gives σn < 1.7×10−2. The contour
plot of |Eb| in figure 10 shows that this is accompanied by the destruction of the virtual cut-off.

Finally, it is worth noting that when equation (15) is not satisfied, such as in figures 8(b)
and 9(b), the power spectrum of φ̃ acquires a 1/m2 dependence, which is reminiscent of the
1/f 2 frequency dependence of the spectra of standard reflectometry [1, 6].

4. Conclusion

In conclusion, we have presented a numerical study of microwave reflectometry for the
measurement of turbulent fluctuations in a tokamak-like plasma with a cylindrical equilibrium
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Figure 9. Same as in figure 8(b) for q0 = 40, κr = 1.0 cm−1, σn = 1.0 × 10−2 (a) and
σn = 2.0 × 10−2 (b). Spectra are averaged over twenty realizations of the turbulence field.
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configuration. Similarly to what was found previously in plane-stratified configurations, our
results indicate that the characteristics of plasma fluctuations cannot be uniquely determined
from the reflected waves if these are allowed to propagate freely to the point of detection, as in
standard reflectometry. Again, we find that if the amplitude of fluctuations is below a threshold
that is set by the spectrum of poloidal wave numbers (equation (15)), the local characteristics of
density fluctuations can be obtained from the phase of reflected waves when these are collected
with a wide aperture antenna and an image of the cut-off is formed (taking into account plasma
refraction) onto an array of phase sensitive detectors. A reflectometer apparatus for testing
this conjecture has been constructed and is currently being commissioned on the TEXTOR
tokamak [12, 13].
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