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A serological survey of 22 wild-caught South African (Transvaal) chacma baboons (Papio ursinus) and eight olive baboons
(Papio anubis) from Kenya indicates that 13 P. ursinus and one P. anubis have antibodies reacting with human T cell
leukemia/lymphoma virus type 1 (HTLV-1) antigens, whereas three P. ursinus had a indeterminate reactivity on Western blot
analysis. With six primer sets specific to either HTLV-1–Simian T-cell leukemia virus type 1 (STLV-1) or HTLV-2 and
encompassing long terminal repeat (LTR), gag, pol, env, and tax sequences, polymerase chain reaction was performed on
genomic DNA from peripheral blood mononuclear cells of 18 animals, and the presence of HTLV-1–STLV-1-related viruses
was determined in 13 seropositive and three seroindeterminate animals but not in the two HTLV seronegative individuals.
Proviral DNA sequences from env (522 bp), pol (120 bp), and complete (755 bp) or partial (514 bp) LTR were determined for
three STLV-1-infected P. ursinus and one P. anubis. Comparative and phylogenetic analyses revealed that P. anubis (Pan-486)
sequence clusters with one (Pan-1621) of two previously described P. anubis STLV-1. Likewise, P. ursinus viruses (Pur-529,
Pur-539, and Pur-543) form a distinct group, different from all known HTLV-1 but closely affiliated with two STLV-1 strains
from South African vervets (Cercopithecus aethiops pygerythrus). This study, reporting the first STLV-1 sequences from
wild-caught P. ursinus and P. anubis, corroborates the hypothesis of cross-species transmissions of STLV-1 in the wild.
Further, phylogenetic analyses indicate that the known HTLV-1 strains do not share a common origin with nonhuman
primates STLV in South Africa. © 1998 Academic Press

INTRODUCTION

The primate T lymphotropic viruses (PTLVs) (Guo et al.,
1984; Watanabe et al., 1985, 1986) include human T cell
leukemia virus type 1 (HTLV-1) (Poiesz et al., 1980; Yoshida
et al., 1982), Simian T cell leukemia virus type 1 (STLV-1)
(Miyoshi et al., 1983), HTLV-2 (Kalyanaraman et al., 1982),
and the recently discovered primate T cell leukemia virus
type L (PTLV-L) (Goubau et al., 1994; Van Brussel et al.,
1997), as well as the HTLV-2-related STLVPan-p (Digilio et
al., 1997; Giri et al., 1994; Liu et al., 1994b; Vandamme et
al., 1996) and constitute a group of related exogenous
retroviruses. HTLV-1 is the etiological agent of a malig-
nant CD4 lymphoproliferation [adult T cell leukemia
(ATL)] (Seiki et al., 1983; Yoshida et al., 1982) and of a
chronic progressive neuromyelopathy [tropical spastic
paraparesis–HTLV-1-associated myelopathy (TSP/HAM)]
(Gessain et al., 1985), whereas STLV-1 can cause an
ATL-like pathology in infected monkeys. Several seroepi-
demiological studies of captive monkeys indicate that
many species of Old World monkeys, such as macaque,

chimpanzee, gorilla, grivet, cercopithecus, and baboon,
are STLV-1 carriers (Fultz 1994; Ibrahim et al., 1995;
Ishikawa et al., 1987). In contrast, little is known about
viral prevalence in wild-caught Simian species (Durand
et al., 1995; Fultz 1994; Voevodin et al., 1996a, 1997a).

The molecular epidemiology of HTLV-1 proviruses in-
dicates that the few nucleotide substitutions observed
among strains are specific to the geographic origin of the
patient but are unrelated to viral pathology (Daenke et al.,
1990; Gessain et al., 1992; Komurian-Pradel et al., 1991;
1992; Mahieux et al., 1995, 1997a). A consensus of phy-
logenetic analyses of sequence and/or restriction frag-
ment length polymorphism data from pol and env genes
as well as from the long terminal repeat (LTR) of .250
different HTLV-1 strains has established four major geo-
graphic subtypes: Cosmopolitan, HTLV-1 subtype A
(Gessain et al., 1992; Miura et al., 1994); Central African,
HTLV-1 subtype B (Fukasawa et al., 1987; Gessain et al.,
1992; Liu et al., 1994a; Paine et al., 1991; Ratner et al.,
1985); Melanesian, HTLV-1 subtype C (Gessain et al.,
1991, 1993; Saksena et al., 1992; Song et al., 1994; Yanagi-
hara, 1994); and the recently discovered subtype D (Chen
et al., 1995; Mahieux et al., 1997a; Moudjeka et al., 1997;
Moynet et al., 1995). The origin of geographic subtypes
appears to be linked with episodes of interspecies trans-
mission between STLV-1-infected monkeys and humans,
followed by variable periods of evolution in the human
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host (Franchini et al., 1995; Giri et al., 1997; Ibrahim et al.,
1995; Koralnik et al., 1994; Liu et al., 1996; Mahieux et al.,
1997a; Saksena et al., 1994; Song et al., 1994; Vandamme
et al., 1994; Watanabe et al., 1985, 1986). However, clear
evidence of interspecies transmission consists only of a
described affiliation between HTLV-1 subtype B from
Central African inhabitants and STLV-1 from chimpan-
zees (Koralnik et al., 1994; Mahieux et al., 1997a; Voevo-
din et al., 1997b). Recently, sequence analyses suggest
that molecular subgroups, defined by several specific
mutations, exist within the four main genotypes. How-
ever, these subgroups are not always recapitulated by
phylogenetic analyses (Mahieux et al., 1997a).

