
A Filter-Based Evolutionary Algorithm for Constrained

Optimization (Extended Abstract)

Lauren Ferguson∗ William E. Hart†

May 15, 2003

Abstract

We introduce a filter-based evolutionary algorithm
(FEA) for constrained optimization. The filter
used by the FEA explicitly imposes the concept of
dominance on a partially ordered solution set. We
summarize our analysis of the FEA, which demon-
strates that it is provably robust for applications
with general, nonlinear inequality constraints.

1 Introduction

Although evolutionary algorithms (EAs) have
been successfully applied to many unconstrained
optimization applications, the investigation of
constrained EAs has received far less attention [5].
Despite this, handling constraints in EAs is nec-
essary for their application to many problem do-
mains. Thus the development of provably robust
EAs is crucial to ensure that these methods can be
effectively applied to a wide range of problems, in-
cluding linear, non-linear, equality and inequality
constraints.

Of the many different constraint-handling tech-
niques used with EAs, the most common are
penalty functions. Although penalty functions can
have good convergence properties for specific prob-
lems, they have some limitations that hinder their
performance. Some penalty functions require an
initial feasible solution that must be provided by
the user or by another algorithm. Other penal-
ties may require extra parameters that can be
hard to choose, especially when they are problem-
dependent. Part of the difficulty in implementing
penalty functions is the automation of their defini-
tions, because the boundary between the feasible

∗Texas Technical University; alaferg@yahoo.com
†Sandia National Laboratories, Discrete Algo-

rithms and Mathematics Dept., P. O. Box 5800, MS
1110, Albuquerque, NM 87185-1110; Phone: 505-844-
2217 Fax: 505-845-7442; wehart@cs.sandia.gov;
http://www.cs.sandia.gov/∼wehart/

and infeasible regions is usually unknown [5].
Alternatives to penalty functions tend to be

developed for very specific problems and prob-
lems in which estimating good penalty functions
and generating even a single feasible solution are
difficult. Some of the techniques surveyed by
Coello [5] include approaches that use specially-
designed, problem-specific representations and op-
erators, algorithms that repair infeasible points
to make them feasible, and approaches that sep-
arate objectives and constraints (e.g. multiob-
jective optimization techniques). Unfortunately,
these methods sometimes have difficulty preserv-
ing diversity and avoiding stagnation. Addition-
ally, some of these approaches require the gener-
ation of an initial feasible point (or population)
which is often NP-hard [7].

Considering all of these challenges for handling
constraints in EAs, a new approach that minimizes
these difficulties and still maintains good conver-
gence results is very desirable. In this paper,
we propose an algorithm that uses a constraint-
handling technique that is similar to a multiob-
jective optimization technique. The optimization
problem that we consider in this paper is

min
x∈Rn

f(x)

s.t. C(x) ≤ 0
l ≤ x ≤ u

where f : Rn → R ∪ {∞} and C : Rn →
(R ∪ {∞})m are the constraint functions with
C = (c1, . . . , cm)T ; u, l ∈ Qn define upper and
lower bounds on each dimension.

The rest of the paper is organized as follows.
In Section 2 we compare our technique with some
of the approaches in [5] and present a new algo-
rithm that uses a filter to impose a dominance
relation on the trial points. We also give an ex-
ample to elucidate the behavior of the algorithm
and demonstrate that it is provably robust.

1

The following section describes filter-based op-
timizers and motivates their use for constrained
optimization problems. In Section 3 we describe
a filter-based evolutionary algorithm and relate it
to previously proposed constrained EAs. Finally,
we summarize our convergence results for this al-
gorithm in Section 4.

2 Filter-Based Optimizers

A filter-based optimizer uses a nonnegative con-
tinuous function to aggregate the constraint vio-
lations and then treats the resulting biobjective
problem [1]. In other words, a filter-based opti-
mizer tries to minimize both the objective function
and the aggregate constraint violation function si-
multaneously. Since a feasible solution is desired,
priority is usually given to the aggregate function
until a feasible solution is found. We give two defi-
nitions, that are very similar to those stated in [1],
which will be used throughout this paper.

