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Abstract- This paper introduces a new selection algo-
rithm that can be used for evolutionary path planning sys-
tems. This new selection algorithm combines fuzzy inference
along with tournament selection to select candidate paths
(CPs) to be parents based on: (1) the Euclidean distance
from origin to destination, (2) the sum of the changes in the
slope of a path, and (3) the average change in the slope of
a path.

In this paper, we provide a detailed description of the
fuzzy inference system used in the new fuzzy tournament
selection algorithm (FTSA) as well as some examples of its
usefulness. We use 12 instances of our FTSA to rank a
population of CPs using the above criteria. Based on its
path ranking capability, we show how the FTSA can obviate
the need for the development of an explicit multiobjective
evaluation function. Finally, we use the FTSA to enhance
the performance of an existing evolutionary path planning
system called GEPOA.

I. INTRODUCTION

RECENTLY , there has been a growing number of suc-
cessful applications of Evolutionary Path Planners [l,

2, 3, 6, 8, 10, 11, 13, 141. However, many of these systems
are primarily concerned with finding the shortest path be-
tween a starting point and a destination for a robot to
traverse.

In path planning, the shortest path may not always be
the most efficient means of getting from start to destina-
tion. There are many other attributes of a path that may
be desirable in addition to distance. One example would be
the smoothness of a path. The development of an effective
multiobjective closed-form fitness equation for evolution-
ary path planning may be difficult. Therefore, our con-
centration has been placed on the development of a mul-
tiobjective selection method based on fuzzy inference [16].
By concentrating on selection, one only need be concerned
with how individuals of a population compare relative to
one anot  her.

In this paper, we introduce a new tournament selection
method, called fuzzy tournament selection, that can be
used with evolutionary path planning systems. The fuzzy
tournament selection algorithm (FTSA) described in this
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paper selects candidate paths (CPs)  to be parents and un-
dergo reproduction based on: (1) the Euclidean distance
of a path from the origin to its destination, (2) the sum
of the changes in the slope of a path, and (3) the aver-
age change in the slope of a path. The remainder of this
paper is organized as follows. In Section II we provide a
brief overview of multiobjective optimization. In Section
III we briefly describe some related work that inspired the
development of our FTSA. In Section IV, we discuss our
new FTSA in detail by ‘walking through’ an example fuzzy
tournament between two CPs. In Section V, we present our
experiments and results, and in Section VI, we present our
conclusions. In Section VII, we discuss our ongoing work.

II. M U L T I O B J E C T I V E  O P T I M I Z A T I O N

The multiobjective optimization problem (MOP) can
be stated as follows. Given a set of objective functions
f = {flJ2,** .,fm),findapointx=(vr,v~  ,..., v,}such
that f is minimized (or maximized). In order to effectively
discriminate between two points x0 and xl it is impor-
tant to impose some type of preference structure on f [15],
which defines the relevance of each objective function in f.
A candidate solution to the MOP, x0, is said to dominate
another candidate solution, xl, if x0 is preferred based on
some preference structure P.

In [15],  Yu introduces three preference structures for mul-
tiobjective optimization: value function preference, Pareto
preference, .and lexicographic preference. In value func-
tion preference, a function g is defined on f such that
g(x0) < g(xr) if and only if x0 is preferred to xl. In the
above case, x0 is said to dominate xl and xi is said to be
dominated by x0.

Perhaps the most widely used preference structure used
in evolutionary multiobjective optimizers is the Pareto
preference structure [9, 121. Using Pareto preference, x0 is
said to dominate xl if V&(x0)  5 fi(xl)  A&fi(zo)  < fi(xr)
[12].  The Pareto optimal set of a MOP is the set of all non-
dominated points.

