Tevatron SUSY Results

E. Nagy Centre de Physique des Particules de Marseille

On behalf of the CDF and D0 Collaborations

- Introduction
- Chargino-Neutralino searches
- Slepton searches
- Gluino-squark searches
- Conclusion

Introduction

SUper SYmmetry

Symmetry of Nature for Boson<->Fermion interchange

Basic ingredient for unification with gravity (SuperString/M-theory) The only nontrivial extension of the Lorentz-Poincaré group Provides elegant solution to evade the fine tuning problem

Minimal extension of the SM: MSSM

every SM particle has $\Delta S = \pm 1/2$ partner R = $(-1)^{3B+L+2S} = \pm 1$ (SM); = -1 (SUSY) 2nd Higgs doublet is needed (treated in the Tevatron Higgs talk)

$$q, l \Leftrightarrow \tilde{q}, \tilde{l}$$

$$R = +1 \qquad g \Leftrightarrow \tilde{g} \qquad R = -1$$

$$\gamma, Z, h, H, A \Leftrightarrow \chi^{0}_{1,...,4}$$

$$W^{\pm}, H^{\pm} \Leftrightarrow \chi^{\pm}_{1,2}$$

If SUSY were exact: only 1 additional parameter (µ) needed

Physics at LHC, Cracow, July 2006

SUSY is a broken symmetry since nobody has seen the partners many more parameters describe breaking with additional hypotheses they are reduced in models treated here, e.g. gravitation mediated (mSUGRA) model to 5 (m_0 , $m_{1/2}$, tan β , sgn μ , A_0) gauge mediated (mGMSB) model to 6 (Λ , M_m , N_5 , tan β , sgn μ , C_{grav}) parameters

In most cases R-parity is assumed to be conserved:

since there are severe limits on B- and L-violating processes Then: SUSY partners are pair produced LSP is stable (neutral and weakly interacting) – dark matter candidate

Basic signature is MET (LSP), + multiple jets or leptons from cascade decays of the heavy R=-1 partners

Main bg is t tb, gauge boson production in pair or with jets

Violation of R-parity is not excluded. This would allow single resonant formation of SUSY particles produce many more jets/leptons in final state in B- and L-violating processes add additional parameters (48 Yukawa couplings)

At the Tevatron both RPC and RPV have been studied

Physics at LHC, Cracow, July 2006

Tevatron

Run IIa ended in March 2006 – full dataset 1.3 fb⁻¹ (10x Run I) Run IIb started in June 2006 – hoping to reach 4-8 fb⁻¹ by ~2009

Analyses with L_{int} > 0.3 fb⁻¹ are reported here

Physics at LHC, Cracow, July 2006

Physics at LHC, Cracow, July 2006

Chargino-Neutralino searches

Physics at LHC, Cracow, July 2006

Chargino (χ_1^{\pm}) and Neutralino (χ_2^{0}) RPC pair production

Production also via sq (t-channel) Decay can be also 2-body $m_{sl} < m_{\chi 20}, m_{\chi 1^+}$

signature: 3I (isolated e,μ,τ or track (3rd I)) + MET or: 2I (SS e,μ) + MET (if 3rd lepton is too soft)

Both CDF and D0 has searched for this signal on ~1fb⁻¹ dataset

Main backgrounds: Z/y*+jets QCD (multijets) WW,WZ ttbar

> Physics at LHC, Cracow, July 2006

E.Nagy - Tevatron SUSY Results

Data are well described at the preselection stage and in control regions Ex.: D0 eel analysis $p_T^{e1} > 12 \text{ GeV}$ $p_T^{e2} > 8 \text{ GeV}$

Since σ x BR are small several channels are combined

After cuts to supress the background and enhance the signal data are compatible with the expected background in all analyses