Although serological data have been available for
years (Becker et al., 1985; Bhigjee et al., 1993), data on
the molecular epidemiology of HTLV-1 in South Africa
are relatively recent. HTLV-1 strains from this country
are seemingly associated with the Cosmopolitan A
subtype (Engelbrecht et al., 1996; Mahieux et al.,
1997a; Yamashita et al., 1995b). Although still a matter
of debate (Yamashita et al., 1995b), HTLV-1 presum-
ably entered this area during the historic Bantu expan-
sion of the early and late Iron Age (1500–2000 years
ago) (Cavalli-Sforza et al., 1994). In contrast, analysis
of STLV-1 sequences obtained from two infected South
African vervet monkeys (Cercopithecus aethiops py-
gerythrus) suggests these simian viruses are related
to the Central African STLV-1 group (Engelbrecht et al.,
1996).

Among species of STLV-1-infected primates, the sit-
uation of baboons (genus Papio) is unique and com-
plex (Voevodin et al., 1997a). Analysis of viral se-
quences indicates P. hamadryas are carriers in the
wild of at least two types of PTLV: an HTLV-1-B-related
virus (Liu et al., 1997; Voevodin et al., 1996a) and the
divergent PTLV-L (Goubau et al., 1994). Other baboon
species, such as P. cynocephalus (Guo et al., 1984;
Voevodin et al., 1997a), P. papio, and P. anubis
(Koralnik et al., 1994; Vincent et al., 1996), harbor
STLV-1 as well. Evidence of possible cross-species
transmission occurring either by chance or after blood
product inoculation in primatology centers (Voevodin
et al., 1996b) is indicated because viral strains from P.
cynomolgus and P. hamadryas STLV-1 are identical to
true macaque (Macaca mulatta) STLV-1. In some
cases, it is virtually impossible to distinguish P. anubis
viral sequences from that of P. hamadryas or P. cyno-
cephalus STLV-1 (Koralnik et al., 1994). Initially inter-
preted as evidence of STLV-1 interspecies transmis-
sion in the wild, these episodes more likely occurred
during captivity (Mone et al., 1992). Therefore the nat-
ural incidence of interspecies transmission of STLV-1
between baboons and other primates has yet to be
confirmed. Consequently, the goals of the present
study are (1) to isolate and characterize previously
undescribed STLV-1 obtained from natural populations

of wild-caught individuals of P. ursinus dwelling in
South Africa; (2) to characterize genetically STLV-1
sequences from a wild-caught P. anubis, a species for
which only partial viral sequences are available from
two captive animals; and (3) to provide evidence of
interspecies transmissions between human and non-
human primates from the same geographic area.

RESULTS

Identification of HTLV-1/STLV-1 infection in the two
different baboon subspecies by detection of specific
HTLV-1–STLV-1 antibodies

The sera of 30 wild-caught animals were tested by
immunofluorescence assay (IFA) for the presence of
STLV-1 antibodies (Table 1). Sixteen of 22 (73%) P.
ursinus and one of eight (12.5%) P. anubis exhibited
HTLV-1–STLV-1 antibodies reacting with HTLV-1 anti-
gens produced by MT-2 cells as well as HTLV-2 anti-
gens produced by C19 cells. However, in all cases, the
antibody titer was higher on MT-2 cells (median 1:320,
range 1:40 to 1:2560) than on C19 (median 1:40, range
1:20 to 1:320). Such data indicated that these animals
were infected with an HTLV-1–STLV-1-related virus
rather than with an HTLV-2-related virus. Thirteen P.
ursinus and one P. anubis further exhibited strong and
complete positive HTLV-1–STLV-1 Western blot sero-
reactivities, whereas three P. ursinus sera were found
as seroindeterminate (Table 1). In the latter, one case
exhibited all reactivities except the MTA-1 band; the
second showed all the bands except p24 and MTA-1;
and the third exhibited only GD21, p19, and MTA-1 (Fig.
1). The remaining 14 sera were all negative in Western
blot assays.

Confirmation of HTLV-1–STLV-1 infection by PCR

For polymerase chain reaction (PCR) analysis, DNA
from peripheral blood mononuclear cells of 16 P. ursinus
and two P. anubis representing 13 seropositive animals,
three seroindeterminate and two HTLV seronegative
ones were assayed (Table 2). In all seropositive animals
and the three seroindeterminate animals, the env and tax
PCR detected HTLV-1–STLV-1-related DNA sequences,
whereas the HTLV-2 primer sets and probes were neg-
ative. The HTLV-1–STLV-1 gag and pol PCRs were
slightly less sensitive and did not amplify viral DNA in
one animal (Table 2). No HTLV-1–STLV-1 DNA se-
quences were detected in either of the two seronegative
animals or in the negative controls.

DNA sequence analyses of the complete LTR region
and of partial env and pol genes from P. ursinus and
P. anubis STLV-1

Three genomic fragments from the proviral DNA of the
STLV-1 present in three P. ursinus and one P. anubis

72 MAHIEUX ET AL.



were studied: the complete LTR (755 bp) in three cases
or a fragment of 514 bp in one case, a 522-bp fragment
of the env gene, and a 120-bp fragment of the pol gene.

