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•Why should I be interested?

•What are the methods and tools?

•What should I do?
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Preface
• Incipit:Incipit: time series analysis is a very broad topic, and difficult to 
cover in one lecture.
• Goal:Goal: present the most important topics (partially) not discussed in 
the previous school editions.
• Timing analysis may seem a “magic box”, since it can reveal features 
that are not apparent to the eye in the raw data
• Timing “ analysis” is around since a long time: think about 
day/night, seasons, years, moon phases, etc.

Overview
• The relevance of timing analysis
• Basic light curve analysis (r.m.s.)
• Fourier power spectral analysis
• Power normalizations and signal searches
• Signal detection, signal UL and Asens
• Search optimization
• A working session example 
• Cross-Correlation
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What can Timing Tell Us? (or, 
why should I be interested?)

• Binary orbits
– orbital period
– sizes of emission regions 
and occulting objects

– orbital evolution

Accretion phenomena
broadband variability
“quasiperiodic” oscillations (QPOs)
bursts & “superbursts”
Energy dependent delays (phase lags)

• Timing  =>  characteristic timescales = PHYSICS
• Timing measurements can be extremely precise!!

Spin axis

Magnetic axis

X-rays

• Rotation of stellar bodies
– pulsation periods
– stability of rotation
– torques acting on system
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Typical Sources of X-Ray Variability

- Isolated pulsars      (ms–10 s)
- X-ray binary systems

Accreting pulsars (ms–10000 s)
Eclipses         (10s min–days)
Accretion disks  (~ms–years)
Transients orbital periods (days-months)

- Flaring stars & X-ray bursters
- Cataclysmic Variables (s-days)
- Magnetars (µs-s)
- Pulsating (non-radial) WDs (min-days)

• There could be 
variable serendipitous 
sources in the field, 
especially in Chandra
and XMM observations

In short, compact objects (& super-massive black holes?) are, 
in general, intrinsically variable.
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Simplest Measure of Variability
• The root-mean-square variability (the same as standard deviation):

• Also, it is common to quote the 
fractional r.m.s., r.m.s./<RATE>

……. moreover

• We must remember that the light curve has Poisson counting 
noise (i.e. Some randomness), so we EXPECT some variation 
even if the source has a constant intrinsic intensity.

Limit:Limit: the above def. is bin-size dependent (i.e. You miss any 
variations smaller than your time bin size)
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Chi-Square Test
– Hypothesis: the source is intrinsically constant
• Can I reject this hypothesis?  
• Chi-square statistic

• If measurements are gaussian (!), the statistic should have a 
chi-square distribution with (N-1) degrees of freedom.

• We can calculate the statistic, compare to tabulated values, and 
compute confidence in our hypothesis.

– An alternative test for variability is the K-S test

Limits:Limits:
• So far, our analysis has focused on the total variability in a light curve.
• This method cannot isolate particular timescales of interest.
• If we are interested in faster time scales (higher frequencies), we must 
make a light curve with smaller time bins
• The assumption of gaussian statistics eventually fails, when the number 
of counts per bin is less than ~10, and this method is
no longer useful.
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Note that all light curves have 50% 
fractional r.m.s. variability

Synthetic DATA
Light Curves

Implication:Implication: TOTAL variability (r.m.s.) 
does not capture the full information. Its 
time-scale or (frequency scale) is
important as well.
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Fourier Analysis
• This important technique comes from the theorem that any signal can 
be written as a sum of complex exponentials:

• The ak terms are known as Fourier coefficients (or amplitudes), and 
can be found by using the Fourier transform (usually a FFT). They are 
complex-valued, containing an amplitude and phase.

• Once we know the Fourier coefficients, we have divided the time
series into its different frequency components, and have entered the
frequency “domain.”

• Parseval proved that:  Var[fj] =

the left hand side is the total (r.m.s.)2 variance, summed in time; the 
right hand side is the same total variance, summed over frequencies.

The values are known as Fourier powers, and the set of all Fourier 
powers is a POWER SPECTRUM (PSD).