Chargino mass limit in mSUGRA inspired models considerably improved 3I-max: M_{sl} slightly above $M_{\chi 20}$ and M_{sl} degenerate: $M_{\chi +} > 140$ GeV heavy-sq: destructive t-channel contribution minimal: $M_{\chi +} > 155$ GeV For large m_0 : sl's are heavy and small BR into leptons

Physics at LHC, Cracow, July 2006

CDE	Lumino	Total and istad	01 1	CDF Run II Preliminary
CDF Analysis channels	sity (pb ⁻¹)	Background	data	$M_0=100, M_{1/2}=180, \tan\beta=5, \mu>0$ Data
$e^{\pm}e^{\pm}, e^{\pm}\mu^{\pm}, \mu^{\pm}\mu^{\pm}$	710	6.80±1.00	9	L dt = 0.70 fb ⁻ Diboson
μμ +e/μ (low-p _T)	310	0.13±0.03	0	Δ 3 Wγ DY - mSUGRA point
ee+track	610	$0.48{\pm}0.07$	1	
$ee + e/\mu$	350	0.17±0.05	0	
μμ +e/μ	750	0.64±0.18	1	
μ e +e/μ	750	0.78±0.15	0	0 20 30 40 50 60 70 80 90 100 11 Leading lepton P (Ge)/(c)
$0.2^{0.2}$	MSSM: tan 	β =3, μ >0, $M(\tilde{\chi}_2^9) - M(\tilde{\chi}_1^4) - M(\tilde{\mu}) = M($	2M($\tilde{\chi}_{1}^{0}$) served pected	e ⁻ (103GeV) e ⁻ (107GeV) γ (15GeV)
Physics at LH	Char IC	gino Mass (Ge E N	V/c~) Vagy - Tevat	ron SUSY Results 10
Cracow, July	2006	L .1		

Chargino (χ_1^{\pm}) and Neutralino (χ_2^0) pair production

Lightest neutralino (χ_1^0) is allowed to decay via RPV $\lambda_{ijk}L_iL_jE^c_k$

 μ^+ More leptons (less MET) than in RPC case \rightarrow better sensitivity $\mu^ \nu_e$ One assumes 1 non-zero coupling at a tim

One assumes 1 non-zero coupling at a time $\lambda_{121}, \lambda_{122}$ (CDF,D0), λ_{133} (D0)

sufficiently large that decay w/o displaced vertex

CDF has searched events with 4 leptons has found 0 with expected bg: 0.008±0.004

D0 has found 0 events in channels: eel $\mu\mu$ I (I= e, μ) with bg: 0.9 ±0.4 0.4 ±0.1

eeτ **1.3 ±1.8** mSUGRA limits by D0 (L = 0.36 fb⁻¹) CDF has obtained somewhat smaller limits

Coupling	$\operatorname{sign}(\mu)$	$m(ilde{\chi}^0_1)$	$m(\tilde{\chi}_1^{\pm})$
$\lambda_{121} \ (m_0 = 1 \text{ TeV}, \tan \beta = 5)$	>0	119	231
λ_{122}	> 0	118	229
λ_{133}	> 0	86	166
$\lambda_{121} \ (m_0 = 1 \text{ TeV}, \tan \beta = 5)$	< 0	117	234
λ_{122}	< 0	115	230
$\lambda_{133} \ (m_0 = 100 \text{ GeV}, \tan \beta = 5)$	> 0	105	195
$\lambda_{133} \ (m_0 = 100 \ { m GeV}, \ { m tan} \ \beta = 20)$	> 0	115	217

E.Nagy - Tevatron SUSY Results

Physics at LHC, Cracow, July 2006

 $\widetilde{\chi}^0_1$

Longlived neutralino (χ_1^0) pair production

D0 has adequate vertex reconstruction acceptance x efficiency determined with K_s If λ_{122} sufficiently small χ_1^0 may live long producing a displaced vertex in 5-20 cm from the interaction points by the $\mu\mu$ pair NuTeV has reported 3 events of $\mu\mu$ pairs

