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The evolutionary rates of proteins vary over several orders of
magnitude. Recent work suggests that analysis of large data sets
of evolutionary rates in conjunction with the results from high-
throughput functional genomic experiments can identify the fac-
tors that cause proteins to evolve at such dramatically different
rates. To this end, we estimated the evolutionary rates of >3,000
proteins in four species of the yeast genus Saccharomyces and
investigated their relationship with levels of expression and pro-
tein dispensability. Each protein’s dispensability was estimated by
the growth rate of mutants deficient for the protein. Our analyses
of these improved evolutionary and functional genomic data sets
yield three main results. First, dispensability and expression have
independent, significant effects on the rate of protein evolution.
Second, measurements of expression levels in the laboratory can
be used to filter data sets of dispensability estimates, removing
variates that are unlikely to reflect real biological effects. Third,
structural equation models show that although we may reasonably
infer that dispensability and expression have significant effects on
protein evolutionary rate, we cannot yet accurately estimate the
relative strengths of these effects.

protein dispensability � protein fitness � structural equation models

Soon after Kimura (1), Ohta (2), and King and Jukes (3)
proposed that much evolutionary change at the molecular level

may be caused by drift and fixation of mutations that have little
impact on the organism, a number of authors (4, 5) offered a
prediction that seemed to follow fairly directly from this view of
molecular evolution. They reasoned that the strength of selection
against a deleterious mutation must depend, at least in part, on the
dispensability of the entire protein to the organism. Specifically, in
proteins that make a smaller contribution to organismal fitness, a
larger fraction of mutations would fall within the range that could
be considered nearly neutral. (In this range, the product of effective
population size and selection coefficient is at most 1, and the
dynamics of allele frequencies are largely controlled by stochastic
sampling effects.) Therefore, if protein evolution was caused in part
by the drift of nearly neutral mutations, then the rate of evolution
should be higher in proteins that are less important to the organism.

This prediction has been difficult to test because the variables are
difficult to measure. As a proxy for estimates of protein dispens-
ability, Hirsh and Fraser (6) used the growth rates of yeast strains
in which individual genes were deleted. Although the laboratory
conditions under which these strains were grown probably differed
considerably from the environment relevant to the organism’s
evolutionary history, Hirsh and Fraser suggested that the growth
rate of a deletion mutant in the laboratory might at least correlate
with protein dispensability in the wild, such that estimates from a
large number of proteins would reveal a statistically significant
trend. To estimate the rate of evolution of a large number of
proteins, they required a fully sequenced genome for comparison
with yeast and therefore resorted to the evolutionarily distant
nematode Caenorhabditis elegans. They observed a weak but highly
significant correlation between their estimators of dispensability
and evolutionary rate, corroborating the early prediction of nearly

neutral theory. However, when proteins were separated into two
categories, those that were deemed ‘‘essential,’’ meaning that the
gene deletion effect is lethal, and those that were deemed ‘‘non-
essential,’’ meaning that the gene deletion effect is not lethal, they
did not observe a significant difference in evolutionary rate be-
tween categories. They attributed this finding to the functional form
of the relationship between dispensability and evolutionary rate,
suggesting that a protein whose deletion causes a substantial growth
defect is, in evolutionary terms, no more dispensable than a protein
that is essential for viability.

Several studies have offered important extensions or revisions of
these findings. Jordan et al. (7) suggested that the unexpected
absence of a significant difference in evolutionary rate between
essential and nonessential categories may have been a result of
Hirsh and Fraser’s relatively small sample size (n � 287) and distant
evolutionary comparisons. To obtain closer comparisons and a
larger sample, they analyzed Escherichia coli proteins, and the
predicted difference between essential and nonessential proteins
was in fact observed. Yang et al. (8) used yeast deletion mutant
growth rates and a Saccharomyces cerevisiae–Candida albicans
comparison to argue that the relationship between dispensability
and evolutionary rate holds among proteins with close paralogs, but
not among the yeast genome’s singletons. Krylov et al. (9) offered
a measure of the evolutionary conservation of a gene that showed
a strong association with the lethality of the deletion mutant. They
used the phylogenetic distribution of orthologous sequences among
seven eukaryotes to estimate a propensity for gene loss (PGL) for
each sequence. PGL may function partly as an integral of sequence
evolutionary rate over time, effectively reducing statistical noise
and revealing clear patterns of association with functional genomic
variables.

