
Competitive relative performance evaluation of neural controllers for
competitive game playing with teams of real mobile robots

A. L. Nelson and E. Grant
Center for Robotics and Intelligent Machines

Department of Electrical and Computer
Engineering

North Carolina State University
Raleigh, NC 27695-7911

T. C. Henderson
Department of Computer Science

School of Computing
3190 Merrill Engineering Building

University of Utah
Salt Lake City, Utah 84112

ABSTRACT

In this research, we describe the evolutionary training of artificial
neural network controllers for competitive team game playing
behaviors by teams of real mobile robots (The EvBots).  During
training (evolution), performance of controllers was evaluated
based on the results of competitive tournaments of games played
between robots (controllers) in an evolving population.
Competitive tournament fitness evaluation does not require a
human designer to define specific intermediate behaviors for a
complex robot task.  Intermediate behavior selection and
evaluation becomes an implicit part of winning or losing games
in a tournament.  The acquisition of behavior in this evolutionary
robotics system was demonstrated using a robotic version of the
game ‘Capture the Flag’.  In this game, played by two teams of
competing robots, each team tries to defend its own goal while
trying to ‘attack’ another goal defended by the other team.  Robot
controllers were evolved in a simulated environment using
evolutionary training algorithms and were then transferred to real
robots in a physical environment for validation.  Evolutionary
robotics makes use of several distinct types or levels of
performance evaluation. The work presented here focuses on the
competitive relative tournament ranking metric used to drive the
evolutionary process.  After a population has been evolved, a
second metric is needed to evaluate the quality of acquired game-
playing skills.  We use a post training evaluation method that
compares the evolved controllers to hand coded knowledge-based
controllers designed to perform the same task.  In particular, a
very poor controller, and high quality controller give us two
points on a continuum that can be used to rank the evolved
controller quality.

Keywords: evolutionary robotics, performance metrics, mobile
robot colonies, evolutionary neural computing, behavioral
robotics

1. Introduction

1.1 Evolutionary robotics
Evolutionary robotics (ER) is a relatively recent addition
to the field of autonomous robot control research.  ER
focuses on the automatic design of model-free robot
controllers using evolutionary computing methods.  Over
the course of last decade, proof-of-concept research in the

field of ER has been conducted.  Much of this work was
done using computer-based simulations only [1][2][6].
Examples of ER research conducted with real robots
include the evolution of walking behaviors in hexapod and
octopod robots [7][8], and the evolution of simple
behavioral controllers for small mobile robots[9][10].  The
later include the development of phototaxis behaviors
[11][12] and of simple object avoidance [10] and
navigation [13].  For recent reviews of the field of ER see
[14][15][16][13].

1.2 Intelligence performance metrics in ER
An ER application may make use of one or more types of
fitness or intelligence metrics.  These include 1)
measurement of behavior quality for selection during
training, 2) measurement of quality of transference from
simulated training environments to the real world, and 3)
post training evaluation of acquired behaviors.  In this
paper, we will focus mainly on development and
formulation of the first type of metric.  In addition, a post
training metric will be applied to evaluate the quality of
the best member of an evolved robot controller population.

In evolutionary robotics, a training performance fitness
function is applied to provide selective pressure to an
evolving population of robot controllers.  The goal is to
develop intelligent behavior with regard to a particular
task.  The nature and implementation of a machine
learning application affects the way in which its
intelligence can be measured.  Behavioral robotics
applications impose tight physical constraints on the
expression and evaluation of learned behaviors.  In
particular, a subtle issue arises regarding the point of view
of the intelligent robotic system and the point of view of
the external observing human who is trying to evaluate that
system’s intelligence.  These different points of view are
known as the proximal (local) and distal (external)
viewpoints respectively [3].

In most cases, fitness functions used in ER are formulated
by designers from the distal point of view.  Designers
naturally develop fitness functions based on their own
understanding of the desired behavior and system



dynamics.  In doing so, they implicitly incorporate
information from their own complex distal world model
into the fitness evaluation of the evolving agent(s).  Since
the evolving agent has no such model, the evolved
behaviors tend to be very brittle.  In the following section
we will discuss some of the properties of such distal
absolute fitness functions.  As an alternative to absolute
fitness functions we will present the formulation and
experimental testing of an aggregate relative fitness
evaluation method for ER.