Definition 1. Given fi(), i = 0, . . . , k objective
functions, if fi(x1) ≤ fi(x2) for every i ∈ 0, . . . , k
and there is at least one j such that fj(x1) <
fj(x2), then x1 is said to dominate x2. This is
denoted by x1 ≺ x2. Also, x1 ¹ x2 denotes that
either x1 ≺ x2 or x1 = x2.

Definition 2. Given a set of trial solutions S,
a solution s ∈ S is said to be a nondominated
solution if there does not exist x ∈ S such that
x ≺ s.

A Filter F is a (finite) set of points in Rn such
that now pair x, x′ in the filter are in the rela-
tion x ≺ x′. That is, no point in F dominates
or is dominated by any other point in F . Filter-
based optimizers employ an explicit filter that is
used to eliminate trial points from consideration if
they are dominated by points in the filter either by
having a worse function value or worse aggregate
constraint violation.

3 A Filter-Based EA

Figure 1 presents the basic steps of Algorithm A,
a FEA that applies the notion of a filter-based
optimizer to an EA. This EA evolves a set of points
Wt = Yt

⋃
Xt, where Yt are infeasible and Xt are

feasible. The following rule is used to update these
sets, given a set of new trial points Ŵt:

• Xt+1 is the set of the best µF feasible points
in Xt

⋃
Ŵt,

Given ∆0, τ > 1 and mutation directions D
Randomly initialize X0 and Y0

Select D0 ⊆ D
For t = 0, . . . ,∞

For j = 1, . . . , P
Randomly select d ∈ Dt and w ∈ Wt

ŵj = ∆td + w
Evaluate wj

End For
Update Xt+1, Yt+1, and Wt+1

Update x∗t+1 and y∗t+1

If
(f(x∗t+1) < f(x∗t)) or (h(y∗t+1) < h(y∗t))

Then
∆t+1 = ∆tτ

ν , ν ≥ 0
Select Dt+1 ⊆ D

Else If
x∗t+1 or y∗t+1 is locally optimal

Then
∆t+1 = ∆tτ

ν , ν < 0
Select Dt+1 ⊆ D

Else
∆t+1 = ∆t and Dt+1 = Dt

Terminate if ∆t+1 < ∆min

End For

Figure 1: Pseudo-code for Algorithm A.

• Yt+1 is a set of up to µI nondominated in-
feasible points in Yt

⋃
Ŵt with the minimal

aggregate constraint violations and

• Wt+1 = Xt+1

⋃
Yt+1.

Note that this update rule ensures that |Wt+1| <
µF + µI , for some predefined parameters µF and
µI . Consequently, this FEA is similar to a (µ+λ)-
evolutionary strategy (ES): P new trial points are
generated in each iteration, and at most µF + µI

are kept for the next iteration.
We say x ≺ x′ if and only if (f(x), h(x)) ≺

(f(x′), h(x′)), where h(x) = ‖C(x)+‖22; C(x)+
is the vector C(x), where negative values are re-
placed with zero. We use the squared l2 norm of
the constraints since Audet and Dennis [1] show
that it is more robust than the l1 norm. Note that
h(x) = ∞ if any of the constraint function values
at x are infinite.

The following describes the details of the steps
in Algorithm A in greater detail:

• X1 and Y1 could be simply initialized by ran-
domly generating P points within the bound
constraints, and then applying the standard

2

update rule. However, in practice this initial-
ization could exploit domain knowledge of the
structure of the constraints.

• D is a finite set of mutation offsets that can
be applied. All subsets Dt ⊆ D must be se-
lected to ensure that Dt is a positive spanning
set (i.e. non-negative linear combinations of
points in Dt generate Rn).