Another type of preference structure is known as lexi-
cographic preference. In this type of preference an order
is imposed on f and a point x0 is said to dominate an-
other point, x1 if frc(xo) < fk(x1)  and fi(xo)  = fi(xr) for
i = l,.. . , k - 1. Our FTSA can be viewed as a gener-
alization of lexicographic preference. In fact, it may best
be referred to as fuzzy lexicographic preference (FLP). In
FLP, the <, >, and = operators are fuzzy sets which return
a membership grade. This membership grade is a value
within the interval [O..l], where 0 means strictly false, 1
means strictly true, and a value in between the two ex-
tremes represents some possibility of truth.
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III. RELATED W O R K

The development of our FTSA was inspired, in part, by
[5, 10, 111. In [lo], Xiao, Michalewicz, Zhang and Tro-
janowski present a value preference structure for optimiz-
ing motion plans based on path length, path smoothness
and clearance (feasibility). In [5], Fujimura uses Pareto
preference for discovering a set of pareto-optimal motion
plans based on path length and energy consumption. In
[ll], Shibata and Fukuda use a “fuzzy” value preference
structure for developing motion plans based on time and
load objectives (constraints).

IV. FUZZY T OURNAMENT SE L E C T I O N

The overall objective of our FTSA is to allow evolution-
ary path planners to evolve CPs that have: (1) minimal
distances from start to destination, (2) minimal sums of the
changes in slope (SCS), and (3) minimal average changes
in slope (ACS). Our FTSA takes six inputs: the distances,
the SCS , and the ACS of two CPs (CPl and CP2) that are
randomly chosen from the current population and returns
one output in the continuous interval P- 1 11. This output
corresponds to the CP which should be selected to be a
parent. Any output that is less than zero means that CPI
is to be selected while any output greater than zero means
that CPS is to be selected.

Implementation of a fuzzy inference system requires as-
signing membership functions for both inputs and outputs
by partitioning the respective universes of discourse using
fuzzy subsets. With knowledge of the membership func-
tions in place, the fuzzy system performs three primary
operations - fuzzification of input variables, inference via
a set of fuzzy rules that map fuzzy inputs to fuzzy outputs,
and defuzzification of aggregated fuzzy outputs. In what
follows, we describe these three attributes as implemented
in our FTSA.

A. Fuxxijication
Each CP chosen randomly from the current population

has three attributes: (1) the Euclidean distance of the CP
from start to destination, (2) the SCS along the CP, and (3)
the ACS along the CP. For example, consider two CPs. Let
dl = 24.80, s1 = 17.96, al = 1.80, dz = 25.37, s2 = 11.46,
and u2 = 1.91, represent the distance, SCS, and ACS of
CPI and CP2. We convert the six inputs into 3 derived
parameters, d, s, and a, whose values are in [-l,l] as follows:

d _ h-6 =
- &+&

24.80-25.37 _ -0 01
24.80+25.37 - ' '

S= s1-s2 = 17.96-11.46
s1+s2 17.96+11.46 = 0.22, and

U=~+L#& -0.03.. .
Notice that for values of d, s, and a, which are less than
zero, the more desirable attribute belongs to CPI and vice-
versa for CP2. Upon closer inspection of d, s, and a one
can see that CP1 has a slightly shorter distance and ACS
than CP2 while CP2 has a smaller SCS than CPI.

Each of the derived inputs d, s, a, has a domain par-
titioned by three fuzzy subsets defined using overlapping
membership functions. Figure 1 shows the three member-
ship functions for x. They are described as follows. If the

-1.0 -x 0.0 X 1.0
A

Fig. 1. The Membership Functions for LT, EQ(X), and GT

value of x is non-positive then it is a member of set LT
with degree ~LT(x).  Members of LT represent the set of
all tuples (x1, x2) such that x1 < x2. That is xl is less
than x2. Similarly, values of x that are non-negative are
members of set GT with degree pan and represent the
set of tuples (x1, x2) such that xl > x2.

All values of 1x1 < X are members of set EQ with degree
PEQ(X,+~-~ ifX>x>O.Oandp~~(X,~)=l+$
if -X < x < 0.0. Members of EQ represent the set of all
tuples (xl, 4 such that x1 = ~2. That is based on X,
x1 is approximately the same as x2. By changing X the
FTSA has the ability to adapt its focus on optimizing an
objective.

