# Cook Inlet Play 3: Mesozoic Structural Play

## **Geological Assessment**

<u>GRASP UAI</u>: AAAAACAD <u>Play Area</u>: 8,400 square miles <u>Play Water Depth Range</u>: 100-600 feet <u>Play Depth Range</u>: 4,000-10,000 feet <u>Play Exploration Chance</u>: 0.18

| Play 3, Mesozoi<br>OCS Plann<br>Undiscovered T                                                                                                                                                                                                                    | ing Area, 20                                                                              | 06 Assessn                                         | nent,                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------|
| Assessme                                                                                                                                                                                                                                                          | nt Results as o                                                                           | f November 2                                       | 005                                        |
| Resource                                                                                                                                                                                                                                                          | R                                                                                         | lesources                                          | *                                          |
| Commodity<br>(Units)                                                                                                                                                                                                                                              | F95                                                                                       | Mean                                               | F05                                        |
| BOE (Mmboe)                                                                                                                                                                                                                                                       | 61                                                                                        | 354                                                | 833                                        |
| Total Gas (Tcfg)                                                                                                                                                                                                                                                  | 0.027                                                                                     | 0.151                                              | 0.347                                      |
| Total Liquids<br>(Mmbo)                                                                                                                                                                                                                                           | 57                                                                                        | 327                                                | 771                                        |
| Free Gas**<br>(Tcfg)                                                                                                                                                                                                                                              | 0.005                                                                                     | 0.029                                              | 0.070                                      |
| Solution Gas<br>(Tcfg)                                                                                                                                                                                                                                            | 0.021                                                                                     | 0.122                                              | 0.277                                      |
| Oil (Mmbo)                                                                                                                                                                                                                                                        | 56                                                                                        | 325                                                | 767                                        |
| Condensate<br>(Mmbc)                                                                                                                                                                                                                                              | 0                                                                                         | 2                                                  | 4                                          |
| <ul> <li>* Risked, Technically</li> <li>** Free Gas Includes</li> <li>F95 = 95% chance the<br/>given quantity</li> <li>F05 = 5% chance the<br/>quantity</li> <li>BOE = total hydrocan<br/>equivalent, where 1 b<br/>gas</li> <li>Mmb = millions of bai</li> </ul> | Gas Cap and I<br>at resources w<br>t resources wil<br>bon energy, ex<br>arrel of oil = 5, | ill equal or ex<br>l equal or exc<br>pressed in ba | ceed the<br>eed the given<br>rrels-of-oil- |
| Tcf = trillions of cubic                                                                                                                                                                                                                                          |                                                                                           |                                                    |                                            |

Table 1

Play 3, the "Mesozoic Structural" play, is the third most important play (of four plays) in the Cook Inlet OCS Planning Area, with 29% (354 Mmboe) of the Planning Area energy endowment (1,225 Mmboe). The overall assessment results for play 3 are shown in table 1. Oil forms 92% of the hydrocarbon energy endowment of play 3. Table 5 reports the detailed assessmentresults by commodity for play 3.

Table 3 summarizes the volumetric input data developed for the *GRASP* computer model of Cook Inlet play 3. Table 4 reports the risk model used for play 3. The location of play 3 is shown in figure 1.

The Mesozoic Structural play covers most of the assessment area, with the possible exception of the northernmost part, where the Mesozoic rocks are deeply buried. Structures tend to be northeast-trending anticlines cored by reverse faults. Those structures were formed during Plio-Pleistocene compression of the forearc basin. The Augustine-Seldovia arch is transverse to the regional structural trend and was drilled by three exploratory wells with no success. Transpressional folds formed by strike-slip movement associated with the Castle Mountain fault to the north of Cook Inlet may also be present.

Potential reservoir-rocks in play 3 are probably confined to Cretaceous strata. As in play 2, the thickest sandstones with the best porosities in the Mesozoic section are in non-marine, Upper Cretaceous fan-delta deposits. Those sandstones were encountered in the COST well, the Arco Y-0113 (Ibis) well, the Arco Y-0097 (Raven) well, and the Chevron Y-0243 (Falcon) well. Other potential reservoir sandstones may occur in turbidite fan complexes in the Upper Cretaceous Kaguyak Formation, similar to the type locality onshore on the Alaska Peninsula (Detterman and others, 1996). Although stratigraphically thinner, the Lower Cretaceous section may also contain reservoir-quality sandstones. The

quartz content tends to be higher than in the overlying Kaguyak Formation and the pore spaces are less occluded by zeolite minerals than the underlying Jurassic strata. Several of the OCS wells encountered sandstones of Albian age equivalent to the Pedmar Formation, which outcrops on the Alaska Peninsula. Also, the Lower Cretaceous Herendeen Formation may have reservoirquality sandstones.