-
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Fourier Analysis-2
Light Curves

Instrumental noise not included ! When dealing with noise one also need
a statistical tool to handle it.
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Computing Useful Power Spectra
• Power spectra are commonly normalized in two different ways.

• The “Leahy” normalization is useful for computing significances 
(DETECTION). In the following we will refer to it as the default

• The “density” normalization is useful for computing fractional r.m.s. 
Variabilities (PHYSICS)

Leahy Normalization

• Nph is the total number of photons
• With this normalization, the Poisson noise level is distributed
like a χ2 with ν =2NPSD degrees of freedom (in units of counts;  
NPSD is the number of averaged PSD)
– E[χ2|ν] = ν  � 2 for  NPSD=1 
- σ[χ2|ν] = sqrt(2ν) � 2 for NPSD=1 � noisy
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XTE J1751-305: accreting ms pulsar. 

Ex:Ex: Period drift testifies of an orbit 
with period of ~40min

Example: Accreting Pulsar, orbit, 
tiME delays

~2
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Example: QPOs from NS Binaries

• Frequencies saturate                     

to a maximum. This is 

likely the signature of 

the ``innermost stable circular orbit'' around 

a neutron star, a radius predicted by 

general relativity inside of which matter 

must inexorably spiral down to smaller radii

Sco X-1
Sub-ms oscillations 
seen from > 20 NS 
binaries



Urbino, 31st July 08

• SGR1806-20 Giant Flare (Dic 2004)

• A sequence of QPO frequencies was 
detected: 18, 29, 92 and 150, 625, 
and 1840 Hz!

• Amplitudes in the 5 – 11% range.

•• Likely interpretation:Likely interpretation: A sequence of 
toroidal modes

Example: Magnetar sub-ms QPOs

The shortest period in (X-ray) 
astronomy

~2
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Power Spectrum main parameters
If your light curve has N bins, with bin size ∆t and total duration T, 
(NOT effective exposure time) then:

• The smallest frequency you can sample is νmin = 1/T : this is also the 
frequency separation between powers or frequency resolution)

• The largest frequency you can sample is νmax = 1/(2∆t) (this is the 
“Nyquist” limiting frequency)

• νmin and νmax can be changed arbitrarly  in order to study the 
continuum and narrow (QPOs/coherent signal) components of the PSD

Example:Example:

t=72s �
νmax=1/(2 t)~7e-3 
Hz

T=74000s �
νmin= 1/T ~1.4e-5 Hz

T/ t ~1024 bins
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The detection process in a psd

The process of detecting something in a power spectrum against the 
background of noise has several steps: 

o knowledge of the probability distribution of the noise powers

o The detection level: Number of trials (frequencies and/or sample)

o knowledge of the interaction between the noise and the signal powers
(determination of the signal upper limit)

o Specific issues related to the intrinsic source variability (non 
Poissonian noise) 

o Specific issues related to a given instrument/satellite (spurious 
signals – spacecraft orbit, wobble motion, large data gaps, etc.)
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Noise probability distribution

For a wide range of type of noise (including that of counting photon 
detectors used in X-ray astronomy), the noise powers Pj,noise follow
a χ2 distribution with ν=2NPSD degrees of freedom. 

However, for ν=2 it reduces to 

Correspondingly, the signal detection 
process results in defining a Pthre, such 
that the probability of having Pj,noise > 
Pthres is small enough (according to the 
χ2222 probability distribution)

Raw data from a 106 FF 
of 1 PSD
Theoretical χ2 dist.
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Ex:Ex: a power of 44 (in a white 
noise PSD) has a probability of 
e-44/2=3x10-10 of being noise.
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the search threshold and Ntrials

- We define a priori a confidence level (1-ε) of the search (typically 
- 3.5σ), corresponding to a power P=Pthres which has a small probability 
−ε to be exceeded by a noise power 