For the continuation of our example, let D = S = A =
0.15. Therefore,

d = -0.01 has membership degree 0.01 in LT, degree
0.93 in E&(D), and degree 0.0 in GT.

s = 0.22 has membership degree 0.00 in LT, degree 0.00
in E&(S), and degree 0.22 in LT.
U= -0.03 has membership degree 0.03 in LT, degree
0.80 in EQ(A), and degree 0.0 in GT.

B. Fuzzy Rulebase  and Inference
The fuzzy rulebase  is formulated as shown in Figure 2.

Actually our rulebase  consists of 3 rules. Rules l-3 can be
viewed as one rule with three ‘ORed’ antecedents. Rule
4 could be viewed as a second rule and Rules 5-7 can be
viewed as the third and final rule. For each of the seven
rules, P represents the singleton consequent of a rule. If the
consequent of a rule is P = -1, then the rule has specified
that CPI should be selected to be a parent. Similarly if a
rule’s consequent is P = 1 then it has specified that CP2
should be selected.

The rulebase  shown in Figure 2 is an example of a zero-
order Sugeno fuzzy rulebase  [7]. This is because each con-
sequent of a rule is a zero-degree polynomial of the input
variables (of the rule). In an n-order Sugeno fuzzy rulebase
the consequent of each rule would be nth degree polynomial
of the input variables.

In continuation of our example, we can compute the
fire strength of each of the antecedents by using the
multiplication operator for conjunction and the mux op-
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Rule I: If d is LT Then P = -1
Rule 2: If d is EQ(D) and s is LT Then P = -1
Rule 3: If d is EQ(D) and s is EQ(S) and a is LT Then P = -1
Rule 4: If d is EQ(D) and s is EQ(S) and a is EQ(A) Then P = 0
Rule 5: If d is EQ(D) and s is EQ(S) and a is GT Then P = I
Rule 6: If d is EQ(D) and s is GT Then P = I
Rule 7: If d is GT Then P = 1

Fig. 2. The Fuzzy Rulebase

erator for disjunction. Let fi denote the fire strength of
Rule i. The fire strengths are as follows (where d = -0.01,
s = 0.22, a = -0.03, and D = S = A = 0.15):

fi = pL*(-0.01)  = 0.01,
fi = ,uEQ(D, -0.01) * ~~~(0.22)  = 0.93 * 0.00,
f3 = pEQ(D, -0 .01 )  * /&Q(S,0.22)  * ,ULT(-0.03)  =
0.93 * 0.00 * 0.00,

,f4 = ~EQ(D, -0.01) * pg~(S, 0.22) * ~EQ(A, -0.03) =
0.93 * 0.00 * 0.80,

fs = ~EQ(D, -0.01) * p~~(S,0.22) * /LGT(-0.03)  =
0.93 * 0.00 * 0.00,

f~ = ~EQ(D, -0.01) * /L&S, 0.22) = 0.93 * 0.22, and
f7 = /QT(-0.01)  = 0.00.

Notice that only two rules fire; Rule 1 fires with fi = 0.01
and Rule 6 fires with ~~ = 0.20. The other five rules have
fire strengths of 0.0.

At this point, our rules have three consequences. Let
the first consequent be P = -1, the second consequent
be P = 0, and the third consequent be P = 1. Also let
Pk be the ‘ORed’ fire strengths of all rules associated with
the kth consequent. Thus, Fl = max(fi,fz,  f3) = 0.01,
F2 = f-4 = 0.00, and Fs = max(f5, f-6, j-7) = 0.20.

C. Defuzzijication
The defuzzification technique used is the mean of the

maxima [7], [ 111. Let Pk represent the consequent for Pk.
Thus, PI = -1, Pz = 0.0 and Ps = 1.0. Our defuzzifica-
tion function is 0 = w = 0.90, where 0 represents. .
the output of the our zerolorder  Sugeno fuzzy inference sys-
tem. Therefore, in conclusion of our example CP2  would
be selected to be a parent.

