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Convergence of a Discretized Self-Adaptive
Evolutionary Algorithm on Multi-Dimensional
Problems

William E. Hart, John M. DeLaurentis

Abstract—We consider the convergence properties of iteration¢, andz}, is the value of thet-th dimension of
a non-elitist self-adaptive evolutionary strategy (ES) on ;! This ES generates new points ¢&', ... 2%) in
multi-dimensional problems. In particular, we apply our each iteration by searching along thedimension, and

g%cs?g; ?r:\é?;?:dn?le )t\r)'eé)gy t];]o;t io(::\slgggzeg(g ’g)éllz;stoof it selects the best point generated for the next iteration.

seperable, unimodal multi-dimensional problems. This ES updates the mutation scale and new points using
2n random variableD;, and By, k = 1,...,n; o' is
| INTRODUCTION updated with the valuel}’, and 3" is updated with

The distinguishing feature of self-adaptive evolutiont-he valueb;®. Since we are searching each dimension
>1ng 9 P . In an independent manner, this allows for different

ary algorithms (EAS) is that the control parameters (like o . X X
. - * “randomization schemes for different dimensions.

mutation step lengths) are evolved by the evolutionary

algorithm. Thus the control parameters are adapted in an

implicit manner that relies on the evolutionary dynamicsGiven z°, o°

to ensure that more effective control parameters argor ¢t =1, ...

propagated during the search [3]. Self-adaptation is a  Selectk € {1,...,n} uniformly at random

central feature of EAs like evolutionary stategies (ES) Fori=1:\

and evolutionary programming (EP), which are applied bt = gt andott = ot
to continuous design spaces. oyt =ob - dy
Rudolph [7] summarizes theoretical results concerning xzv =2l + O'Z’i . bzl

self-adaptive EAs and notes that the theoretical under-  gpq
pinning_s for these methods are_essentially unexplored. j = argmin;_1., f(zt)
In particular, convergence theories that ensure conver-  .t+1 _ .t
gence to a limit point on continuous spaces have only t+1 _ ¢
been developed by Rudolph [6], Hart, DeLaurentis andeq
Ferguson [5], and Auger et al. [1], [2].
In this paper, we illustrate how our analysis of a _
(1,\)-ES for one-dimensional unimodal functions cafio: 1t.iAself-adaptiveﬁl,)\)-ESfor multi-dimensional problemd;”

be used to ensure convergence of a related ES on mlﬂﬁgbk are generated from random variableg and By, respectively.
dimensional functions. Thigl, \)-ES randomly selects

a search dimension in each iteration, along which points\y,e consider self-adaptivil, \)-ESs that use discrete

generated. For a general class of separable functiops,gom variables fob);, and By. Letdff be a realization

our analysis shows that the ES searches along eaghihe random variableD,: d' e {7, 1,7}, where
dimension independently, and thus this ES converges{o | _, "Let,! — P{D, * et 12 ’:’P{bk — 1)

the (global) minimum.

and v} = P{Dy, = n} for all ¢; we assume that these
probabilities are nonzero. Thus,’ = oid}’. A step

Il. ADISCRETIZEDES lenatho’ | dt date theth di A fpti
: . . engtho " is used to update t imension ofx?%:
COEES;’ ilndﬁ]si;:rlb:setrh? Seelgidzgﬁ(ﬁe)‘s)ﬁi th;tn\t’v?n zyt =t + 0, by", whereb " is the realization of the
papery P random variableBy.: by’ € {—1,+1} with probabilities
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Algorithm A: convergence for any other functioh with nonzero
global minimizer by considering the convergence of the

Assumption 1 For £ = 1,...,n, Algorithm A has the function f(z) = h(zy +27,...,z, + ;).
property that

1) 172 <y, <1, [1l. CONVERGENCETHEORY

2) 1 <mp <2—1y,

3) Ves Mk € Q! and

4) v}, v} and X are chosen so thapylogn, +

qr log v, > 0, where

The convergence theory that we describe considers the
sequence of best points in each iteration of an implicitly
self-adaptive(1, \)-ES, and we show that these points
4 o\ 4 o0 convergealmost surely(i.e. with probability one) on

o pr=1=(1-v3/2)"+ (v}/2) unimodal functions for a suitable choice of parameters.
e g =((1 +y,§)/2)A - (1= u,i)/Q)A. If Y andY; are random variables, then we say that
] ] ] . . the sequencdY;};>o converges almost surely 5 if
Our analysis applies when Algorithm is applied to P{lim,_... Y; = Y? — 1. We write this asy; 25 V.

objective functions that satisfy the following assumptionsee Grimmett and Stirzaker [4] for a thorough discussion
of stochastic convergence.