1.3 Absolute vs. aggregate relative fitness
functions in ER
Fitness in ER systems is often measured as an absolute
scalar function to be maximized or minimized during
training (see [4][5], for examples of this type of fitness
function).

Absolute fitness functions used in evolving behavioral
robotics applications are problematic for the following
reasons: 1) Often, a forced learning plateau arises when the
fitness metric is maximized or minimized, 2) Human
biases are incorporation into the metric, 3) Each new
robotic application requires a new and often difficult-to-
formulate metric, and 4) For many complex behaviors, the
knowledge required to specify an adequate absolute
training fitness function is equivalent to that that would be
required to design a rule/knowledge based controller by
hand.

In this work we study a relative aggregate fitness selection
metric for the evolution of behavioral robotics controllers.
In particular, we focus on behaviors that can be formulated
into competitive games played between two or more
mobile robots.  The metric produces a relative ranking in
an evolving population of controllers, but does not give an
absolute measure of fitness with respect to an external
scale.  Evaluation of evolving controllers based on their
relative abilities to perform a task has the affect of
aggregating evaluation of intermediate behaviors into one
simple performance measure.

Tournament ranking evaluation partially eliminates the
need to generate a fully domain-specific fitness function.
As long as the problem can be formulated into a game that
is either won or lost, other details about the game need not
be included in the fitness function definition.  Agents in an
evolving population that receive higher relative rankings in
a tournament of games will be propagated preferentially
over agents receiving lower rankings.  This reduces the
amount of human bias that is incorporated into the
performance metric.  It also allows metrics to be specified
in cases where humans lack adequate information to
specify effective absolute fitness factors.  This is important

to the long-term scalability of ER methods to
uncharacterized domains.

Implementing an aggregate competitive fitness function in
the domain of evolving robot controllers is qualitatively
different than similar implementations in pure computer
science domains.  In [17] tournament selection was applied
to evolve neural networks to play computer Checkers with
impressive results. In that work, the game board
configurations were deterministically coded and fed
directly into the neural networks.  In ER, training
environments must maintain an explicit I/O coupling
analogous the robot’s physical functional environment.
This coupling must enforce a realistic proximal view onto
the evolving agents.  Modeled sensors must report only
information that could be produced by the real sensors.
Modeled motor actuators must in turn produce an
alteration in the robot’s frame of reference that
appropriately alters the modeled sensor values (i.e. after
the robot moves, it sees something new).  This forms a
controller-actuator-sensor loop with relational dynamics
must be the analogous to those experienced by the real
robots.  The temporal fidelity of this controller-actuator-
sensor loop must be maintained.

Another factor that complicates implementation of
reinforcement learning of behavior in ER systems is that,
many potential controller configurations may not lead to
detectable expression of a desired behavior in a finite
amount of time.  In such cases, the search space must be
restricted so that controllers will display detectable
differences in performance even when that performance is
measured at the aggregate level of win or lose.  One way to
do this is to formulate the competitive evaluation
environment so that most controllers, even very poor ones,
will eventually win at least a fraction of the games if their
opponents are as poor or poorer than themselves.

2. The evolutionary robotics research testbed
Before presenting a formulation of the relative aggregate
fitness function used in this work, we will provide a brief
summery of the ER research testbed used here.  This will
provide a context for the training fitness function
formulation.  The ER research testbed consists of a
physical colony of autonomous mobile robots, and an
evolutionary neural network training environment.  The
real robots use a vision-based range finding sensor
emulation system to locate them selves in a physical maze
environment.  The evolutionary neural network training
application uses simulation of the robots and their
environment to evolve neural controllers to drive the
robots.  Controllers are evolved in simulation and then
transferred to real robots for testing and verification.



2.1 The EvBot platform and environment
The physical verification and testing of evolved controllers
developed in this research was conducted using a colony of
small mobile robots named the EvBots (EVolutionary
roBOTs)[18].  These robots are computationally powerful,
fully autonomous and capable of performing all control,
computing and data management on board.  The robots
move and steer using differential speed control of parallel
drive wheels.

A physical maze environment was constructed for the
mobile robot colony.  Robots and objects in the
environment were fitted with colored skirts to aid in vision
based sensing of the environment.  A fully assembled
EvBot and the physical maze environment are shown in
panels (a) and (b) of Figure 1 respectively.