V .  E X P E R I M E N T S  A N D  R E S U L T S

A. Experiment I
In order to test our FTSA, we have chosen seven

paths shown in Figure 3. The paths all have the same
start (located at (0.5, 10.0)) and destination (located at
(19.5,lO.O)).  These paths could have been created by any
of the aforementioned evolutionary planning systems. The
attributes for each of the seven paths are shown in Figure
4. Notice that the paths are sorted based on their distances
with path1 being the shortest and path7 being the longest.
Having the paths arranged in this manner will help one to
see how the FTSA goes about selection based on distance,
SCS, and ACS.

In this experiment, we allowed each of the seven paths
to compete in a match with every other path (a to-

20
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The Plots of the Seven Paths
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X

Fig. 3. The Plots of the Seven Paths

Fig. 4. The Attributes of the Seven Paths

tal of 21 matches in all). The FTSA was used to se-
lect the better of the two paths. When a path won a
match, a counter corresponding to the winning path was
incremented. We performed the above procedure twelve
times; one for each of the values of D taken from the set
{0.0,0.025,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5}.
We kept S and A constant at 0.15.

B. Experiment I Results
The results of our first experiment are shown in Figure 5.

Notice that when D = 0.0 the ranking of the paths is based
purely on distance. This corresponds to how a conven-
tional evolutionary path planner using tournament selec-
tion would assign wins. As we increase the range of similar-
ity for the path lengths, D, the longer but smoother paths
are increasingly preferred over the shorter paths. This is
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Path 0 = OII Ml25 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0*45  0.5
Path 1 6 4 2 2 2 1 1 0 0 0 0 0
Path 2 5 6 6 6 6 6 5 5 4 4 4 4
Path 3 4 5 5 5 4 3 3 3 3 3 3 3
Path 4 3 3 4 3 2 2 2 2 2 2 2 2
Path 5 2 2 3 2 1 1 1 1 1 1 1 1
Path 6 1 1 0 2 3 4 4 4 5 5 5 5
Path 7 0 0 1 1 3 4 5 6 6 6 6 6

Fig. 5. Path Rankings vs.

I

,D, with S = 0.15 and A = 0.15

indicated by the fact that the longer, smoother paths re-
ceive an increasing number of wins as D is increased to
0.35.

Notice that when D = 0.25 Path 2 (the second shortest
path) and Path 7 (the longest path) have the same number
of wins. This is interesting because they both lost one
tournament to another path.

A surprising and unexpected result can be seen upon
closer observation of Figure 5! Notice that number of wins
assigned to Path 1 and Path 7 decreases/increases mono-
tonically as D is increased. However, this is not the case for
Paths 2-6. To better see this phenomenon, observe Figure
6.

In Figure 6, the number of wins versus the corresponding
value of D is plotted for each of the seven paths. These
results are both shocking and encouraging! It seems that
even though our FTSA is simple and is composed of three
rules it still exhibits some complex behavior. This behavior
we see as a result of changing the values of only one of three
parameters.

In Section 3, one may have thought that Rule 4 was
extraneous. Actually this is not the case at all. Rather than
having Rule 4’s consequent tied to 0.0 one could instead
use the consequent to signal for the values of D, S, and
A to be modified. In other words, Rule 4 can be used to
indicate the convergence of the population. If Rule 4 fires
regularly then this is a sign the population is converging.
By modifying the values of D, S, and A, the FTSA causes
an evolutionary path planner to place greater emphasis on
other attributes. How D, S, and A are effectively modified
is a topic for future research.