• x∗t+1 is the point in Xt+1 with the best func-
tion value, and y∗t+1 is the point in Yt+1 with
the minimal constraint violation (as defined
by h).

• We say that x∗t+1 is locally optimal if all mu-
tation offsets in Dt have been generated and
none of them dominate x∗t+1 (and similarly
for y∗t+1).

• Algorithm A updates the step length ∆t by
(a) possibly increasing it if some new point
dominates either x∗t or y∗t , or (b) decreasing
it if x∗t+1 or y∗t+1 are locally optimal (and thus
no progress can be made about these points
using Dt).

• Algorithm A terminates if the step length
shrinks below some predetermined threshold,
which is similar to the termination rule com-
monly used with pattern search methods.

The filter in Wt consists of the best nondominated
infeasible solutions Yt and the best feasible solu-
tion x∗t . Newly generated infeasible solutions in
Ŵt that are nondominated are called unfiltered
and are added to the filter. Infeasible solutions
that are dominated are called filtered and are re-
jected.

The method of constraint handling proposed
here shares some commonalities with a few of the
techniques surveyed by Coello [5]. Since Algo-
rithm A separates constraints from objectives, it is
most similar to approaches that also use this sep-
aration. Consider the similarity of feasible points
technique proposed by Deb [6]. Deb gives three
rules for comparison:

1. A feasible solution is always preferred over an
infeasible one.

2. Between two feasible solutions, the one having
a better objective function value is preferred.

3. Between two infeasible solutions, the one hav-
ing a smaller constraint violation is preferred.

Deb’s method also includes a selection procedure
that only performs pairwise comparisons so that
no penalty factor is required [5]. Similarly, Algo-
rithm A performs pairwise comparison for selec-
tion and follows rules 2 and 3 of Deb’s method. It
does not necessarily follow the first rule because
we want to keep some infeasible solutions, as well
as feasible solutions, in our solution set.

Algorithm A is also similar to some of the mul-
tiobjective optimization techniques surveyed by
Coello [4]. The most closely related technique
is the one proposed by Camponogara and Taluk-
dar [2]. Their procedure restates a single opti-
mization problem to consider two objectives: the
optimization of the original objective function and
the optimization of

Φ(−→x) =
n∑

i=1

max[0, gi(−→x)],

where gi(−→x) are the inequality constraints that
are satisfied when gi(−→x) ≤ 0. Camponogara and
Talukdar use pareto sets (implicitly using a fil-
ter) to impose dominance-based selection, which
is used to estimate new search directions. The
technique we propose explicitly uses a filter to im-
pose dominance-based selection, but is not used to
generate new search directions. Instead, the filter
is used to identify the points about which a set of
canonical search directions are applied.

4 Convergence Analysis

Although Algorithm A is quite similar to several
existing EAs, the structure of this FEA ensures
that with probability one, some subsequence of the
points {x∗t , y∗t } generated by Algorithm A prov-
ably converges. Let Xt and Yt be the stochas-
tic processes, defined on some probability space
(Ω,F , P), that describe the behavior of Algo-
rithm A for some problem and for some set of algo-
rithmic parameters (e.g. µ, λ, etc.). We make the
standard assumption that the processes Xt and Yt

generate points that lie in a compact set.
A complete analysis is beyond the scope of this

abstract, but we summarize the main results of
of our analysis. We show that with probability
one, Algorithm A generates a convergent subse-
quence. We assume that f is strictly differentiable
at the limit point, which implies that 5f(x) ex-
ists and 5f(x)T w = limy→x,t↓0

f(y+tw)−f(y)
t for

all w ∈ Rn [3]. If the limit point is strictly feasi-
ble, then the limit point is a first-order stationary
point. Otherwise, the algorithm may converge to

3

a constrained local optimizer for a problem that
is implicitly defined by the set of search directions
in D. Let x̂ be a limit point of a convergent sub-
sequence generated by Algorithm A. A convergent
subsequence (for some set of indices K) is said to
be refining if limk∈K ∆t = 0.