Each of these studies is consistent with the view that some
molecular evolutionary change is caused by drift, and that this
process operates more rapidly in more dispensable proteins because
the efficacy of purifying selection is reduced. A more fundamental
reinterpretation of the relationship between protein dispensability
and evolutionary rate was offered by Pal et al. (10). Building on their
previous demonstration (11) that highly expressed yeast genes
evolve slowly, Pal et al. argued that dispensable proteins evolve
more rapidly only because they are weakly expressed, not because
there is a direct effect of dispensability on evolutionary rate. [One
possible mechanistic explanation for the association between ex-
pression level and evolutionary rate is provided by the suggestion
that selection favors the use of metabolically cheap and rapidly
translated amino acids in highly expressed proteins (12, 13).] Such
translational selection would subject more highly expressed proteins
to a set of constraints that are less important for weakly expressed
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proteins.) Using the set of yeast growth rates analyzed by Fraser et
al. (14), but somewhat closer evolutionary comparisons of S.
cerevisiae with Saccharomyces pombe and C. albicans, Pal et al. (10)
showed that when they statistically controlled for expression level,
the effect of dispensability on evolutionary rate completely disap-
peared. Rocha and Danchin (15) reached the same conclusion
when they used functional genomic and evolutionary data from E.
coli in a multiple regression. They showed that when the effects of
expression and functional category were regressed out first, very
little residual variance was explained by each gene’s designation as
essential or nonessential. Although their procedure is likely to
reduce the apparent effect of dispensability by first removing the
effect of functional category, a strong correlate of a gene’s essen-
tial�nonessential designation, they concluded that protein dispens-
ability has almost no impact on protein evolutionary rate.

In all of these studies, the difficulty of measuring the relevant
variables without overwhelming noise or inaccuracy has remained
an important obstacle. Arguably the most elusive quantity is the
dispensability of a protein over the evolutionary time scales sam-
pled by relatively distant comparisons. For example, in Pal et al.’s
study (10), the complete genome closest to S. cerevisiae was C.
albicans. However, recent high-throughput gene deletion studies of
this species (16) have revealed that many genes that are essential in
S. cerevisiae have nonessential orthologs in C. albicans (and vice
versa), suggesting that estimates of dispensability from S. cerevisiae
are only rough correlates of the actual level of dispensability over
the sampled evolutionary period. Among prokaryotes, closer evo-
lutionary comparisons are possible, but growth rates of deletion
mutants have not been systematically measured, so studies must use
exclusively binary fitness data.

In the present study, we address these obstacles to obtain
accurate measurements of functional genomic and molecular evo-
lutionary variables. Specifically, we address the problem in three
ways. First, we analyze a substantially expanded and improved
functional genomic database. Our estimates of evolutionary rate are
based on four fully sequenced genomes in the genus Saccharomyces.
In addition to improving the accuracy of ortholog designation and
divergence estimation, the proximity of these comparisons should
improve the reliability of dispensability measurements performed
only in S. cerevisiae. In addition, the dispensability estimates we
analyze are based on a larger number of growth replicates and an
improved method of growth rate estimation. Second, we show that
distinct functional genomic data sets can be cross-referenced to
remove estimates that are unlikely to be accurate or biologically
meaningful. Third, we use structural equation models to investigate
what kinds of conclusions can be supported, given the accuracy with
which variables are currently measured.

Materials and Methods
Functional Genomic Data. For one data set of dispensability esti-
mates, labeled SGTC for Stanford Genome Technology Center,
growth rates were measured by the array-based method described
in ref. 17. Six replicate growth experiments were conducted for each
of two independently constructed pools of all viable homozygous
yeast deletion strains. All 12 growth experiments were conducted
in rich glucose medium. Data were collected at five time points for
each replicate. Each deletion strain is typically represented by four
hybridization signals, corresponding to tags on the array. If a tag
failed to exhibit fluorescence intensity that was 4-fold higher than
the mean array background at time 0, or if a tag was found to
contain sequence errors (17), the tag was removed from the
analysis. With a linear multiple regression model that allowed for
time effects, replicate series effects, and series-time interactions,
relative growth rate was estimated from changes in the logarithm of
each tag’s fluorescence over the time course of each replicate.
Estimates were averaged across tags and across replicates to obtain
a relative growth rate for each deletion strain. These data are

available at http:��chemogenomics.stanford.edu�supplements�
01yfh�files�orfgenedata.txt.