(a)

(b)
Figure 1.  Photographs of (a) a fully assembled EvBot and

(b) the physical robot maze environment containing
several robots.

2.2 Video range-finding emulation sensors
Each robot was fitted with a small video camera.  Images
captured from the video cameras are processed into object
range date before being feed into the neural controllers.

The vision-based range-finding sensor systems on the
robots used fixed geometric properties of the physical
maze environment to calculate the ranges and angles of
materials.  Using color and position, the vision system

could detect walls, robots, and goals.  The goals are
stationary cylinders and were used in the robotic ‘Capture
the Flag’ game.

At each sensor update interval, and for each object type,
range and angle values were calculated over the horizontal
field of view of the robot’s camera.  A vector of range
values was produced for each object type.  Angular data
was implicitly encoded in the order of the range values
reported in each object range data vector.  Object type
information was not explicitly given to the robot neural
controllers.  Controllers were only given these resulting
numerical data vectors.  All associations relating distances,
angles, and object types must be learned by the neural
networks.

2.3 The evolutionary neural network architecture
In this research, a generalized evolvable neural network
architecture capable of implementing a very broad class of
network structures was used.  The networks may contain
arbitrary feed forward and feedback connections between
any of the neurons in the network.  Networks contain
neurons with heterogeneous activation functions including
sigmoidal, linear, step-threshold, and Gaussian radial basis
functions.  Neurons include a variable time-delay
associated their inputs.  This give networks the potential to
evolve temporal processing abilities.

1

2

3
4 5 6

7

8 9
10

11

12
13

14
15

16

17

18

1920

21

22

23

24

25

26

27
28

29

30
31

32

33
34

35

363738 394041

42

43
444546

47
48 4950

51

52

53

54

55

56
57

58
59

60
6162 6364

65

66

67

68

69

70 717273

74

75

76
77 78

79

8081
82

83

84
85

86

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

I11

I12

I13

I14

I15

I16

I17

I18

I19

I20

I21

I22

I23

I24

I25

I26

I27

I28

I29

I30

I31

I32

I33

I34

I35

O 1

O 2
1

2

3
4 5 6

7

8 9
10

11

12
13

14
15

16

17

18

1920

21

22

23

24

25

26

27
28

29

30
31

32

33
34

35

363738 394041

42

43
444546

47
48 4950

51

52

53

54

55

56
57

58
59

60
6162 6364

65

66

67

68

69

70 717273

74

75

76
77 78

79

8081
82

83

84
85

86

Figure 2.  An example robot neural network controller
from an evolved population of heterogeneous neural

networks.  The inputs to the network (left) are supplied by
the robot’s video range emulation sensors.  The outputs of
the network (right) are interpreted as wheel motor speed

commands.
The connectivity and weighting relationships in a given
network are completely specified by a single two-
dimensional matrix W of real valued scalar weights.
Additional Information specifying neuron types and time
delays is given in a vector structure N with one formatted



field per neuron.  W and N form the basis of the genetic
encoding for each network.

Figure 2 shows an example of a graphical representation of
an evolved neural network.

2.5 Network mutation
The elements in the weight matrix and neuron information
structures are acted upon directly by the genetic algorithm.
Formally, the genome for a network C can be specified by
the two dimensional matrix of real numbers

]:[ NWC ′=           (1)

where N’ is a matrix of scalars extracted from the
formatted structure N.

During evolution, networks are mutated in three ways.
First, connection weight values can be perturbed.  Second,
connections can be added or removed.  Finally, neuron
units can be added or removed. Mutation of a network can
be formalized by the compound relation

)))(((' CC wcs MMM=     (2)

where C is the chromosome of the parent network and C’
is the resulting mutated offspring network chromosome.
Mw Mc and Ms are genetic operators that mutate the
weights, the connections, and the neuron structure of the
network respectively.  Any or all of the different types of
mutation can occur during propagation.

3. The fitness function and genetic algorithm

3.1 Fitness function formulation
In this section, we will define the fitness function used in
this research.  It is designed to be useful for team games
that can be formulated to produce a win-lose outcome.
These would include games like soccer and robot tag.
Many useful real world behaviors such as mine sweeping
and group searching behaviors in unknown terrain can be
also formulated into scorable team robot games.