Source-rock potential for play 3 is the same as in plays 1 and 2: Upper Triassic carbonates of the Kamishak Formation or Middle Jurassic marine siltstones of the Tuxedni Group. The latter is the source for the upper Cook Inlet oil fields and the former is a source for oil seeps on the Alaska Peninsula near Paule Bay. Three of the OCS wells had oil shows, all north of the Augustine-Seldovia Arch. The Chevron Y-0243 (Falcon) well had minor oil shows, but was not tested. Oil was recovered in small quantities in drill-stem tests in the Marathon Y-0086 (Guppy) well and the Arco Y-0097 (Raven) well. Oil gravity was 30° and 28° API respectively in those tests. Thus, the viability of an oil source in play 3 has been confirmed.

All of the exploratory wells drilled in the OCS between 1978 and 1985 were on structural prospects in play 3. In all, nine prospects were tested in lower Cook Inlet and one in Shelikof Strait with no commercial success. Many undrilled structures remain, but this play is downgraded by the lack of adequate reservoir rock in wells to date.

A maximum of 21 hypothetical pools is forecast by the aggregation of the risk model and the prospect numbers model for play 3. These 21 pools range in mean conditional (un-risked) recoverable volumes from 6 Mmboe (pool rank 21) to 165 Mmboe (pool rank 1). Pool rank 1 ranges in possible conditional recoverable volumes from 34 Mmboe (F95) to 435 Mmboe (F05). Table 2 shows the conditional sizes of the 10 largest pools in play 3.

Play 3. Mesozoic-Structural. Cook Inlet (Federal)

| OCS Planning A<br>BOE Si                                                                                                               | rea, 2006 Ass<br>zes of Ten L | -                |               |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------|---------------|--|--|--|--|--|--|--|
| Assessme                                                                                                                               | nt Results as o               | f November 2     | 005           |  |  |  |  |  |  |  |
| Pool Rank                                                                                                                              | BO                            | E Resourc        | es *          |  |  |  |  |  |  |  |
| 1 OOI Runk                                                                                                                             | F95                           | Mean             | F05           |  |  |  |  |  |  |  |
| 1                                                                                                                                      | 34                            | 165              | 435           |  |  |  |  |  |  |  |
| 2                                                                                                                                      | 17                            | 79               | 187           |  |  |  |  |  |  |  |
| 3                                                                                                                                      | 10                            | 50               | 115           |  |  |  |  |  |  |  |
| 4                                                                                                                                      | 7                             | 36               | 82            |  |  |  |  |  |  |  |
| 5                                                                                                                                      | 6                             | 27               | 62            |  |  |  |  |  |  |  |
| 6                                                                                                                                      | 4.8                           | 22               | 50            |  |  |  |  |  |  |  |
| 7                                                                                                                                      | 4.2                           | 19               | 42            |  |  |  |  |  |  |  |
| 8                                                                                                                                      | 3.8                           | 16               | 36            |  |  |  |  |  |  |  |
| 9                                                                                                                                      | 3.4                           | 14               | 32            |  |  |  |  |  |  |  |
| 10                                                                                                                                     | 3.2                           | 13               | 28            |  |  |  |  |  |  |  |
| * Conditional, Techni<br>Energy-Equivalent (N                                                                                          | 1mboe), from "I               | PSRK.out" file   |               |  |  |  |  |  |  |  |
| F95 = 95% chance the given quantity                                                                                                    | nat resources w               | vill equal or ex | ceed the      |  |  |  |  |  |  |  |
| F05 = 5% chance tha<br>quantity                                                                                                        | at resources wil              | l equal or exc   | eed the given |  |  |  |  |  |  |  |
| BOE = total hydrocarbon energy, expressed in barrels-of-oil-<br>equivalent, where 1 barrel of oil = 5,620 cubic feet of natural<br>gas |                               |                  |               |  |  |  |  |  |  |  |
| <sup>gas</sup><br>Table 2                                                                                                              |                               |                  |               |  |  |  |  |  |  |  |

Table 2

In the computer simulation for play 3 a total of 56,388 "simulation pools" were sampled for size. These simulation pools can be grouped according to the USGS size class system in which sizes double with each successive class. Pool size class 11 contains the largest share (14,346, or 25%) of simulation pools (conditional, technically recoverable BOE resources) for play 3. Pool size class 11 ranges from 32 to 64 Mmboe. The largest simulation pool for play 3 falls within pool size class 16, which ranges in size from 1,024 to 2,048. Table 6 reports statistics for the simulation pools developed in the *GRASP* computer model for play 3.