Assumption 2 The function f(z) = >77_; gr(zk), The following theorem shows that Algorithmd con-
whereg; : R — R has the property that verges to the minimum of by showing thatX§ , == 0
1) there exists a unique global minimunj = 0, andxt , £ 0 for all k.
2) gi is strictly monotonically increasing fox;, € '
(x5, 00).

3 ; il ically d ing f Theorem 3 Suppose that Algorithr satisfies Assump-
) gr is strictly monotonically decreasing far; < tion 1 and thatf satisfies Assumption 2. Then there

*
(o0, ). exists A" such that for allA > ", X}, == 0 and

The elements of Assumption 1 are consistent witﬁ&,k == 0 for all k.
the assumptions made to ensure convergence on one- ) . : .
dimensional unimodal problems in Hart et al. [5]. As- Proqf. Let X5, and X5, 'b.e the stochastic pro-
sumption 1.1 and 1.2 ensure that the expansion afii>> _defmed on some probabll!ty SpaE 7, P). that
contraction factors are well-balanced. Assumption 1.3 Sc_f'b?s the behavior of Algor!thm on f. A simple
plication of the Borel-Cantelli Lemma demonstrates

used to simplify the proof that the step lengths conver%f h di SO | 4 infinitely oft ith
to zero. Assumption 1.4 ensures that the expected sea fit each dimension s selected infinitely often wit

behavior ong;, away fromz; should increase the steppmb‘"‘b'IIty one. . .
length. For some evenw € (, considerz?(w) and suppose

Let X{ , and§ , be random variables that descripdhat the k-th dlmend5|_onhha§ been se_llleﬁted fo; search.
the distribution of the values of¢ and o' respectively ANY Point generated in this iteration will have a function

when a population of sizé is used by AlgorithmA value

on a function that satisfies Assumption 2. The following Zgi(xﬁ(w)) + g (2 (w) + Azt (w)),
two theorems restate our previous convergence results iz

using our current notation. Note that these theorems ap-

ply to one-dimensional, unimodal functions that satisfy*here Az} (w) is some step taken along thieth di-
Assumption 2. mension. Note that the first term in this expression is

independent of the value dfz! (w). Since the selection

Theorem 1 (Theorem 2, [5]) Suppose that Algorithm _criter?a used to find the best of thk points in this
A satisfies Assumptions 1.1, 1.2 and 1.3, and suppdigation solely depends on thelative ranksof the
that the functionf : R — R satisfies Assumption 2. TherP0iNts generated, this selection is independent of the
there exists\' > 0 such that for allA > X', £§ , %% 0. Particular value of this constant term.

’ This argument applies in all cases, so we have shown
Theorem 2 (Theorem 3, [5]) Suppose that Algorithm Fhat in each iteration, the selection _of the_next it_erate on!y
A satisfies Assumption 1, and suppose that the functikﬂ’{c""es the value of the current dimension being modi-

f: R — R satisfies Assumption 2. Then there exis{i€d- Consequently, the random Va“"’_‘?@""’Xé,n
N > X such that for allA > A", X% | 4 0. are independent and the random variablgs, . .., X ,

are independent. Thus our previous analysis can be
Note that we assume thaf, = 0 for eachg; only directly applied to describe the dynamics m;k and
for convenience sake, since if an EA converges on3¥ , for any k [5]; for any k, Theorems 1 and 2 to
function that satisfies this condition, then we can shoshow that there exists some such that for allx > Ay,
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Xt 2%, 0 and ¥4 2%, 0. It suffices to make [6] G. Rudolph. Convergence of non-elitist strategiesPtac of the

A= maxy Ay O corﬁplete our proof. ™ First IEEE Conf on Evolutionary Computatiprolume 1, pages
63-66, Piscataway, NJ, 1994. IEEE Press.

) ) [7] G. Rudolph. Self-adaptive mutations may lead to premature
Theorem 3 applies for a general class of unimodal convergence.lEEE Trans Evolutionary Computatiprs(4):410—

problems in any dimension. Note that Algorithr is 414, 2001.
not practically relevant if\g > 6, since in this case you
could simply enumerate all of the six points that can
be generated in each iteration. However, our analysis of
Algorithm A is effectively reduced to the independent
convergence along each dimension of the \)-ES
described by Hart et al. [5]. Consequently, we argue
that our analysis of the valuk, for the one-dimensional
case effectively demonstrates that Algorittdncan be
practically relevant. That is, we have, < 6 in cases
where A\, < 6 for each dimension.

We conclude with a corollary that highlights the fact
that our analysis demonstrates convergence on sphere
functions, which are commonly considered in the anal-
ysis of ES. Consequently, this work complements the
recent work by Auger [1] which proves convergence of
the (1, \)-ES with normal mutation on sphere functions.

Corollary 1 Suppose that AlgorithmA satisfies As-
sumption 1 and thaf(z) = Y, z7. Then there existy,
such that for allx > Ao, X}, == 0 and £§ , == 0
for all k.
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