As a second data set of dispensability estimates, labeled War-
ringer et al., we used deletion mutant growth rates in basal synthetic
medium (a standard glucose medium) reported in ref. 18. A list of
putatively essential genes was obtained from The Saccharomyces
Genome Database (www.yeastgenome.org) and was added to both
dispensability data sets. We assigned these genes a deletion mutant
growth rate of zero, unless the dispensability data set indicated a
nonzero value.

As measurements of expression, we used mRNA abundance (19)
and the Codon Adaptation Index (CAI) (20). Total mRNA abun-
dance reported in ref. 19 was determined by the method described
in ref. 19. CAI values were for S. cerevisiae, as reported (20). Use
of other codon reference tables and average CAI values across all
four Saccharomyces species did not alter the conclusions presented
here. Alternate tables were based on the following gene sets: the top
20 most highly expressed genes in S. cerevisiae from ref. 19, the top
50 most highly expressed genes in S. cerevisiae from ref. 19, and
Schizosaccharomyces pombe orthologs of 20 highly expressed genes
in S. cerevisiae.

Evolutionary Rate Estimation. We obtained whole genomic sequence
data, as well as ORF annotation and synteny-based orthology
designation (as described in ref. 21), for Saccharomyces bayanus,
Saccharomyces mikatae, Saccharomyces paradoxus, and S. cerevisiae
(22). Of 5,538 putatively orthologous sets of ORFs, 1,418 did not
contain sequence from one or more of the species; these ORFs were
excluded from further analyses to allow use of nonsynonymous
divergence (dN) in the four species phylogeny as a measure of
evolutionary rate (see below). Each of the remaining 4,120 ORF
sets was aligned with CLUSTALW 1.83, using amino acid sequences as
a template for nucleotide sequences and reverse-complementing
when necessary. Because the method we used to estimate evolu-
tionary distances is based on a model of point substitutions, it was
important to exclude frame shifts, whether they were caused by
authentic indel mutations or sequencing errors. We therefore
implemented the following filter. A majority-rule consensus amino
acid sequence was constructed for each alignment. In the event that
an individual sequence disagreed with the consensus at five con-
secutive sites in which the consensus was defined, this ortholog set
was dropped from the data set. This filter resulted in the exclusion
of 417 ORF sets. An additional 237 ORFs known to contain introns
were also dropped, because some splice sites are uncertain and
introns may result in distinctive evolutionary processes that could
obscure the relationships we hoped to detect here.

PHYLIP’s dnaml (23) was used to construct a maximum-likelihood
tree for each of the remaining alignments. Ortholog sets that did not
exhibit the consensus phylogeny ((S. paradoxus, S. cerevisiae), S.
mikatae, and S. bayanus) were dropped. PAML’s codeml was then
used to estimate the dN, synonymous substitutions per synonymous
site (synonymous divergence, dS), and their ratio (dN�dS). Two
models of protein evolution were used: codeml model 0 allows for
a single dN�dS value throughout the genealogy, whereas codeml
model 1 allows for a different dN�dS value for each branch. The
results presented below did not differ between the two models, so
only model 0 results will be presented. dN�dS�, a measure of the
rate of protein evolution that corrects dN�dS for selection on
synonymous sites (24), was also estimated for the final collection of
ortholog sets (8).

Statistical Analyses. Correlations and partial correlations were
estimated by using nonparametric (Spearman’s rank correlation
coefficients) and parametric (Pearson’s product-moment correla-
tion coefficients) statistics. For calculation of Pearson’s coefficients,
measures of evolutionary rate, k, were first transformed according
to the function f(k) � Log[k � 0.001]. [Addition of a small number
was necessary because some variates of k are 0. The number 0.001
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was chosen because it results in a smooth distribution of f(k) values
without outliers and a linear relationship between f(k) and other
variables.] P values were estimated by using the asymptotic approx-
imation t � r�v�1�r2, where r is the observed correlation coeffi-
cient, and v is the number of degrees of freedom (n � 2 for a
correlation coefficient and n � 3 for a partial correlation coeffi-
cient) (25). Estimation of P values by randomization, rather than
asymptotic approximation, would require a prohibitively large
number of permutations of the data, as P values were generally
��10�6. We therefore used the asymptotic approximation, but also
performed 106 permutations to confirm that P values were indeed
�10�6. Randomization was performed according to the method
prescribed in ref. 25.

