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8.0 PROGRAM OVERVIEW 

Driver distraction is a major contributing factor to automobile crashes. National Highway 
Traffic Safety Administration (NHTSA) has estimated that approximately 25% of crashes 
are attributed to driver distraction and inattention (Wang, Knipling, & Goodman, 1996). 
The issue of driver distraction may become worse in the next few years because more 
electronic devices (e.g., cell phones, navigation systems, wireless Internet and email 
devices) are brought into vehicles that can potentially create more distraction. In 
response to this situation, the John A. Volpe National Transportation Systems Center 
(VNTSC), in support of NHTSA's Office of Vehicle Safety Research, awarded a contract 
to Delphi Electronics & Safety to develop, demonstrate, and evaluate the potential 
safety benefits of adaptive interface technologies that manage the information from 
various in-vehicle systems based on real-time monitoring of the roadway conditions and 
the driver's capabilities. The contract, known as SAfety VEhicle(s) using adaptive 
Interface Technology (SAVE-IT), is designed to mitigate distraction with effective 
countermeasures and enhance the effectiveness of safety warning systems. 
 
The SAVE-IT program serves several important objectives. Perhaps the most important 
objective is demonstrating a viable proof of concept that is capable of reducing 
distraction-related crashes and enhancing the effectiveness of safety warning systems. 
Program success is dependent on integrated closed-loop principles that, not only 
include sophisticated telematics, mobile office, entertainment and safety warning 
systems, but also incorporate the state of the driver. This revolutionary closed-loop 
vehicle environment will be achieved by measuring the driver’s state, assessing the 
situational threat, prioritizing information presentation, providing adaptive 
countermeasures to minimize distraction, and optimizing advanced collision warning. 
 
To achieve the objective, Delphi Electronics & Safety has assembled a comprehensive 
team including researchers and engineers from the University of Iowa, University of 
Michigan Transportation Research Institute (UMTRI), General Motors, Ford Motor 
Company, and Seeing Machines, Inc. The SAVE-IT program is divided into two phases 
shown in Figure i. Phase I spans one year (March 2003--March 2004) and consists of 
nine human factors tasks (Tasks 1-9) and one technology development task (Task 10) 
for determination of diagnostic measures of driver distraction and workload, architecture 
concept development, technology development, and Phase II planning. Each of the 
Phase I tasks is further divided into two sub-tasks. In the first sub-tasks (Tasks 1, 2A-
10A), the literature is reviewed, major findings are summarized, and research needs are 
identified. In the second sub-tasks (Tasks 1, 2B-10B), experiments will be performed 
and data will be analyzed to identify diagnostic measures of distraction and workload 
and determine effective and driver-friendly countermeasures. Phase II will span 
approximately two years (October 2004--October 2006) and consist of a continuation of 
seven Phase I tasks (Tasks 2C--8C) and five additional tasks (Tasks 11-15) for 
algorithm and guideline development, data fusion, integrated countermeasure 
development, vehicle demonstration, and evaluation of benefits. 
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It is worthwhile to note the SAVE-IT tasks in Figure i are inter-related. They have been 
chosen to provide necessary human factors data for a two-pronged approach to 
address the driver distraction and adaptive safety warning countermeasure problems.  
The first prong (Safety Warning Countermeasures sub-system) uses driver distraction, 
intent, and driving task demand information to adaptively adjust safety warning systems 
such as forward collision warning (FCW) systems in order to enhance system 
effectiveness and user acceptance. Task 1 is designed to determine which safety 
warning system(s) should be deployed in the SAVE-IT system. Safety warning systems 
will require the use of warnings about immediate traffic threats without an annoying rate 
of false alarms and nuisance alerts. Both false alarms and nuisance alerts will be 
reduced by system intelligence that integrates driver state, intent, and driving task 
demand information that is obtained from Tasks 2 (Driving Task Demand), 3 
(Performance), 5 (Cognitive Distraction), 7 (Visual Distraction), and 8 (Intent).  
 
The safety warning system will adapt to the needs of the driver. When a driver is 
cognitively and visually attending to the lead vehicle, for example, the warning 
thresholds can be altered to delay the onset of the FCW alarm or reduce the 
intrusiveness of the alerting stimuli. When a driver intends to pass a slow-moving lead 
vehicle and the passing lane is open, the auditory stimulus might be suppressed in 
order to reduce the alert annoyance of a FCW system. Decreasing the number of false 
positives may reduce the tendency for drivers to disregard safety system warnings. 
Task 9 (Safety Warning Countermeasures) will investigate how driver state and intent 
information can be used to adapt safety warning systems to enhance their effectiveness 
and user acceptance. Tasks 10 (Technology Development), 11 (Data Fusion), 12 
(Establish Guidelines and Standards), 13 (System Integration), 14 (Evaluation), and 15 
(Program Summary and Benefit Evaluation) will incorporate the research results 
gleaned from the other tasks to demonstrate the concept of adaptive safety warning 
systems and evaluate and document the effectiveness, user acceptance, driver 
understandability, and benefits and weaknesses of the adaptive systems. It should be 
pointed out that the SAVE-IT system is a relatively early step in bringing the driver into 
the loop and therefore, system weaknesses will be evaluated, in addition to the 
observed benefits.  
 
The second prong of the SAVE-IT program (Distraction Mitigation sub-system) will 
develop adaptive interface technologies to minimize driver distraction to mitigate against 
a global increase in risk due to inadequate attention allocation to the driving task. Two 
examples of the distraction mitigation system include the delivery of a gentle warning 
and the lockout of certain telematics functions when the driver is more distracted than 
what the current driving environment allows. A major focus of the SAVE-IT program is 
the comparison of various mitigation methods in terms of their effectiveness, driver 
understandability, and user acceptance. It is important that the mitigation system does 
not introduce additional distraction or driver frustration. Because the lockout method has 
been shown to be problematic in the aviation domain and will likely cause similar 
problems for drivers, it should be carefully studied before implementation. If this method 
is not shown to be beneficial, it will not be implemented.  
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The distraction mitigation system will process the environmental demand (Task 2: 
Driving Task Demand), the level of driver distraction [Tasks 3 (Performance), 5 
(Cognitive Distraction), 7 (Visual Distraction)], the intent of the driver (Task 8: Intent), 
and the telematics distraction potential (Task 6: Telematics Demand) to determine 
which functions should be advised against under a particular circumstance. Non-driving 
task information and functions will be prioritized based on how crucial the information is 
at a specific time relative to the level of driving task demand. Task 4 will investigate 
distraction mitigation strategies and methods that are very well accepted by the users 
(i.e., with a high level of user acceptance) and understandable to the drivers. Tasks 10 
(Technology Development), 11 (Data Fusion), 12 (Establish Guidelines and Standards), 
13 (System Integration), 14 (Evaluation), and 15 (Program Summary and Benefit 
Evaluation) will incorporate the research results gleaned from the other tasks to 
demonstrate the concept of using adaptive interface technologies in distraction 
mitigation and evaluate and document the effectiveness, driver understandability, user 
acceptance, and benefits and potential weaknesses of these technologies.  
 
In particular, driving task demand and driver state (including driver distraction and 
impairment) form the major dimensions of a driver safety system. It has been argued 
that crashes are frequently caused by drivers paying insufficient attention when an 
unexpected event occurs, requiring a novel (non-automatic) response. As displayed in 
Figure ii, attention to the driving task may be depleted by driver impairment (due to 
drowsiness, substance use, or a low level of arousal) leading to diminished attentional 
resources, or allocation to non-driving tasks1. Because NHTSA is currently sponsoring 
other impairment-related studies, the assessment of driver impairment is not included in 
the SAVE-IT program at the present time. One assumption is that safe driving requires 
that attention be commensurate with the driving demand or unpredictability of the 
environment. Low demand situations (e.g., straight country road with no traffic at 
daytime) may require less attention because the driver can usually predict what will 
happen in the next few seconds while the driver is attending elsewhere. Conversely, 
high demand (e.g., multi-lane winding road with erratic traffic) situations may require 
more attention because during any time attention is diverted away, there is a high 
probability that a novel response may be required.  It is likely that most intuitively drivers 
take the driving-task demand into account when deciding whether or not to engage in a 
non-driving task.  Although this assumption is likely to be valid in a general sense, a 
counter argument is that problems may also arise when the situation appears to be 
relatively benign and drivers overestimate the predictability of the environment.  Driving 

                                                 
1 The distinction between driving and non-driving tasks may become blurred sometimes. 
For example, reading street signs and numbers is necessary for determining the correct 
course of driving, but may momentarily divert visual attention away from the forward 
road and degrade a driver's responses to unpredictable danger evolving in the driving 
path. In the SAVE-IT program, any off-road glances, including those for reading street 
signs, will be assessed in terms of visual distraction and the information about 
distraction will be fed into adaptive safety warning countermeasures and distraction 
mitigation sub-systems. 
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environments that appear to be predictable may therefore leave drivers less prepared to 
respond when an unexpected threat does arise. 
 
A safety system that mitigates the use of in-vehicle information and entertainment 
system (telematics) must balance both attention allocated to the driving task that will be 
assessed in Tasks 3 (Performance), 5 (Cognitive Distraction), and 7 (Visual Distraction) 
and attention demanded by the environment that will be assessed in Task 2 (Driving 
Task Demand). The goal of the distraction mitigation system should be to keep the level 
of attention allocated to the driving task above the attentional requirements demanded 
by the current driving environment. For example, as shown in Figure ii, “routine” driving 
may suffice during low or moderate driving task demand, slightly distracted driving may 
be adequate during low driving task demand, but high driving task demand requires 
attentive driving. 
 