### **GRASP** Play Data Form (Minerals Management Service - Alaska Regional Office)

Basin: Lower Cook Inlet Play Number: 3 Play UAI Number: AAAAACAD Assessor: Comer / Larson
Play Name: Mesozoic Structural Play

Date: March, 2005

Play Area (mi²; millions of acres):8,4Reservoir Thermal Maturity, % Ro:

8,400 (5.376)

Play Depth Range, feet: 4,000 - 6,000 - 10,000 Expected Oil Gravity, <sup>o</sup> API: 30 Play Water Depth Range, feet: 100 - 400 - 600 Prospect Distance from shore, miles: 35

### **POOLS Module (Volumes of Pools, Acre-Feet)**

| Fractile                                | F100 | F95  | F90  | F75  | F50  | Mean / Std. Dev.  | F25  | F15   | F10   | F05   | F02   | F01   | F00   |
|-----------------------------------------|------|------|------|------|------|-------------------|------|-------|-------|-------|-------|-------|-------|
| Prospect Area (acres)-Model Input       | 0    |      |      |      | 5546 | ~~~               |      |       |       | 21400 |       |       | ~     |
| Prospect Area (acres)-Model Output      | 134  | 1437 | 1937 | 3188 | 5546 | 7768.2 / 7618.9   | 9648 | 12987 | 15881 | 21400 | 29936 | 31400 | 32000 |
| Fill Fraction (Fraction of Area Filled) | 0.2  | 0.21 | 0.25 | 0.31 | 0.4  | 0.4303 / 0.17064  | 0.52 | 0.59  | 0.65  | 0.75  | 0.88  | 0.97  | 1     |
| Productive Area of Pool (acres)         | 85   | 552  | 766  | 1324 | 2430 | 3609.94 / 3684.43 | 4461 | 6181  | 7708  | 10692 | 15453 | 19753 | 26487 |
| Pay Thickness (feet)                    | 13   | 34   | 41   | 54   | 75   | 84.360 / 43.750   | 104  | 123   | 139   | 165   | 201   | 229   | 443   |

#### *MPRO* Module (Numbers of Pools)

| Play Level Chance | 1 |
|-------------------|---|
|                   |   |

| Level Chance | 0.18 |
|--------------|------|

Exploration Chance 0.18

| Risk Mode                        | Play C  | hance |     |     | Petro | oleum System Facto  | ors |     |     | Prospec | t Chance | l    |     |
|----------------------------------|---------|-------|-----|-----|-------|---------------------|-----|-----|-----|---------|----------|------|-----|
|                                  |         |       |     |     | [ :   | See Risking Sheet ] |     |     |     |         |          |      |     |
|                                  |         |       |     |     | 1     | 1                   |     |     |     |         |          | <br> |     |
| Fractile                         | F100    | F95   | F90 | F75 | F50   | Mean / Std. Dev.    | F25 | F15 | F10 | F05     | F02      | F01  | F00 |
| Numbers of Prospects in Play     | 18      | 21    | 23  | 26  | 30    | 31.34 / 6.63        | 35  | 38  | 40  | 43      | 47       | 49   | 50  |
| Numbers of Pools in Play F99.6=0 | F99 = 1 | 2     | 3   | 4   | 5     | 5.64 / 2.46         | 7   | 8   | 9   | 10      | 11       | 12   | 21  |