Sequence analysis of a fragment of gp21 env

A comparison of the aligned 522-bp fragments indi-
cated no deletions or insertions as compared to the ATK
reference sequence. Genetic comparison of three P. ur-
sinus and the P. anubis env sequences using a fragment
of 387 bp for all published STLV-1 env sequences from
baboons (Table 3) suggested that Pur-529, Pur-539, and
Pur-543 were closely related to each other (99.2–99.5%
similarity) but distinct from Pan-486 (95–95.9% of similar-
ity). Moreover, STLV-1 from P. ursinus do not share sig-
nificant sequences similarities with any other previously
reported baboon STLV-1 viruses isolated either from P.
hamadryas, P. cynocephalus, or P anubis. On the con-
trary, the Pan-486 sequence was more similar to one of
two previously known P. anubis, sharing a similarity of

98.9% with Pan-1621 (Vincent et al., 1996) and 96.4% with
Pan-1713 (Koralnik et al., 1994).

Sequence analysis of a fragment of pol

Despite the fact that this small fragment is not suffi-
cient to separate clearly HTLV-1 and STLV-1 clades
within a molecular/geographic subtype, we performed
sequence analyses of this short fragment because this is
the only one available for some monkeys from West and
Central Africa. No differences were assayed among the
three new P. ursinus viruses and those from the three
HTLV seroindeterminate animals (Pur-530, Pur-535, and
Pur-435) (data not shown). Comparison with P. anubis
yielded a similarity of 96.7% and values of 94.2–97.5% for
other Papio STLV-1 and 91.2–97.5% for other Old World
species. On the contrary, the Pan-486 sequence was
very closely related (99.2%) to Pcy-2304 and Pha-152, two
STLV-1 isolates from a P. cynocephalus and a P. hamadr-
yas, respectively, kept at the baboon colony of Southwest

TABLE 1

Species, Sex, Age, Origin, and HTLV Serological Status of the 30 Baboons Tested

Baboon
no. Species Sex Age Origin

IFA titer
MT2

IFA titer
C19 WB

526 PUR M .15 South Africa 1/160 1/40 1
528 PUR M .15 South Africa 1/320 1/40 1
529 PUR M .15 South Africa 1/160 1/40 1
530 PUR M .15 South Africa 1/640 1/80 inda

531 PUR M .15 South Africa 1/80 1/40 1
532 PUR M .15 South Africa 1/640 1/40 1
533 PUR M .15 South Africa 1/80 1/40 1
535 PUR M .15 South Africa 1/320 1/80 indb

536 PUR M .15 South Africa 1/640 1/40 1
537 PUR M .15 South Africa 1/320 1/80 1
539 PUR M .15 South Africa 1/80 1/20 1
541 PUR M .15 South Africa 1/40 1/20 1
543 PUR M .15 South Africa 1/2560 1/320 1
545 PUR M .15 South Africa 1/20 1/20 indc

546 PUR M .15 South Africa 1/320 1/80 1
C9A PUR M .15 South Africa 1/640 1/160 1
486 PAN M .15 Kenya 1/60 1/40 1
527 PUR M .15 South Africa 0 0 2
534 PUR M .15 South Africa 0 0 2
538 PUR M .15 South Africa 0 0 2
540 PUR M .15 South Africa 0 0 2
542 PUR M .15 South Africa 0 0 2
544 PUR M .15 South Africa 0 0 2
180 PAN M .15 Kenya 0 0 2
438 PAN M .15 Kenya 0 0 2
470 PAN M .15 Kenya 0 0 2
474 PAN M .15 Kenya 0 0 2
482 PAN M .15 Kenya 0 0 2
483 PAN M .15 Kenya 0 0 2
484 PAN M .15 Kenya 0 0 2

a Lack of p24 and of MTA-1 reactivities.
b Lack of MTA-1 reactivity.
c Presence of only GD-21, MTA-1, and p19 bands.
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Foundation for Biomedical Research (San Antonio, TX)
(Voevodin et al., 1997a) (Table 4).

Sequence analysis of the LTR

The LTR, especially in the U3 and U5 portions, is a
highly variable fragment that is phylogenetically informa-
tive among HTLV–STLV strains. Despite the fact that only
44 complete or ;90 partial (large fragment of .600 bp)
LTR sequences are available, compared with .150 for
the gp21 env region, some HTLV-1–STLV-1 strains have
been sequenced only in this region. Thus a more com-
plete phylogenetic analysis of our new baboon STLV-1
encompassed additional strains identified by LTR varia-
tion.

In the complete LTR analysis, Pur-529 and Pur-543
were more closely related (98.7% similarity) than with
Pan-486 (95.3% and 95.7%, respectively) (Table 5).
Shorter fragments of the LTR, obtained for Pur-530 and
Pur-535, which exhibited an HTLV indeterminate serore-
activity by WB, were nearly identical to the equivalent
region of Pur-529 and Pur-543. Furthermore, no other
previously published LTR STLV-1 sequences exhibited a

high degree of similarity with the three new baboon
sequences.

In the U3 region, three tax-responsive elements (TREs)
with a conserved central core and the c-ETS-responsive
elements were conserved. In the R region, containing the
rex-responsive element, a high degree of similarity was
observed in the stem sequence (suggesting that its func-
tionality is maintained), as well as in the rex binding
region between STLV-1 from Pur-529, 539, 543, Pan-486,
ATK, and other available STLV-1 LTR sequences.

Phylogenetic analyses

The evolutionary relationships of the new baboon viral
sequences relative to previously described genetic vari-
ants were examined with three different sequence seg-
ments: the complete LTR, a partial fragment of the LTR,
and the env gp21 gene. The resultant alignments of 44
complete LTR (755 bp) sequences, of 65 partial LTR
sequences (514 bp) (Fig. 2), and 93 sequences of env
gp21 (522 bp) (Fig. 3) were analyzed by both maximum
parsimony (MP) and neighbor-joining (NJ) phylogenetic
algorithms.