Results and Discussion
Relationship Between Functional Genomic Variables and Evolutionary
Rate. Comparative analysis of the genomes of S. cerevisiae, S.
mikatae, S. paradoxus, and S. bayanus yielded 5,538 putatively
orthologous sets of ORFs (22). These sets were realigned and
subjected to filters to remove ORFs exhibiting frame shifts or
atypical phylogenies (see Materials and Methods). These filters
yielded a final set of 3,038 high-quality, four-taxa alignments, for
which the following quantities were estimated by maximum likeli-
hood: dN, dS, dS� (see Materials and Methods and ref. 24), and the
ratios dN�dS and dN�dS�. These estimates of evolutionary rate are
available in Table 4, which is published as supporting information
on the PNAS web site.

To determine whether protein dispensability is correlated with
evolutionary rate, independent of the level of expression, we
calculated the partial correlation of deletion mutant growth rate
with protein evolutionary rate, controlling for level of expression.
(Partial correlation measures the association between two variables,
statistically controlling for the effects of a third variable that could
be related to each of the other two.) To ensure that results were
robust to the methods by which dispensability, expression, and
evolutionary rate were measured, we used two distinct measures of
expression, two independent data sets of growth rate, and three
measures of protein evolutionary rate. Abundance of mRNA and
the CAI both have been used previously as measures of expression
level (10, 12). Codon bias is more likely to reflect the level of
expression that is relevant to protein evolution, as it estimates
expression over the recent evolutionary history of the gene, rather
than at a single time point in the laboratory. Although a comparable

measure of dispensability is not available, data sets of growth rates
analyzed here do represent improvements over previous genera-
tions of dispensability measurements, both in terms of the number
of replicates performed and the regression method used in analysis
of raw data (see Materials and Methods).

Because different measures of the rate of protein evolution
reflect slightly different processes, we analyzed three distinct quan-
tities: dN in all four species of Saccharomyces, dN�dS, and dN�dS�.
Comparison of dN across proteins with equal divergence times has
been used in a number of studies (6, 9, 10). Because this measure
does not involve synonymous sites, it can be informative in relatively
distant comparisons; however, it does not control for differences in
mutation rate across the genome, so rates of evolution measured in
this way confound mutational and selective processes. The ratio
dN�dS is commonly used to control for differences in mutation rate
or divergence time, revealing the degree of constraint or positive
selection on proteins. However, in many species, dS is also subject
to selection, making dS an inaccurate measure of mutation rate and
divergence time (26). Furthermore, the inverse relationship be-
tween the rate of dS and expression level might weaken the
relationship between expression and dN�dS, partly obscuring the
relationship between expression and protein evolutionary rate.
Therefore, to correct for selection on synonymous sites, we here
use a measure of dS adjusted according to the gene’s level of codon
bias (24).

The correlations and partial correlations estimating the relation-
ship between dispensability and evolutionary rate, and between
expression and evolutionary rate, are shown in Table 1; additional
correlations are provided in Table 5, which is published as sup-
porting information on the PNAS web site. In addition to nonpara-
metric statistics, parametric linear statistics were calculated to
confirm robustness to statistical method, and because the structural
equation models investigated below are based on normally distrib-
uted variables involved in linear relationships. Irrespective of our
measures of dispensability, expression, and evolutionary rate, the
growth rates of homozygous deletion mutants exhibit a highly
significant correlation with rates of protein evolution, and this
correlation remains highly significant when expression is partialed
out. The correlation between our estimates of dispensability and
evolutionary rate ranges from rdk � 0.219 (n � 2931, P � 3 � 10�33,
Spearman rank correlation between SGTC dispensability estimates
and dN�dS) to rdk � 0.274 (n � 2914, P � 2 � 10�51, Pearson
correlation between Warringer et al. dispensability estimates and

Table 1. Correlation and partial correlation coefficients estimating the association between protein dispensability
(d) and evolutionary rate (k), and between expression level (x) and k