- A crucial consideration, occasionally overlooked, is the number of 
-trial powers Ntrial over which the search has been carried out
o Ntrial = to the powers in the PSD if all the Fourier frequency are 

considered;
o Ntrial < than the powers in the PSD if a smaller range of frequencies 
has been considered;

o Ntrial moltiplied by the number of PSD considered in the project  

2
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Ex:Ex: the previous probability of 
3x10-10 has to be multiplied  by 
1.048.000 trial frequencies and 
1 PSD
Prob*Ntrial= 3x10

-10*1.048.000
=3x10-4

Still significant!!
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ULs and THE sensitivity to the signal
If no Pj > Pthres, it is useful to determine an upper limit to any signal 
power based on the OBSERVED properties. This is given by: 

PUL=Pmax-Pexceed , where Pmax is the largest actually observed power in the

PSD and  Pexceed is a power level which has a large probability to be 
exceeded by any Pj,noise.

It  is sometimes  useful to  predict the  capabilities of  a planned 
experiment in terms of sensitivity to signal power. This is calculated

based on the EXPECTED probability
distribution of the noise.

Psens=Pthres-Pexceed

Note that Psens is in a sense the upper
limit to PUL. 

= Pthres

Consideration:Consideration: Psens has to be used 
reported in proposal. PUL is used when
reporting a non detection in raw data.
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Estimating Asens for Proposals

You need the Intensity (cts/s) of the target and the T (s) of obs. �
corresponding to net counts Nph. Then, a confidence level has to be set 
(nσ) � defines Pthres

Based on know PSD properties one has : 

relationship between Asens and the Nph
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Ex:Ex: for a source of Intensity of 5ct/s, an 
exposure of T=100ks � Nph=5e+5cts 
and Pthres~40 for 3.5σ c.l.  (256000 Ntrial)

Asens= [2.6*40/(0.773*5e+5)]^0.5=1.6%  

Implication:Implication: signal detection
is not possible for less than ~200 
photons !
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Intrinsic non-Poissonian noise
Many different classes of X—ray sources show aperiodic variability 
which translates into non-Poissonian noises (red-noise, blue-noise, low 
frequency noise, shot noise, etc.). 

Implication:Implication: powers are not distributed anymore like a χ2 with n 
d.o.f. � no statistical tools to assess the significance of power peaks.no statistical tools to assess the significance of power peaks.
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Intrinsic non-Poissonian noise-2

Three different but similar approaches: (1) Rebin of the original PSD, 
(2) Average of more PSD by dividing the light curve into intervals, (3)
Evaluation of the PSD continuum through smoothing.  The common idea 
is to use the information of  a sufficiently high number of  powers 
such that it is possible to rely upon a known distribution of the new 
powers and/or continuum level (χ2 or Gaussian or combination). 

Note that the the processes above modify the PSD Fourier resolution 
(1/T), but leave unchanged the maximum sampled ν (1/2∆t)

(1)                           (2)                          (3)
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If M spectra are considered and/or W contiguous frequencies are 
averaged, the new variable (in cases 1 and 2) will be distributed like a 
rescaled χ2/MW with 2MW d.o.f. In practice, everything is rescaled 
in order to have E[χ2|2MW]= 2MW/MW=2 . 
Therefore σ[χ2|2MW]=sqrt(2MW)/MW � less noisy !!
Note that for MW>30÷40 the  χ2 � Gaussian

Implications:Implications: the noise scatter is largely reduced and faint and 
“extended” signals may be now detected.

Intrinsic non-Poissonian noise-3
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signal detection optimization

The presence of  the x2/sin2x term in the amplitude relationship implies
a strong correlation between signal power and its location (in terms of 
Fourier νj) with respect to νNyq . The power-signal response function 
Decreases of 60% (from 1 to 0.405) from the 1st and last freq.

Implications:Implications:When searching for coherent o quasi-coherent signals 
It is important to use the original (if binned time series) or minimum (if 
arrival time series) time resolution � νNyq = const.
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signal detection optimization-2
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In the greatest part of the cases the signal freq. νsig is not equal to 
the Fourier freq. νj.  The signal power response as a function of the 
difference between νsign and the closest νj , is again a x2/sin2x term 
which varies between 1 and 0.5: for a coherent periodicity 1 means that 
all the signal power is recovered  by the PSD, 0.5 means that the signal 
power is equally distributed between two adjacent Fourier frequencies 
νj.