 

Attention
allocated to

driving tasks

Attentive driving

“Routine” driving

Distracted driving

Impaired driving

Low Driving
Demand

High Driving
Demand

Moderate Driving
Demand

Attention
allocated to
non-driving

tasks

Figure ii. Attention allocation to driving and non-driving tasks 
 
 
It is important to note that the SAVE-IT system addresses both high-demand and low-
demand situations. With respect to the first prong (Safety Warning Countermeasures 
sub-system), the safety warning systems (e.g., the FCW system) will always be active, 
regardless of the demand. Sensors will always be assessing the driving environment 
and driver state. If traffic threats are detected, warnings will be issued that are 
commensurate with the real time attentiveness of the driver, even under low-demand 
situations. With respect to the second prong (Distraction Mitigation sub-system), driver 
state including driver distraction and intent will be continuously assessed under all 
circumstances. Warnings may be issued and telematics functions may be screened out 
under both high-demand and low-demand situations, although the threshold for 
distraction mitigation may be different for these situations. 
 

 8-7



It should be pointed out that drivers tend to adapt their driving, including distraction 
behavior and maintenance of speed and headway, based on driving (e.g., traffic and 
weather) and non-driving conditions (e.g., availability of telematics services), either 
consciously or unconsciously. For example, drivers may shed non-driving tasks (e.g., 
ending a cell phone conversation) when driving under unfavorable traffic and weather 
conditions. It is critical to understand this "driver adaptation" phenomenon. In principle, 
the "system adaptation" in the SAVE-IT program (i.e., adaptive safety warning 
countermeasures and adaptive distraction mitigation sub-systems) should be carefully  
implemented to ensure a fit between the two types of adaptation: "system adaptation" 
and "driver adaptation". One potential problem in a system that is inappropriately 
implemented is that the system and the driver may be reacting to each other in an 
unstable manner. If the system adaptation is on a shorter time scale than the driver 
adaptation, the driver may become confused and frustrated. Therefore, it is important to 
take the time scale into account. System adaptation should fit the driver's mental model 
in order to ensure driver understandability and user acceptance. Because of individual 
difference, it may also be important to tailor the system to individual drivers in order to 
maximize driver understandability and user acceptance. Due to resource constraints, 
however, a nominal driver model will be adopted in the initial SAVE-IT system. Driver 
profiling, machine learning of driver behavior, individual difference-based system 
tailoring may be investigated in future research programs. 
 

Communication and Commonalities Among Tasks and Sites 
 
In the SAVE-IT program, a "divide-and-conquer" approach has been taken. The 
program is first divided into different tasks so that a particular research question can be 
studied in a particular task. The research findings from the various tasks are then 
brought together to enable us to develop and evaluate integrated systems. Therefore, a 
sensible balance of commonality and diversity is crucial to the program success. 
Diversity is reflected by the fact that every task is designed to address a unique 
question to achieve a particular objective. As a matter of fact, no tasks are redundant or 
unnecessary. Diversity is clearly demonstrated in the respective task reports. Also 
documented in the task reports is the creativity of different task owners in attacking 
different research problems.  
 
Task commonality is very important to the integration of the research results from the 
various tasks into a coherent system and is reflected in terms of the common methods 
across the various tasks. Because of the large number of tasks (a total of 15 tasks 
depicted in Figure i) and the participation of multiple sites (Delphi Electronics & Safety, 
University of Iowa, UMTRI, Ford Motor Company, and General Motors), close 
coordination and commonality among the tasks and sites are key to program success. 
Coordination mechanisms, task and site commonalities have been built into the 
program and are reinforced with the bi-weekly teleconference meetings and regular 
email and telephone communications. It should be pointed out that little time was 
wasted in meetings. Indeed, some bi-weekly meetings were brief when decisions can 
be made quickly, or canceled when issues can be resolved before the meetings. The 
level of coordination and commonality among multiple sites and tasks is un-precedented 
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and has greatly contributed to program success. A selection of commonalities is 
described below. 
 
Commonalities Among Driving Simulators and Eye Tracking Systems In Phase I     
Although the Phase I tasks are performed at three sites (Delphi Electronics & Safety, 
University of Iowa, and UMTRI), the same driving simulator software, Drive SafetyTM 
(formerly called GlobalSimTM) from Drive Safety Inc., and the same eye tracking system, 
FaceLabTM from Seeing Machines, Inc. are used in Phase I tasks at all sites. The 
performance variables (e.g., steering angle, lane position, headway) and eye gaze 
measures (e.g., gaze coordinate) are defined in the same manner across tasks. 
 
Common Dependent Variables An important activity of the driving task is tactical 
maneuvering such as speed and lane choice, navigation, and hazard monitoring. A key 
component of tactical maneuvering is responding to unpredictable and probabilistic 
events (e.g., lead vehicle braking, vehicles cutting in front) in a timely fashion. Timely 
responses are critical for collision avoidance. If a driver is distracted, attention is 
diverted from tactical maneuvering and vehicle control, and consequently, reaction time 
(RT) to probabilistic events increases. Because of the tight coupling between reaction 
time and attention allocation, RT is a useful metric for operationally defining the concept 
of driver distraction. Furthermore, brake RT can be readily measured in a driving 
simulator and is widely used as input to algorithms, such as the forward collision 
warning algorithm (Task 9: Safety Warning Countermeasures). In other words, RT is 
directly related to driver safety. Because of these reasons, RT to probabilistic events is 
chosen as a primary, “ground-truth” dependent variable in Tasks 2 (Driving Task 
Demand), 5 (Cognitive Distraction), 6 (Telematics Demand), 7 (Visual Distraction), and 
9 (Safety Warning Countermeasures).  
 
Because RT may not account for all of the variance in driver behavior, other measures 
such as steering entropy (Boer, 2001), headway, lane position and variance (e.g., 
standard deviation of lane position or SDLP), lane departures, and eye glance behavior 
(e.g., glance duration and frequency) are also be considered. Together these measures 
will provide a comprehensive picture about driver distraction, demand, and workload.  
 
Common Driving Scenarios For the tasks that measure the brake RT, the "lead 
vehicle following" scenario is used. Because human factors and psychological research 
has indicated that RT may be influenced by many factors (e.g., headway), care has 
been taken to ensure a certain level of uniformity across different tasks. For instance, a 
common lead vehicle (a white passenger car) was used. The lead vehicle may brake 
infrequently (no more than 1 braking per minute) and at an unpredictable moment. The 
vehicle braking was non-imminent in all experiments (e.g., a low value of deceleration), 
except in Task 9 (Safety Warning Countermeasures) that requires an imminent braking. 
In addition, the lead vehicle speed and the time headway between the lead vehicle and 
the host vehicle are commonized across tasks to a large extent. 
 
Subject Demographics It has been shown in the past that driver ages influence 
driving performance, user acceptance, and driver understandability. Because the age 
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effect is not the focus of the SAVE-IT program, it is not possible to include all driver 
ages in every task with the budgetary and resource constraints. Rather than using 
different subject ages in different tasks, however, driver ages are commonized across 
tasks. Three age groups are defined: younger group (18-25 years old), middle group 
(35-55 years old), and older group (65-75 years old). Because not all age groups can be 
used in all tasks, one age group (the middle group) is chosen as the common age group 
that is used in every task. One reason for this choice is that drivers of 35-55 years old 
are the likely initial buyers and users of vehicles with advanced technologies such as 
the SAVE-IT systems. Although the age effect is not the focus of the program, it is 
examined in some tasks. In those tasks, multiple age groups were used. 
 
The number of subjects per condition per task is based on the particular experimental 
design and condition, the effect size shown in the literature, and resource constraints. In 
order to ensure a reasonable level of uniformity across tasks and confidence in the 
research results, a minimum of eight subjects is used for each and every condition. The 
typical number of subjects is considerably larger than the minimum, frequently between 
10-20. 
 
Other Commonalities In addition to the commonalities across all tasks and all 
sites, there are additional common features between two or three tasks. For example, 
the simulator roadway environment and scripting events (e.g., the TCL scripts used in 
the driving simulator for the headway control and braking event onset) may be shared 
between experiments, the same distraction (non-driving) tasks may be used in different 
experiments, and the same research methods and models (e.g., Hidden Markov Model) 
may be deployed in various tasks. These commonalities afford the consistency among 
the tasks that is needed to develop and demonstrate a coherent SAVE-IT system. 
 

The Content and Structure of the Report 
 
The report submitted herein is a literature review report that documents the research 
progress to date (March 1--September 10, 2003) in Phase I. During the period of March-
September 2003, the effort has been focused on the first Phase I sub-task: Literature 
Review. In this report, previous experiments are discussed, research findings are 
reported, and research needs are identified. This literature review report also serves to 
establish the research strategies of each task. 
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8.1 INTRODUCTION 

Task 8 (Intent) supports the needs of the SAVE-IT program by examining methods that 
allow the inference of driver intentions.  This information could potentially benefit both 
the distraction mitigation and safety warning countermeasures sub-systems.  For 
example, if a system can infer an intention to pass, the system might screen phone calls 
while the driver executes the maneuver, negating the source of distraction during a 
perceptually demanding task.  The output of this task could also be connected to the 
safety warning countermeasures.  Intent inference has the potential to reduce the 
frequency of nuisance alerts.  For example, LeBlanc, Bareket, Ervin, and Fancher 
(2002) revealed that nuisance alerts are common during lane-transitions.  There are 
several scenarios of lane-transition that can lead to nuisance alerts for the Forward 
Collision Warning (FCW) system, including approaching to pass, host vehicle turning or 
changing lanes, or lead vehicle turning or changing lanes (LeBlanc et al., 2002).  A 
system that can reliably identify intents to pass, change lanes, or turn could suppress 
alerts that precede the predicted maneuver.  Billings (1997) stressed how important the 
communication of intent is between human and machine for effective communication 
and the reduction of false alarms. 