Evolution rate Dispensability rdk Expression rxk rdk�x xk�d

dN�dS� Warringer et al. 0.239 np mRNA abundance �0.368 np 0.183 np �0.328 np
CAI �0.528 np 0.190 np �0.513 np

dN Warringer et al. 0.237 np mRNA abundance �0.363 np 0.181 np �0.324 np
CAI �0.493 np 0.189 np �0.478 np

dN�dS� SGTC 0.230 np mRNA abundance �0.368 np 0.166 np �0.330 np
CAI �0.528 np 0.187 np �0.516 np

dN SGTC 0.227 np mRNA abundance �0.363 np 0.163 np �0.325 np
CAI �0.493 np 0.185 np �0.479 np

dN�dS� Warringer et al. 0.274 mRNA abundance �0.279 0.259 �0.256
CAI �0.522 0.241 �0.505

dN Warringer et al. 0.274 mRNA abundance �0.282 0.259 �0.259
CAI �0.509 0.241 �0.491

dN�dS� SGTC 0.264 mRNA abundance �0.279 0.252 �0.258
CAI �0.522 0.232 �0.505

dN SGTC 0.264 mRNA abundance �0.282 0.251 �0.262
CAI �0.509 0.232 �0.491

rAB denotes the correlation coefficient between any two variables A and B, while rAB�C denotes the partial correlation coefficient between
any two variables, while controlling for a third, C. For description of dispensability data sets (SGTC and Warringer et al.), expression data sets
(mRNA abundance and CAI), and evolutionary rate estimates (dN, dN�dS, and dN�dS�) see Materials and Methods. See Results for discussion
of statistical significance. np denotes nonparametric correlation, all other correlation coefficients are parametric.
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dN). The partial correlation between dispensability and evolution-
ary rate, controlling for level of expression, ranges from rdk�x � 0.163
(n � 2768, P � 5 � 10�18, Spearman partial rank correlation
between SGTC dispensability estimates and dN, controlling for
mRNA abundance) to rdk�x � 0.259 (n � 2754, P � 3 � 10�43,
Pearson partial correlation between Warringer et al. dispensability
estimates and dN or dN�dS�, controlling for mRNA abundance).

As one would expect in view of the relationship between expres-
sion and dS, the ratio dN�dS shows a weaker correlation with
expression level than do the other measures of evolutionary rate.
Excluding dN�dS from consideration, the correlation between
expression and evolutionary rate is generally highly significant and
larger in magnitude than the correlation between dispensability and
evolutionary rate. The ratio rxk�rdk ranges in magnitude from 1.02
to 1.60 (Table 1). The ratio rxk�d�rdk�x ranges in magnitude from 1.00
to 2.59 (Table 1). Whether this ratio can be interpreted as an
indicator of the relative importance of different determinants of
protein evolutionary rate, or of different processes in protein
evolution, is discussed below.

Two further questions recently raised in the literature can be
addressed with the data analyzed here. Observing a significant
difference in evolutionary rate between essential and nonessential
categories of prokaryotic proteins, Jordan et al. (7) suggested the
absence of such a difference (6) was caused by their relatively small
sample size and distant evolutionary comparison. This suggestion is
borne out by the data analyzed here, as we do now find that
nonessential proteins evolve significantly faster than essential ones.
(Mean dN of 612 essential proteins � 0.122; mean dN of 2,285
nonessential proteins � 0.179; Mann–Whitney U test, P � 8 �
10�33. This result does not depend substantially on the measure of
evolutionary rate used.) Yang et al. (8) argued that only proteins
that have close paralogs exhibit a significant relationship between
dispensability and evolutionary rate. As shown in Table 2, this
argument is not borne out by the data analyzed here: When we
separate genes into three categories according to Yang et al.’s
criteria (those with close paralogs, those without paralogs, and all
genes) we find a significant correlation between dispensability and
evolutionary rate in all three categories. The correlation, however,
does appear to be particularly strong among genes with close
paralogs.

Cross-Referencing Functional Genomic Data Sets. An important
source of inaccuracy in our estimates of dispensability is that many
proteins are likely to perform functions that are important in the
environment relevant to yeast evolution, but superfluous in the
laboratory conditions in which growth rates are measured. If such
proteins are under regulatory control that allows induction under
conditions in which they are useful, measurements of the dispens-
ability of proteins that are weakly expressed in the laboratory would
be more likely to reflect only experimental noise, whereas mea-
surements of the dispensability of proteins that are strongly ex-
pressed in the laboratory would be more likely to reflect a real effect
of removing a biological function.

An example may serve to clarify this point. Knocking out the

genes specifically responsible for galactose utilization (the GAL
genes) has little effect in the glucose medium in which fitness effects
were measured. However, for cells growing in galactose, these genes
are highly expressed and indispensable for maximal growth. If
yeasts have had to metabolize galactose fairly often in their evo-
lutionary history, then these genes would be expected to show a
relatively slow rate of evolution. Thus their dispensabilities in
glucose medium, where they are not expressed, are not indicative
of their importance to yeast. (We note that this argument requires
only that deletion of genes that are not expressed in a certain growth
environment has no effect on fitness in that environment; it does not
require that most genes up-regulated in a certain condition be
required for growth in that condition.)

