A NEW METHOD FOR ESTIMATING WIDTHS, VELOCITIES, AND SOURCE LOCATION OF HALO CORONAL MASS EJECTIONS

G. Michalek
Astronomical Observatory of Jagiellonian University, ul. Orla 171, Krakow 30-244, Poland; michalek@oa.uj.edu.pl
AND
N. Gopalswamy and S. Yashiro
Center for Solar Physics and Space Weather, Catholic University of America, Washington, DC 20064
Received 2002 July 12; accepted 2002 October 11

Abstract

It is well known that coronagraphic observations of halo coronal mass ejections (CMEs) are subject to projection effects. Viewing in the plane of the sky does not allow us to determine the crucial parameters that define the geoeffectiveness of CMEs, such as the space speed, width, or source location. Assuming that halo CMEs have constant velocities, are symmetric, and propagate with constant angular widths, at least in their early phase, we have developed a technique that allows us to obtain the required parameters. This technique requires measurements of sky-plane speeds and the moments of the first appearance of the halo CMEs above opposite limbs. We apply this technique to obtain the parameters of all the halo CMEs observed by the Solar and Heliospheric Observatory (SOHO) mission's Large Angle and Spectrometric Coronagraph experiment until the end of 2000. We also present a statistical summary of these derived parameters of the halo CMEs.

Subject headings: solar-terrestrial relations - Sun: corona - Sun: coronal mass ejections (CMEs)

1. INTRODUCTION

Space weather is significantly controlled by coronal mass ejections (CMEs), which can affect the Earth in different ways. CMEs originating from regions close to the central meridian of the Sun and directed toward the Earth are of immediate concern because they are likely to be geoeffective. In coronagraphic observations, halo CMEs appear as enhancements surrounding the entire occulting disk (Howard et al. 1982). Halo CMEs are routinely recorded by the highly sensitive Solar and Heliospheric Observatory (SOHO) mission's Large Angle and Spectrometric Coronagraph (LASCO). In spite of the large advantage over previous instruments, the $\mathrm{SOHO} / \mathrm{LASCO}$ observations are still affected by projection effects because of the nature of Thomson scattering (Gopalswamy et al. 2000). Viewing in the plane of the sky does not allow us to determine the crucial parameters (space speed, width, and source location) that define the geoeffectivness of CMEs. Prediction of the arrival of CME in the vicinity of Earth is critically important in space weather investigations. On the basis of interplanetary CMEs detected by wind and the corresponding CMEs remote-sensed by SOHO , Gopalswamy (2002) developed and improved an empirical model to predict the arrival of CMEs at 1 AU . The critical input to this model is the initial CME speed. Better prediction could be achieved if true initial velocities are used instead of projected velocities determined from LASCO observations. Attempts have been made to estimate the projection effects on the basis of the location of the solar source by employing ad hoc assumptions of the parameters such as the CME width (Sheeley et al. 1999; Leblanc \& Dulk 2001).

In the present paper we attempt to determine the space speed, width, or source location using a different technique by assuming that the CME is shaped like an ice cream cone. The method is based on the following assumptions: (1) the halo CMEs at least in the very early phase have constant velocities, (2) they are symmetric, and (3) they propagate with constant angular widths. The required inputs are the
sky-plane speeds along two opposite directions and the times of first appearance above the limb in those two directions. We apply this technique to all the halo CMEs observed by $\mathrm{SOHO} / \mathrm{LASCO}$ until the end of 2000 . We compare the parameters obtained from this technique with those listed in the $\mathrm{SOHO} / \mathrm{LASCO}$ CME catalog.

2. THE CONE MODEL OF CMEs

In the projection on the sky most of the CMEs (especially limb events) observed by LASCO look like cone-shaped blobs, as schematically illustrated in Figure 1. They maintain this shape during expansion through the C 2 and C 3 fields of view. The observed angular widths, for many limb events, remain nearly constant as a function of height (see, e.g., Webb et al. 1997). Most of them propagate with constant radial frontal speed, but many slow CMEs gradually accelerate, whereas many fast CMEs decelerate (St. Cyr et al. 2000; Sheeley et al. 1999; Gopalswamy et al. 2001; Yashiro et al. 2002). Assuming that the halo CMEs propagate with a constant velocity and angular width, we can reproduce it by the cone model with four free parameters: velocity, angular width, orientation of the central axis of the CME, and the distance of source location from the central meridian measured in the plane of the sky. These assumptions should be true at least in the beginning phase of the CME expansion. Therefore, we assume that bulk velocity of the CME is directed radially and isotropic. Similar cone models have been used before, e.g., by Howard et al. (1982), Fisher \& Munro (1984), and recently by Zhao et al. (2002). In Figure 1 we show schematically basic properties of the CME model. In the projection on the symmetry plane, which intersects the ice cream cone along the central axis, it looks like a triangle represented by thick solid arrows. The central axis of our CME is represented by a thick dashed arrow. The inclination of the symmetry axis to the sky plane is γ. Each part of this cone (triangle in projection) has a constant velocity V. The CME with an angular width α is