Inferring the driver’s immediate intention provides the system with additional capacity to 
be adaptive to the driver.  In a review of the human factors work conducted in the 
European Union, Hoedemaker, de Riddler, and Janssen (2002) defined an adaptive 
interface as: 

A system that in some way takes into account the momentary state of the 
driver, in particular his present level of workload, in determining the 
appropriate timing and the content of the supporting message or 
intervening activity the system will produce. (p. 7) 

Although the measurement of workload or distraction is one obvious way for a system to 
be adaptive, there are several other manners in which a system can adapt.  Piersma 
(1993) listed the following sources of information to which a system can adapt: 

• Driver Preferences 
• Secondary tasks  
• Current driver workload  
• Traffic situation  
• Driving tasks currently performed  
• Individual driving history 

Of particular interest for Task 8, is the adaptation “to driving tasks currently performed”.  
Piersma’s specific example included not providing navigation information while the 
driver is passing another vehicle.  In terms of the SAVE-IT program, this would be an 
example of Distraction Mitigation (Task 4) as a function of Intent (Task 8).  As the 
availability of vehicular sensors increases (especially eye-tracking), inferring intent 
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becomes increasingly feasible.  In the last decade, many researchers in the automotive 
arena have referred to the potential of intent-inference systems to improve system 
performance, (e.g., Pomerleau, Jochem, Thorpe, Batavia, Pape, McMillan, Brown, and 
Everson, 1999; Tijerina, 1999; Tijerina and Hetrick, 1997; Geiser and Nirshcl, 1993; 
Mazzae and Garrott, 1995; NHTSA Benefits Working Group, 1996; Chovan, Tijerina, 
Alexander, Hendricks, 1994; Young, Eberhard, and Moffa, 1995; Brunson, Kyle, 
Phamdo, and Preziotti, 2002; Lee, Olsen, and Wierwille, 2002).  Although the reality of 
real-time intent inference is relatively new to the automotive domain, some researchers 
have begun to examine methods for detecting intent (e.g., Goldman, Miller, Harp, and 
Plochner, 1995; Liu, 1999; Salvucci, 2004; Salvucci, and Liu, 2002; Takahashi, 2000; 
Yuhara and Tajima, 2001).  This document will review and discuss the literature that 
pertains to the inference of driver intention. 

 

8.1.1 Defining Intent 
Intent is defined in Merriam Webster’s dictionary as “the act or fact of intending” and 
intention is defined as “a determination to act in a certain way”.  Much of the focus of 
intent in psychology has been in the domain of Ecological Psychology.  Rather than 
focusing on how people respond to relatively simple laboratory stimuli, Gibson framed 
the problems of psychology as the study of behavior in the context of the actor’s 
intentions and environment.  Gibson (1979/1986) coined the term “affordance”, from the 
verb “to afford”, defining affordances as “what it [the environment] offers animals, what it 
provides or furnishes, either for good or ill.”  As Takahashi (2000) demonstrated in his 
studies of intent inference, affordances constrain the possible actions that will be 
performed by the driver.  For example, it is unlikely that a driver intends to turn in the 
immediate future, if there is nowhere for the driver to turn.  Therefore, an analysis of the 
environment has the potential to provide useful information for identifying driver 
intentions.  Framed in terms of Ecological Psychology, driving behavior is constrained 
by the interactions between affordances, effectivities (potential range of possible 
behaviors of the driver-vehicle system), and the intentions of the driver. 

The intentional constraints can be understood in a hierarchy, ranging from the abstract 
(e.g., to travel to the destination within a certain time interval) to concrete (e.g., keep the 
vehicle within the given lane), with more concrete intentions nested within more abstract 
intentions (Rasmussen, 1986).  Even the more abstract goals, such as traveling to the 
destination, can be understood in the context of more abstract goals, such as earning 
wages if the destination is work.  However, this task will focus on the intentions at the 
lower levels, which occur during shorter time intervals and are manifest in overt driving 
behaviors, such as changing lanes.  For the purposes of Task 8, intent will be defined 
as: 

A driver’s determination to perform a specific driving maneuver (e.g., change lanes) in 
the immediate future (e.g., 3 to 5 s). 

The goal of this task is to: 
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Identify a list of intents that are potentially useful for the distraction mitigation and safety 
warning countermeasures, and derive algorithms that can reliably infer these intentions 
before the intended maneuver is executed. 

In this task, intent-inference refers to an algorithm inferring that a driver intends to make 
a lane change prior to the point at which that maneuver is executed.  This can be 
contrasted with a maneuver-detection algorithm that detects a given maneuver while the 
maneuver is being executed.  In the case of lane changes, whereas the latter task 
(maneuver-detection) could potentially be accomplished by a vision-based lane-tracking 
system, the former task (intent-inference) is more challenging, and is likely to require 
the fusion of several types of variables.  The goal of Task 8 is that of intent-inference 
rather than maneuver-detection. 

 

8.1.2 Overview of Task 8 (Intent) Literature Review 
This document is organized into four sections, including this introduction section 
(Section 8.1).  The next section (Section 8.2: Applications of Intent Inference) will 
describe the adaptive systems that will benefit from intent inference.  Section 8.2 will 
discuss distraction mitigation systems and describe how these systems could benefit 
from intent inference.  The benefits of intent inference will also be discussed for various 
safety warning countermeasures.  Based on the discussion of safety warning 
countermeasures and distraction mitigation systems, Section 8.2 will conclude with a 
target list of intents.  The next section (8.3: Intent Inference) will review the literature for 
potential information to support the inference of intent, including the lane change 
literature, eye-movement literature and a small set of studies that attempt to detect 
driver intentions.  The final section (8.4: Hypotheses for Intent Inference) will propose 
hypotheses for how the SAVE-IT systems may detect the targeted intents.  Section 8.4 
will conclude with a research strategy for Task 8.  
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8.2 APPLICATIONS OF INTENT INFERENCE 

The need for intent inference is derived from the two SAVE-IT subsystems: distraction 
mitigation and safety warning countermeasures.  In the distraction mitigation task, 
knowledge of driver intent can be used to suppress unnecessary non-driving task 
activity before and during highly demanding driving maneuvers.  For example, passing 
on a two-lane rural road often requires the driver’s full attention and could be an 
inopportune moment for a cell phone call.  Safety warning countermeasures present the 
difficult problem of nuisance alerts (providing alerts to the driver when no alert is 
warranted).  Because of the complexity of the driving environment, it is virtually 
impossible to prevent all nuisance alerts.  Many nuisance alerts occur in forward 
collision warning systems during lane-transitions (LeBlanc et. al., 2002).  Suppressing 
these alerts during certain driving maneuvers may potentially reduce a large percentage 
of nuisance alerts, which could improve driver acceptance of the system.  In the context 
of the European PROMETHEUS program, Geiser and Nirshcl (1993) proposed that the 
Driver Warning System (DWS) should detect intent information for suppressing 
premature warnings.  Similarly, in the United States the NHTSA Benefits Working Group 
(1996) recommended that:    

A CAS should be intelligent enough to discern driver’s intent (e.g., intent to 
change lanes, lane change start) though this is difficult to do.  If available, 
such indicators might selectively alter the drive alerts or warning (e.g., 
thresholds, presentation mode, stimulus magnitude, etc.) (p. 1-9) 

 

8.2.1 Distraction Mitigation 
The goal of the distraction mitigation subsystem is to monitor the attention allocation of 
the driver and the driving task demand in order to warn the driver or adapt the non-
driving task demand levels to support sufficient allocation of attention.  A driver’s 
intention to engage in a passing or turning maneuver has obvious consequences for 
distraction mitigation.  If a driver’s intention to turn, pass, or maneuver to avoid is 
detected, the instantaneous level of driving task demand is likely to be greater than 
when a driver is merely engaged in typical lane-keeping behavior.  Such a deviation 
from the behaviors of normal lane keeping is likely to require a completely different 
analysis of attention allocation. 

It is likely that under most circumstances when a driver is intending to engage in a 
maneuver in the immediate future, that driver must be relatively attentive to the general 
driving task.  To reduce nuisance alerts, the distraction mitigation system might 
suppress distraction-related warnings while a driver is intending to engage in the 
maneuver.  A warning that occurs just prior to or during a maneuver is likely to be 
distracting to the driver.  The other function of the distraction mitigation system is to 
adapt the level of non-driving task demand that is available to the driver.  Because 
engaging in maneuvers is likely to demand greater levels of attention, the distraction 
mitigation system could potentially benefit the driver by suppressing low priority 
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messages and incoming phone calls.  For example, a low fuel warning could probably 
be delayed until after the maneuver is completed.  Thus far, most of the attentional-
demand literature has focused on non-driving task demand rather than on driving 
maneuvers, so it is difficult to precisely determine which driving maneuvers are the most 
demanding.  Subjective experience suggests that the following list may represent many 
of the greater-demand driving maneuvers: 

• Steering to avoid an obstacle 
• Braking to avoid an obstacle 
• Passing 
• Turning 
• Merging 
• Changing Lanes 
 

Passing, turning, merging, and possibly maneuvering to avoid an obstacle may 
represent special cases of lane changes.  The only intent that is not necessarily tied to a 
lane deviation is the intent to brake. 