This consideration of the relationship between dispensability and
expression in a given environment raises the prospect of using
laboratory measurements of expression to improve the quality of
dispensability data. Specifically, the accuracy of dispensability data
would be expected to increase with the level of expression in the
laboratory. We can test this prediction in two ways. First, we divide
genes into quartiles according to microarray measurements of
mRNA abundance (19). For each quartile, we calculate the corre-
lation between our two independent data sets of dispensability. (We
exclude genes required for laboratory viability, as the list of essential
genes between the two data sets is virtually identical.) As expected,
we find that the correlation between independent measurements of
knockout mutant growth rates increases as a function of expression
quartile, suggesting that the signal-to-noise ratio of dispensability
data does indeed improve among higher quartiles of expression in
the laboratory (Fig. 3, which is published as supporting information
on the PNAS web site). Second, using the same division of genes
into quartiles, we plot the correlation coefficient between dispens-
ability and evolutionary rate, as a function of expression quartile.
The strength of the correlation between dispensability and evolu-
tionary rate increases with expression quartile, again suggesting that
the accuracy of dispensability estimates increases among genes that
are observed to be highly expressed in the laboratory (Fig. 1a). This
analysis also serves to confirm that the relationship between
dispensability and evolutionary rate is not entirely mediated by
expression level. The partial correlation between dispensability and
evolutionary rate, controlling for level of expression, is strongest
among genes for which dispensability estimates appear to be most
accurate, namely, those genes that are highly expressed in the
laboratory (Fig. 1b). For additional arguments see Supporting Text,
which is published as supporting information on the PNAS web site.

Statistical Models. In a number of recent studies, the relative
magnitudes of partial correlation coefficients or standard partial
regression coefficients have been interpreted as indicators of the
relative importance of different functional variables, or even dif-
ferent evolutionary processes, in determining the rates of protein
evolution (9, 10, 15, 27). However, because different functional
genomic variables are almost certainly measured with very different
levels of accuracy, it is important to consider the potential impact
of inaccurate measurement on the relative magnitudes of statistical
measures of association. To this end, it is instructive to analyze a
structural equation model in which statistical variation caused by
uncertain measurement is partitioned from variation caused by the
stochastic biological process of sequence evolution. Such a model is
diagramed in Fig. 2. We use capital letters to represent true values
of protein dispensability (D), expression (X), and evolutionary rate
(K). The causal relationships among these variables are shown as
solid arrows in Fig. 2. Dashed arrows in Fig. 2 represent the
introduction of variance caused by inaccurate measurement, lead-
ing to observed values of dispensability (d), expression (x), and
evolutionary rate (k). Assuming variation is normally distributed
and relationships are linear, the statistical relationships shown in
Fig. 2 are described by the following structural equations.

Table 2. Pearson’s correlation (r) between dispensability (d, from
ref. 18) and evolutionary rate (k, estimated by dN) among all
genes and genes with (duplicates) or without (singletons) close
paralogs (as defined in ref. 8), and with or without controlling
for expression (x, estimated by CAI)

r

All genes
n � 2,914

Singletons
n � 1,298

Duplicates
n � 691

r P r P r P

rdk 0.274 2 � 10�51 0.252 4 � 10�20 0.397 2 � 10�27

rdk�x 0.241 9 � 10�40 0.162 4 � 10�9 0.387 5 � 10�26
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rdk � mDd pDKmKk � mDdrDX pXKmKk [1a]

rdx � mDdrDXmXx [1b]

rxk � mXx pXKmKk � mXxrDX pDKmKk. [1c]

The correlation coefficients rab (a 	 b; a, b � {d, x, k}; �1 �
rab � 1) are the observed associations between variables. The
coefficients mDd, mXx, and mKk are associations between true and
observed values of dispensability, expression, and evolutionary rate.
We assume (hopefully not too optimistically) that 0 � mAa � 1; that
is, our observed values are positively correlated with true values.

The correlation coefficient rDX (�1 � rDX � 1) is the true
association (unaffected by imperfect measurement) between pro-
tein dispensability and expression level, and the path coefficients,
pXK and pDK, measure the true effects of expression, X, and
dispensability, D, on evolutionary rate, K.

