Silicon, Iron, and Copper Ions for RHIC

C.J. Gardner

August 6, 2004

1 Review Au and d Setup

Figures 1, 2, 3, 4, 5, 6, 7, 8

2 Silicon, Iron, Nickel, and Copper Parameters

Tables 1, 2, 3, 4, 5, 6

References

- C.J. Gardner, et al, "Status and Recent Performance of the Accelerators that Serve as Gold Injector for RHIC", PAC01, Chicago (2001) 3326–3328.
- [2] L. A. Ahrens, et al, "The RHIC Injector Accelerator Configurations and Performance for the RHIC 2003 Au-d Physics Run", PAC03, Portland, Oregon (2003) 1715–1717.
- [3] C.J. Gardner, "Booster, AGS, and RHIC Parameters for the 2003–2004 RHIC Run", August 26, 2003.

3 Intensities

Currents of Si^{5+} as high as 230 μ A have been observed in the TTB line with the Si^- source running "flat out", but typically the current is between 50 and 100 μ A. For Si^{5+} ions with 63.8 MeV kinetic energy at Booster injection, the revolution period is 9.63 μ s. Since experience has shown that no more than 45 turns can fit into the Booster acceptance, the maximum pulse width that can be accepted by Booster is then 433 μ s. Assuming a pulsed current of 100 μ A in the TTB line, one then has 54 × 10⁹ silicon ions available per Tandem pulse at Booster injection. Booster output/input is typically 50% or less. The maximum intensity available per Booster cycle would then be 27×10^9 silicon ions.

Currents of Fe¹⁰⁺ in the TTB line are also typically between 50 and 100 μ A. These ions are transported down the TTB line at the same rigidity as Si⁵⁺, and, since the charge-to-mass ratios of the two ions are nearly identical, the velocities are nearly identical. Assuming a pulsed current of 100 μ A and the same pulse width as for silicon, one then has 27×10^9 iron ions available per Tandem pulse at Booster injection. With Booster output/input at 50%, a maximum of 13.5×10^9 iron ions are available per Booster cycle.

Currents of Cu¹¹⁺ in the TTB line are also expected to be between 50 and 100 μ A. The revolution period of these ions in Booster is 9.22 μ s which for 45 turns gives a pulse width of 415 μ s. At a current of 100 μ A one then has 24 × 10⁹ copper ions available per Tandem pulse at Booster injection. The maximum intensity available at extraction per Booster cycle would then be 12 × 10⁹ copper ions.

With the acceleration scheme used for the past several years, one Booster load ends up in one RHIC bunch and (RHIC Input)/(Booster Output) is typically at least 50%.

Figure 1: Acceleration of Gold Ions and Deuterons for RHIC

Figure 2: Gold Ions from Source through Tandem to TTB Line

Figure 3: Timing of Booster and AGS Cycles

Figure 4: Transfer of One Booster Load to AGS

Figure 5: 24 Bunches Rebunched into Four

Figure 6: Booster Merge and Squeeze to Double Intensity per Bunch

	Tandem	Kinetic	Inflector	Magnetic	\mathbf{RF}	Injection
Ion	Voltage	Energy	Voltage	Rigidity	Harm	Frequency
	V_T (MV)	$W \ ({\rm MeV})$	V_I (kV)	$B\rho$ (Tm)	h	hf (kHz)
Au^{32+}	14.058	182.879	22.218	0.854085	6	397.740
d	8.636	17.3965	67.355	0.854085	2	401.922
Si^{5+}	10.616	63.822	49.588	1.217428	6	622.770
Fe^{10+}	11.838	127.687	49.604	1.217428	6	622.980
10.						
Ni^{10+}	11.196	123.288	47.899	1.217428	6	601.567
Cu^{11+}	13.046	156.675	55.327	1.300433	6	650.493

Table 1: Tandem and Booster Injection Parameters

Figure 7: AGS Injection Kicker Timing for Transfer of One Booster Load. The kicker width is fixed; this fixes the Booster extraction frequency.