FIG. 1. Western blot analysis. The Western blot was from Diagnostic Biotechnology (HTLV-blot 2–4). Lane 1 indicates HTLV-1-positive control; lane
2, HTLV-2-positive control; lanes 3–8, six sera samples from STLV-1-infected P. ursinus with complete HTLV-1 seroreactivity, lane 9, sera from a P.
anubis with a complete HTLV-1 seroreactivity; lane 10, sera from a P. ursinus with a complete pattern except a reactivity against the p24 and the MTA-1
peptide; lane 11, sera from a P. ursinus with a complete pattern except a reactivity against the MTA-1 peptide; lane 12, sera from a P. ursinus with
reactivities against only GD21, p19, and MTA-1; lanes 13 and 15, sera from three HTLV-1–STLV-1-seronegative P. ursinus; and lane 14, sera from a P.
ursinus with a faint reactivity only against GD21; such sera are usually considered as negative.
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Phylogenetic reconstruction with LTR sequences sup-
ported several well-defined evolutionary clusters (Fig. 2).
Rooted by divergent strains of HTLV-1 from Melanesia,
STLV-1 from Asian macaques [Mto-TE4 (M. tonkeana)
and Mne-PTM-3 (M. nemestrina)], the remaining viral
strains form a distinct bifurcation into two major groups
(or clades). One group consisted of a global assemblage
of human viruses corresponding to subtype A with boot-
strap support of 79% (NJ) and 57% (MP). However, the
relative internal branching order uniting these strains
remained ambiguous. The other group was composed of
human (HTLV-1 subtypes B and D) strains interleaved
with simian viruses from Africa. Within each of the two
major groups, distinct monophyletic subclades, of hu-
man or simian (or both) species viruses, were identified
that shared a common geographic locale.

The three newly described P. ursinus viruses (Pur-539,
Pur-529, Pur-543) from South Africa form a cluster with
high bootstrap support (86% NJ, 80% MP) that is affiliated
with the monophyletic lineage composed of two South
African vervets (Cercopithecus aethiops pygerythrus)
(Cae-tbhv191, Cae-tbhv197) (Fig. 2). Basal to this South
African Simian lineage are two viruses: one from a ba-
boon, P. cynocephalus from Tanzania (Pcy-1011), and the
other from a C. aethiops from South Africa (Cae-AG).
Although maximum parsimony and neighbor-joining
methods unite these latter two species with the South
African cluster, only maximum parsimony yielded strong
bootstrap support (82%). Neighbor-joining differs by plac-

ing the Pcy-1011 sequence within this group (76%) but
does not support the placement of Cae-AG in this cluster.

The newly described baboon sequence from Kenya
(Pan-486) was not clearly affiliated with any group. In the
maximal parsimony analysis, this strain was loosely as-
sociated with the African STLV clade. In contrast, the NJ
tree placed Pan-486 in association with the Central Afri-
can type B HTLV strains (Fig. 2).

Other well-supported subgroups within HTLV-1 Cosmo-
politan subtype A demonstrates the geographic basis of
viral evolution. Subgroups from Japan, North Africa, Ivory
Coast, South America, and South Africa were clearly dis-
tinguished by identical topology and favorable bootstrap
proportions between MP and NJ analyses. Clades within
the type B (Central African) HTLV-1 was less distinct with
MP analysis. However, NJ analysis separated the HTLV B
and HTLV D subgroups. Analysis of the complete LTR of a
subset of 43 sequences recapitulated the known subtypes
A, B, C, and D with high bootstrap values for each (data not
shown). Further, the complete LTR analyses confirmed both
the association of P. ursinus viruses with Cae-AG (Kenya)
and Cae-tbhv (South Africa) and the lack of strong affiliation
with Pan-486.

With the 93 env sequences, phylogenetic analysis of
the baboon sequences included a representative of pre-
viously described HTLV-1–STLV-1. Both MP and NJ trees
exhibit similar topologies with monophyletic subgroups
composed of Simian viruses collected from the same
geographic regions and HTLV-1, forming broader geo-

TABLE 2

Detection of STLV-1 gag, pol, env, tax, or LTR Sequences by PCR in the PBMCs of 18 Different Baboons after
Hybridization with g 32P-Labeled Internal Specific Probes

Baboon no. Gaga Pola Polb Enva,d Taxa LTRa,d

526 PUR 2 1 2 1 1 ND
528 PUR 1 1 2 1 1 ND
529 PUR 1 1c 2 1c 1 1c

530 PUR 1 1c 2 1 1 1c

531 PUR 1 2 2 1 1 ND
532 PUR 1 1 2 1 1 ND
533 PUR 1 1 2 1 1 ND
535 PUR 1 1c 2 1 1 1c

537 PUR 1 1 2 1 1 ND
539 PUR 1 1c 2 1c 1 1c

540 PUR 2 2 2 2 2 ND
541 PUR 1 1 2 1 1 ND
543 PUR 1 1c 2 1c 1 1c

545 PUR 1 1c 2 1 1 ND
546 PUR 1 1 2 1 1 ND
C9A PUR 1 1 2 1 1 ND
482 PAN 2 2 2 2 2 ND
486 PAN 1 1c 2 1c 1 1c

Note. ND, not done.
a Primers specific for HTLV-1-STLV-1.
b Primers specific for HTLV-2.
c Sequence obtained.
d Nested PCR.
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graphic subtypes (Fig. 3). Bootstrap support for these
groups varies, yet these are consistencies between the
two methods. Major evolutionary lineages recapitulated
included four recognized subtypes of HTLV-1. Inter-
spersed with these evolutionary groups were STLV-1
sequences from local regions throughout Africa. The
three new STLV-1 sequences from South African ba-
boons (Pur-529, Pur-543, Pur-539) formed a distinct
monophyletic group (bootstrap proportions of 100% NJ,
MP) apart from any other viral strain. Similarly, the new
baboon virus, Pan-486 from Kenya, formed a distinct
group with a strain previously identified from the same
species of baboon (Pan-1621) from Kenya along with the
STLV from another baboon species, P. papio from West
Africa (Ppa-5X28),