Theorem 1. With probability one, Algorithm A
generates a refining subsequence.

Theorem 2. If x̂ is a strictly feasible limit point
of a refining subsequence generated by Algorithm A
and f is strictly differentiable at x̂, then 5f(x) =
0.

Theorem 3. If x̂ is a limit point of a refining
subsequence generated by Algorithm A and h is
strictly differentiable at x̂, then 5h(x) = 0.

We say that a direction d is associated with a
refining subsequence if for every term in the sub-
sequence k, the step x∗k + ∆kd was filtered.

Theorem 4. Let x̂ be a limit point of a refin-
ing subsequence generated by Algorithm A that is
not strictly feasible. Let D′ ⊆ D be the set of all
the associated directions of all the refining subse-
quences that converge to the limit point x̂ in such
a manner that the constraint violation is constant.
If f is strictly differentiable at x̂, then 5f(x̂) be-
longs to the polar of the cone generated by D′.

Theorem 2 demonstrates that Algorithm A may
generate stationary points that are strictly feasi-
ble. Further, Theorem 3 demonstrates that Algo-
rithm A is guaranteed to make progress towards
generating a feasible point. However, this does
not imply that it is guaranteed to generate a fea-
sible point. There may exist infeasible points for
which 5h is zero, and Theorem 3 simply ensures
that Algorithm A will continue to make progress
towards such a point. However, we would expect
that this would generally occur when a poor choice
of constraint functions C has been made.

Theorem 4 is not quite as strong as would be
desired, since it does not guarantee convergence
to a first-order constrained stationary point. In
particular, this result depends on the set of search
directions D that are defined, since this ultimately
limits the cone that contains 5f(x̂). Thus Al-
gorithm A will perform a more robust search for
constrained local minima as the number of search
directions in D is increased.

Finally, we note that none of these results en-
sures convergence to a globally optimal feasible
point. It is not clear that such a convergence the-
ory exists for methods like Algorithm A that dy-
namically adapt their search step lengths without

emposing fundamental limitations on their adap-
tive dynamics (e.g. lower bounds on the step
lengths). Our analysis provides insight into mech-
anisms that facilitate robust local convergence
without concern of the global search dynamics.
However, the efficacy of the global search is clearly
influenced by the algorithmic choice, and we ex-
pect that methods like Algorithm A will perform a
more global search than the pattern search meth-
ods discussed by Audet and Dennis [1].

References

[1] C. Audet and J. E. Dennis Jr. A pattern search
filter method for nonlinear programming with-
out derivatives. Department of Computational
and Applied Mathematics, Rice University,
Houston, Texas, TR00-09, 2000.

[2] E. Camponogara and S. N. Talukdar. A ge-
netic algorithm for constrained and multiob-
jective optimization. In Jarmo T. Alander, ed-
itor, 3rd Nordic Workshop on Genetic Algo-
rithms and Their Applications, 49-62, 1997.

[3] F. H. Clarke. Optimization and Nonsmooth
Analysis, volume 5. SIAM Classics in Applied
Mathematics, Philadelphia, PA, 1990.

[4] C. A. Coello Coello. Constraint-handling us-
ing an evolutionary multiobjective optimiza-
tion technique. Civil Engineering Systems,
Gordon and Breach Science Publishers, 2000.

[5] C. A. Coello Coello. Theoretical and numer-
ical constraint-handling techniques used with
evolutionary algorithms: A survey of the state
of the art. Computer Methods in Applied Me-
chanics and Engineering, 2001.

[6] K. Deb. An efficient constraint handling
method for genetic algorithms. Computer
Methods in Applied Mechanics and Engineer-
ing, 2001.

[7] A. E. Smith and D. W. Coit. Constraint han-
dling techniques–penalty functions. Handbook
of Evolutionary Computation, Oxford Univer-
sity Press and Institute of Physics Publishing,
1997.

4