		Booster	Booster	Booster	Booster	AGS
Ion	h	Injection	Injection	Extraction	Extraction	Injection
		$B\rho$ (Tm)	hf (kHz)	$B\rho \ ({\rm Tm})$	hf (MHz)	$B\rho$ (Tm)
Au	6	0.854085	397.740	9.1360	3.842917	3.7216
d	2	0.854085	401.922	7.3224	2.259236	7.3224
Si^{5+}	6	1.217428	622.770	8.323813	3.850	2.972266
Fe^{10+}	6	1.217428	622.980	8.321000	3.850	3.199882
Ni^{10+}	6	1.217428	601.567	8.618614	3.850	3.077552
Cu^{11+}	6	1.300433	650.493	8.510510	3.850	3.227618

Table 2: Rigidities and Frequencies

Table 3: Frequencies and Periods

		Booster	Booster	Revolution	Bunch
Ion	h	Injection	Extraction	Period	Spacing
		hf (kHz)	hf (MHz)	1/f (ns)	1/(hf) (ns)
Au	6	397.740	3.842917	1561.31	260.219
d	2	401.922	2.259236	885.255	442.627
Si^{5+}	6	622.770	3.850	1558.44	259.740
Fe^{10+}	6	622.980	3.850	1558.44	259.740
Ni^{10+}	6	601.567	3.850	1558.44	259.740
Cu^{11+}	6	650.493	3.850	1558.44	259.740

		Booster	Booster	Adiabatic	BTA	Normalized
Ion	h	Injection	Extraction	Ratio	Emittance	Emittance
		$eta_0\gamma_0$	$eta\gamma$	$\beta_0\gamma_0/(\beta\gamma)$	$\epsilon\pi$	$\epsilon_N \pi$
Au	6	0.0447	0.4777	0.0936	17.3π	8.26π
d	2	0.1365	1.1704	0.1166	21.6π	25.3π
Si^{5+}	6	0.0700	0.4788	0.1462	27.2π	13.0π
Fe^{10+}	6	0.0701	0.4788	0.1464	27.2π	13.0π
Ni^{10+}	6	0.0676	0.4788	0.1412	26.1π	12.5π
Cu^{11+}	6	0.0732	0.4788	0.1529	28.3π	13.5π

Table 4: Emittances assuming aperture filled to 185π at Booster Injection

Table 5: Stationary Bucket Area at End of Capture (assuming 0.5 kV gap voltage at end of capture).

11	C	$(n \eta s$.)	(1)	(1)	<u> </u>	
Ion	Q	N	h	η_s	E_s/N	Q/(Nh)	hA_S/N
Au	32	197	6	-0.955	932.181	0.0271	0.0786
d	1	2	2	-0.938	946.505	0.2500	0.2428
Si^{5+}	5	28	6	-0.952	932.915	0.0298	0.0826
Fe^{10+}	10	56	6	-0.952	932.600	0.0298	0.0826
Ni^{10+}	10	58	6	-0.952	932.493	0.0287	0.0811
Cu^{11+}	11	63	6	-0.951	932.851	0.0291	0.0817

voltage at end of capture). Here $h \frac{A_S}{N} = 8 \frac{R_s}{c} \left\{ \frac{2}{\pi |\eta_s|} \right\}^{1/2} \left\{ \frac{E_s}{N} \right\}^{1/2} \left\{ \frac{Q}{Nh} \right\}^{1/2} \{eV_g\}^{1/2}.$

Figure 8: Au^{32+} distribution at end of RF capture in Booster. Here h = 6, $V_g = 0.5$ kV. The bucket area gives an upper limit on the longitudinal emittance in Booster.

Parameter	Booster	After	After AGS	Unit
	Extraction	BTA Foil	Filamentation	
ϵ	0.045/6	$4 \times 0.045/6$	$6 \times 0.045/6$	eV-s/n
Δt	48	48	76	ns
ΔE	20	76	76	MeV
hf	3.848719	3.848719	3.775458	MHz
1/(hf)	259.827	259.827	264.868	ns

Table 6: Longitudinal parameters for single bunch of gold ions (measured by J.M. Brennan). Six of these bunches become one RHIC bunch.