LASCO
Fig. 1.-Schematic picture presenting our cone model of the halo CME. In the bottom of the picture, we see the occulting disk of the LASCO/C2 coronagraph. It should be noted that this is only a schematic picture without a real scale.
ejected from the solar surface at a distance r from the central meridian. Opposite parts of CMEs have velocities $V_{x 1}$ and $V_{x 2}$, respectively. We note that if the CME originates exactly from the disk center, it will appear at the same time all around the occulting disk. If the source location of CME is slightly shifted $(=r)$ with respect to the center of the Sun (as in Fig. 1), then the CME will first appear above the left (eastern) side of the occulting disk and finally above the right (western) side of the occulting disk. In that case, the halo CME will be asymmetric with respect to the occulting disk. This asymmetry (the difference between times when CME appears at the opposite limbs) is fundamental for our considerations.

By simple inspection we see from Figure 1 that on the left (eastern) side of the occulting disk, the CME has to travel a
distance $2 R-r$ with velocity $V_{x 1}$ to appear in coronagraph at time T_{1} such that

$$
T_{1}=\frac{(2 R-r)}{V_{x 1}}
$$

Similarly, the CME will appear on the right (western) side of the occulting disk after a time

$$
T_{2}=\frac{(2 R+r)}{V_{x 2}}
$$

From these equations, we determine the time difference

$$
\begin{equation*}
\Delta T=T_{2}-T_{1}=\frac{(2 R+r)}{V_{x 2}}-\frac{(2 R-r)}{V_{x 1}} \tag{1}
\end{equation*}
$$

From the geometry of the CME shown in Figure 1, we get rest of the necessary equations:

$$
\begin{gather*}
\cos (\gamma)=\frac{r}{R} \tag{2}\\
\cos \left(\gamma-\frac{\alpha}{2}\right)=\frac{V_{x 1}}{V} \tag{3}\\
\cos \left(180^{\circ}-\gamma-\frac{\alpha}{2}\right)=\frac{V_{x 2}}{V} \tag{4}
\end{gather*}
$$

We have four equations and four parameters to determine r, α, V, and γ. The inputs $V_{x 1}, V_{x 2}$, and ΔT need to be obtained from observations. In our considerations, we use data from the $\mathrm{SOHO} / \mathrm{LASCO} \mathrm{C} 2$ coronagraph with a projected radius of an occulting disk approximately equal to $2 R$. To reduce errors, we determine the inputs parameters from height-time plots extrapolated to the projected heliocentric distance equal to $2 R$ also.

2.1. Determination of Parameters Describing Halo CMEs

Obtaining $V_{x 1}, V_{x 2}$, and ΔT from LASCO observations is not an easy task because the halo CMEs are typically very faint, and their structure is often very complicated. From LASCO observations, we obtained two height-time plots for each halo CME from our sample. The first height-time plot is for that part of the CME that appears as the first above the occulting disk. At the time of the first appearance, each CME arrives at a different height, so we extrapolated the plot to estimate the time $\left(T_{1}\right)$ when it reaches a heliocentric distance $(=2 R)$ and hence obtains the velocity $V_{x 1}$. The second height-time plot from the opposite limb (where the halo CME appears as last) is used to determine T_{2} and $V_{x 2}$. We illustrate this method using the example of the 1999 June 29 CME shown in Figure 2. In the first panel at the time T_{0},