DISCUSSION

Previous studies describing a close evolutionary rela-
tionship uniting some African STLV-1 isolates from dif-
ferent species with some HTLV-1 strains (Koralnik et al.,
1994; Liu et al., 1996, 1997; Mahieux et al., 1997a; Song et
al., 1994; Voevodin et al., 1997a, 1997b) formed the basis

to the concept of interspecies viral transmission among
primates, including humans. However, for some simian
species, simian species, recent data suggest the possi-
bility that these transmission episodes occurred after
capture (Voevodin et al., 1996b). Consequently, it re-
mained unclear whether natural STLV-1 isolates existed
in the wild, especially with the genus Papio (baboons).
Therefore this study aimed to genetically characterize
the first STLV-1 sequences from wild-caught P. ursinus
(from South Africa) and P. anubis [living in East Africa
(Kenya)] and to compare them with HTLV-1 and STLV-1
from these regions. The possibility of episodes of iatro-
genic, nosocomial, or experimental cross-species trans-
mission was excluded by using samples directly from
wild-caught animals. Thus these isolates may offer the
best representation of naturally occurring STLV-1 in P.
ursinus and P. anubis troops.

The importance of using different regions of the viral
genome in phylogenetic analyses was evident from the
interferences derived from the LTR versus the env gene.
Nearly all STLV-1 relationships described previously
(Koralnik et al., 1994; Liu et al., 1996, 1997; Mahieux et al.,

TABLE 3

Genetic Divergence Among All Pairs of Viral Sequences in the 387 bp env Region of All Known Baboon STLV-I Sequences

Pha
152a

Pha
PH6356b

Pha
Su-F1c

Pan
5 3 28a

Pur
529d

Pur
539d

Pur
543d

Pan
486d

Pan
1621e

Pcy
2029f

Pcy
3003f

Pcy
kz05f

Pcy
5101f

Pcy
1011f

Pcy
2304a

Pcy
991ai

Pha
Su-L2gi

Pha
Su-L1gi

Pha
PHSu1hi

Pha
su5945gi

Pan 1713 99.5 95.6 95.1 94.8 96.4 97.2 96.7 96.4 95.9 96.4 96.1 96.7 96.4 96.4 99.5 86.3 86.8 85.8 86.8 86.8
Pha 152 95.6 95.1 94.8 96.7 97.4 96.9 96.4 95.9 96.9 96.6 97.2 96.9 96.9 100 86.3 86.9 85.8 86.8 86.8
Pha PH6356 97.4 97.1 94.8 95.6 95.6 98.2 98.7 94 93.8 94.3 94 94 95.6 87.8 89.6 87.6 88.4 88.4
Pha Su-F1 97.1 94.8 95.6 95.6 97.7 97.7 93.8 93.5 94 93.8 93.8 95.1 87.1 89 86.8 87.6 87.6
Pan 5 3 28 93.5 94.3 94.3 97.9 97.9 93.5 93.3 93.3 93 93 94.8 87.6 88.1 87 88.1 88.1
Pur 529 99.2 99.2 95 94.6 95.1 94.8 95.4 95 95 96.7 85.5 85.8 84.5 85.8 85.8
Pur 539 99.5 95.9 95.4 95.3 95 96.1 95.9 95.9 97.5 86.6 86.9 85.5 86.9 86.9
Pur 543 95.4 95.4 95.9 95.6 95.6 95.4 95.4 96.9 86 86.3 85 86.3 86.3
Pan 486 98.9 95 94.8 94.9 94.6 94.6 96.4 88.1 88.7 87.6 88.6 87
Pan 1621 94.6 94.3 94.3 94 94 95.9 88.1 88.4 87.4 88.4 88.4
Pcy 2029 99.7 99.7 100 100 96.9 86 85.3 84.3 85.3 86.3
Pcy 3003 99.5 99.7 99.7 96.6 85.8 88.4 85.3 86 86
Pcy kz05 99.8 99.8 97.2 85.3 85.5 84.5 85.5 85.5
Pcy 5101 100 96.9 85 85.3 84.3 85.3 85.3
Pcy 1011 96.9 85 85.3 84.3 85.3 85.3
Pcy 2304 86.3 86.9 85.8 86.8 86.9
Pcy 991 99.2 98.2 99.2 99.2
Pha SuL2 99.2 100 100
Pha SuL1 99.2 99.2
Pha PHSu1 100

Note. Pha, P. hamadryas; Pan, P. anubis; Pur, P. ursinus; Pcy, P. cynocephalus.
a Koralnik et al. (1994).
b Liu et al. (1997).
c Voevodin et al. (1996a).
d This study.
e Vincent et al. (1996).
f Voevodin et al. (1997a).
g Voevodin et al. (1996b).
h Liu et al. (1996).
i Baboons (P. hamadryas) carriers of macaques (M. mulatta) STLV-1 viruses.
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1997a; Voevodin et al., 1996a, 1997a, 1997b) were recov-
ered in the present phylogenetic analyses, and place-
ment of the new baboon sequences appeared to be
correlated with the geographic origin of the strains. LTR
sequences were more informative, having other South
African STLV-1 sequences available for comparison (En-
gelbrecht et al., 1996) and because no corresponding
env samples were available for this geographic region.