 

8.2.2 Safety Warning Countermeasures 
A major challenge for safety warning countermeasures is to provide sufficient warning to 
drivers in order to prevent collision with a tolerable rate of nuisance alerts.  Nuisance 
alerts not only decrease driver acceptance of the system, but could also undermine the 
effectiveness of the alert, by reducing the credibility of the system (Lerner, Dekker, 
Steinberg and Huey, 1996a; Lee, McGehee, Brown, & Raby, 1999, Horowitz and 
Dingus, 1992).   

Perhaps the most useful application of intent-inference is to reduce the occurrences of 
nuisance alerts that result from Lane Drift Warning (LDW) systems.  Pomerleau et al. 
(1999) proposed LDW systems as a strategy for reducing run-off-road collisions.  LDW 
systems monitor the driver’s lane keeping performance (usually with image processing 
of a forward camera) and warn if the host vehicle is beginning to drift out of the lane.  
Because lane-keeping behavior varies so greatly across individuals and across driving 
situations and environments (Pomerleau et al., 1999), nuisance alerts are likely to occur 
quite frequently.  Pomerleau et al. observed that lane-keeping behavior varies greatly as 
a function of lane-width, with tighter performance for narrower lanes.  When fewer 
negative consequences are present for imprecise lane keeping, drivers are less likely to 
expend the additional effort required to track the lane precisely. Pomerleau et al. 
estimated that for 59 percent warning coverage, nuisance alerts were likely to occur at a 
rate of 2 alerts per hour for passenger cars, with 4-ft of maneuvering room on both sides 
of the lane.  The nuisance alert rate is expected to far exceed the rate of appropriate 
alerts, because Pomerleau et al. estimated that road departure occurs on average once 
every 84 years of a driver’s life.  In response to the estimated frequency of nuisance 
alerts, Pomerleau et al. recommended: 
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A LDWS should attempt to determine driver intentions in order to minimize 
nuisance alarms.  It should attempt to avoid issuing warnings for 
intentional lane excursions which can result when performing a lane 
change, driving onto the shoulder to avoid obstacles in the travel lane, or 
stopping beside the road for a vehicle or passenger emergency.  (p. 22) 

Pomerleau et al. suggested that driver intent might potentially be detected by a system 
that monitors brake and turn signals, the vehicle position relative to the lane markings, 
and the presence of any sudden steering input that might indicate a sudden evasive 
maneuver.  They proposed that intentional lane deviation could potentially be 
discriminated from unintentional lane deviation, possibly by the existence of a sudden 
steering input versus a slow and steady motion away from the center of the lane.  In 
addition to the overt driver behaviors, they also suggested monitoring the affordances of 
the environment, such as consulting the digital map for the existence of exit ramps or 
cross streets (i.e., places where a driver might direct an intentional maneuver) or 
monitoring other collision warning systems (e.g., FCW) for evidence that the driver may 
be executing an intentional avoidance maneuver.   

Although it did not involve a warning system, Yuhara and Tajima’s (2001) work with an 
adaptive steering system may also be relevant.  Yuhara and Tajima adjusted the 
steering system gain as a function of the driver’s mood and recognized intention.  The 
weights for the weighted sum of vehicle’s lateral position and yaw angle could be 
adaptively varied depending on whether the driver was intending to maintain lane 
position or change lanes.  To detect lane changes, they used an auto-regressive 
moving average model with a high-pass filter on the steering-wheel angle.  Because the 
inference algorithm used only steering-wheel angle, lane changes could only be 
detected when the lane change maneuver was already initiated and is therefore 
perhaps more of a lane-detection algorithm than an intent-inference algorithm per se.  
Although Yuhara and Tajima discovered that the system appeared to reduce subjective 
workload, the system might potentially be enhanced further by earlier inference of intent 
to change lanes. 

Although LDW is the most obvious application of driver intent, other warning systems 
could also benefit from driver intent information.  Other examples of warning systems 
that the SAVE-IT program may address include Forward Collision Warning (FCW) and 
blind-spot warning (BSW), which may also be greatly enhanced with intent information. 

There are several types of FCW nuisance alerts.  Table 8.1 below presents the 
classification system used by Kiefer et al. (1999) to describe different types of alert 
scenarios for a FCW system, based on the true state of the world and whether the alert 
occurred.  The three types of nuisance alerts are  

• false alerts, where no obstacle was present (usually generated from system 
noise)  

• in-path nuisance alerts, where an obstacle is in path however the situation does 
not represent a legitimate threat (e.g., the lead vehicle is about to turn or change 
lanes, or the algorithm criterion is set too cautiously), and  
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• out-of-path nuisance alerts, where the obstacle is outside the path that the host 
vehicle is about to travel (e.g., a parked car or sign on the side of the street). 

 
Table 8.1.  Kiefer et al.’s (1999) classification of different alert occurrences. 

No Obstacle Out-of-path objects
Alarming situation Non-alarming situation  

Alert occurred False alert Appropriate alert In-path nuisance alert Out-of-path nuisance alert
No alert occurred Appropriate non-alert Missed alert Appropriate non-alert Appropriate non-alert

In-path vehicle

 

Although false alerts are likely to be relatively rare with current technologies, many 
circumstances can contribute to in-path and out-of-path nuisance alerts.  Kiefer et al. list 
examples of the source of out-of-path nuisance alerts, including overhead objects, road 
surface and debris, adjacent lanes of traffic, and roadside clutter (e.g., curved road 
guardrail, sign or pole, or parked vehicles).  Unlike false alerts and out-of-path alerts, in-
path nuisance alerts are largely a subjective phenomenon.  A more aggressive driver 
might view an alert as inappropriate that a conservative driver perceives as 
appropriately timed. 

Many nuisance alerts occur during driving maneuvers, such as when a driver intends to 
pass a lead vehicle or to turn.  In order to help guide the list of intents that the intent 
task will attempt to detect, this section will review some of the work that classifies 
different sources of Forward Collision Warning (FCW) nuisance alerts. 

LeBlanc et al. (2002) analyzed the performance of two prototype FCW systems, system 
A, which responded only to moveable objects and included ACC functionality, and 
system B, which responded to both stationary and moveable objects.  The researchers 
of this study drove the same 80-mi route, seven experiencing system A and six 
experienced system B.  After the drive, these drivers were asked to indicate the 
percentage of alerts that were “useful”, a “nuisance”, or “missing/late”.  Many drivers 
interpreted “useful” as meaning “useful if the driver had been inattentive” and not 
necessarily “useful for an attentive driver”.  Analyses indicated that 21.1 percent of 
alerts were considered “useful”, 66.4 percent were considered a “nuisance”, 6 percent 
were considered “missing/late”, and 5.4 percent were “other”.  Alerts were inhibited 
during driver braking, and this occurred on average for approximately 72 percent of 
potential alerting situations.  During the total 378 miles of driving System B (responding 
to stationary objects) produced 122 alert activations, at a rate of 32 alerts/100 mi.  
Analyzing the alert activations, LeBlanc et al. broke the FCW alert activations into four 
different categories.  These different types of activations are presented in Table 8.2. 

LeBlanc et al. suggested that the scenarios of tailgating (5 percent), approaching to 
pass (14 percent), approaching a turning vehicle (19 percent), and two-lane pass by 
host (1 percent) represent situations wherein the driver was an actor in the conflict who 
intended or tolerated the risk.  In these events (accounting for a total of 39 percent of 
the total) it is likely that the driver is relatively attentive and somewhat aware of the level 
of risk.  Therefore providing an alert in these circumstances would likely be perceived as 
a nuisance.  They argued that: 
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In most such cases, the driver clearly intends to cultivate or at least tolerates the conflict 
as an “appraised risk” within an otherwise deliberate driving tactic. 

 
Table 8.2.  LeBlanc et al.’s (2002) breakdown of nuisance alert categories 

 
Relevant Scenarios % Alerts 

I. Host and Moving Target Traveling in Same Lane throughout Alert Episode 23 
   Approach to stopped vehicle 1 
   Approach to follow 7 
   Lead vehicle braking 10 
   Tailgating 5 
II. Host and Moving Target Travel in Different Lanes Sometime During Alert Episode 38 
   Approach to pass 14 
   Approach to turning vehicle 19 
   Target gone, lead vehicle turning 3 
   Two-lane pass by host 1 
   Crossing path vehicle 1 
III. Alert Triggered by Roadside Object 32 
IV. Alert Trigger: Unknown or Errors 7 

 

Preliminary data are also available from Ervin et al.’s (2003) analysis of the ACAS FOT 
pilot studies.  In the Stage 2 pilot testing, in the 1390 miles of road traveled with the 
FCW system enabled, 92 alerts were presented to the driver at a rate of 6.6 alerts/100 
mi.  Of the 92 alerts, stationary targets accounted for almost half (42).  Of the 50 
moveable target alerts, 30 occurred during lead or host lane transitions, leaving 20 in-
lane alert incidents.  Mirroring LeBlanc et al.’s results, the largest contribution to in-lane 
incidents was lead vehicle deceleration (8.7 percent of alerts), followed by the host 
vehicle approaching the lead vehicle at a higher speed (7.6 percent), the host vehicle 
tailgating (5.4 percent) and the host vehicle accelerating (1.1 percent).  The vast 
majority of lane-transition incidents involved the host vehicle approaching a turning lead 
vehicle (19.6 percent), followed by the host vehicle approaching a lead vehicle that is 
changing lanes (4.3 percent), the host vehicle approaching with the intent to pass (3.3 
percent), the host or lead vehicle cutting in (3.3 percent), and the host vehicle 
approaching with the intent to move into a turning lane (2.2 percent). 