The training fitness function is comprised of two over-all
parts:  1) select for controllers that win more games, 2)
identify and select against pathological controller
morphologies.

Only pathological cases that were known to lead to
catastrophic stagnation of the evolutionary process were
explicitly selected against.  Two pathological controller
behaviors were actively selected against.  The first

behavior was the production of constant continuous
reverse wheel speeds in one or both wheels throughout the
course of a game.  The second pathological behavior was
that of becoming stuck and remaining stuck for the
duration of a game.  These cases will be represented by
Boolean functions B1 and B2 denoting the presence (1) or
lack (0) of expression of each of the pathological
behaviors, respectively.

A population P of evolving robot controllers consists of a
fixed number P of neural networks.  At the beginning of a
tournament, a set of game starting positions for robot
teams and goals is quasi-randomly generated and used for
every game in that tournament (generation).  In every
training generation, a full tournament of games is played:
Each controller in the population P plays against every
other controller in P.  After a tournament of games, each
controller is given a score that depends on the number and
quality of wins it achieved.  For every pair of controllers in
the population, two games are played.  In the first game the
first controller is used in the first team of robots and the
second controller in the second team of robots.  In the
second game, the controllers are switched.  This eliminates
any advantage a controller may have incurred due to the
random initial conditions used in the games of that
tournament.

A generalized form of the fitness function for an individual
controller after a tournament has been played can be
written as

ndwpF ++=)(             (3)

Where w, d and n are functions evaluating the
contributions of games won, games played to a draw and
expression of pathological behavior respectively during a
tournament.   F(p) gives the relative fitness of the pth
controller from the population P.

The relative fitness of the robot controllers playing in one
game is dependent on the outcome of a reciprocal paired
game in which the starting positions of the controllers are
reversed.  We will denote these paired games as g and g’.
Using these paired games we break the game wins into
three classes.  In Class 1, a particular controller wins both
games g and g’.  Games of class 2 are those in which one
controller wins one of the games but plays the other to a
draw.  In class 3, one controller wins one game but loses
the other.  Let G1, G2, and G3 denote numbers of games
won during a tournament of each of the three classes
respectively.  Then the number of points awarded to the
pth controller for games won in a tournament is given by:

3*2*1* GcGbGaw ++=          (4)



Where   a, b, and c are scalar weighting factors.  The values
of  a, b, and c are generally set so that a>b>c>0.  This
reflects the evaluation that a controller that can win from
both of the starting positions of g and g’ is better than one
that can only win one of the two games.

Points are also given in the case that both of the games g
and g’ are played to a draw.  If the robot agents of a
particular controller are closer to their opponent’s goal in
both games, that controller is awarded points.  The d sub-
function of equation (3) becomes

1d*Dd =         (5)

where D1 denotes the number game pairs played to a
better draw and δ is a scalar weighting factor.  δ is set to be
much less than a, b, or c so that results related to numbers
of wins dominate the tournament selection process.

Similarly, The n sub-function of 3 selecting against
pathological behaviors can be expanded as

21 ß*Ba*Bn +=              (6)

Where B1 and B2 are Boolean functions denoting the
presence (1) or lack (0) of expression of each of the
pathological behaviors in the current tournament (these
were defined above as continual backward motion and
becoming permanently stuck, respectively).  α and β are
scalar weighting factors and  are generally set to be large
negative values relative to a, b, and c so there is a heavy
selective pressure against these behaviors even if they
result in wins.

3.2. The evolutionary training algorithm
Populations of fixed size P were evolved using an
evaluation, mutation, and replacement scheme.  After each
tournament of games, controller population members p
were scored relative to each other using the performance
metric F(p) defined in equation (3).  The population P was
then reordered from fittest to least fit before propagation.
The next generation population P_next was then
constructed from the union of the following three sets
derived from the current (parent) population:

 }{}{}{_ m21mm1m1 −+′′= Pppppppnext KUKUKP   (7)

Where P∈mp  is the mth individual of the ordered current

(parent) population P, mp′ is a mutated version of pm, and

P is the fixed population size.  Equation (7) produces a
next generation composed of the following sets: 1) m of
the fittest controllers are transferred un-changed to the next
generation,  2) m of the fittest members of the controller
population are mutated using equation (2) and added to the
next generation, and  3) The remainder of the next

generation population is made up of the remaining fittest
remaining members of the current population.  Although
this algorithm is technically a form of greedy mutation-
only (µ + λ)-ES with incomplete replacement [19], the
game environment initialization for each tournament
affects the outcome of the games to such a degree that the
fittest member of the population could be eliminated.  This
adds a high degree of probabilistic selection to the
algorithm.