The STLV-1 present in the infected P. anubis appears

to be allied to a previously described isolate from a
captive animal of the same species (Pan-1621) (Vincent
et al., 1996). Although this result suggests Pan-486 is the
natural strain for P. anubis, the association remains
speculative. No bootstrap support is detected for the
Pan-1621 and Pan-486 association. Moreover, no corrob-
oration was possible from the LTR analysis because
Pan-1621 was not sequenced in this genomic region. The
absence of close similarity of Pan-486 with the only other

TABLE 4

Genetic Divergence among All Pairs of Viral Sequences in the 120-bp pol Region of All Known Baboon STLV-1 Sequences

Pan
486a

Pur
529a

Pur
539a

Pur
543a

Pcy
KIAb

Pcy
1011c

Pcy
2304c

Pcy
3003c

Pcy
5101c

Pcy
KZ05c

Pha
Su-F1d

Pha
152c

Pdo
BAB34e

Pan 486 96.7 96.7 96.7 98.3 97.5 99.2 97.5 97.5 97.5 95.8 99.2 95
Pur 529 100 100 96.7 96.7 97.5 96.7 96.7 96.7 94.2 97.5 93.3
Pur 539 100 96.7 96.7 97.5 96.7 96.7 96.7 94.2 97.5 93.3
Pur 543 96.7 96.7 97.5 96.7 96.7 96.7 94.2 97.5 93.3
Pcy KIA 97.5 99.2 97.5 97.5 97.5 95.8 99.2 93.3
Pcy 1011 98.3 100 100 100 95 98.3 95
Pcy 2304 98.3 98.3 98.3 96.6 100 94.2
Pcy 3003 98.3 100 95 98.3 95.8
Pcy 5101 100 95 98.3 94.2
Pcy KZ05 98.3 98.3 94.2
Pha Su-F1 96.7 94.2
Pha 152 92.5
Pdo BAB34 95.8

Note. Pha, P. hamadryas; Pan, P. anubis; Pur, P. ursinus; Pcy, P. cynocephalus; Pdo, P. doguera.
a This study.
b Song et al. (1994).
c Voevodin et al. (1997a).
d Voevodin et al. (1996a).
e Saksena et al. (1994).

TABLE 5

Genetic Divergence among All Pairs of Viral Sequences in the 705-bp LTR Region of All Known
Baboon STLV-1 Sequences and Related Vervet Sequences

Pan
486a

Pur
529a

Pur
543a

Pcy
1011b

Pcy
5101b

Pcy
2304b

Pha
SU-F1c

Pha
PH6356d

Tbh
V-191e

Tbh
V-197e

Pha
PHSU1fg

Pan 486 95.3 95.7 95.45 96 95.7 95.9 95.2 95 93 87.4
Pur 529 98.7 95.4 95.9 96.1 95.4 95 96.9 95.3 87
Pur 543 95.3 95.9 96 95.6 95 96.7 95.3 86.3
Pcy 1011 99.4 95.9 94.7 93.6 94.4 93.2 86.6
Pcy 5101 96.5 95.3 94.2 95 93.75 87.2
Pcy 2304 95.3 94.3 96.1 94.4 86.6
Pha SUF-1 97.3 94.7 93.5 86.5
Pha PH6356 93.4 92.2 85.8
Tbh V-191 95.7 85.5
Tbh V-197 94.7

Note. Pha, P. hamadryas; Pan, P. anubis; Pur, P. ursinus; Pcy, P. cynocephalus; Tbh, C. aethiops pygerythrus.a This study.
b Voevodin et al. (1997a).
c Voevodin et al. (1996a).
d Liu et al. (1997).
e Engelbrecht et al. (1996).
f Liu et al. (1996).
g Baboon (P. hamadryas) carrier of macaque (M. mulatta) STLV-1 virus.
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FIG. 2. Phylogenetic tree derived by minimum evolution estimated by neighbor-joining (NJ) using the 65 partial HTLV–STLV LTR sequences (514 bp),
including the three new P. ursinus and the new P. anubis strains. p, Sequences of unknown geographic origin. Scale represents percent sequence
divergence. Tree was constructed using the Tajima–Nei model of substitution. Numbers in italics represent bootstrap proportions in support of
adjacent node. Only bootstrap values of .50% were used in this program. Trees rooted using divergent strain MTO-TE4 from Asia. Nearly identical
topology, evolutionary groups, and bootstrap values were obtained by the maximum parsimony (MP) analyses (data not shown). In the MP analysis,
a 50% majority rule consensus of 4100 equivalent trees consisted of 910 steps and a consistency index of 0.68. The LTR sequences were obtained
from Chen et al., 1995; Engelbrecht et al., 1996; Gasmi et al., 1994; Ibrahim et al., 1995; Josephs et al., 1984; Komurian et al., 1991, 1992; Liu et al., 1994a,
1996, 1997; Mahieux et al., 1997a; Malik et al., 1988; Miura et al., 1994, 1997; Ratner et al., 1991; Saksena et al., 1992, 1993; Seiki et al., 1983; Shimothono
et al., 1985; Shirabe et al., 1990; Tsujimoto et al., 1988; Vandamme et al., 1994, 1996; Voevodin et al., 1995, 1996, 1997a; Watanabe et al., 1986; and
Yamashita et al., 1995a, 1995b. The geographical origins of the new isolates are boxed.
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FIG. 3. Phylogenetic tree derived by minimal evolution estimated by neighbor-joining (NJ) using 93 partial HTLV/STLV env sequences. This fragment of
522 bp encompasses most of the gp21 and the carboxyl terminus of the gp46. Shown is one of two equivalent trees derived by an heuristic search using
the Kimura two-parameter model of substitution. Numbers in italics are bootstrap proportions in support of adjacent node. Only bootstrap values of .50%
were used in this program. Trees is rooted by divergent MTO-TF2 from Asia. Asterisk denotes unknown geographic origin of viral strain. Nearly identical
topology, evolutionary groups, and bootstrap values were obtained by the maximum parsimony (MP) analyses (data not shown). In the MP analysis, a 50%
majority rule consensus of 4100 equivalent trees consisted of 568 steps and consistency index of 0.50. The env sequences were obtained from Bazarbachi
et al., 1995; Gessain et al., 1991, 1992, 1993; Gray et al., 1990; Koralnik et al., 1994; Liu et al., 1997; Mahieux et al., 1994, 1997a; Mboudjeka et al., 1997; Vincent
et al., 1996; Paine et al., 1991; Ratner et al., 1991; Schulz et al., 1991; Seiki et al., 1983; Voevodin et al., 1996, 1997a.
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available sequence of STLV-1 from a P. anubis (Pan-1713;
Koralnik et al., 1994) reinforces the view of the possible
acquisition of the latter virus during shared captivity with
other Papio species (Pcy-2304, Pha-152, Pan-1713) in the
SFBR colony (Möne et al., 1192; Voevodin et al., 1997a)