Fig. 2.-In the successive panels we present the expansion of the 1999 September 29 halo CME monitored by the LASCO/C2 coronagraph. In the last panel, the thick solid arrows present the axis along which $V_{x 1}$ and $V_{x 2}$ are determined. The position angle (P.A. = angle between north pole of the Sun and the part of the halo CME where $V_{x 1}$ is determined) is indicated also.
we do not see any new event. In the next panel, we see that the CME appears at 07:31 UT in the northwest quadrant of the Sun. From the height-time plot, we get $T_{1}=07: 19$ UT and $V_{x 1}=635 \mathrm{~km} \mathrm{~s}^{-1}$. In the next panel, we see that the final part of CME appears in the southwest quadrant of the Sun. From this part, we determine $T_{2}=07: 34$ and $V_{x 2}=515 \mathrm{~km} \mathrm{~s}^{-1}$. In the fourth panel, we can see the full image of the halo CME. The thick solid arrow represents the axis along which the respective parameters are determined. The position angle (P.A. = angle between the north pole of the Sun and the part of the halo CME where $V_{x 1}$ is determined) is also indicated. Hence, the time difference for this event will be $\Delta T=T_{2}-T_{1}=15$ minutes. Now from equations (1), (2), (3), and (4) describing our CME model, we can determine $V=698 \mathrm{~km} \mathrm{~s}^{-1}$, width $=112^{\circ}$, and parameter $r=0.15$.

3. RESULTS

The height-time plots were measured for each of the halo CMEs in the LASCO CME catalog, and the results are presented in Table 1. Columns (1)-(3) are from the $\mathrm{SOHO} /$ LASCO catalog (date, time, and projected speed from LASCO observations). In columns (4)-(7), we have listed the input parameters obtained from LASCO images (P.A., $\left.V_{x 1}, V_{x 2}, \Delta T\right)$. Parameters estimated from our cone model (r, γ, α, V) are presented in columns (8), (9), (10), and (11). A short description of the events is given in column (12). Numbers describe the quality of a given CME, with 0 for a very faint CME that cannot be measured, 1 for a faint CME for which we can measure only two points in a heighttime plot, 2 for a bright CME, and finally 3 for a very bright CME. The letters F, B, and B? denote frontsided, backsided, and probably backsided halo CME, respectively. If a halo CME is too faint to generate a height-time plot at opposite limbs, we could not estimate the necessary parameters, so in column (12) we listed quality 0 without a letter designation. Similarly, we could not determine the parameters for the symmetric halo CMEs. This the case when the asymmetry in velocity is less than $10 \mathrm{~km} \mathrm{~s}^{-1}$ or when the time difference is less than 10 minutes. For these cases we listed "Sym" in column (12). In column (13), we have listed the source location of the CME from the GOES X flare onset.

FIG. 3.-Histogram showing the distribution of V for the halo CMEs

Fig. 4.-Histogram showing the distribution of α for the halo CMEs

3.1. Properties of the Halo CMEs

In Table 1 we have presented all the halo CMEs from 1996 August until the end of 2000. We have to note that not all halo CMEs look identical. We have to consider two types of halo CMEs. First, there are the classical full halo CMEs that appear to surround the occulting disk very fast in the LASCO/C2 field of view. Generally, they originate from a region close the disk center. Second, there are the wide limb CMEs that surround the entire occulting disk very late, often in the field of view of LASCO C3. Sometimes limb events appear as halos on account of deflections of preexisting coronal structures by the fast CME. So we have to be very careful to distinguish between a real halo CME and a limb fast event deflecting coronal material. We were able to determine the respective parameters for 72 CMEs from our sample. For reasons such as complicated or symmetric structures and faintness, it was difficult to accomplish the necessary measurements for the rest of the events from the list. In three histograms (Figs. 3, 4, and 5), we present the distribution of V, α, and γ. It was noted before, e.g., by Webb et al. (1999), that halo CMEs are much faster and more energetic than typical CMEs. This is also confirmed