4. Results and Discussion

4.1 The game
In this section, we present initial results and tests of one
population of robot controllers evolved to play robot
‘Capture the Flag’.  In this game, there are two teams of
robots and two stationary goal objects.  All robots on team
one and one of the goals are of one color (red).  The other
team members and their goal are of another color (green).
In the game, robots of each team must try to approach the
other team’s goal object while protecting their own.  The
robot which first comes within range of its opponent’s goal
wins the game for its team.

Evolved controllers were able to play and win games both
in simulation and when transferred to real robots in the
physical world.  The best evolved controllers acquired
several distinct and testable abilities.  These included
avoidance of ones own goal, wall avoidance, goaltending,
blocking and chasing robots from the other team, and
homing in on an opponent’s goal.  Evolved controllers
generally acquired two or three behaviors and exploited
those rather than developing many behaviors for individual
situations.

4.2. Experimental setup
We will focus on an evolved controller that displays two
identifiable sub-behaviors: wall avoidance and selective
avoidance of the robot’s own goal.  The controller was
evolved in a population of size P=6 for 366 generations.
The population replacement rate was set to 50% per
generation.  The parameters relating to the performance
metric F(p) of equation (3) used in this training evolution
are given in Table 1 below.

Table 1. Fitness function parameter settings used to evolve
the controller studied in these experiments.

Parameter Game case
(g, g’)

Points
awarded

a win-win 20
b win-draw 15

c win-lose 10



δ best draw 2

α backward -10

β stuck -2

4.3 Performance of evolved controllers in the
real world
Here we will present experiments aimed at measuring the
quality, and indirectly the intelligence, of the evolved
robot controller.  These post-evolution evaluation
experiments were done in the real world using real robots.

Two knowledge-base controllers were developed.  The
first was designed to be a difficult opponent to beat and
made use of both temporal and spatial information to avoid
walls, extract itself from corners, avoid team mates, block
opponents and home in on the opponent's goal. The second
controller was designed to be a poor player and produced
random wheel speed commands at each time step.  In both
cases, sensor input and motor output ranges were restricted
to those allowed in the evolved neural network controller.

The evolved neural controller competed in a series of 20
real games against both the good rule-based and the
random controllers.  This was done to rank the quality of
the evolved controller on a continuum including a good
controller and a very poor controller.  All games were
recorded by collecting sequences of video images from a
camera mounted directly above the maze.

Ten games were played between the evolved neural
network and the good rule-base controller.  Game initial
positions may give one of the teams an advantage.   For
this reason, the set of games contained two games for each
starting configuration used.   In the first, each team was in
a particular initial position, and in the second, the two
team’s starting positions were swapped.  For these 10
games, five initial game positions were generated based on
the random seed states 11 to 15 of the MATLAB random
number generator.  The games were conducted completely
in the real robot maze environment using real robots.   No
games were allowed to proceed for longer than 200
controller update cycles (time steps).  In addition, games
were terminated if all robots became permanently stuck.

A similar set of ten real games was also played between
the evolved neural network and the random (poor)
controller.  Again, the same set of five game initializations
was used to conduct a set of 10 paired reciprocal games.

Tables 2 and 3 give the results of the games involving the
good knowledge based and the random controllers
respectively.  The evolved neural controller, the good

knowledge based controller and the random controller are
denoted as “neural”, “rule” and “random” respectively.

Table 2.  Results of the set of ten games played between
the evolved neural network controller and the hand coded

rule-based (good) controller.
Game Random

Init. state
Team1 Team2 Winner

1 1 neural rule neural
2 1 rule neural rule
3 2 neural rule neural
4 2 rule neural rule
5 3 neural rule rule
6 3 rule neural rule
7 4 neural rule rule
8 4 rule neural neural
9 5 neural rule rule
10 5 rule neural rule

Table 3.  Results of the set of ten games played between
the evolved neural network controller and the hand coded

random (poor) controller.
Game Random

Init. state
Team1 Team2 Winner

11 1 neural random neural
12 1 random neural neural
13 2 neural random neural
14 2 random neural (none)
15 3 neural random neural
16 3 random neural neural
17 4 neural random neural
18 4 random neural neural
19 5 neural random (none)
20 5 random neural neural