In the case of P. ursinus, the three new STLV-1 strains
are not closely related to any previously reported baboon
strains. Analyses of the LTR indicates a close associa-
tion, with strong bootstrap support (92% NJ and 97% MP)
with two South African monkeys STLV-1 strains obtain
from wild-caught vervets (C. aethiops pygerythrus) (CAE-
tbhv191, CAE-tbhv197) (Engelbrecht et al., 1996). These
results are consistent with proposed interspecies trans-
mission between species of primates in the wild. It is
worth noting that the STLV-1 baboon strains from South
Africa do not cluster with known viral strains present in
humans from the same region. These human strains
clearly belong to the HTLV-1 Cosmopolitan group (En-
gelbrecht et al., 1996; Mahieux et al., 1997a; Yamashita et
al., 1995b). Thus HTLV-1-infected populations residing in
South Africa may have acquired the virus from a different
simian reservoir: either a species living currently in the
southern part of the African continent (Botha et al., 1985)
or earlier, from a species encountered during the Ban-
tous migration into South Africa ;1500–2000 years ago
(Cavalli Sforza et al., 1994).

Three P. ursinus exhibit an indeterminate HTLV West-
ern blot (WB) (Fig. 1) seroreactivity, but analyses of short
regions of the pol and LTR reveal all three are identical to
those viruses isolated from P. ursinus with complete WB
patterns. In two cases, the indeterminate pattern of these
animals differed by missing either reactivity against the
MTA-1 peptide band (Pur-535) or reactivity against MTA-1
and p24 antigen (Pur-530). In the third case (Pur-545), the
sera present reactivities only to p19, p24, and MTA-1.
Thus detection of STLV-1 sequences in monkeys with
incomplete reactivity is consistent with other evidence
(Ibrahim et al., 1995).

Ongoing studies aiming to characterize new strains of
the HTLV–STLV family, especially from wild-caught Afri-
can simian species, are crucial in generating new in-
sights into the origin, evolution, and modes of dissemi-
nation of these retroviruses and thus open new avenues
of research on the coancestry of primate retroviruses
and their human hosts.

MATERIALS AND METHODS

Subjects and specimens

Twenty-two adult male chacma (P. ursinus) and eight
adult male olive wild baboons (P. anubis) were captured
in 1995–1996 in South Africa (Transvaal area) and Kenya,
respectively. All were kept separately and transported to
the Service de Biologie Appliquée (Dr. Diane Agay and
Dr. Antonia Van Uye, Centre de Recherche, Service de
Santé des Armées, Grenoble, France). On arrival, the

animals were housed separately to prevent any viral
contamination and were never inoculated with any hu-
man or simian biological material. Whole blood was
obtained by venipuncture from the internal saphenous
vein with blood put into Vacutainer tubes with EDTA and
then sent to our laboratory for separation into plasma
and peripheral blood mononuclear cells (PBMCs).

Serological test

An indirect IFA using MT2 HTLV-1-producing cells and
C19 HTLV-2-producing cells was used for screening and
for antibody titration as previously described (Mahieux et
al., 1997a). For confirmation, a Western blot (immunoblot)
assay (HTLV-2–4; Diagnostic Biotechnology) containing
disrupted HTLV-1 virions, a recombinant gp21 (GD21)
protein, and MTA-1 (an HTLV-1-specific peptide corre-
sponding to residues 169–209 of the gp46 protein) was
used (Buckner et al., 1992; Hadlock et al., 1992). Stringent
Western blot criteria were defined, and a sample was
considered as HTLV-1–STLV-1 positive only by exhibiting
antibodies against both p19 and p24 antigens as well as
against both GD21 and MTA-1.