Many nuisance alerts occur during lane-transitions, when the lead or host vehicle 
changes lanes.  One example of this is when the driver of the host vehicle intends to 
overtake the lead vehicle and approaches the lead vehicle rapidly before initiating the 
lane change.  During the rapid approach, the algorithm may calculate that there is 
sufficient threat to warrant some level of alert.  Although many of the nuisance alerts 
occur before the host vehicle completes a pass or lane change (17 percent), the 
majority (73 percent) of the 30 lane-transition nuisance alerts in the ACAS FOT Stage-2 
pilot testing were caused by the lead vehicle turning or changing lanes (Ervin et al., 
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2003).  Unfortunately, the intent-inference algorithms of this task will only be able to 
focus on the intention of the driver of the host vehicle, and therefore they will not be able 
to provide a means of suppressing these types of alerts.  The remaining 10 percent 
were attributed to either the lead or host vehicle “cutting-in”. 

Brunson et al. (2002) used host vehicle acceleration in an attempt to detect the intent of 
the host driver vehicle passing for an FCW system.  The rationale for this logic was that 
in many passing situations, the host vehicle will accelerate before passing the lead 
vehicle.  Brunson et al. admitted that it would fail to capture the passing situations in 
which the host vehicle approaches the lead vehicle at a constant higher speed.  When a 
turning or passing maneuver begins, it is likely that the driver is attentive.  They used 
host vehicle acceleration as a trigger for suppressing FCW alerts, arguing that nuisance 
alerts during passing are “under the driver’s control.”  They expressed the importance of 
detecting intent for FCW algorithms: 

While the current algorithm uses acceleration, a significant change in the 
accelerator position may be a better indicator because it more directly 
reflects driver’s intent.  No detection scheme has been implemented for 
the latter case because the host driver’s attentiveness cannot be inferred.  
Identifying a lane change maneuver via a vision system interpretation of 
road markings or an identifiable steering maneuver could eliminate some 
nuisance alerts of this type. (p. 4-5) 

The inference of intent may also potentially enhance Blind-spot Warning (BSW) 
systems.  BSW systems monitor the lane immediately adjacent to the host vehicle and 
notify the driver of the presence of a vehicle in the blind spot.  One of the difficulties with 
BSW systems is that vehicles are frequently present in the blind spot and frequently 
vehicles pass in and out of the blind spot.  A system that warns the driver with a salient 
stimulus every time a vehicle is present in the blind spot is likely to be overly annoying 
to the driver.  Several researchers have suggested designing the system so that it only 
provides an audio warning when a vehicle is in the blind spot and the turn signal is 
activated in the corresponding direction (Tijerina and Hetrick, 1997; Mazzae and Garrot, 
1995; Chovan et al., 1994; Young et al., 1995).  For the BSW system, the turn signal is 
used as evidence of an intention to change lanes.  It is appropriate to warn a driver who 
is intending to travel into a lane that is currently occupied by another vehicle.  Although 
the activation of a turn signal almost always indicates an intention to change lanes (or 
turn), many drivers infrequently use their turn signals before a maneuver (Tijerina and 
Hetrick, 1997; Mazzae and Garrot, 1995; Chovan et al., 1994; Young et al., 1995; Lee 
et al., 2002).  Whereas turn signal-activation may indicate an intention to change lanes, 
the absence of turn-signal activation does not eliminate the possibility of an intent to 
change lanes.  A more comprehensive method of intent inference is likely to enhance 
BSW systems.  

BSW systems should not only provide warnings when a driver intends to change into an 
occupied lane of traffic, but also when a driver who does not intend to change lanes is 
changing lanes.  The NHTSA Benefits Working Group (1996) estimated that 17 percent 
of lane change/merge accidents involve lane changes that were unintentional, many of 

 8-19



which are likely to be caused by driver distraction.  Because intentional and 
unintentional lane changes involve differing levels of driver attention, a system that can 
determine driver intent during a lane change, might warn a driver differently in the two 
circumstances. 

 

8.2.3 List of Intents for Task 8 (Intent) 
The motive for intent inference comes from the two major SAVE-IT subsystems: 
distraction mitigation and safety warning countermeasures.  Sections 8.2.1 and 8.2.2 
described how these systems could potentially use information regarding driver intent.  
In most cases, driver intent would be used as a trigger for suppressing some kind of 
warning or information presentation, but in the case of blind spot warning (BSW), driver 
intent to change lanes could actually be used to elevate the alert status.  Table 8.3 
presents a list of driver intents and presents their potential applications. 

Although a driver’s approach to a turning lead vehicle has the potential to lead to many 
nuisance alerts (Leblanc et al., 2002; Ervin et al. 2003), it does not represent a clear 
intention to maneuver like the other intentions in Table 8.3.  The lead vehicle carries out 
more of the maneuvering than the host vehicle, and frequently the driver of the host 
vehicle does not take any overt action.  Rather than targeting these nuisance alerts with 
intent inference, measuring the attention allocation of the driver may better target 
nuisance alerts of this type.  When a driver is attentive to the lead vehicle and the lead 
vehicle azimuth is changing rapidly, the FCW system could suppress alerts. 

Table 8.3.  Potential SAVE-IT applications for driver intent categories 
 Distraction Mitigation Safety Warning Countermeasures

Intent to:  FCW LDW BSW 
Steering to avoid an obstacle NAS, NDT NAS NAS ALC 

Passing NAS, NDT NAS NAS ALC 

Turning NAS, NDT NAS NAS  

Merging NAS, NDT NAS NAS ALC 

Changing Lanes NAS, NDT NAS NAS ALC 

Braking to avoid an obstacle NAS, NDT NAS   

Note—NAS, NDT, and WC are used to indicate how the intent could adapt the system.  NAS indicates 
that the intent could be used for Nuisance Alert Suppression.  NDT indicates that the intent could be used 
to manage the Non-Driving Task demand (e.g., call screening).  ALC indicates that the intent could be 
used as a direct input into the alert level calculation.  
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8.3 INTENT INFERENCE 

This Section will discuss data that may be informative with respect to the task of 
inferring driver intention.  Because most of the intent list of section 8.2.3 involves 
different types of lane changes, this section will begin by discussing the recent work of 
Lee et al. (2002) addressing naturalistic lane changes.  Eye tracking is likely to be a 
pivotal sensor for the inference of intent and therefore this section will also include a 
discussion on eye-movements.  Because many researchers have already begun to 
explore methods of inferring intent, this section will conclude with a discussion of 
previous work in the domain of intent inference. 

 

8.3.1 Lane Change 
Wierwille (1984) described the execution of lane change as essentially a two-stage 
process: 

1. Apply steering input, introducing deviation of heading that will cause lateral 
deviation 

2. As the vehicle approaches the desired lateral position in the adjacent lane, 
the driver applies a steering input in the opposite direction to cancel the 
heading deviation. 

A passing maneuver involves two successive lane changes, one into the adjacent lane 
and after the principal-other-vehicle (POV) is passed, another back in front of the (POV) 
in the original lane (Wierwille, 1984).  Chovan et al. (1994) explained that a merge 
maneuver is kinematically similar to a lane-change, and differs only by the environment, 
which often involves larger rates of closure (e.g., host vehicle moving into a faster 
moving traffic stream).  It is likely that intent to merge versus intent to change lanes can 
only be discriminated based on properties of the environment.  A turn, though 
kinematically very different from a prototypical lane change, involves changing lanes 
into a road that travels in a different direction.  Lane changes are frequently made 
immediately prior to a turning maneuver, so that the host vehicle is located in an 
appropriate lane (e.g., turn-only lane) before the turning maneuver is initiated. 

Chovan et al. described a simple model of ideal lane change behavior.  The steps prior 
to the execution of the lane change can be summarized as follows: 

• Assess whether the lane change is legal (e.g., lane markings) 
 If not, do not proceed with lane change  

• Assess whether the change is appropriate at the current time 
 Check mirrors for rear-approaching vehicles 
 Look in blind spot for vehicle in target lane 
 Look ahead for lead vehicle in target lane 
 Look in far-adjacent lane for vehicles entering new lane 
 Identify roadway limitations for lane change 
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 If appropriate, signal intent to change lanes (turn signal) and execute 
maneuver 

This model is for an ideal lane change, and does not necessarily represent typical 
driving behavior (Chovan et al., 1994).  If such behavior was typical, the inference of 
intent to change lanes could simply involve monitoring the turn signal.  The turn signal is 
still likely to be a useful indication, however, an intent inference algorithm cannot rely on 
the activation of a turn signal.  Because drivers infrequently proceed through all of the 
ideal lane change steps, a more sophisticated algorithm for intent inference is required, 
which monitors several of the aforementioned steps, such as checking mirrors and blind 
spot.  A description of natural lane changing behavior would therefore be useful for 
examining strategies for lane change inference. 