5.64

Minimum Number of Pools

Probability Any Pool is 100% Oil

Probability Any Pool is 100% Gas

Mean Number of Pools

Prospect

Maximum

Maximum Number of Pools 21

0.3

### POOLS/PSRK/PSUM Module (Play Resources)

0

0.9

0

| Fractile                                                                                                                      | F100                                                                                                                           | F95   | F90           | F75     | F50                   | Mean / Std. Dev.  | F25   | F15 | F10             | F05       | F02        | F01               | F00  |
|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------|---------------|---------|-----------------------|-------------------|-------|-----|-----------------|-----------|------------|-------------------|------|
| Oil Recovery Factor (bbl/acre-foot)                                                                                           | foot)         106         148         156         172         191         193.339 / 30.836         212         225         233 |       |               |         |                       |                   |       |     | 247             | 263       | 275        | 343               |      |
| Gas Recovery Factor (Mcfg/acre-foot)                                                                                          | 287                                                                                                                            | 416   | 444           | 495     | 559                   | 568.094 / 104.258 | 631   | 673 | 704             | 751       | 808        | 849               | 1090 |
| Gas Oil Ratio (Sol'n Gas)(cf/bbl)                                                                                             | 143                                                                                                                            | 193   | 220           | 274     | 350                   | 374.603 / 142.092 | 447   | 510 | 558 637 739 815 |           |            |                   |      |
| Condensate Yield ((bbl/Mmcfg)                                                                                                 | te Yield ((bbl/Mmcfg) 20 40 42 47 52 52.692 / 8.796 58                                                                         |       |               |         |                       |                   |       | 62  | 64              | 68        | 73         | 76                | 100  |
| Pool Size Distribution Statistics from POO                                                                                    | LS (1,000 E                                                                                                                    | BOE): | μ (mu) = 10.5 | 5079729 | σ <sup>2</sup> (sigma | squared) = 1.0812 | 29093 |     | Random I        | Number Ge | nerator Se | <b>ed</b> = 96804 | .9   |
|                                                                                                                               | 1                                                                                                                              | 1     |               |         |                       |                   |       |     |                 | •         | 1          |                   |      |
| BOE Conversion Factor (cf/bbl)         5620         Probability Any Pool Contains Both Oil and Free Gas (Gas Cap)         0.1 |                                                                                                                                |       |               |         |                       |                   |       |     |                 |           |            |                   |      |

Fraction of Pool Volume Gas-Bearing in Oil Pools with Gas Cap

Table 3. Input data for Cook Inlet play 3, 2006 assessment.

|      |                                   |                         | Risk Analysis Form - 20                                                                                                                                                                     | 005 National Assessn         | nent   |                        |                                                    |
|------|-----------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------|------------------------|----------------------------------------------------|
| As   | ssessment Pr                      | ovince:                 | Cook Inlet                                                                                                                                                                                  | Play Number, Name:           | 3, Me  | esozoic Structu        | ral                                                |
|      | Asses                             | ssor(s):                | Comer                                                                                                                                                                                       | Play UAI:                    | AAAA   | ACAD                   |                                                    |
|      |                                   | Date:                   | 6-Oct-05                                                                                                                                                                                    |                              |        |                        |                                                    |
| cert | ainty) based o                    | on consid               | <i>iantitative</i> probability of success (i.e., between zero a<br>leration of the <i>qualitative</i> assessment of <b>ALL</b> element<br>im geologic parameter assumptions have been met o | nts within the component was |        |                        |                                                    |
|      |                                   |                         |                                                                                                                                                                                             |                              |        | Play Chance<br>Factors | Averge Conditional<br>Prospect Chance <sup>1</sup> |
| 1.   | _                                 |                         | component (1a * 1b * 1c)                                                                                                                                                                    |                              | 1      | 1.0000                 | 0.7500                                             |
|      | Probabil<br>rock of a             | ity of effi<br>adequate | tuality, Effective, Mature Source Rock<br>cient source rock in terms of the existence of sufficie<br>quality located in the drainage area of the reservoirs<br>sion and Migration           |                              | 1a     | 1.00                   | 1.00                                               |
|      | Probabil<br>reservoi              | ity of effers.          | ective expulsion and migration of hydrocarbons from                                                                                                                                         | the source rock to the       | 1b     | 1.00                   | 0.75                                               |
|      | c. Preserv<br>Probabil            |                         | ective retention of hydrocarbons in the prospects afte                                                                                                                                      | er accumulation.             | 1c     | 1.00                   | 1.00                                               |
| 2.   |                                   | •                       | nent (2a * 2b)                                                                                                                                                                              |                              | 2      | 1.0000                 | 0.3000                                             |
|      |                                   |                         | ervoir facies<br>sence of reservoir facies with a minimum net thickne                                                                                                                       | es and net/gross ratio (as   | r r    |                        |                                                    |
|      |                                   |                         | esource assessment).                                                                                                                                                                        | ss and hergross faild (as    | 2a     | 1.00                   | 0.60                                               |
|      |                                   | ity of eff              | y<br>ectiveness of the reservoir, with respect to minimum<br>specified in the resource assessment).                                                                                         | effective porosity, and      | 2b     | 1.00                   | 0.50                                               |
| 3.   | Trap comp                         | onent                   | (3a * 3b)                                                                                                                                                                                   |                              | 3      | 1.0000                 | 0.8000                                             |
|      | a. Presend<br>Probabil<br>assessn | ity of pre              | p<br>sence of the trap with a minimum rock volume (as sp                                                                                                                                    | pecified in the resource     | 3a     | 1.00                   | 0.80                                               |
|      | b. Effectiv                       | e seal m                |                                                                                                                                                                                             |                              |        |                        |                                                    |
|      | Probabil                          | ity of eff              | ective seal mechanism for the trap.                                                                                                                                                         |                              | 3b     | 1.00                   | 1.00                                               |
| Οv   |                                   |                         | (Marginal Probability of hydrocarbons, MF                                                                                                                                                   | Phc)                         |        | 1.0000                 |                                                    |
|      | (1 * 2 * 3                        | 3) Produ                | ct of All Subjective Play Chance Factors                                                                                                                                                    |                              |        |                        |                                                    |
| Av   | (1 * 2 * 3                        | 3) Prodi                | Prospect Chance <sup>1</sup><br>ct of All Subjective Conditional Prospect Chance Fac<br>the Play exists (where all play chance factors = 1                                                  |                              |        |                        | 0.1800                                             |
| _    |                                   |                         | stent with play chance and prospect distribution                                                                                                                                            |                              | of Gui | de                     |                                                    |
| Ex   | ploration C                       |                         | all Play Chance and Average Conditional Prospect C                                                                                                                                          | Chance)                      |        | 0.                     | 1800                                               |
| Co   | mments: S                         | ee guida                | nce document for explanation of the Risk Analysis Fo                                                                                                                                        | orm                          |        |                        |                                                    |
|      |                                   |                         |                                                                                                                                                                                             |                              |        |                        |                                                    |
|      |                                   |                         |                                                                                                                                                                                             |                              |        |                        |                                                    |
|      |                                   |                         |                                                                                                                                                                                             |                              |        |                        |                                                    |
|      |                                   |                         |                                                                                                                                                                                             |                              |        |                        |                                                    |
|      |                                   |                         |                                                                                                                                                                                             |                              |        |                        |                                                    |
|      |                                   |                         |                                                                                                                                                                                             |                              |        |                        |                                                    |
|      |                                   |                         |                                                                                                                                                                                             |                              |        |                        |                                                    |
|      |                                   |                         |                                                                                                                                                                                             |                              |        |                        |                                                    |