FIG. 5.-Histogram showing the distribution of γ for the halo CMEs

TABLE 1
List of Halo CMEs

Date (1)	Time (2)	Speed ($\mathrm{km} \mathrm{s}^{-1}$) (3)	P.A. (deg) (4)	$\begin{gathered} V_{x 1} \\ \left(\mathrm{~km} \mathrm{~s}^{-1}\right) \end{gathered}$ (5)	$\begin{gathered} V_{x 2} \\ \left(\mathrm{~km} \mathrm{~s}^{-1}\right) \end{gathered}$ (6)	ΔT Min (7)	$\begin{gather*} r \\ \left(1 / R_{\odot}\right) \tag{9}\\ (8) \end{gather*}$	$\begin{gathered} \gamma \\ (\mathrm{deg}) \end{gathered}$	$\begin{gathered} \alpha \\ (\mathrm{deg}) \\ (10) \end{gathered}$	$\begin{gathered} V \\ \left(\mathrm{~km} \mathrm{~s}^{-1}\right) \end{gathered}$ (11)	Type (12)	Flare (13)
1996 Aug $16 . .$.	14:14:06	364	96	405	220	62	0.17	80	59	660	$1.0, \mathrm{~B}$?	\ldots
1996 Nov $7 . . .$.	23:20:05	497	114	412	361	18	0.16	80	133	429	$1.0, \mathrm{~B}$?	
1996 Dec 2......	15:35:05	538	270	392	232	79	0.47	61	128	392	$1.5, \mathrm{~B}$?	
1997 Jan 6	15:10:42	136	182	100	85	75	0.13	82	105	117	0.5, F	S20W03
1997 Feb 7......	00:30:05	490	260	297	160	140	0.51	58	121	297	1.5, F	S20W04
1997 Apr $7 . . .$.	14:27:44	875	126	956	551	23	0.42	65	139	954	2.0, F	S30E19
1997 May 12...	06:30:09	464		...							Sym	N21W08
1997 Jul 30	04:45:47	104	276	94	85	81	0.25	75	146	95	1.0, B	
1997 Aug 30 ...	01:30:35	405	65	397	163	103	0.21	78	56	590	1.0, F	N30E17
1997 Sep 28	01:08:33	359	66	210	118	169	0.53	57	131	212	3.0, B	...
1997 Oct $21 . .$.	18:03:45	523	30	527	356	35	0.24	75	103	580	1.0, F	N20E12
1997 Oct 23	11:26:50	503	\ldots	...	\ldots	0.0, B	...
1997 Nov 4.....	06:10:05	755	\ldots	\ldots	\ldots	\ldots	Sym	S14W33
1997 Nov 6.....	12:10:41	1556	261	1524	765	34	0.82	34	153	2059	1.5, F	S18W63
1997 Nov $17 . .$.	08:27:05	611	Sym	...
1997 Dec 18....	23:47:31	417	68	321	270	40	0.36	68	158	325	2.5, B	\ldots
1998 Jan 2.	23:28:20	438	258	281	142	197	0.93	20	165	602	2.0, B?	...
1998 Jan 17	04:09:20	350		0.0, B	...
1998 Jan 21	06:37:25	361	176	387	265	80	0.71	44	159	468	0.5, F	S57E19
1998 Jan 25	15:26:34	693	36	471	216	98	0.50	60	114	471	$1.0, \mathrm{~F}$	N24E27
1998 Mar $29 . .$.	03:48:00	1794	\ldots	\ldots	...	\ldots	0.0, B?	...
1998 Mar $31 . .$.	06:12:02	1992	167	1733	502	41	0.26	74	53	2591	3.0, B?	...
1998 Apr 23....	06:55:20	1618	113	1744	945	21	0.51	59	126	1744	3.0 , F	...
1998 Apr 27....	08:56:06	1434	\ldots	0.0, F	S16E50
1998 Apr 29....	16:58:54	1374	16	1071	794	17	0.26	74	111	1134	2.0, F	S17E20
1998 May $1 . .$.	23:40:09	585	142	623	367	31	0.1	84	40	1427	2.0, F	S18W05
1998 May 2	05:31:56	542	143	661	426	23	0.1	85	39	1612	2.0, F	S20W17
1998 May 2	14:06:12	938	\ldots	...	Sym	S15W15
1998 Jun 4	02:04:45	1802									0.0, B	
1998 Jun 5	12:01:53	320	223	170	109	215	0.78	39	159	227	$1.0, \mathrm{~F}$	S23E43
1998 Jun 7	09:32:08	794	114	1117	834	17	0.4	66	143	1122	2.0, B	...
1998 Jun 20	18:20:37	964	153	964	481	54	0.8	35	153	1285	2.0, B?	...
1998 Oct 24	02:18:05	452	116	404	377	32	0.46	62	172	441	1.5, B?	...
1998 Nov 4.....	04:54:07	527	0.0	390	158	114	0.25	75	62	541	1.5, F	N17W01
1998 Nov 5.....	02:24:56	577	288	395	267	42	0.18	79	88	482	1.0, F	N19W10
1998 Nov 5.....	20:58:59	1124	305	1092	378	55	0.35	69	75	1283	3.0, F	N22W18
1998 Nov $24 . .$.	02:30:05	1744	224	1856	628	43	0.88	27	153	2655	3.0 , F	S30W81
1998 Nov $26 . .$.	03:42:05	488	\ldots	0.0	
1998 Dec 18....	18:21:50	1745	40	1758	532	50	0.68	47	120	1792	2.0, F	N19E64
1999 Apr 4	04:30:07	1178									0.0, F	N18E72
1999 Apr 24....	13:31:15	1495	307	1259	502	45	0.52	58	110	1261	2.0, B	...
1999 May 3	06:06:05	1584	50	1392	345	61	0.61	51	110	1369	2.0, F	N15E32
1999 May 10...	05:50:05	920	80	1080	513	33	0.27	74	76	1333	1.5, F	N16E19
1999 May 27...	11:06:05	1691	311	1700	623	42	0.71	44	130	1821	$1.5, \mathrm{~B}$...
1999 Jun 1.	19:37:35	1772	351	1792	662	32	0.40	65	88	1902	1.5, B	...
1999 Jun 4	00:50:06	803	8	936	475	38	0.37	68	101	980	1.5, B?	
1999 Jun 8	21:50:05	726	10	755	690	19	0.49	60	170	834	1.5, F	N30E03
1999 Jun 12	21:26:08	465	\ldots	Sym	N22E37
1999 Jun 22	18:54:05	1133	...	\ldots	0.0, F	N22E37						
1999 Jun 23	06:06:05	450	\ldots	Sym	S10E71							
1999 Jun 23	07:31:24	1006	...	\ldots	\ldots	...	\ldots	\ldots	Sym	S12E78
1999 Jun 24	13:31:24	975	\ldots	\ldots	\ldots	...	\ldots	0.0, F	N29E13
1999 Jun 26	07:31:25	558	0	584	419	21	0.11	83	67	909	1.0, F	N25E00
1999 Jun 28	12:06:07	560	364	549	297	77	0.67	47	143	603	1.0, F	S27E55
1999 Jun 28	21:30:08	1083	0.0, F	S25E49
1999 Jun 29	05:54:06	589	\ldots	.	.	.	\ldots	...	\ldots	...	0.0	...
1999 Jun 29	07:31:26	634	10	635	515	15	0.15	81	112	698	2.0, F	N18E07
1999 Jun 29	18:54:07	438		0.0, F	S14E01
1999 Jun 30	04:30:05	1049	\ldots	...	0.0	...
1999 Jun 30	11:54:07	627	193	588	424	23	0.16	80	92	705	1.0, F	S15E00
1999 Jun 30	13:31:25	514	0.0	...
1999 Jul 6	17:06:05	899	350	1000	489	39	0.41	65	105	1026	1.0, B	\ldots
1999 Jul 19	03:06:05	509	\ldots	.	\ldots	\ldots	.	0.0, F	N15W13