Observed: 0 events 2 muons $p_T > 10$ GeV, cosmic veto, good vertex in 5 < $r_T < 20$ cm DCA > 0.01 from any other vertex **Background: 0.75±1.6** (w/ syst) estimated from data extrapolating from 0.3 < $r_T < 5$ cm and inverting the DCA cut **Systematics estimated by changing** the selection criteria The obtained 95(99)% xsection upper limit excludes the interpretation of the NuTeV events as being longlived neutralinos

Physics at LHC, Cracow, July 2006

(\vec{x}_{i},t_{i}) (\vec{x}_{i},t_{i}) (\vec{x}_{i},t_{i}) \vec{p} (\vec{x}_{i},t_{i}) \vec{G} CDF Calorimeter \vec{Q} \vec{G}

 ${\bf t}_{\rm 0}$ is the arrival time of prompt particles in the calorimeter time resolution ~0.6 ns

Photon Corrected Time of Arrival (ns)

2 4

6

8 10

With an optimal timing cut of 1.5 ns one observes 10 data events expecting 7.6 ±1.9 background events

-4 -2 0

Physics at LHC, Cracow, July 2006

10⁻¹

-10 -8 -6

These charginos live long (CMSP) appear as muons in the detector, but they are slower: v~p/E \rightarrow arrive later in the muon detector Speed significance (sps): (1-v)/ σ_v (σ_t ~2-3ns)

Select: 2 muons p_T >15 GeV at least 1 muon isolated cosmic ray veto sps > 0 for both muon cut optimized in the $M_{\mu\mu}$ vs sps₁*sps₂ plane depending on the CMSP mass

Background are muons of missmeasured time: estimated from data $Z \rightarrow \mu \mu$

Data is compatible with expectation of the SM No event observed beyond M_{CMSP} >100 GeV typical background: 0.60±0.05 (depending slightly on the mass)

Exclude M_{y±} < 174 GeV (gaugino-like)

Physics at LHC, Cracow, July 2006 E.Nagy - Tevatron SUSY Results

DØ Run II Preliminary

Slepton searches

Physics at LHC, Cracow, July 2006

GMSBD0 limits for CMSP is applied to long lived stau (NLSP) pair production

Physics at LHC, Cracow, July 2006

Resonant smu/snu_µ search in RPV production and LSP (χ_1^0) decay via non-zero $\lambda'_{211}L_2Q_1D^c_1$ term

$$d\vec{d} \to \vec{v_{\mu}} \to \chi_{1}^{\pm} \mu^{\mp} \qquad \qquad \chi_{1}^{\pm} \to \chi_{1}^{0} q q'$$

$$d\vec{u} \to \mu \to \chi_{2,3,4}^{0} \mu \qquad \qquad \chi_{2,3,4}^{0} \to \chi_{1}^{0} q q' q''.$$

$$d\vec{u} \to \mu \to \chi_{1}^{0} \mu \qquad \qquad \chi_{1}^{0} \to \mu q \overline{q}$$

Select : 2 isolated muons $p_T^{1}>15$, $p_T^{2}>8$ GeV >1 jet $p_T>15$ GeV Reconstruct: χ_1^0 (leading μ +2j) sl (2 μ +all jet) No signal observed: good agreement with SM Exclusion for mass and coupling derived

Max. excluded sl mass [GeV]	For min. λ_{211} coupling strength
210	0.04
340	0.06
363	0.10

Physics at LHC, Cracow, July 2006

Resonant snu_{τ} search in RPV production ($\lambda'_{311}L_3Q_1D^c_1$) and decay ($\lambda_{132}L_1L_3E^c_2$)

Physics at LHC, Cracow, July 2006

Gluino-squark searches

Search for generic Squarks and Gluinos in the multi-jet -- MET topology (D0)