 Table 4. Risk model for Cook Inlet play 3, 2006 assessment.

#### GRASP - Geologic and Economic Resource Assessment Model - PSUM Module Results

Minerals Management Service - Alaska OCS Region GRASP Model Version: 8.29.2005)

Computes the Geologic Resource Potential of the Play

| Play UAI         | : AAAAAC | AD      | Play No. |         | 3            |            |
|------------------|----------|---------|----------|---------|--------------|------------|
| World            | Level    | -       | World    | Level   | Resources    |            |
| Country          | Level    | -       | UNITED   | STATES  | OF           | AMERICA    |
| Region           | Level    | -       | MMS      | -       | ALASKA       | REGION     |
| Basin            | Level    | -       | COOK     | INLET   |              |            |
| Play             | Level    | -       | Play     |         | 3 Mesozoic - | Structural |
| Geologist        | J.       | Larson  | /        | D.      | Comer        |            |
| Remarks          | 2005 Ass | essment |          |         |              |            |
| Run Date & Time: |          | Date    | 19-Sep-  | 05 Time | 13:59:3      | 36         |
|                  |          |         |          |         |              |            |

#### **Summary of Play Potential**

| Product                                          | MEAN    | Standard<br>Deviation |
|--------------------------------------------------|---------|-----------------------|
| BOE (Mboe)                                       | 353,820 | 249,400               |
| Oil (Mbo)                                        | 325,390 | 230,280               |
| Condensate (Mbc)                                 | 1,534   | 3,406                 |
| Free (Gas Cap &<br>Nonassociated)<br>Gas (Mmcfg) | 29,232  | 63,742                |
| Solution Gas<br>(Mmcfg)                          | 121,930 | 91,839                |

10000 (Number of Trials in Sample) 0.9958 (MPhc [Probability] of First Occurrence of Non-Zero Resource)