Polymerase chain reaction

PCR was implemented using previously described
conditions (Mahieux et al., 1997a, 1997b). Briefly, high-
molecular-weight DNA was extracted from PBMC sam-
ples before culture by a classic phenol–chloroform tech-
nique. Each reaction mixture contained 1.5 mg of DNA,
0.2 mM deoxynucleoside triphosphate mix (Boehringer-
Mannheim, Mannheim, Germany), 10 ml of a 103 reac-
tion buffer (Perkin-Elmer Cetus, Gaithersburg, MD), 25
mM concentration each of oligonucleotide primers
(Pharmacia, Uppsala, Sweden), and 2.5 U of Taq DNA
polymerase (Perkin-Elmer Cetus) in a total volume of 100
ml. For each sample, HTLV-1- or HTLV-2-specific primers
and appropriate internal oligonucleotide probes were
used. For all PCR analyses, amplification mixes were
made in a special room physically separated from the
laboratory, and during all steps, positive displacement
pipettes were used to prevent PCR contamination. For all
the PCR experiments, after denaturation at 94°C for 59,
the reaction mixtures containing DNA were cycled 35
times (gag, pol, env, tax) or 40 times (LTR) at 94°C for 1
min, 58°C for 1 min, and 72°C for 2 min. An extension of
2 min per cycle was realized with an extension of 10 min
on the last cycle.

STLV-1 LTR amplification

A semi-nested PCR was performed as previously de-
scribed (Mahieux et al., 1997a). The first fragment (8255–
LTRU5E) of 467 bp (8266–8733) was amplified, and 2 ml
of this initial PCR were used for the second run, gener-
ating a fragment (8255–420LTR) of 433 bp (8266–8699).
The second fragment (3PLTR–5PLTR) of 778 bp (1–778)
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was amplified, and 2 ml of the initial PCR were used for
the second PCR run, amplifying an inner fragment
(4PLTR–5PLTR) of 657 bp (122–778).

STLV-1 gag amplification

A single PCR was done with, as previously described
(Kawase et al., 1992), Gag3–1301 and Gag4–1420 HTLV-
1-specific primers and the specific probe Gag 1380. The
amplified fragment was 120 bp.

STLV-1 pol amplification

Two different PCRs were done using either SK110 and
SK111 primers and the HTLV-1-specific probe SK112 or
SK58 and SK59 HTLV-2-specific primers with the HTLV-
2-specific SK60 probe as previously described (Kwok et
al., 1988). The fragments were 185 and 102 bp, respec-
tively.

STLV-1 env amplification

A semi-nested PCR was done using Env1 and Env22
as outer primers and Env1 and Env2 as inner primers as
previously described (Mahieux et al., 1997a). The probe
used was PE-12. The amplified fragment was 569 bp
long.

STLV-1 tax amplification

A simple PCR was done using kkpx1 and kkpx2 prim-
ers and the probe SK43 as previously described
(Mahieux et al., 1997b). The amplified fragment was 203
bp long.

Cloning and sequencing

PCR products of STLV-1 env and LTR were purified on
1.5% agarose gels (Geneclean, Bio101, La Jolla, CA)
cloned in the PCR Bluescript(SK)1 vector (Stratagene, La
Jolla, CA). One clone (env) or two overlapping clones
(LTR) were sequenced for each sample (Sequenase,
version 2.0; U.S. Biochemicals, Beverly, MA) as previ-
ously described (Mahieux et al., 1997a, 1997b). The pol
products (1 PCR reaction) (185-bp fragment SK110–
SK111) were directly sequenced from the PCR products
using the Applied Biosystems model 373 automatic DNA
sequencer. The 12 nucleotide sequences reported here
have been submitted to the GenBank nucleotide se-
quence database and have been assigned the acces-
sion numbers AF035542–AF03545 (env), AF035538–
AF035541 (LTR,) and AF038426–AF038429 (pol).

Phylogenetic analyses

Genetic variations of the newly described baboon se-
quences were compared with sequences representing
previously described strains of human and simian vi-
ruses. Three data sets were examined separately and
were composed of either 44 complete LTR, 65 partial

LTR, or 93 env gene sequences amplified by PCR. Se-
quences were compiled and aligned using the algorithm
of Needleman and Wunsch (1970) of the program GCG
version 8 (Genetics Computer Group, 1996) and verified
visually. Computations of nucleotide frequencies, estima-
tion of the transition-to-transversion ratio, and numbers
of variable sites among sequences were performed us-
ing MEGA version 1.01 (Kumar et al., 1993) Phylogenetic
analysis of LTR and env sequences used two algorithms:
MP and minimum evolution estimated by NJ. Because
these two methods use different optimality criteria, con-
cordance between the resultant topologies was viewed
as evidence of the true phylogeny. Phylogenetic recon-
struction with maximum parsimony was performed by
the program PAUP* (with permission from D. Swofford). A
heuristic search with the 44 complete LTR and the 65
partial LTR weighted transitions 5:1 relative to transver-
sions and included stepwise addition for starting trees,
simple addition of sequences, and branch swapping
performed by tree–bisection–reconnection, and with the
option of collapsed branch, length was zero. Gaps were
treated as a fifth character state. Maximal parsimony
search conditions of the 93 env gene sequences used
similar options except branch swapping was changed to
the nearest-neighbor interchange and transitions were
weighted 2:1 with transversions. Neighbor-joining anal-
ysis of LTR sequences used the Tajima-Nei (1984) model
of substitution performed by PAUP*. Heuristic search
conditions used a starting tree obtained by NJ with tree–
bisection–reconnection for branch swapping. Analysis of
the env sequences used the Kimura two-parameter
model of substitution with PAUP*. Bootstrap resampling
was used in conjunction with both MP and distance-
based methods to test the reliability of the data in phy-
logenetic analysis. Bootstrap analysis consisted of 100
iterations with identical search parameters as stated
above. Within each iteration using PAUP*, the maximum
number of trees saved was set as 100. Bootstrap pro-
portions of .70% were considered strong support for the
adjacent node (Hillis and Bull, 1993).
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