In a recent study by Lee et al. (2002), 16 commuters were provided with instrumented 
passenger vehicles to commute to and from their workplaces.  During the ten days of 
recording per driver, a total of 8667 lane changes were recorded.   This was the most 
thorough and naturalistic study on lane change that has been conducted to date, and is 
likely to be representative of real world lane change behavior.  Previous studies 
included shorter recording durations, where subjects were probably still becoming 
accustomed to the instrumented vehicle and were probably still quite cognizant of the 
fact that they were being monitored (e.g., Mourant and Donahue, 1974) and several 
other studies examined lane changes in a driving simulator (e.g., Salvucci, Boer, & Liu, 
2001) where lane-change behavior could exhibit different characteristics.  Lee et al.’s 
(2002) study is also quite unique in the comprehensiveness of the vehicle 
instrumentation, including cameras and radars in all relevant directions.  These data are 
likely to be valuable for this task and will be discussed throughout this section. 

During Lee et al.’s 8667 lane changes, the average lane change rate was found to be 1 
per 2.8 miles of driving.  Twelve percent of lane changes involved passing and three 
percent of lane changes involved traveling through multiple lanes.  The motive for 
changing lanes appeared to be a slower lead vehicle ahead in 37 percent of all lane 
changes.  These slower-lead-vehicle lane changes are likely to be quite important for 
FCW nuisance alert suppression, given that the host vehicle is closing in on the lead 
vehicle.  Of the slow lead vehicle changes, 67 percent were single lane changes, 32 
percent involved passing and 92 percent were to the left.  Turn signals were used on 
average 44 percent of the time, with extremely large individual differences.  The use of 
turn signals differed between directions of lane change with an average of 48 percent 
use for left lane changes and 35 percent for right lane changes.  

 
8.3.2 Eye Movements 
Whereas the peripheral visual field is of low spatial resolution, receptors in the center of 
the retina (fovea) provide greater spatial resolution, and allow the observer to 
discriminate finer details.  When an object in the periphery attracts the observer’s 
attention, the observer tends to make eye-movements in order to ensure that the image 
of the object falls on the foveal receptors.  The control of fixation is organized into 
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several specialized types of eye-movements, which allow the observer to extract the 
greatest amount of information from the image (Hart, 1992).  The types of movements 
include fixation maintenance, saccadic eye-movements, and smooth-pursuit eye-
movements.  Fixation movements serve the function of sustaining objects in a stable 
position on the foveal receptors of the retina, allowing for higher visual acuity.  Saccadic 
movements are extremely rapid and voluntary in contrast to smooth pursuit eye-
movements that involve a smoother tracking of objects.  Although smooth-pursuit 
tracking of smaller objects is partially under the observer’s voluntary control, observers 
are usually unable to suppress tracking of larger objects (Hart, 1992). 

Observer’s eyes typically move toward an object to which the observer is attending and 
therefore eye-movements can provide insight about the mental processes of the 
observer.  A pattern of eye-movements offers the potential to detect not only how the 
observer is allocating attention but may also provide information about the observer’s 
intentions for the future.  Before an action is performed, the observer must usually focus 
on those aspects of the environment that either afford or do not afford the intended 
action.  For example, a driver who intends to pass a lead vehicle on a two-lane road is 
likely to attend to the oncoming lane of traffic and to the type of center road markings.  A 
system that is sensitive to the eye-movements that coincide with information detection, 
may be able to predict the action before the action is initiated in any overt manner. 

To discriminate between situations where a driver intends a specific action versus those 
in which the driver does not, we must learn how the measured variables are different 
from one intention to another.  The system not only requires information regarding the 
pattern of variables during an intention, but also how those measures can vary during 
baseline driving.  Many researchers have studied eye-movements during driving as a 
function of varying tasks.  For example, Recarte and Nunes (2000) investigated the 
effects of mental tasks on visual search behavior while driving.  They found that the 
position variability in drivers’ eye-movements greatly decreases during a mental 
imagery task, suggesting that the “inspection window” was reduced during high levels of 
cognitive workload.  Mourant and Rockwell (1970) explained that the peripheral area of 
eye tends to monitor lane position, vehicles, and road signs and when the situation 
requires a more detailed analysis, the fovea is directed toward the target for closer 
examination.  Underwood, Chapman, Crundall, Cooper, and Wallen (1999) studied 
driver eye-movements during curve negotiation, observing that drivers tend to look at 
the tangent point of the curve when negotiating curves in order to provide information 
about the required steering wheel input.   

Tijerina (1999) examined drivers’ visual behavior during car following.  Drivers’ glances 
away from the road had a mean duration of 0.6 s, with a 5th percentile of 0.17 s and a 
95th percentile of 1.47 s.  Left mirror glances were of similar duration to the average 
glances away from the road, with a mean of 0.56 s.  Tijerina observed that glances 
away from the forward roadway tended to coincide with a zero range-rate to the lead 
vehicle.  Glances away from the forward roadway were directed at varying locations, 
with between 28 and 33 percent directed at the center mirror, between 11 and 18 
percent directed at the left mirror, between 7 and 15 percent directed over the driver’s 
left shoulder, between 4 and 10 percent directed at the right mirror and between 3 and 4 
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percent directed over the driver’s right shoulder.  These data suggest large differences 
between the use of the left, center, and right mirrors.  

Several researchers have specifically studied driver eye-movements during lane change 
maneuvers.  For example, Carter and Laya (1998) studied driving on the road and in a 
driving simulator while drivers either maintained their current lane or passed a lead 
vehicle.  During normal lane maintenance, the focus of expansion of the optical array 
(the point to which the driver is headed) attracted 70 percent of the driver’s forward 
glances, and half of the remaining percentage (15 percent) were directed toward the 
speedometer.  They observed that drivers spent significantly more time glancing at the 
left-hand lane and rear-view mirror and significantly less time glancing at the 
speedometer during overtaking compared with normal lane-keeping. 

Mourant and Donahue (1974) examined the mirror-sampling behavior of drivers during 
the 5-s prior to lane change maneuvers compared to baseline driving.  Nine subjects 
drove a predetermined 13.5-mi highway route in Michigan.  Lee, Olsen, and Wierwille 
(2002) examined the eye-movements of drivers during the 3-s prior to lane changes 
during naturalistic driving.  The results of their glance analyses are presented in Table 
8.6.  In the Lee et al. study where a right-side mirror was present, the probability of 
using this mirror during the 3-s prior to changing lanes was quite low (0.21) and drivers 
instead appeared to rely on the rear-view mirror (probability of 0.55).  By comparing 
Mourant and Donahue’s lane change data with their baseline data (straight), it is evident 
that drivers glanced at the relevant-side and rear-view mirrors more frequently during 
the 5 s prior to lane changes than during 5-s straight intervals. 

Table 8.6.  Glance Data from Lee et a. (2004) and Mourant & Donahue (1974) Lane Change Studies 

Left Right Straight4 Left Left Merge Right Right Merge
probability3 1 1
# glances 2.34 2.03

duration (s) 1.98 2.44
probability3 0.52 0.21
# glances 1.25 1 0.09 1.38 2.44 0 0

duration (s) 0.83 0.67 0.88 1.02 1.08 0 0
probability3 0.53 0.55
# glances 1.36 1.56 0.22 0.76 0.66 2.6 2.48

duration (s) 0.78 0.94 0.78 0.74 0.82 0.88 0.93
probability3 0.27 0.14
# glances 1.01 1.25 0 0.3 0.34 0.33 0.44

duration (s) 0.64 0.8 0 1.52 1.31 1.09 1.14

rear
view

mirror

blindspot

Lee et al. (2004)
3 s Before Maneuver

Mourant & Donahue (1974)
5 s Before Maneuver

forward1

relevant2

side 
mirror

1. Glances to the forward region were not examined in the Mourant & Donahue study. 
2. The vehicle in the Mourant & Donahue study was not equipped with a right-side mirror. 
3. The probability that the driver glanced at the region was not examined in Mourant & Donahue (1974). 
4. The glance data for the Straight maneuver (during no lane change) is derived by dividing the glance 
behavior values during periods of no lane change by the approximate number of 5-s intervals during this 
total period (214). 
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8.3.3 Prior Intent Inference Research 
Several researchers have investigated the inference of driver intention.  As a part of the 
European Union PROMETHEUS program, the Driver’s Warning Assistant (DWA) 
detected driver intention in order to improve the cooperation between driver and vehicle 
(Geiser and Nirshcl, 1993).  The DWA system was developed to assess the state of the 
driver, using information such as individual characteristics, available resources, and 
driver intent.  Although the details of this system were not disclosed, it used information 
regarding the state of the vehicle, driver, and environment to infer driver intent.  The list 
of intentions included stopping, lane changing, and overtaking. 

For early inference of lateral maneuvers, many researchers have used steering input or 
vehicle heading information.  For example, Goldman et al. (1995) developed a 
Maneuver Intent Recognition (MIR) system to supply information to a Driver-Adaptive 
Warning System (DAWS).  The goal of this research was to use learning algorithms to 
tailor safety warnings to the individual and situation.  The MIR system used yaw and 
heading information to detect an intention to change lanes.  A layer of neural networks 
monitored the driver’s lane following information to detect significant deviation from the 
typical lane following behavior.   When the lane following model failed to fit the observed 
performance, the MIR system triggered an intention to maneuver.  This system 
achieved accuracies of 92 to 98 percent, depending on the driver.  However, because 
the system relied on yaw and heading information to detect driver intention, the MIR 
system could only detect the maneuver after the maneuver had already been initiated.  
For this reason, Goldman et al.’s approach represents detection of the maneuver rather 
than making an inference that the driver intends to engage in the maneuver.   