Windowing Feature: used

#### Empirical Probability Distributions of the Products

| Greater Than<br>Percentage | BOE<br>(Mboe) | Oil (Mbo) | Condensate<br>(Mbc) | Free (Gas Cap &<br>Nonassociated)<br>Gas (Mmcfg) | Solution<br>Gas<br>(Mmcfg) |
|----------------------------|---------------|-----------|---------------------|--------------------------------------------------|----------------------------|
| 100                        | 0             | 0         | 0                   | 0                                                | 0                          |
| 99.99                      | 0             | 0         | 0                   | 0                                                | 0                          |
| 99                         | 16,329        | 15,124    | 47                  | 835                                              | 5,674                      |
| 95                         | 61,355        | 56,376    | 253                 | 5,280                                            | 21,280                     |
| 90                         | 95,963        | 87,458    | 568                 | 11,510                                           | 33,095                     |
| 85                         | 124,800       | 114,420   | 616                 | 11,271                                           | 43,643                     |
| 80                         | 148,850       | 137,060   | 609                 | 11,867                                           | 51,004                     |
| 75                         | 173,750       | 159,700   | 820                 | 14,534                                           | 59,807                     |
| 70                         | 197,600       | 181,830   | 920                 | 18,110                                           | 65,380                     |
| 65                         | 221,770       | 203,130   | 1,219               | 22,854                                           | 75,053                     |
| 60                         | 246,640       | 227,230   | 947                 | 18,121                                           | 85,660                     |
| 55                         | 271,910       | 251,350   | 881                 | 16,536                                           | 94,040                     |
| 50                         | 298,740       | 274,600   | 1,332               | 25,299                                           | 102,890                    |
| 45                         | 328,060       | 301,370   | 1,631               | 31,840                                           | 108,970                    |
| 40                         | 357,920       | 327,320   | 2,027               | 39,150                                           | 121,450                    |
| 35                         | 393,730       | 364,180   | 1,309               | 24,469                                           | 134,250                    |
| 30                         | 430,900       | 394,120   | 2,215               | 42,387                                           | 151,840                    |
| 25                         | 474,150       | 434,910   | 2,116               | 40,144                                           | 168,450                    |
| 20                         | 526,440       | 483,890   | 2,397               | 47,314                                           | 178,360                    |
| 15                         | 588,570       | 544,400   | 1,890               | 36,705                                           | 200,920                    |
| 10                         | 680,830       | 623,570   | 3,265               | 63,694                                           | 239,730                    |
| 8                          | 730,800       | 677,220   | 2,176               | 41,660                                           | 247,210                    |
| 6                          | 793,600       | 731,970   | 2,610               | 50,537                                           | 281,160                    |
| 5                          | 832,840       | 767,470   | 3,673               | 70,052                                           | 276,680                    |
| 4                          | 876,150       | 807,310   | 3,824               | 68,958                                           | 296,450                    |
| 2                          | 1,025,200     | 942,380   | 4,710               | 91,050                                           | 348,100                    |
| 1                          | 1,203,700     | 1,113,900 | 3,509               | 65,022                                           | 420,040                    |
| 0.1                        | 1,648,600     | 1,522,000 | 10,739              | 186,870                                          | 464,270                    |
| 0.01                       | 2,090,700     | 1,955,700 | 3,099               | 68,824                                           | 672,490                    |
| 0.001                      | 2,274,100     | 2,093,200 | 1,003               | 25,921                                           | 985,010                    |

 Table 5. Assessment results by commodity for Cook Inlet play 3, 2006 assessment.