We would like to use this model to address the following
question. If we assume a certain level of inaccuracy in our mea-
surements, what are the magnitudes of the true associations among
dispensability, expression, and evolutionary rate that are compat-
ible with our observed associations among these variables? Here,
we will use the Pearson correlation coefficients among variables
transformed to achieve linearity, as the assumptions underlying
these coefficients match those of the model. For functional data, we
will use the dispensability and expression data sets that show the
strongest associations with evolutionary rate. The relationship
between the Warringer et al. data set and evolutionary rate is
marginally stronger than the relationship between the SGTC data
set and evolutionary rate. More importantly, CAI is twice as
strongly associated with evolutionary rate as is mRNA abundance.
This finding is consistent with the hypothesis that CAI reflects
historical expression levels relevant to protein evolution, rather than
expression levels in the laboratory.

Our observed associations among variables are rdk � 0.274,
rdx � �0.086, and rxk � �0.509. We substitute these values into Eq.
1, and then solve for pDK, pXK, and rDX. Because the accuracy of
measurement is unknown, or known only very roughly, we consider
a range of values for mDd and mXx, the correlations between actual
and observed values of dispensability and expression. Specifically,
we allow measurement accuracy to range from a lower bound
approximately equal to the observed association between each
variable and evolutionary rate, to an upper bound of 0.9, which is
likely to exceed the accuracy of measurement for expression as well
as dispensability. For simplicity, we set mKk � 0.8; although we do
not know the accuracy of our estimates of dN, it is reasonable to
assume that with high-quality alignments of four species, it is fairly
high.

In Table 3, the values of pDK, pXK, and rDX are shown for various
measurement accuracies. For the range of accuracy levels shown,
pDK�pXK, the ratio of the true effect of dispensability to that of
expression on evolutionary rate, ranges in magnitude from 0.11 (for
mDd � 0.9 and mXx � 0.5) to 2.7 (for mDd � 0.3 and mXx � 0.9).
Thus, when we explicitly consider a plausible range of measurement
error, we see that the observed associations among dispensability,
expression, and evolutionary rate, are consistent with a very wide
range of true impacts of dispensability and expression on evolu-
tionary rate. Without a better understanding of the accuracy of our
estimates of dispensability and expression, attempts to estimate the
relative importance of dispensability and expression in determining
the rate of protein evolution are premature. At this point, the best

Fig. 1. The Spearman rank correlation coefficient, rdk (a), and partial corre-
lation coefficient, rdk�x (b), between protein dispensability d (Warringer et al.
data set; see Materials and Methods), and evolutionary rate, k, as a function
of mRNA abundance quartile. Expression quartile is shown on the x axis.
Correlation coefficient values are indicated by stars, and P values are indicated
by diamonds. The points are joined only for visual clarity.

Fig. 2. Structural equation model partitioning statistical variation caused by
uncertain measurement from variation caused by the stochastic biological
process of sequence evolution. Capital letters represent true values of protein
dispensability (D), expression (X), and evolutionary rate (K). The causal rela-
tionships among these variables are shown as solid arrows. Dashed arrows
represent the introduction of variance caused by inaccurate measurement,
leading to observed values of dispensability (d), expression (x), and evolution-
ary rate (k). The inaccuracy of measurement may be the result of several
variables, including differences between laboratory and wild conditions,
variance brought on by technical errors, etc.

Table 3. True path (p) and correlation (r) coefficients among true
values of dispensability (D), expression (X), and evolutionary
rate (K), for a range of measurement accuracy (m)

mXx

mDd

0.3 0.5 0.7 0.9

0.5 pDK � 0.61 pDK � 0.28 pDK � 0.19 pDK � 0.14
pXK � �0.92 pXK � �1.18 pXK � �1.23 pXK � �1.24
rDX � �0.57 rDX � �0.34 rDX � �0.25 rDX � �0.19

0.7 pDK � 0.92 pDK � 0.49 pDK � 0.34 pDK � 0.26
pXK � �0.53 pXK � �0.79 pXK � �0.85 pXK � �0.87
rDX � �0.41 rDX � �0.25 rDX � �0.18 rDX � �0.14

0.9 pDK � 1.02 pDK � 0.57 pDK � 0.40 pDK � �0.31
pXK � �0.38 pXK � �0.60 pXK � �0.65 pXK � �0.67
rDX � �0.32 rDX � �0.19 rDX � �0.14 rDX � �0.11

m is the association between real (uppercase) and observed (lowercase)
values of the three genomic variables.
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available functional genomic and evolutionary data suggest that
each of these variables has an effect on protein evolution (Table 1),
but we cannot determine their relative importance.