Summarizing these results, the neural network controllers
won 3 out of 10 games against the good rule based
controller, or 30% and the good rule base won 7 out of 10
or 70% of the games.  All of the games between the neural
network and the rule-based controller were played to
completion.  The neural network controllers won 8 out of
10 against the random controller, or 80%.  The random
controller was not able to win any games.  In this case two
of the games were not completed because all the robots
became stuck or the game proceeded for more than 200
moves.
Figure 3 shows two example game results from the above
tables.  These are games 2 and 12 respectively.  The robots
are shown in their final end-game positions.  The dotted
lines indicate the courses of the robots during each game.
In the first game (Figure 3 (a)), neural network controllers
(green, lighter dotted lines) compete against good
knowledge-based controllers (red, dark dotted lines).  In
the second game (Figure 3 (a)), neural network controllers
(green) compete against poor random controllers (red).  In
the first game, the rule-based robots reach the green goal
before the neural network based controllers can find the



red goal.  On the other hand, in the second game, the
poorer random controllers are not able to make progress
toward the green goal and the neural network based
controllers eventually find the red goal and win the game.

 R e d  G o a l  

 G r e e n  G o a l  
 G r e e n  R o b o t s  

 R e d  R o b o t s  

(a)

(b)
Figure 3. Examples games played between trained neural
network controllers (green robots, lighter dotted lines) and

knowledge-based controllers (red robots, dark dotted
lines).  In (a) good rule-based robots beat neural network
controllers while in (b) neural controllers eventually beat
random controllers starting from similar initial conditions.

4.4 Discussion
These results imply that the functional quality of the
evolved controller is somewhat less than that of the hand
coded rule base.  This is compared to the base line
negligible abilities of the random controller.  The evolved
controller was able to beat the random controller in every
game played to completion.  It should be noted that
identical or equally matched controllers would receive the
same number of wins when competing against one another
in a set of reciprocal games.  For example, the rule-based

controller would receive 5 out of 10 wins when played
against a copy of itself, or 50%.  Also, the rule based
controller wins against the random controller 100% of the
time (data not shown).

Evolved behavioral robotics control systems do not yet
rival well designed sophisticated knowledge based
controllers.  Nonetheless, These results indicate that an
evolve controller can beat a hand coded controller a
fraction of the time.

The method of post-training controller evaluation does not
influence the functionality of the relative tournament
fitness function used during evolution of the controllers.
This means it is possible to use post training fitness
evaluation functions that are inadequate to select for the
behavior, but can still measure behavior after it has been
evolved.  Also, we can evaluate the evolved controllers
using human biases without imbedding such biased into
the evolved controllers.

5. Conclusions and future research
In this paper a new evolutionary robotics testbed was
described.  A tournament training performance evaluation
function was implemented.  This fitness function was used
to evolve controllers for teams of robots to play a
benchmark competitive game, ‘Capture the Flag’.  The
fitness function was not based on specific features of the
game and could be used to evolve behaviors for other
multi-robot tasks.

An evolved controller was experimentally tested using real
robots in the real world.   The evolved controller competed
against a sophisticated hand designed knowledge based
controller in a tournament and was able to win a fraction of
the games.

This work will be extended by applying the competitive
relative performance metric to other related mobile robot
behaviors and by investigating the related training
dynamics.  We will investigate the possibility of improving
training measures without adding more task-specific
information.  Alterations of the training metric could
include the weighting of some tournaments more highly
than others.  It is also of interest to investigate the affects
of game initialization on controller evolution.  This work
used random game initializations for each tournament.
Another approach would be to select several game starting
configurations and use only these.  This method would run
the risk of controllers learning environment specific
behaviors that would not generalize well but could reduce
the negative effects of poor game initializations that result
in equal relative scores for all controllers and thus generate
no selective pressure.



References
[1] F. Gomez, R. Miikkulainen, Incremental Evolution of Complex

General Behavior, Adaptive Behavior, Vol. 5, pp. 317-342, 1997.
[2] J. Xiao, Z. Mickalewicz, L. Zhang, K. Trojanowski, Adaptive

Evolutionary Planner/Navigator for Mobile Robots, IEEE
Transactions on Evolutionary Computing, Vol. 1, no. 1 pp. 18-28,
2000.