TABLE 1—Continued

Date (1)	Time (2)	Speed ($\mathrm{km} \mathrm{s}^{-1}$) (3)	P.A. (deg) (4)	$\begin{gathered} V_{x 1} \\ \left(\mathrm{~km} \mathrm{~s}^{-1}\right) \\ (5) \end{gathered}$	$\begin{gathered} V_{x 2} \\ \left(\mathrm{~km} \mathrm{~s}^{-1}\right) \end{gathered}$ (6)	ΔT Min (7)	$\begin{gathered} r \\ \left(1 / R_{\odot}\right) \\ (8) \end{gathered}$	$\begin{gathered} \gamma \\ (\mathrm{deg}) \\ (9) \end{gathered}$	$\begin{gathered} \alpha \\ (\mathrm{deg}) \\ (10) \end{gathered}$	$\begin{gathered} V \\ \left(\mathrm{~km} \mathrm{~s}^{-1}\right) \\ (11) \end{gathered}$	Type (12)	Flare (13)
1999 Jul 25	13:31:21	1389	306	1342	348	82	0.76	40	127	1466	2.0, F	N29W81
1999 Jul 28	05:30:05	457	0.0, F	S15E00
1999 Jul 28	09:06:05	456	\ldots	\ldots	\ldots	\ldots	\ldots	...	0.0, F	S15E04
1999 Aug 7	23:50:05	219	\ldots	0.0, F	S14E47
1999 Aug $9 . . .$.	03:26:05	369						\ldots	\ldots		0.0, F	S29W11
1999 Oct 14	09:26:05	1250	63	1362	830	33	0.82	34	157	1899	2.0, F	N15E40
1999 Dec 6......	09:30:08	653	154	680	551	21	0.33	70	147	682	$1.0, \mathrm{~B}$?	...
1999 Dec 12....	08:30:05	720	198	1118	797	21	0.50	59	147	1151	1.0, B	...
1999 Dec 20....	18:06:05	1237	15	1237	783	23	0.28	73	74	2242	2.0, B	...
1999 Dec 22....	02:30:05	482	14	753	525	42	0.75	40	162	984	1.5, F	N10E30
1999 Dec 22....	19:31:22	605	24	605	515	44	0.65	69	141	1042	1.5, F	N24E19
2000 Jan 14	10:54:34	229	0.0, B	...
2000 Jan 18	17:54:05	739	...	\ldots	\ldots	\ldots	0.0, F	S19E11
2000 Jan 25	23:54:06	222	...	\ldots	\ldots	\ldots	...	\ldots	0.0	...
2000 Jan 27	19:31:17	828	...	\ldots	...	\ldots	\ldots	\ldots	0.0, F	S09E71
2000 Jan 28	20:12:41	1177	...	\ldots	\ldots	\ldots	\ldots	...	\ldots	...	0.0, F	S31W17
2000 Feb 3......	12:30:05	735	\ldots	...	\ldots	\ldots	\ldots	\ldots	0.0, B	,
2000 Feb 8.....	09:30:05	1079	55	938	732	28	0.63	50	162	1091	2.0, F	N25E26
2000 Feb 9......	19:54:17	910	218	1124	693	25	0.44	63	128	1125	1.5, F	S17W40
2000 Feb $11 . .$.	21:08:06	498	0.0	
2000 Feb 12....	04:31:20	1107		0.0, F	N26W23
2000 Feb 17....	20:06:05	600	196	660	540	23	0.39	67	152	668	2.0, F	S27W10
2000 Feb $28 . .$.	10:54:05	404	279	466	370	43	0.3	72	132	475	$2.0, \mathrm{~B}$?	...
2000 Mar $1 . . .$.	03:30:05	529	217	628	488	38	0.64	49	162	737	$2.0, \mathrm{~B}$?	...
2000 Mar 3.....	05:30:07	793	\ldots	0.0, F	S14W62
2000 Mar $29 . .$.	10:54:30	949			\ldots	\ldots	\ldots		0.0, B	
2000 Apr $4 . . .$.	16:32:37	1188	304	1281	641	40	0.79	37	151	1645	2.0, F	N16W66