Search for high MET and $H_T = \Sigma_{iet} E_T$ events in 3 regions of mSUGRA

Physics at LHC, Cracow, July 2006

E.Nagy - Tevatron SUSY Results

1st and 2nd generation Squarks and Gluinos in the jet-MET topology (CDF) optimized for 3 jets

A: $E_T^{1} > 95 \text{ GeV}$; $E_T^{2} > 55 \text{ GeV}$; $E_T^{3} > 25 \text{ GeV}$; MET > 75 GeV; $H_T > 230 \text{ GeV}$ B: $E_T^{1} > 120 \text{ GeV}$; $E_T^{2} > 70 \text{ GeV}$; $E_T^{3} > 25 \text{ GeV}$; MET > 90 GeV; $H_T > 280 \text{ GeV}$ C: $E_T^{1} > 140 \text{ GeV}$; $E_T^{2} > 100 \text{ GeV}$; $E_T^{3} > 25 \text{ GeV}$; MET > 120 GeV; $H_T > 330 \text{ GeV}$

Data and MC agrees		ZONE A	ZONE B	ZONE C
in all 3 zonos	DATA	185	40	2
III all 5 201185	MC	211 ± 7 ± 44	56 ± 3 ± 14	8.2 ± 1.2 ± 2.6

 M_{\sim}

g

Physics at LHC, Cracow, July 2006

Stopping gluinos

In Split-SUSY s-scalars are heavy gluinos are light, copiousely produced longlived: fragment into (charged) R-hadrons loose energy - stop in the detector and decay

Data selection

Trigger on jet No signal in luminosity monitors No reconstructed vertex No reconstructed cosmic muons Jet in $|\eta| < 0.9$, 90 GeV < E < 900 GeV η and ϕ widths of the jet >0.08 (wide jets) Background mainly due to cosmic muons w/o reconstructed muons Estimated from narrow jet events: P(nomu) = 0.1

Search for $\tilde{g} \rightarrow g + \chi_1^0$ decay w/o underlying event

No excess in data over expected background Determine cross section and mass limit vs $M_{\gamma 10}$ =50,90,200 GeV

Physics at LHC, Cracow, July 2006

Search for s-bottom quarks from gluino pair-production

 $p\overline{p} \rightarrow \tilde{g} \tilde{g}; \tilde{g} \rightarrow \tilde{b} + b; \tilde{b} \rightarrow b + \chi_1^0$ 4 b-jets and MET

Require: 3 jets with E_T>15 GeV, |η|<2</th>at least 2 jets with b-tagMET>80 GeV

Data agrees with SM background Verified in 3 control regions, dominated by W/Z+jet, QCD and top production

Process	Exclusive Single B-Tag	Inclusive Double B-Tag
EWK	$5.66 \pm 0.76(stat) \pm 1.72(sys)$	$0.61 \pm 0.21(stat) \pm 0.19(sys)$
TOP	$6.18 \pm 0.12(stat) \pm 1.42(sys)$	$1.84 \pm 0.06(stat) \pm 0.46(sys)$
QCD	$4.57 \pm 1.64(stat) \pm 0.57(sys)$	$0.18 \pm 0.08(stat) \pm 0.05(sys)$
Total Predicted	$16.41 \pm 1.81(stat) \pm 3.15(sys)$	$2.63 \pm 0.23(stat) \pm 0.66(sys)$
Observed	21	4

Table 24: Number of expected and observed events in signal region.