In work that was closely associated with that of the DAWS work, Salvucci (2004) also 
used steering wheel inputs as the basis of detecting that the driver was engaged in a 
lane change maneuver.  In his simulator-evaluation study, Salvucci recorded that the 
detection accuracy was 65 percent at the moment that the vehicle first began to move 
laterally and that this increased to 90 percent accuracy 1 s after the maneuver had 
begun or by the time the vehicle moved ¼ of the lane width.  Although this algorithm 
appears to be a reliable and early means of detecting a maneuver, the success in the 
driving simulator must be verified on real roadways, where the data are likely to be far 
more noisy (Lee et al., 2004). 

Yuhara and Tajima (2001) applied a similar approach to provide input into their adaptive 
steering system.  Their intent recognition algorithm used only steering-wheel angle.  A 
high-pass digital filter was applied to the steering-wheel data, and an auto-regressive 
moving average model was fitted to the time-series data.  The detection of lane change 
was triggered when the moving average of the squared prediction error reached a 
specific threshold.  Because the system used the high-frequency component of steering 
wheel angle to predict lane change, the system was not sensitive to slow lane changes, 
where the steering wheel angle changed gradually.  The other weakness of this 
approach is that, like Goldman et al.’s (1995) approach, Yuhara and Tajima (2001) 
could only recognize lane change after the maneuver had already been initiated.   
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Both Chovan et al. (1994) and Lee et al. (2002) had argued that it was difficult to 
discriminate a lane change from normal lane keeping based on vehicle trajectory alone 
because of the variability in typical lane-keeping behavior.  Lee et al. also applied this 
argument to the use of steering-wheel data.  An algorithm that fuses a larger amount of 
information is likely to be more sensitive and support earlier detection of lateral 
maneuvers.  For example, Tijerina (1999b) suggested that a vector of indicators could 
be used that might include “a following distance of less than x feet and a closing rate of 
greater than y feet per second to the vehicle ahead, an upcoming exit given the chosen 
route in an Automated Traveler Information System (ATIS), an obstacle detected in the 
roadway ahead, etc.” (p. 144).  Tijerina’s hypothetical example demonstrates the 
importance of fusing different sources of data, including data that corresponds with the 
affordances of the environment (e.g., upcoming exit). 

Takahashi (2000) developed an intent inference system to detect a driver’s intention to 
accelerate or decelerate.  Arguing that driver intention is heavily constrained by the 
affordances, Takahashi used fuzzy logic operating on environmental variables to predict 
whether the driver would accelerate or decelerate.  This application is more closely 
related to a driver’s intention to “brake to avoid an obstacle” than the lateral maneuvers 
included in Table 8.3.  Takahashi’s work demonstrated how useful an analysis of 
affordances is for the prediction of driver intent. 

The other obvious source of data for the inference of intent is the driver’s eye 
movements immediately prior to the maneuver.  Lee et al. (2002) explained: 

Eye glance patterns might also indicate driver intention; for example, if a 
large proportion of glances are directed towards the right mirror and 
rearview mirror, this may indicate that a right lane change is about to 
occur.  Such information could be useful for a CAS that would monitor 
driver eye movement to predict lane change direction and initiation. (p. 15) 

The data generated by Lee et al.’s naturalistic lane change study will be an extremely 
valuable source for investigating the eye movements that immediately precede a lane 
change maneuver and specify intent.  As this was not the focus of Lee et al.’s research, 
they did not search for eye-movement patterns that may be reliably diagnostic of driver 
intentions. 

However, Liu (1999) did conduct an investigation of eye-movement patterns for the 
purposes of intent inference.  Based on Liu’s previous work (Liu, Veltri, and Pentland, 
1998), which demonstrated how a Markovian analysis of fixation patterns could identify 
different driving situations, Liu used Hidden Markov Dynamic Models (HMDMs) for the 
real-time detection of lane changes.  Liu described the HMDM process as involving a 
learning stage, where the HMDM parameters are estimated based on a training set of 
observation vectors and a recognition stage, which involves Viterbi matching of real-
time Markovian matrices with the HMDM models of specific maneuvers.  Although the 
details of Liu’s analysis were not disclosed, they used information that including vehicle 
heading and acceleration in addition to driver gaze coordinates.  Liu tested his lane-
change detection algorithm in the driving simulator and observed accuracies ranging 
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from 50 to 70 percent within 3 s of the initiation of the maneuver.  Because this method 
allows much faster detection than merely relying on vehicle trajectory or steering wheel 
angle, Liu argued that eye-movement data enables prediction of the anticipated 
maneuver rather than quickly recognizing the task after it has already been initiated.  Liu 
suggested that multiple models might be required for different drivers, due to the 
individual differences of Markov matrices. 

This section has discussed different sources of data that could be useful for the 
diagnosis of driver intentions to maneuver and has concluded with a discussion of 
previous attempts to detect driver intent.  The next section will summarize the Task 8 
literature review, propose hypotheses for the inference of intent, and propose a 
research strategy for Task 8. 
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8.4 HYPOTHESES FOR INTENT INFERENCE 

The preceding sections have discussed applications for intent inference and information 
that could support the inference of driver intention.  Intent information could be used by 
the distraction mitigation system to suppress lower priority information (e.g., incoming 
phone call) and warnings (e.g., distracted driver warning).  Intent information could also 
be used extensively by the safety warning countermeasure system.  Not only could 
driver intention information be used to suppress nuisance alerts (e.g., for FCW), but in 
some cases the inference of driver intention could be used as a major input into the 
alert algorithm (e.g., lane change warning).  Table 8.3 summarized the list of intents that 
Task 8 will attempt to detect and the manner in which the intents could be used. 

Section 8.3 discussed sources of information that could be used to trigger driver intent 
inference.  Ideal lane change behavior was contrasted with the actual lane-change 
behavior that was observed in Lee et al.’s (2002) naturalistic lane change study.  The 
eye-movement behavior of drivers preceding maneuvers was discussed and Section 
8.3 was concluded with a discussion of previous attempts to detect intent in the 
literature.  Whereas some researchers (e.g., Yuhara and Tajima, 2001) focused on the 
early detection of the maneuver after the maneuver had already been initiated, other 
researchers (e.g., Liu 1999) focused on inferring the intent before the maneuver was 
initiated.  Liu (1999) used Hidden Markov Models of eye-fixation behavior to detect the 
intent to change lanes 3 s before the maneuver was initiated. 

This section will conclude the Task 8 literature review by proposing some hypotheses 
for the inference of driver intent and propose a strategy for researching this problem. 

 

8.4.1 Hypotheses for Intent Inference 
Based on the literature that has been reviewed in the previous sections, a matrix has 
been developed that organizes the potentially diagnostic sources of information as a 
function of the type of maneuver that is intended.  Table 8.6 includes each of the intent 
classes from Table 8.3, including the following maneuvers: steering to avoid an 
obstacle, passing, turning, merging, changing lanes, and braking to avoid an obstacle.  
The potentially diagnostic sources of information that have been suggested in the 
various approaches of other researchers have been organized into five categories, 
including affordances, motive, kinematics, controls, and fixation. 

The work of Takahashi (2000) suggests that affordances could be a useful source of 
information to aid in driver-intent inference.  As demonstrated in his studies of intent 
detection, affordances constrain the possible actions that will be performed by the driver 
and thus may provide a useful indication of whether a maneuver is likely to occur.  In 
the case of lane-changes, affordances can provide useful information regarding the 
likelihood of a lane change maneuver because in many situations a lane change is not 
possible.  For example, motive information may suggest that the host vehicle is rapidly 
approaching a lead vehicle and therefore arrive at the conclusion that the driver has 
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motive to perform a left lane change to avoid a lead vehicle.  However, if the left lane is 
completely obstructed by a constant flow of traffic, or if no left lane currently exists (e.g., 
in construction) then the affordance data may override that of motive. 

Table 8.6.  Hypothesized diagnostic measures for intent inference  

  Avoidance Pass Turn Merge Change lane Brake 

Exit Ramps    • •   

Cross Streets  • • • •  •Affordances 

Lane location and number  • • • •   

FCW alert level •      •

Range to lead vehicle •  •   •  •

Range-rate to lead vehicle •  •   •  •
Motive 

Navigation information   • • •   

Lead vehicle azimuth •  • • • •   

Heading/Yaw Rate •  • • • •   

Lateral Position •  • • • •   
Kinematics 

Speed / Acceleration •  • • • •  •

Gas pedal •  • • • •  •

Brake pedal •   • • •  •

Steering-wheel angle •  • • • •   
Controls 

Turn signal •  • • • •   

Mirror sampling / head turn •  • • • •   Fixation 
Forward-scene sampling •  • • • •  •

Note. Black circles represent that the measure may potentially be diagnostic for the given type of intent. 

