
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, SUBMISSION 1

Convergence of a Discretized Self-Adaptive
Evolutionary Algorithm on Multi-Dimensional

Problems
William E. Hart, John M. DeLaurentis

Abstract— We consider the convergence properties of
a non-elitist self-adaptive evolutionary strategy (ES) on
multi-dimensional problems. In particular, we apply our
recent convergence theory for a discretized(1, λ)-ES to
design a related (1, λ)-ES that converges on a class of
seperable, unimodal multi-dimensional problems.

I. I NTRODUCTION

The distinguishing feature of self-adaptive evolution-
ary algorithms (EAs) is that the control parameters (like
mutation step lengths) are evolved by the evolutionary
algorithm. Thus the control parameters are adapted in an
implicit manner that relies on the evolutionary dynamics
to ensure that more effective control parameters are
propagated during the search [3]. Self-adaptation is a
central feature of EAs like evolutionary stategies (ES)
and evolutionary programming (EP), which are applied
to continuous design spaces.

Rudolph [7] summarizes theoretical results concerning
self-adaptive EAs and notes that the theoretical under-
pinnings for these methods are essentially unexplored.
In particular, convergence theories that ensure conver-
gence to a limit point on continuous spaces have only
been developed by Rudolph [6], Hart, DeLaurentis and
Ferguson [5], and Auger et al. [1], [2].

In this paper, we illustrate how our analysis of a
(1, λ)-ES for one-dimensional unimodal functions can
be used to ensure convergence of a related ES on multi-
dimensional functions. This(1, λ)-ES randomly selects
a search dimension in each iteration, along which points
generated. For a general class of separable functions,
our analysis shows that the ES searches along each
dimension independently, and thus this ES converges to
the (global) minimum.

II. A D ISCRETIZEDES

Figure 1 describes the self-adaptive(1, λ)-ES that we
consider in this paper;xt ∈ Rn denotes the point in
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iteration t, andxt
k is the value of thek-th dimension of

xt. This ES generatesλ new points (xt,1, . . . , xt,λ) in
each iteration by searching along thek-dimension, and
it selects the best point generated for the next iteration.
This ES updates the mutation scale and new points using
2n random variablesDk and Bk, k = 1, . . . , n; σt,i

k is
updated with the valuedt,i

k , and xt,i
k is updated with

the valuebt,i
k . Since we are searching each dimension

in an independent manner, this allows for different
randomization schemes for different dimensions.

Given x0, σ0

For t = 1, . . .
Selectk ∈ {1, . . . , n} uniformly at random
For i = 1 : λ

xt,i = xt andσt,i = σt

σt,i
k = σt

k · dt,i
k

xt,i
k = xt

k + σt,i
k · bt,i

k

End
j = arg mini=1:λ f(xt,i)
xt+1 = xt,j

σt+1 = σt,j

End

Fig. 1. A self-adaptive(1, λ)-ES for multi-dimensional problems:dt,i
k

andbt,i
k are generated from random variablesDk andBk respectively.

We consider self-adaptive(1, λ)-ESs that use discrete
random variables forDk andBk. Let dt,i

k be a realization
of the random variableDk: dt,i

k ∈ {γk, 1, ηk}, where
γk < 1 < ηk. Let ν1

k = P{Dk = γk}, ν2
k = P{Dk = 1}

and ν3
k = P{Dk = ηk} for all t; we assume that these

probabilities are nonzero. Thusσt,i
k = σt

kdt,i
k . A step

lengthσt,i
k is used to update thek-th dimension ofxt,i:

xt,i
k = xt

k + σt,i
k · bt,i

k , wherebt,i
k is the realization of the

random variableBk: bt,i
k ∈ {−1, +1} with probabilities

{ 1
2 , 1

2} respectively.
Let Algorithm A denote the self-adaptive(1, λ)-ES

that employs these random variables. We make the
following assumption concerning the parameterization of
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Algorithm A:

Assumption 1 For k = 1, . . . , n, Algorithm A has the
property that

1) 1/2 < γk < 1,
2) 1 < ηk < 2− γk,
3) γk, ηk ∈ Q, and
4) ν1

k , ν3
k and λ are chosen so thatpk log ηk +

qk log γk > 0, where

• pk = 1 =
(
1− ν3

k/2
)λ +

(
ν3

k/2
)λ

• qk =
(
(1 + ν1

k)/2
)λ − (

(1− ν1
k)/2

)λ
.

Our analysis applies when AlgorithmA is applied to
objective functions that satisfy the following assumption:

Assumption 2 The function f(x) =
∑n

k=1 gk(xk),
wheregk : R → R has the property that

1) there exists a unique global minimumx∗k = 0,
2) gk is strictly monotonically increasing forxk ∈

(x∗k,∞).
3) gk is strictly monotonically decreasing forxk ∈

(−∞, x∗k).

The elements of Assumption 1 are consistent with
the assumptions made to ensure convergence on one-
dimensional unimodal problems in Hart et al. [5]. As-
sumption 1.1 and 1.2 ensure that the expansion and
contraction factors are well-balanced. Assumption 1.3 is
used to simplify the proof that the step lengths converge
to zero. Assumption 1.4 ensures that the expected search
behavior ongk away fromx∗k should increase the step
length.