|       | Classifica     | tion and Size  |            | Poo        | I Count Statis   | stics                |             | Pool          | Types C  | ount        | Mixed Po | ool Range | Oil Poo | l Range | Gas Po | ol Range | Total Po | ol Range |             |             | Pool Resource | Statistics (MMBOE) |                     |
|-------|----------------|----------------|------------|------------|------------------|----------------------|-------------|---------------|----------|-------------|----------|-----------|---------|---------|--------|----------|----------|----------|-------------|-------------|---------------|--------------------|---------------------|
| lass  | Min<br>(MMBOE) | Max<br>(MMBOE) | Pool Count | Percentage | Trial<br>Average | Trials w/Pool<br>Avg |             | Mixed<br>Pool | Oil Pool | Gas<br>Pool | Min      | Max       | Min     | Мах     | Min    | Max      | Min      | Max      |             | Min         | Мах           | Total Resource     | Average<br>Resource |
| 1     | 0.0312         | 0.0625         | 0          | 0          | 0 0              | 0                    |             | 0             | 0        | 0           | 0        | 0         | 0       | 0       | 0      | 0        | 0        | 0        |             | 0.000000    | 0.000000      | 0.000000           | 0.000               |
| 2     | 0.0625         | 0.125          | 0          | 0          | 0 0              | 0                    |             | 0             | 0        | 0           | 0        | 0         | 0       | 0       | 0      | 0        | 0        | 0        |             | 0.000000    | 0.000000      | 0.000000           | 0.000               |
| 3     | 0.125          | 0.25           | 0          | 0          | 0 0              | 0                    |             | 0             | 0        | 0           | 0        | 0         | 0       | 0       | 0      | 0        | 0        | 0        |             | 0.000000    | 0.000000      | 0.000000           | 0.00                |
| 4     | 0.25           | 0.5            | 2          | 0.003547   | 0.0002           | 0.000201             |             | 1             | 1        | 0           | 1        | 1         | 1       | 1       | 0      | 0        | 1        | 1        |             | 0.361897    | 0.464436      | 0.826334           | 413.16              |
| 5     | 0.5            | 1              | 21         | 0.037242   |                  | 0.002109             |             | 1             | 20       | 0           | 1        | 1         | 1       | 1       | 0      | 0        | 1        | 1        |             | 0.503749    | 0.988225      | 17.628830          | 839.468             |
| 6     | 1              | 2              | 143        | 0.2536     |                  | 0.014359             |             | 14            |          | 0           | 1        | 1         | 1       | 2       | 0      | 0        | 1        | 2        | [           | 1.029270    | 1.996375      | 221.473485         | 1.54                |
| 7     | 2              | 4              | 803        | 1.424062   |                  | 0.080631             |             | 115           |          | 0           | 1        | 2         | 1       | 3       | 0      | 0        | 1        | 3        |             | 2.010235    | 3.996829      | 2523.270000        | 3.14                |
| 8     | 4              | 8              | 3148       | 5.582748   |                  |                      |             | 417           |          | 0           | 1        | 3         | 1       | 5       | 0      | 0        | 1        | 5        | [           | 4.000304    | 7.999881      | 19319.554000       | 6.13                |
| 9     | 8              | 16             | 7974       | 14.141307  |                  | 0.800683             |             | 882           | 7092     | 0           | 1        | 2         | 1       | 8       | 0      | 0        | 1        | 8        | [           | 8.000196    | 15.999820     | 96311.260000       | 12.07               |
| 10    | 16             | 32             | 13205      | 23.418102  |                  | 1.325936             |             | 1328          |          | 0           | 1        | 3         | 1       | 8       | 0      | 0        | 1        | 9        |             | 16.000657   | 31.999374     | 310769.845000      | 23.53               |
| 11    | 32             | 64             | 14346      | 25.441584  |                  | 1.440506             |             | 1350          | 12996    | 0           | 1        | 3         | 1       | 8       | 0      | 0        | 1        | 8        | [           | 32.004671   | 63.995272     | 657508.842000      | 45.83               |
| 12    | 64             | 128            | 10205      | 18.097822  |                  | 1.024701             |             | 1027          | 9178     | 0           | 1        | 3         | 1       | 7       | 0      | 0        | 1        | 7        |             | 64.004978   | 127.999839    | 913097.517000      | 89.47               |
| 13    | 128            | 256            | 4706       | 8.345747   |                  | 0.472537             |             | 422           |          | 0           | 1        | 2         | 1       | 5       | 0      | 0        | 1        | 5        |             | 128.005441  | 255.836596    | 820515.615000      | 174.35              |
| 14    | 256            | 512            | 1546       | 2.741718   |                  | 0.155236             |             | 97            | 1449     | 0           | 1        | 1         | 1       | 4       | 0      | 0        | 1        | 4        |             | 256.138035  | 510.152788    | 524187.561000      | 339.06              |
| 15    | 512            | 1024           | 274        | 0.485919   | 0.0274           | 0.027513             |             | 19            |          | 0           | 1        | 1         | 1       | 2       | 0      | 0        | 1        | 2        |             | 512.272582  | 1019.525000   | 175749.950000      | 641.42              |
| 16    | 1024           | 2048           | 15         | 0.026601   | 0.0015           | 0.001506             |             | 2             | 13       | 0           | 1        | 1         | 1       | 1       | 0      | 0        | 1        | 1        |             | 1055.765000 | 1532.759000   | 17969.864000       | 1.19                |
| 17    | 2048           | 4096           | 0          | 0          | 0 0              | 0                    |             | 0             | 0        | 0           | 0        | 0         | 0       | 0       | 0      | 0        | 0        | 0        |             | 0.000000    | 0.000000      | 0.000000           | 0.00                |
| 18    | 4096           | 8192           | 0          | 0          | 0 0              | 0                    |             | 0             | 0        | 0           | 0        | 0         | 0       | 0       | 0      | 0        | 0        | 0        |             | 0.000000    | 0.000000      | 0.000000           | 0.00                |
| 19    | 8192           | 16384          | 0          | 0          | 0 0              | 0                    |             | 0             | 0        | 0           | 0        | 0         | 0       | 0       | 0      | 0        | 0        | 0        |             | 0.000000    | 0.000000      | 0.000000           | 0.00                |
| 20    | 16384          | 32768          | 0          | 0          | 0 0              | 0                    |             | 0             | 0        | 0           | 0        | 0         | 0       | 0       | 0      | 0        | 0        | 0        |             | 0.000000    | 0.000000      | 0.000000           | 0.00                |
| 21    | 32768          | 65536          | 0          | 0          | 0 0              | 0                    |             | 0             | 0        | 0           | 0        | 0         | 0       | 0       | 0      | 0        | 0        | 0        |             | 0.000000    | 0.000000      | 0.000000           | 0.00                |
| 22    | 65536          | 131072         | 0          | 0          | 0 0              | 0                    |             | 0             | 0        | 0           | 0        | 0         | 0       | 0       | 0      | 0        | 0        | 0        |             | 0.000000    | 0.000000      | 0.000000           | 0.00                |
| 23    | 131072         | 262144         | 0          | 0          | 0                | 0                    |             | 0             | 0        | 0           | 0        | 0         | 0       | 0       | 0      | 0        | 0        | 0        |             | 0.000000    | 0.000000      | 0.000000           | 0.00                |
| 24    | 262144         | 524288         | 0          | 0          | 0                | 0                    |             | 0             | 0        | 0           | 0        | 0         | 0       | 0       | 0      | 0        | 0        | 0        |             | 0.000000    | 0.000000      | 0.000000           | 0.00                |
| 25    | 524288         | 1048576        | 0          | 0          | 0 0              | 0                    | Dalam Ol    | 0             | 0        | 0           | 0        | 0         | 0       | 0       | 0      | 0        | 0        | 0        | Dalaw Ob    | 0.000000    | 0.000000      | 0.000000           | 0.00                |
| Class |                | Tatala         | 0          | 0          | 0 0              | 0                    | Below Class | 0             | 0        | 0           |          |           |         |         |        |          |          |          | Below Class | 0.000000    | 0.000000      | 0.000000           | 0.00                |
|       |                | Totals         | 56388      | 100        | 5.638801         | 5.662014             | Above Class | 0             | 0        | 0           |          |           |         |         |        |          |          |          | Above Class | 0.000000    | 0.000000      | 0.000000           | 0.00                |