C. Experiment II
In Experiment II, we used our FTSA in a hybrid

evolutionary/visibility-based motion planning and obstacle
avoidance system called GEPOA [3]. GEPOA uses steady-
state reproduction, flat crossover [4] with gaussian  muta-
tion, and uniform mutation in an effort to develop feasible,
minimal distance paths. In each generation two parents
are selected using tournament selection with a tournament
size of 2. If the first parent selected represents an infea-
sible path, it is repaired 50% percent of the time. If the
first parent selected is feasible then the two parents cre-
ate one offspring which replaces the worst individual in the

Path Rankings (WINS) vs. D with S = A = 0.15
101 , , , , , , , , , 1
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Fig. 6. The Plots of Wins vs. D

population. For FTS to be effectively used in this type of
system, it must be able to adequately rank individuals of a
population as was shown previously. For the remainder of
this paper, let GEPOA+FTS denote GEPOA with fuzzy
tournament selection.

Using the environment shown in Figure 3, we compared
the paths developed by GEPOA and GEPOA+FTS. The
parameters for each of these algorithms were as follows:
the population size was 20, the flat crossover with gaussian
mutation (standard deviation = 4.0) usage rate was 0.66,
and the uniform mutation rate was 0.34. After the initial
population was created, both algorithms were allowed to
run for 500 generations, thus, creating a total of 520 in-
dividuals. For GEPOA+FTS, we set D = 0.15, S = 0.15,
and A = 0.15.

D. Experiment II Results
Figures 7 and 8 show the initial populations that were

randomly generated by GEPOA and GEPOA+FTS respec-
tively. Since GEPOA and GEPOA+FTS use a visibility-
based algorithm to repair infeasible paths, it is not uncom-
mon to find feasible (but sub-optimal) paths in the initial
population.

Figure 9 shows the population of paths developed by
GEPOA after 500 steady-state generations. Notice that
GEPOA has converged upon the two equal and shortest
paths; however, these paths are quite rugged. By con-
trast, Figure 10 shows the population of paths developed
by GEPOA+FTS after 500 steady-state generations. First
of all notice that GEPOA+FTS has converged upon a num-
ber of good paths. Notice also in Figure 10 that the short-
est path is still represented. The fact that it is infeasible
is not a major concern because it has a chance of being
repaired! Not only does FTS allow evolutionary search to
converge upon the best path but it also seems to allow for
a great deal of valuable, much needed diversity.



Plot of GEPOA Population at Generation 0

Fig. 7. Population of GEPOA at Generation 0 Fig. 9. Population of GEPOA after 500 Generations

Plot of GEPOAtFTS Population at Generation 0
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Fig. 8. Population of GEPOA+FTS at Generation 0

VI. C O N C L U S I O N S

In this paper we presented a FTSA that can be used for
multiobjective path planning by almost any evolutionary-
based motion planning system. Despite the simple nature
of the fuzzy inference system used, the FTSA exhibits com-
plex behavior. Even when the variable parameters of the
FTSA are constant, the FTSA seems to be able to allow
evolutionary search to converge upon a diversity of optimal
and/or near optimal paths. The availability of alternative
feasible paths is important in the event that a local naviga-
tion system cannot traverse a particular global path. This
can happen, for example, when unfavorable conditions are
sensed locally, replanning becomes necessary, or task con-
straints intervene.

VII.  O N G O I N G  W O R K

Our ongoing work will be devoted to developing and ex-
perimenting with strategies which will allow GEPOA+FTS
to adapt the values of D, S, and A during run-time. This

Plot of GEPOA Population at Generation 500I I I
Environment -

Population -+--

Plot of GEPOAtFTS Population at Generation 500

0
0 5 10 15

X

Fig. 10. Population of GEPOA+FTS after 500 Generations

will allow the algorithm greater flexibility as it seeks to
strike a balance between selection pressure and diversity.

One can see how the FTSA presented in this paper can be
modified to co-evolve feasible and unfeasible paths. Upon
closer inspection of the fuzzy rulebase  in Figure 2, one can
see that distance is the primary attribute, SCS is the sec-
ondary attribute, and ACS is the tertiary attribute. The
FTSA can be modified in the following way: let the viola-
tion distance be the primary attribute, let distance be the
secondary attribute and let ACS be the tertiary attribute.
Our ongoing work will also be devoted to investigating co-
evolutionary FTSAs.
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