Published limit is based only on inclusive double b-tag events

Physics at LHC, Cracow, July 2006

Search for pair-production of s-bottom quarks

 $\mathbf{p}\mathbf{p} \rightarrow \mathbf{b}\mathbf{b}; \mathbf{b} \rightarrow \mathbf{b} + \mathbf{\chi}_1^0$ 2 acoplanar b-jets and MET

Require: 2 jets with acoplanarity $\Delta \phi < 165^{\circ}$

E_T¹>40 GeV, E_T²>15 GeV, $|\eta^1|<0.9$ at least 1 jet with b-tag MET>80 GeV Isolated lepton veto

Data agrees with SM background w/ and w/o b-tagging

Final E_T^j and MET cuts are increased as function of the s-bottom mass

Physics at LHC, Cracow, July 2006

CDF selection for the same channel: $p\overline{p} \rightarrow \widetilde{b_1}\overline{\widetilde{b_1}} \rightarrow b\widetilde{\chi}_1^0\overline{b}\widetilde{\chi}_1^0$

• 2 or 3 jets

 E_t cuts on 1st and 2nd leading jets vary depending on M_{sb}

- MET>50 GeV or higher depending M_{sb}
- 1st and 2nd leading jets not back-to-back
- Jets not pointing along direction of MET
- ≥1 jet tagged JetProbability < 1%

	$\mathbf{Low}\;\mathbf{M}_{\mathbf{sb}}$	Medium M _{sb}	High M _{sb}
SM (Total)	55.0±7.24	17.8±2.31	4.67±0.67
Data	60	18	3

Search for pair-production of stop quarks decaying into b+l+snu (l=e,µ)

Stop may be the lightest squark due to large mixing thanks to large top mass Its 3-body decay into b+l+snu through virtual chargino dominates for light snu D0 has studied bbeµ+MET and bbµµ+MET final states in MSSM framework

Main selection for μμ: 2 isolated OS muons

cosmic veto $p_T^{1}>8GeV, p_T^{2}>6GeV$ At least 1 jet $p_T>15 GeV$ leading jet b-tagged MET>MinMET($\Delta \Phi(\mu_1, MET)$) M $\mu\mu$ outside the Z mass region

Data is compatible with SM

Exclusion limit determined on H_T=Σp_T^j

Physics at LHC, Cracow, July 2006

Main selection for eμ: >=1 isolated electron p_Te>12 GeV >=1 isolated muon p_T^μ>8 GeV MET > 15 GeV not in the direction

of the leptons

$M_{\tau}(e, MET) > 15 \text{ GeV}$

Exclusion limit determined on S_T=p_T^e+p_T^µ+MET and #Non Isolated Tracks E.Nagy - Tevatron SUSY Results

Combined limit extends significantly regions excluded earlier

Search for pair-production of stop quarks decaying into $c+\chi_1^0$

This decay mode dominates for $m_c + m_{\gamma 10} < m_{st} < m_b + M_w + m_{\gamma 10}$

Basic event topology 2 acoplanar c-tagged jets

 $p_T^{1}>40$ GeV, $p_T^{2}>20$ GeV optimized $\Delta \phi(j_1, j_2) < 165^{\circ}$

MET > 40 GeV optimized for m_{st} - $m_{\chi 10}$ pairs get minimal <CLs>, expected signal confidence in absence of signal

QCD background is small

extrapolated from low MET

In general data agrees with the SM prediction A visual scan of the high MET events did not reveal any anomaly

Obtained limit on m_{st} @ 95% improves significantly domains excluded earlier

Physics at LHC, Cracow, July 2006

CDF selection for the same channel:

• 2 or 3 jets

 E_t cuts on 1st and 2nd leading jets vary depending on M_{st}

- MET>50 GeV or higher depending M_{st}
- 1st and 2nd leading jets not back-to-back
- Jets not pointing along direction of MET
- ≥1 jet tagged JetProbability < 5%

Search for pair-production of stop quarks decaying into b+τ via RPV (λ'₃₃₃)

Physics at LHC, Cracow, July 2006

Conclusions

Thanks to the Tevatron the regions where there is no need to look for SUSY have increased considerably

> The former LEP and Run I mass limits have been significantly extended

The searches continue with increasing luminosity, with better performing detectors, exploring event topologies with ever increasing sophistication in a friendly competition between the two experiments

Physics at LHC, Cracow, July 2006