[3] S. Nolfi, Evolutionary Robotics: Exploiting the Full Power of Self-
Organization, Connection Science, Vol. 10, pp. 167-183, 1998.

[4] M. Quinn, Evolving cooperative homogeneous multi-robot teams,
Proceedings of the IEEE / RSJ International Conference on
Intelligent Robots and Systems (IROS 2000), Takamatsu Japan,
Vol.3, pp. 1798 –1803, 2000.

[5] J. Kodjabachian and J.-A. Meyer, Evolution and development of
neural networks controlling locomotion, gradient-following, and
obstacle avoidance in artificial insects, IEEE Transaction on Neural
Networks 9(5) (September 1998)

[6] M. Potter, L. A. Meeden, A. Schultz, Heterogeneity in the coevolved
behaviors of mobile robots: The emergence of specialists,
Proceedings of the Seventeenth International Joint Conference on
Artificial Intelligence, Morgan Kaufmann, 2001.

[7] D. Filliat, J. Kodjabachian, J.A. Meyer, Incremental evolution of
neural controllers for navigation in a 6 1egged robot, In Sugisaka and
Tanaka, editors, Proc. of the Fourth International Symposium on
Artificial Life and Robotics. Oita Univ. Press, 1999.

[8] N. Jakobi, Running Across the Reality Gap: Octopod Locomotion
Evolved in a Minimal Simulation, Proceedings of the First European
Workshop on Evolutionary Robotics: EvoRobot’98, 1998

[9] D. Floreano and S. Nolfi. Adaptive behavior in competing co-
evolving species. Mantra technical report, LAMI, Swiss Federal
Institute of Technology, Lausanne, 1997.

[10] D. Floreano and F. Mondada , Evolution of homing navigation in a
real mobile robot. IEEE Transactions on Systems, Man, Cybernetics
Part B: Cybernetics, Vol. 26, No. 3, pp. 396-407, 1996.

[11] N. Jakobi, P. Husbands, I. Harvey. Noise and the reality gap: The use
of simulation in evolutionary robotics. In F. Moran, A. Moreno, J.
Merelo, and P. Chacon, editors, Advances in Artificial Life: Proc.
3rd European Conference on Artificial Life, Springer-Verlag,
Lecture Notes in Artificial Intelligence 929, pp. 704-720. 1995.

[12] Richard A. Watson, Sevan G. Ficici, Jordan B. Pollack, Embodied
Evolution: Distributing an Evolutionary Algorithm in a Population of
Robots, Robotics and Autonomous Systems, Vol. 39 No. 1, pp 1-18,
2002.

[13] I. Harvey, P. Husbands, D. Cliff, A. Thompson and N. Jakobi,
Evolutionary robotics: the Sussex approach, Robotics and
Autonomous Systems, Vol. 20, No 2-4, pp. 205-224, 1997.

[14] M. Mataria, D. Cliff, Challenges in evolving controllers for physical
robots, Robotics and Autonomous Systems , Vol. 19, No. 1, pp. 67-
83, 1996.

[15] S Nolfi, D. Floreano, “Evolutionary Robotics: The Biology,
Intelligence, and Technology of Self-Organizing Machines”, The
MIT Press, Cambridge Massachusetts, 2000.

[16] D. Floreano, J. Urzelai, , Evolutionary Robotics: The Next
Generation. In T. Gomi (ed.), Evolutionary Robotics III, Ontario
(Canada): AAI Books, pp. 231-266, 2000.

[17]  K. Chellapilla, D. B. Fogel, Evolving an Expert Checkers Playing
Program Without Using Human Expertise.  IEEE Transactions on
Evolutionary Computation, Vol. 5, No. 4, pp. 422-428, 2001.

[18] John Galeotti, The EvBot A Small Autonomous Mobile Robot for
the Study of Evolutionary Algorithms in Distributed Robotics, MS
Thesis, North Carolina State University, 2002.

[19] I. Ashiru, C.A.Czarnecki, Evolving Communicating Controllers for
Multiple Mobile Robot Systems, Proceedings of the 1998 IEEE
International Conference on Robotics and Automation, Vol. 4, pp
3498-3503, 1998.