Implications:Implications:When searching for strictly coherent signals it is important
to rely upon the original/maximum Fourier resolution (1/T) � do not 
divide the observation in time sub-intervals. 
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optimizing for the signal shape

Similar reasoning shows that the signal power for a feature with finite
width ∆ν drops proportionally to 1/MW when degrading the Fourier 
resolution. However, as long as feature width exceeds the frequency 
resolution, ∆ν > MW/T , the signal power in each Fourier frequency 
within the feature remains approx. constant. 
When ∆ν < MW/T  the signal power begins to drop. 

Implications:Implications: The search for QPOs is a three step interactive process. 

Firstly, estimate (roughly) the feature width. 

Secondly, run again a PSD by setting 

the optimal value of MW equal to the optimal value of MW equal to 

~T ~T ∆ν∆ν. . Two or three iterations are 
likely needed. 

Finally, use χχ22 hypothesis testing to
derive significance of the feature, 

its centroid and r.m.s.

∆ν

νοοοο
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What to do 
Step 1.Step 1. Barycenter the data: corrects to arrival
times at solar system’s center of mass (tools: 
fxbary/axbary depending on the given mission). 
Correct for binary orbital param. (if any)

Step 2.Step 2. Create light curves with lcurve for 
eachsource in your field of view inspect for 
features,e.g., eclipses, dips, flares, large 
long-period modulations. 
lcstats give statistical info on the light curve properties (including r.m.s)

Step 3.Step 3. Power spectrum. Run powspec or 
equivalent and search for peaks. 
If  no signal � calculate  AUL (or Asens)
If a peak is detected � infer νsign

One peak � likely sinusoidal pulse profile
More peaks � complicated profile

Example:Example: νsign = 0.18 Hz � Psign = 5.54s
T~48ks
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What to do-2 
Step 4.Step 4. Use efsearch (P vs χ2) to refine the 
period. Step 1Step 1 if you already know the period.

Note that efsearch uses the Fourier period
resolution (FPR), P2/2T, as input default.
It depends from P !!! 

To infer the best period the FPR has to be 
overestimated  by a factor of several (ex. 20).
Fit the resulting peak with a Gaussian and save 
the  central value and ite uncertainty. 
OKOK for period, not goodnot good for its uncertainty 
(which is the FPR)

Example:Example: for a signal at 5.54s and T=48ks � FPR=3.2e-4s 
FPR input = 3.2e-4/20=1.6e-5s
GC= (-1.5±0.1)x10-5s (1σ c.l.) � P=P=5.540368-0.000015 = 5.540353 s5.540353 s
For the uncertainty is often used the GC error x 20 (the overestimation
factor used in input). ∆∆P=P= 0.1x10-5 x 20 s = 2x102x10--4 4 ss
Final Best Period:   Final Best Period:   5.5404(2) s5.5404(2) s (1(1σ σ c.lc.l.).)
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What to do-3 
Step 5.Step 5. Use efold to see the modulation. Fit it 
withone or more sinusoids. Infer the  pulsed 
fraction (several definitions) and/or the 
r.m.s. Remove the BG (it works like unpulsed flux).

Step 4b.Step 4b. Apply a phase-fitting technique to your 
data (if enough photons). Use efold and save 
the sinusoid phase of pulse profiles obtained in
4 or more time intervals. Plot and fit Time vs
Phase with a linear and quadratic component
- If the linear is consistent with 0 the input P 
- is OK
- If a linear component is present the input P is 
wrong .  Correct and apply again the technique.

minmax

minmax

II

II
PF

+
−= Ex:Ex: 22.0

78.022.1

78.022.1 =
+
−=PF

Example:Example: Best Period:    Best Period:    5.54036(1) s5.54036(1) s 11σσ c.lc.l..
A factor of ~20 more accurate than efsearch
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MORE on phase-fitting

It provides a phase coherent timing solution which
can be extended in the future and in the past 
without loosing the information on the phase, 
therefore, providing a tool to study small changes
of signals on long timescales.