2000 Apr 10....	00:30:05	383			\ldots	\ldots	\ldots	0.0, F	S14W01
2000 Apr 23....	12:54:05	1187	279	1309	533	46	0.65	49	127	1351	3.0, B	...
2000 May 3	02:06:05	693			\ldots		\ldots			...	Sym, B	
2000 May 5	15:50:05	1594	269	1624	570	50	0.85	32	146	2154	2.0, F	S16W84
2000 May 12...	23:26:05	2604	63	2056	699	36	0.62	51	116	2072	$2.0, \mathrm{~B}$?	...
2000 May 28...	11:06:05	572	\ldots	...	\ldots	$0.0, \mathrm{~B}$?	...
2000 Jun 2	10:30:25	442	\ldots	0.0, F	N10E23
2000 Jun 6.	15:54:05	1108	6	1024	870	12	0.32	71	152	1028	2.5, F	N21E15
2000 Jun 7	16:30:05	842	\ldots	\ldots	0.0, F	N20E02
2000 Jun 10	17:08:05	1108	306	1376	710	32	0.64	50	138	1460	2.5, F	N22W37
2000 Jul 7	10:26:05	453	198	311	239	59	0.42	65	147	315	$1.5, \mathrm{~B}$?	
2000 Jul 11	13:27:23	1078	51	1453	1093	18	0.68	47	162	1753	2.0, F	N18E27
2000 Jul 14	10:54:07	1674	0.0, F	N22E07
2000 Jul 27	19:54:06	905	\ldots	\ldots	...	\ldots	\ldots	...	0.0, F	N10E07
2000 Aug 9	16:30:05	702	\ldots		...	\ldots	\ldots	...	0.0, F	N11W09
2000 Sep 12	11:54:05	1550	216	1250	966	18	0.58	54	159	1385	2.0, F	S12W18
2000 Sep 12	17:30:05	1053	47	1329	681	27	0.39	66	106	1366	$2.0, \mathrm{~B}$?	
2000 Sep 15	15:26:05	481	...	\ldots	...	\ldots	...	\ldots	0.0, F	N14E02
2000 Sep 15	21:50:07	257	\ldots	. \cdot	. \cdot	\ldots	. \cdot.	\ldots	0.0, F	N14E01
2000 Sep 16	05:18:14	1251	21	1256	946	12	0.27	74	126	1278	2.0, F	N14E04
2000 Sep 25	02:50:05	587		...	\ldots	\ldots	. .	0.0, F	N15W28
2000 Oct 2	03:50:05	525	144	577	381	42	0.41	65	131	578	1.0, F	S08E05
2000 Oct 2	20:26:05	569	...	\ldots	0.0, F	S08E05
2000 Oct 9	23:50:05	798	\ldots	0.0, F	N02W18
2000 Nov $1 . . .$.	16:26:08	801	\ldots	\ldots	0.0, F	S17E39
2000 Nov $3 . . .$.	18:26:06	291	\ldots	...	\ldots	\ldots	...	0.0, F	N02W02
2000 Nov $8 . . .$.	04:50:23	474	236	622	294	77	0.6	53	128	634	1.0, F	N10W77
2000 Nov $8 . . .$.	23:06:05	1345	0.0, F	N05W75
2000 Nov 15...	23:54:05	826	\ldots		0.0, B	...
2000 Nov 23 ...	06:06:05	492	230	450	334	48	0.49	60	150	466	1.0, F	S22W33
2000 Nov $24 . .$.	05:30:05	1074	352	996	734	21	0.45	62	147	1013	1.5, F	N22W02
2000 Nov $24 .$.	15:30:05	1245	324	1396	841	17	0.26	74	96	1556	3.0, F	N22W07
2000 Nov $24 . .$.	22:06:05	1005	312	1105	575	37	0.56	55	130	1122	2.0, F	N21W14
2000 Nov $25 . .$.	01:31:58	2519	75	2434	724	34	0.54	57	100	2452	2.0, F	N07E50
2000 Nov $25 .$.	09:30:17	675	\ldots	\ldots	$0.0, \mathrm{~B}$?	...
2000 Nov $25 . .$.	19:31:57	671						\ldots			0.0, F	N20W23
2000 Nov $26 . .$.	17:06:05	1026	283	1240	785	25	0.58	54	144	1303	2.0, F	N18W38

