
MINOS Software Review

Jim Kowalkowski, Marc Paterno

1 Introduction

This document contains a summary of our findings from the MINOS software
review meeting of 25 September, 2000. This is not a detailed review; there was far
too much material presented during the review meeting for us to be able to ade-
quately respond to it all. Past experience with software reviews shows that it
takes about three weeks to complete a review for a single subsystem or package;
this review covered many such subsystems. We see a clear need for additional
review, and suggest that several of the subsystems be the focus of a series of
smaller, detailed reviews.

We also suggest that MINOS consider a more structured external review of the
scope of the computing project. Such a review may help MINOS define priorities
for the many tasks discussed in this review.

The structure of this document is as follows. In Sections 2 through 5, we present
general comments regarding the software design process and the software design
itself. In Section 6, we present comments specific to each presentation. These fre-
quently contain references to the relevant sections earlier in the document. We
have not commented upon a few of the presentation. This is not because they are
unworthy of comment, but merely reflect our domain of expertise.

2 Software Decision Process and Resolving Issues

In this section, we address the most important issues we perceived regarding the
software process in MINOS, including issues of scheduling and decision-making.

2.1 Software Process

We are concerned that there seems to be no clearly defined process for making
general decisions. For example, during one of the presentations a comment was
made about preferring the use of the Standard C++ collection templates (colloqui-
ally, the “STL”) to ROOT collection classes; this comment generated a somewhat
heated discussion of this basic issue. We believe that it is critical for the experi-
ment to have a forum in which such issues are discussed and resolved, and a
mechanism for assuring that the software designers then abide by these decisions.

We are also concerned by the lack of a shared “software process”. We have seen
other collaborations adopt the use of highly structured processes (requiring large
MINOS Software Review October 5, 2000 1



amounts of formal documentation of requirements, detailed up-front design to be
followed by methodical implementation, etc.). While we do not recommend the
use of an overbearingly formal process (our experience has been that such pro-
cesses are not well suited for the more “flexible” HEP community), we do think
that some process needs to be defined.

Specifically, we recommend the use of the UML for documenting software
designs, at a level of detail suitable for each task -- neither so little as to be useless
in supporting design, development, and maintenance, nor too much, to be a bur-
den beyond the benefits possible to gain.

We also suggest the development of a set of milestones useful for both the manag-
ers of the entire MINOS software, the managers of various software subsystems,
and the developers producing those systems. An excellent reference we recom-
mend is Extreme Programming Explained, by Kent Beck. The XP (extreme pro-
gramming) methodology is particularly light-weight, and adaptable enough to
allow users to choose the part they wish to use, without subscribing to the entire
system. Of most importance in this context is what is called the “planning game”,
which describes an excellent method for obtaining -- and maintaining -- a useful
and achievable set of milestones.

2.2 Schedule

We note that the schedule for MINOS software development has two natural
timescales: summer 2001, and 2003. We believe it is important to keep these two
timescales in mind while planning milestones.

There is little time before the summer milestones. We suggest that the critical
components required for the summer run be identified, and that short-term solu-
tions (to be improved upon or disposed of later) be acceptable for meeting these
milestones. The “planning game” mentioned in Section 2.1 may be of its greatest
value here; without a list of milestones useful both to developers and managers,
there seems to be little chance of success.

For the longer time scale, we recommend that MINOS take advantage of the expe-
rience gained during the completion of the summer milestones to determine the
requirements of the long-term system. It should be expected that most, if not all,
of the software developed during the initial phase will be replaced by the later
systems. Because of the long expected lifetime of MINOS, greater emphasis
should be place on the maintainability of the software for the long term. It is here
that the benefits of a well-designed OO system will accrue.

Finally, we note that the GANTT chart presenting the schedule and deadlines for
the MINOS software project seems to be of little use, because of two admittedly
hard-to-fix failings: (1) many of the tasks are not concrete enough, making it
impossible to determine if they have been fulfilled, and making it difficult to
determine what tasks rely on previous tasks, and (2) the times associated with
MINOS Software Review October 5, 2000 2



those tasks are largely fictional. We suggest that the procedures described in the
“planning game” (see Section 2.1) be used to develop a useful time line.