The motive category arises in response to the work of Lee et al. (2004), who 
demonstrate a relatively small set of motives for their naturalistic lane change data set 
and the work of Tijerina (1999b), who suggested using information such as distance to 
the vehicle ahead or navigation destination information.  These sources of information 
may provide a reason for why the host vehicle will engage in a maneuver.  For example, 
if the host vehicle is closing in quickly on a lead vehicle, a lane change, passing, 
braking, or avoidance maneuver may be more probable.  If the FCW system has 
activated an imminent alert and there is insufficient time to brake, this may predict the 
intention to engage in an avoidance maneuver.  Navigation information may be used to 
help trigger the intent to turn.  For example, if the navigation route requires that the 
driver make a right hand turn in the near future, it is likely that the driver intends to turn.  
Like affordances, in most cases motive in isolation will not be sufficient for reliably 
inferring driver intentions.  Instead, this type of data will most likely be used in 
combination with other sources of information such as kinematic, control, and fixation 
data. 
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Kinematic variables are likely to be the latest variables to develop into predictors of 
driver intention, because usually the driver must have already begun to execute the 
maneuver for kinematic variables (e.g., lateral position) to be diagnostic.  For example, 
the yaw-rate or lead-vehicle azimuth angle will begin to change as a lane-change 
maneuver is initiated.  Relying on these data may represent maneuver detection rather 
than intent inference per se.  As the time progresses toward the completion of the 
maneuver, emerging sources of information become increasingly reliable.  In the trade-
off between early inference and inference accuracy, relying on kinematic variables 
might represent the higher-accuracy/later-inference side of the spectrum.   It is for this 
reason that kinematic variables may be considered to be the last line of defense for 
intent inference.  In some cases, however, the driver may slow down or speed up before 
engaging in the maneuver.  Lee et al. observed differences in the speeds between the 
different types of lane changes, e.g., Tailgating lane changes occurred at an average 
speed of 67 mph compared with Enter lane changes at an average speed of 47 mph. 

The work of Salvucci and colleagues (e.g., Salvucci, Boer, & Liu, 2001; Salvucci & Liu, 
2002; Salvucci, 2004) suggests that monitoring driver controls, including throttle and 
steering-wheel angle may support early maneuver detection and possibly intent 
inference.  Sudden releases of the gas pedal may indicate that the driver intends to 
brake or is about to engage in an avoidance maneuver.  Changes in throttle position 
may indicate that the driver is intending to change lanes.  Salvucci and Liu (2002) 
observed a small reduction in throttle position just prior to lane changes in their driving 
simulator.  Salvucci and Liu (2002) also observed slight shifts in steering wheel angle 
just prior to lane changes and then a sinusoidal pattern during the lane change, that 
Salvucci (2004) used as the primary source of information to detect lane changes.  
Brake pedal activation may often precede avoidance maneuvers, turns, merges, and 
lane changes and is the latest and most certain source of information to indicate that the 
driver intends to brake.  Although turn signals are not always used before a lane-change 
maneuver, when a turn signal is activated, the driver almost always intends to avoid, 
pass, turn, merge, or change lanes.  In the 44 percent of cases (Lee et al., 2002) where 
the driver does use a turn signal, it is expected that intent inference will be accurate and 
effective, provided that the turn signal is activated prior to the maneuver.  In the 56 
percent of cases where the driver does not, the intent inference system must rely on 
other sources of information to trigger the inference of intent.   

The work of several researchers (especially Mourant and Donahue, 1974 and Lee et al., 
2002) strongly suggests that driver fixation or glance behavior could be useful for 
inferring driver intention.  When a driver intends to engage in any kind of driving 
maneuver, it is likely that the driver will glance toward the forward scene.  Lee et al. 
(2002) indicated that there is a probability of one that there will be at least one glance 
toward the forward scene before a lane change.  This is also likely to be true for 
avoidance and braking maneuvers.  Therefore, it is likely that a glance toward the 
forward scene will be a necessary but not sufficient criterion for the inference of any 
type of intent.  When drivers intend to engage in any deviation from normal lane 
keeping, it is likely that they will sample information in the direction of where they intend 
to travel.  For example, it is likely that the driver will monitor the oncoming lane of traffic 
(Salvucci, Boer, & Liu, 2001) and the interior or left side mirror (Mourant and Donahue, 
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1974) before a lane change.  Drivers’ fixation behavior most likely represents a source 
of earlier-inference/lower-accuracy data for intent inference.   

Using fixation behavior alone for the inference of driver intention is likely to lead to a 
large number of false positives (infer intent when no intent exists).  Because intent may 
be used as a basis for suppressing warnings to the driver, false positives may result in 
the failure to detect actual threats to the driver.  Therefore, it is important that intent-
inference algorithms fuse multiple sources of information together.  The inference of a 
given intent might require consensus between several types of variables.  For example, 
for the system to detect intent to change lanes, the algorithm might require the 
appropriate affordance (a lane into which the host vehicle can change), a motive for a 
lane change (e.g., slow lead vehicle or change into turn lane), and the appropriate 
fixation behavior (e.g., sampling of the roadway in the direction of the lane change and 
of the forward scene).  The early inference of driver intention is a challenging problem 
and success will require the fusion of multiple sources of information. 

 

8.4.2 Strategy for Intent Inference 
The development of intent inference algorithms will be a combination of theory-driven 
and data-driven approaches.  The initial effort will involve examining data sets for 
patterns of data that precede the targeted maneuvers.  This process will be guided by 
the information that has been discussed in this literature review, however, patterns that 
are expected based on theory and prior research will need to be verified on the new 
data sets.  One approach to the data analysis will be to derive zero and first-order 
Markov matrices of fixation transitions, based on the work of Liu (1999).  Whereas the 
zero-order Markov matrices will contain the probability that the driver will glance at a 
certain location, the first-order Markov matrices will contain the conditional probabilities 
that the driver will glance at a new location given the current eye-fixation location.  The 
data sets that involve the targeted maneuvers will be compared with data sets that 
involve normal lane-keeping behavior in search of discriminating differences.  The 
algorithm will use Table 8.6 as a starting point to guide the discriminative analysis. 

This task will make use of other available data sets.  One such data set is that of the 
Lee et al. (2002) naturalistic lane change study.  This data set includes 500 samples of 
radar, kinematic, and variables during the 3 s immediately prior to lane change 
maneuvers.  It would have been ideal if the data set included these variables for a 
longer period of time than 3 s prior to the maneuver; however, the purpose of Lee et 
al.’s study was different from the purposes of this task.  Although the 3-s duration will 
impose a limitation on these analyses, this data set represents the most naturalistic and 
comprehensive set of data that could be used for the inference of the intent to change 
lanes.  In many lane changes, especially those that are more urgent, the intent to 
change lanes will precede the maneuver by less than 3 s.  Analyses will investigate how 
quickly the intent to change lanes can be accurately detected, beginning 3-s before the 
maneuver was initiated and ending when the maneuver was completed.  Another 
limitation of Lee et al’s data set is that it does not include baseline cases, where no 
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maneuver is intended.  These baseline cases will have to come from a different data 
source. 

After the analysis has revealed reliable differences between the maneuver and baseline 
situations, the test and refinement phase of data analysis will begin.  During this phase, 
preliminary algorithms will be programmed to run on the data sets, and the success of 
the algorithms will be analyzed.  Success will be defined according to a signal detection 
theory framework.  Table 8.7 displays the matrix of four possible outcomes. 

 
Table 8.7.  Signal detection framework for an analysis of intent inference success 

  Intent Inference Algorithm Classification 
  Intends         

Maneuver (i) 
Doesn’t Intend 
Maneuver (n) 

 
 

Intends Maneuver (I)

 
P(i/I) 
Hit 

 
P(n/I) 
Miss 

 
 
 

Actual  
Driver 
Intent  

 
Doesn’t Intend 
Maneuver (N) 

 
P(i/N) 

False Alarm 

 
P(n/N) 

Correct Rejection 

 

In the signal detection framework, there are two possible correct responses and two 
possible types of errors.  Correct responses include hits, where the system detects an 
intention when an intention exists, and correct rejections, where the system accurately 
detects that there is no current intent to maneuver.  The two types of errors include 
misses, where the system detects no intention, when an intention currently exists and 
false alarms, where the system detects an intention when no intention is currently 
present.  Based on the false alarm rate and hit rate, the properties d’ and β can be 
estimated.  Whereas d’ quantifies the precision of the detection algorithm, β 
independently quantifies the bias on the detection system, or the favoring of one type of 
error versus another.  Using this framework, the precision of the algorithm to detect 
differences can be analyzed independently from the bias of the algorithm.  Of the two 
types of errors, it is likely that false alarms can have greater negative consequences 
than misses.  If driver intent is used to suppress warnings, whereas intent-inference 
misses could lead to a smaller reduction of nuisance alerts, intent-inference false 
alarms could lead to failures of the warning system to detect an actual danger to the 
driver.  The success of the algorithm will therefore be judged and refined based on both 
d’ and β. 

During the test and refinement phase of algorithm development, iterative modifications 
will be made to the algorithms on the basis of algorithm performance, and the modified 
versions will be rerun on the data sets.  During the iterative and cyclical process of test 
and refinement, it is hoped that the performance of algorithms will be improved in terms 
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of both precision (d’) and bias in favor of misses versus false alarms (β).  If the data 
from Task 3 (Performance) becomes available in sufficient time, the test and refinement 
phase will also be extended to the Task 3 data set.  Task 3 will be concluded with the 
development of a set of intent-inference algorithms corresponding with the six types of 
driver intent and a description of the algorithm performance.  In Phase II of the SAVE-IT 
Program, the algorithms will be encoded into a test vehicle and algorithm performance 
will be more thoroughly validated. 
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