Let Xt
λ,k andΣt

λ,k be random variables that describe
the distribution of the values ofxt and σt respectively
when a population of sizeλ is used by AlgorithmA
on a function that satisfies Assumption 2. The following
two theorems restate our previous convergence results
using our current notation. Note that these theorems ap-
ply to one-dimensional, unimodal functions that satisfy
Assumption 2.

Theorem 1 (Theorem 2, [5]) Suppose that Algorithm
A satisfies Assumptions 1.1, 1.2 and 1.3, and suppose
that the functionf : R → R satisfies Assumption 2. Then
there existsλ′ > 0 such that for allλ > λ′, Σt

λ,1
a.s.−−→ 0.

Theorem 2 (Theorem 3, [5]) Suppose that Algorithm
A satisfies Assumption 1, and suppose that the function
f : R → R satisfies Assumption 2. Then there exists
λ′′ ≥ λ′ such that for allλ > λ′′, Xt

λ,1
a.s.−−→ 0.

Note that we assume thatx∗k = 0 for eachgk only
for convenience sake, since if an EA converges on a
function that satisfies this condition, then we can show

convergence for any other functionh with nonzero
global minimizer by considering the convergence of the
function f(x) = h(x1 + x∗1, . . . , xn + x∗n).

III. C ONVERGENCETHEORY

The convergence theory that we describe considers the
sequence of best points in each iteration of an implicitly
self-adaptive(1, λ)-ES, and we show that these points
convergealmost surely(i.e. with probability one) on
unimodal functions for a suitable choice of parameters.
If Y and Yt are random variables, then we say that
the sequence{Yt}t≥0 converges almost surely toY if
P{limt→∞ Yt = Y } = 1. We write this asYt

a.s.−−→ Y .
See Grimmett and Stirzaker [4] for a thorough discussion
of stochastic convergence.

The following theorem shows that AlgorithmA con-
verges to the minimum off by showing thatXt

λ,k
a.s.−−→ 0

andΣt
λ,k

a.s.−−→ 0 for all k.

Theorem 3 Suppose that AlgorithmA satisfies Assump-
tion 1 and thatf satisfies Assumption 2. Then there
existsλ′′′ such that for allλ ≥ λ′′′, Xt

λ,k
a.s.−−→ 0 and

Σt
λ,k

a.s.−−→ 0 for all k.

Proof: Let Xt
λ,k and Σt

λ,k be the stochastic pro-
cess defined on some probability space(Ω,F , P ) that
describes the behavior of AlgorithmA on f . A simple
application of the Borel-Cantelli Lemma demonstrates
that each dimension is selected infinitely often with
probability one.

For some eventω ∈ Ω, considerxt(ω) and suppose
that the k-th dimension has been selected for search.
Any point generated in this iteration will have a function
value

∑

i 6=k

gi(xt
i(ω)) + gk(xt

k(ω) + ∆xt
k(ω)),

where ∆xt
k(ω) is some step taken along thek-th di-

mension. Note that the first term in this expression is
independent of the value of∆xt

k(ω). Since the selection
criteria used to find the best of theλ points in this
iteration solely depends on therelative ranks of the
points generated, this selection is independent of the
particular value of this constant term.

This argument applies in all cases, so we have shown
that in each iteration, the selection of the next iterate only
involves the value of the current dimension being modi-
fied. Consequently, the random variablesXt

λ,1, . . . , X
t
λ,n

are independent and the random variablesΣt
λ,1, . . . , Σ

t
λ,n

are independent. Thus our previous analysis can be
directly applied to describe the dynamics ofXt

λ,k and
Σt

λ,k for any k [5]; for any k, Theorems 1 and 2 to
show that there exists someλk such that for allλ ≥ λk,
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Xt
λ,k

a.s.−−→ 0 and Σt
λ,k

a.s.−−→ 0. It suffices to make
λ′′′ = maxk λk to complete our proof.

Theorem 3 applies for a general class of unimodal
problems in any dimension. Note that AlgorithmA is
not practically relevant ifλ0 ≥ 6, since in this case you
could simply enumerate all of the six points that can
be generated in each iteration. However, our analysis of
Algorithm A is effectively reduced to the independent
convergence along each dimension of the(1, λ)-ES
described by Hart et al. [5]. Consequently, we argue
that our analysis of the valueλ0 for the one-dimensional
case effectively demonstrates that AlgorithmA can be
practically relevant. That is, we haveλ0 < 6 in cases
whereλk < 6 for each dimension.

We conclude with a corollary that highlights the fact
that our analysis demonstrates convergence on sphere
functions, which are commonly considered in the anal-
ysis of ES. Consequently, this work complements the
recent work by Auger [1] which proves convergence of
the (1, λ)-ES with normal mutation on sphere functions.

Corollary 1 Suppose that AlgorithmA satisfies As-
sumption 1 and thatf(x) =

∑
i x2

i . Then there existsλ0

such that for allλ ≥ λ0, Xt
λ,k

a.s.−−→ 0 and Σt
λ,k

a.s.−−→ 0
for all k.
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