TABLE 1-Continued

Date (1)	Time (2)	Speed ($\mathrm{km} \mathrm{s}^{-1}$) (3)	P.A. (deg) (4)	$\begin{gathered} V_{x 1} \\ \left(\mathrm{~km} \mathrm{~s}^{-1}\right) \end{gathered}$ (5)	$\begin{gathered} V_{x 2} \\ \left(\mathrm{~km} \mathrm{~s}^{-1}\right) \\ (6) \end{gathered}$	ΔT Min (7)	$\begin{gathered} r \\ \left(1 / R_{\odot}\right) \\ (8) \end{gathered}$	$\begin{gathered} \gamma \\ (\mathrm{deg}) \\ (9) \end{gathered}$	$\begin{gathered} \alpha \\ (\operatorname{deg}) \\ (10) \end{gathered}$	$\underset{\left(\mathrm{km} \mathrm{~s}^{-1}\right)}{\substack{\text { (11) }}}$	Type (12)	Flare (13)
2000 Dec 6......	17:26:05	413	\ldots	Sym, B								
2000 Dec 18....	11:50:05	510	\ldots	0.0, F	N14E03							
2000 Dec 28....	12:06:05	930	\ldots	Sym, B	...							

by our results. The average width of halo CMEs is approximately equal to 120° (more than 2 times larger than the average value obtained from the $\mathrm{SOHO} / \mathrm{LASCO}$ catalog; Yashiro et al. 2002). The most narrow CME has its width equal to 40°, and the widest one has a cone angle as large as 172°. The average speed of the halo CMEs is $1080 \mathrm{~km} \mathrm{~s}^{-1}$ (about 2 times larger than that from the $\mathrm{SOHO} / \mathrm{LASCO}$ catalog). The slowest one had its speed equal to $95 \mathrm{~km} \mathrm{~s}^{-1}$, while the fastest one had its speed equal to $2590 \mathrm{~km} \mathrm{~s}^{-1}$. Figure 5 shows that the halo CMEs originate close to the Sun center (with $\gamma \geq 60^{\circ}$) with maximum of distribution around $\gamma=65^{\circ}$. We have to remember that we have excluded the symmetric halos, which start exactly from the Sun center. If we include them, then the maximum of γ distribution would be shifted to the central meridian. In Figure 6 we present the sky-plane speeds against corrected (true) velocities. The solid line represents the linear fit to the data points. The inclination of the linear fit suggests that the projection effect increases slightly with the speed of the CMEs. It is clear that the projection effect is important, and on the average, the corrected speeds are 20% larger than the velocities measured in the plane of the sky.