**Table 6**. Statistics for simulation pools created in computer sampling run for Cook Inlet play 3, 2006 assessment.

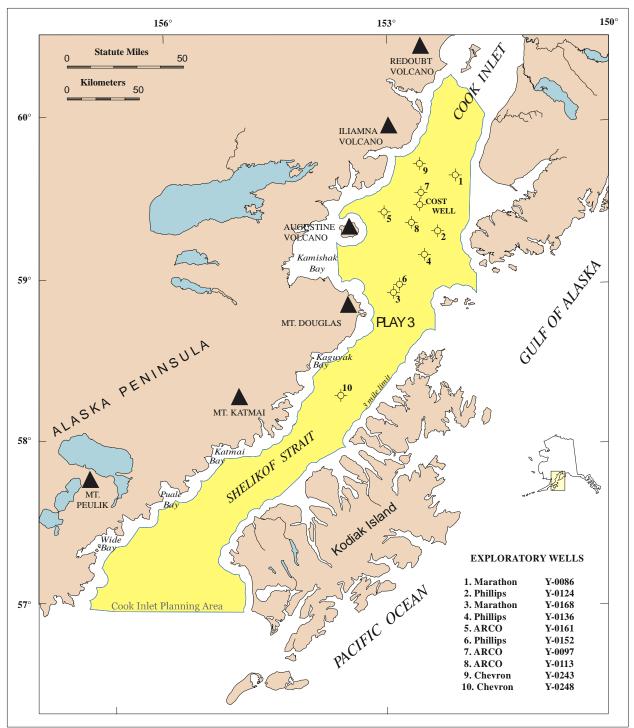



Figure 1. Map location of Cook Inlet play 3, 2006 assessment.