An additional analysis of evolutionary rates, motivated by our
simple model (Eq. 1), also suggests that expression and dispens-
ability have separate effects on evolutionary rate. In view of the
importance of the unknown coefficients of measurement error,
mDd and mXx, we use the model to derive a testable null hypothesis
that is expected to be independent of mDd and mXx. Eq. 1 was
written for dN. An analogous set of equations could be written for
dS. To distinguish between the two models, we append the subscript
N or S to the variables k (observed evolutionary rate) and K (true
evolutionary rate). Dividing Eq. 1a by Eq. 1c, we obtain

rdkN

rxkN

�
mDd
pDKN

� pXKN
rDX�

mXx
pXKN
� pDKN

rDX
.

If the effect of dispensability on the rate of protein evolution is
entirely mediated by level of expression, as has been suggested (10,
15), then pDKN

, in which case

rdkN

rxkN

�
mDdrDX

mXx
.

There are no evolutionary rate variables on the right side of the
equation. Therefore, when we take precisely the same steps with the
equations for dS, we find that

rdkN

rxkN

�
rdkS

rxkS

.

Thus, if dispensability has no independent effect on dN, then the
ratio of the correlation observed between dispensability and evo-
lutionary rate to that observed between expression and evolution-
ary rate should be the same for dN and dS, regardless of the values
of the measurement accuracy coefficients, mDd and mXx. The data
show that this is not the case. Using the growth rate data of
Warringer et al. (18), codon bias as a measure of expression, and
transformed values of dN and dS (see Materials and Methods), we
find that rdkN

�rxkN
� �0.54, whereas rdkS

�rxkS
� �0.18 (rdkN

� 0.274,
rxkN

� �0.509, rdkS
� 0.13, and rxkS

� �0.71. Thus, if the effect of
dispensability on protein evolution was mediated entirely by ex-
pression, we would expect the association between dispensability
and synonymous evolution to be much stronger than is actually
observed.

Concluding Remarks
This article provides three main results. First, we have shown that
with the best available estimates of protein dispensability, expres-
sion, and evolutionary rate in the yeast genus Saccharomyces,

dispensability and expression have independent, significant effects
on the rate of protein evolution. Second, we have shown that
measurements of expression levels in the laboratory can be used to
filter data sets of dispensability estimates, removing variates that are
unlikely to reflect real biological effects. This result may be useful
in a variety of analyses of dispensability data, including many that
are not concerned with evolutionary questions (17, 28, 29). Third,
we have shown that in view of the relatively low accuracy with which
functional genomic variables are currently measured, recent esti-
mates of the relative importance of different functional variables as
determinants of evolutionary rate should be treated very cautiously.
Much of the data remain only rough estimates of evolutionarily
relevant quantities. If a gene serves an important function in yeast’s
natural environment, but plays little role in rapid growth in glucose
medium, measurement of a deletion mutant’s growth rate will not
provide an accurate estimate of the gene’s dispensability, even if
such measurement is highly precise.

A potentially important source of unexplained variance in evo-
lutionary rate that we have not investigated here is variation in the
‘‘functional density’’ of proteins (14, 30). An essential protein in
which only 10% of sites must contain specific amino acids for proper
protein function is likely to evolve faster than a protein of much
smaller fitness effect in which 90% of sites are similarly constrained.
It will be intriguing to investigate the relationship between the rate
of evolution at individual amino acid sites and estimates of the mean
fitness effect of mutations at those sites.

Although recent work has focused on simply characterizing the
relationships between functional genomic variables and evolution-
ary rate, the deeper interest of these relationships lies in the
possibility that they might shed light on the evolutionary process.
The correlation between dispensability and evolutionary rate was
offered as an early prediction of the nearly neutral theory, and its
corroboration could be viewed as an indication that at least some
protein evolution is caused by drift. However, although the predic-
tion was made with purifying selection in mind, it remains a
possibility that the correlation between evolutionary rate and
dispensability is partly caused by positive selection. For example, an
hypothesis compatible with propensity for gene loss results (9) is
that relatively dispensable proteins are more likely to be enlisted in
dramatic functional changes. Polymorphism data for a large num-
ber of genes in the yeast genome will permit estimation of the
frequency of positive selection for proteins of various levels of
conservation, dispensability, and expression and will thus allow
us to disentangle the processes of adaptive and nearly neutral
evolution.
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