4. SUMMARY

In this paper we have presented a new method for estimating the crucial parameters that determine the geoeffectiveness of the halo CMEs. The crucial point of this method is the time difference between the appearances of the halo at two opposite position angles. We applied this method to all the halo CMEs listed in the $\mathrm{SOHO} / \mathrm{LASCO}$ catalog until the end of 2000. We were able to determine the true velocity, width, and source location for 72 CMEs from our sample. Unfortunately, 58 events were either symmetric or too faint

Fig. 6.-Plane of sky speeds vs. corrected (real) speeds. The solid line shows the linear fit to the data.
to measure. These results suggest that the halo CMEs represent a special class of CMEs that are very wide and fast. Such fast and wide CMEs are known to be associated with electron and proton acceleration by driving fast-mode MHD shocks (e.g., Cane et al. 1987; Gopalswamy et al. 2001; Gopalswamy 2002a). We point out that the simple method has several shortcomings: (1) CMEs may be accelerating, moving with constant speed, or decelerating at the beginning phase of propagation. This means that the constant velocity assumption may be invalid. (2) CMEs may expand in addition to radial motion. Then the measured sky-plane speed is a sum of the expansion speed and the projected radial speed. This would also imply that the CMEs may not be a rigid cone, as we had assumed (Gopalswamy 2002b). (3) The cone symmetry also may not hold. Many halo CMEs do not emerge over opposite limbs along a symmetrical 180°; their structure is often very complicated. Unfortunately, beautiful events similar to the one presented in Figure 2 are sporadic. It is very difficult to estimate how reliable our basic assumptions (CMEs have constant velocities and constant angular width and are symmetric) are for a given CME. Each of these assumptions may be true for most CMEs but not necessarily for a particular CME. Nevertheless, there are no available data to modify the model. For our consideration, we chose only bright halo CMEs with large differences in appearance time above opposite limbs. There is still a possibility that the determined parameters for a particular halo CME (for CMEs, which completely breaks our basic assumptions) may be wrong. The " exotic" events, if they exist in our sample at all, should not affect our results. All these limits can be overcome by stereoscopic observations. Unfortunately, at the present time they are not available yet. It is necessary to improve the model to get a better fit to the observations. The first step would be to include acceleration and expansion of CMEs. We have to note that it may be surprising that the average corrected speeds are only 20% greater than the sky-plane speeds. But we have to remember that halo CMEs originating close to the Sun center, subjected to the largest projection effects, are not included in our results. They are symmetric in LASCO observations and cannot be considered using our method.

This paper was written while Grzegorz Michalek was working at the Center for Solar Physics and Space Weather, Catholic University of America, Washington, DC. In this paper we used data from the $\mathrm{SOHO} / \mathrm{LASCO}$ CME catalog. This CME catalog is generated and maintained by the Center for Solar Physics and Space Weather, Catholic University of America, in cooperation with the Naval Research Laboratory and NASA. SOHO is a project of international cooperation between ESA and NASA. Work done by Grzegorz Michalek was partly supported by Komitet Badań Naukowych through grant PB 258/P03/99/17.

Cane, H. V., et al. 1987, J. Geophys. Res., 92, 9869
Fisher, R. R., \& Munro, R. H. 1984, ApJ, 280, 873
Gopalswamy, N. 2002a, ApJ, 572, L103
2002b, in COSPAR Colloq. Ser. 12, Space Weather Study Using
Multipoint Techniques, ed L.-H. Lyu (New York: Pergamon), 39
2000, Geophys. Res. Lett., 27,1427
2001, J. Geophys. Res., 106, 292907
Howard, R. A., et al. 1982, ApJ, 263, L101
Leblanc, Y., \& Dulk, G. A. 2001, J. Geophys. Res., 106, 25301

Sheeley, N. R., Jr., Walters, J. H., Wang, Y.-M., \& Howard, R. A. 1999, J. Geophys. Res., 104, 24739

St. Cyr, O. C., et al. 2000, J. Geophys. Res., 105, 18169
Webb, D. F., et al. 1997, J. Geophys. Res., 102, 24161
. 1999, BAAS, 31, 853
Yashiro, S., et al. 2002, BAAS, 34, 37.04
Zhao, X. P., Plunkett, S. P., \& Liu, W. 2002, J. Geophys. Res., 107(A8), 10.1029/2001JA009143