-- A negative quadraticA negative quadratic term in the phase residuals 
implies the period is decreasing   

-- A positive termA positive term corresponds to an increasing 
- period

This method is often used in radio pulsar 
astronomy.

Examples:Examples: (1) a shrinking binary – orbital period
decreasing at a rate of dP/dt=1ms/yr≈-3x10-11s/s
(2) An isolated neutron star spinning down at a 
rate of dP/dt≈1.4x10-11s/s

(1)

(2)
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Cross-correlations

The cross-correlation measures how closely two different  observables 
are related each other at the same or differing times. It also gives 
information on possible delays or advances of one variables with respect
to the other (in practical cases one deals with times or phases). 

Example:Example: CCF obtained with crosscor. Two simultaneous light curves 
of a binary system in two different energy intervals (soft and hard). 
The CCF peaks at positive x and y: the two 
variables are correlated and the hard 
variability follows the soft one. ∆t=13±2s 
(1σ c.l.).

It is often useful to cross check the CCF 
results with the spectral information or 
any other useful timing result.
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Cross-correlations-2

Example:Example: The folded light curves in the 
soft (black) and hard (gray) bands confirm 
the presence of a possible delay

The study of the energy spectrum clearly
reveals the presence of two distinct 
components (BB+PL) in the soft (S) and 
hard (H) energy bands considered for in 
the CCF analysis.
The CCF result is reliable/plausible !

S
H
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Cross-correlations-3

Further considerations:Further considerations: CCF may be also 
applied to data taken in rather different bands
(i.e. optical and X-ray) for a given source.

Example:Example: Same source as before, CCF obtained
for the optical and X-ray folded light curves 
(obtained with efold) over a 4-years baseline. 
Pseudo-simultaneous data: same phase 
coherent time solution used. 
The CCF peaks at positive x and negative y: the
optical and X-ray data are anti-correlated with 
the optical one proceeding  the X—rays by 0.16 
in phase.
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Tips
Pulsar (coherent pulsation) searchesPulsar (coherent pulsation) searches are most sensitive when no 

rebinning is done (ie., you want the maximum frequency resolution), 
and when the original sampling time is used (i.e. optimizing the signal 
power response). Always search in all serendipitous sources (Nph>300)

QPO searchesQPO searches need to be done with multiple rebinning scales.  In 
general, you are most sensitive to a signal when your frequency 
resolution matches (approximately) the frequency width of the 
signal.

CCF:CCF: it is worth using it to study the relation among different energies
Cross-check with spectral information

Beware of signals/effects introduced byBeware of signals/effects introduced by

- instrument, e.g., CCD read time  - Pile-up (wash-out the signal)
- (check/add keyword TIMEDEL) - Orbital binary motion (  “ )
- Dead time - The use of uncorrect GTIs
- Orbit of spacecraft (for single and merged simult.
- Telescope motion (wobble,etc.) light curves)
- Data gaps
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Tips-2

Right GTI table

Wrong/no GTI 
table

Right TIMEDEL 
keyword

Wrong/no TIMEDEL 
keyword
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Suggested Reading

- van der Klis, M. 1989, “Fourier Techinques in X-ray Timing”, in Timing
- Neutron Stars, NATO ASI 282, eds. Ögelman & van den Heuvel, 
- Kluwer 
Superb overview of spectral techniques!

- Press et al., “Numerical Recipes” - Clear, brief discussions of many 
- numerical topics

- Leahy et al. 1983, ApJ, 266, p. 160 - FFT & PSD Statistics

- Leahy et al. 1983, ApJ, 272, p. 256 - Epoch Folding

- Davies 1990, MNRAS, 244, p. 93 - Epoch Folding Statistics

- Vaughan et al. 1994, ApJ, 435, p. 362 - Noise Statistics

- Israel & Stella 1996, ApJ, 468, 369 – Signal detection in “noisy” PSD  

- Nowak et al. 1999, ApJ, 510, 874 - Timing tutorial, coherence
- techniques

For more questions: gianluca@mporzio.astro.it
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