3 Analysis

3.1 Requirements

Producing concrete requirements is essential to produce software that users need
and also to have a measure of success. The goals of the software must be specified
by the experiment as a whole. Guidelines and policies must be defined. From the
presentation, we got the impression that this was on the list of things to do, but
was not nearly complete yet. We also felt as though each subsystem had this as a
task. Some of the requirement and goals for the software can be stated for the
experiment as a whole and should be. Below is a simple example list of require-
ments that may be able to be answered by the experiment and would give direc-
tion and consistency to the software.

• What are the differences between reconstruction and analysis environments?

• How are the packages tested and validated?

• What are the interactivity requirement for analysis session?

• What is the degree which end-users are required to know C++ (and ROOT)?

A few example guidelines could include:

• OO Design Guidelines

• Coding standards

• Package organization standards

• Package documentation standards

• Use of consistent terminology (definitions)

In our experience, complexity of C++-based subsystems and packages is a big
problem. Packages that have many rules, unintuitive behavior, or inconsistencies
with other packages tend not to be used at all (bypassed whenever possible) and
become the target of much criticism. Disregarding “best practice” as documented
by experts in design such as Stroustrup, Sutter, Meyers, and Lakos can lead to this
problem. This is especially relevant in regards to novice C++ programmers.

We highly recommend that testing be included as part of the development pro-
cess. This includes automated testing integrated into the build system, where
each package contains a series of component and system tests that get executed
automatically by the build. Testing is critical for long term maintenance of the
software and for catching errors immediately when lower-level packages change.
Testing, if done properly, insures that the software is operating as it is supposed
to operate.
MINOS Software Review October 5, 2000 3



Guidelines for Object-Oriented design will help produce uniformity amongst the
various subsystems. The guidelines can be a short list with references to back
them up. One example of such a reference would be Riel’s Object-Oriented
Design Heuristics. Having these guidelines could help prevent developers from
making bad design choices. They can help with issues such as inheritance vs. con-
tainment and creating a well designed object. The guidelines will help developers
produce code that is usable and maintainable.

3.2 Standards

The experiment as a whole should decide on what standard tools will be used.
The decision here will dictate what users will need to learn about in some areas. It
will also define a direction for the experiment and a plan for expansion in the
future. We would strongly recommend the use of industry standards whenever possible.
We heard reference to some of the technologies below, but saw no rationale or
specification document that could be used by all subsystems to give uniformity to
the software as a whole. The document should include choices for the following
areas, including brief description of why the technology was chosen and how it
will benefit the experiment know and in the future.

• Networking/Distributed Programming tools (CORBA, Raw Sockets, ROOT)

• Histogramming tools (AIDA, JAS, ROOT, various commercial tools)

• Graphics (HEPVis, JAS, Java, Python, ROOT, Wired)

• Data exchange formats (HDF, ROOT, XDR, XML)

• Databases and APIs (MySQL, ODBC, Oracle, TSQL)

• Scripting languages (CINT, Java, Python, various commercial tools)

The experiment should be cautious about adopting technologies that have been
placed into ROOT, such as rootd. Are facilities such as this robust enough and
will they be viable for the life of the experiment? Other products like NFS and
AFS have been around for many years, have a huge user base and a development
team that specializes in this type of technology. This is just one specific example;
industry-wide standards should be taken advantage of.

4 OO Design Issues

This section only points out a few general areas of concern. There should be a
clear understanding of why OO was chosen and what the benefits are. What is the
purpose of OO design? Why did MINOS choose this methodology? Here are a
few reasons for making the OO decision:

• Maintainability

• Flexibility

• Extensibility
MINOS Software Review October 5, 2000 4



• Encapsulation: Keeping concepts clear and makes the system easier to use and
modular.

4.1 Benefits of OO design

The real benefits from OO design appear only when one makes adequate use of
abstraction. This entails programming to the interface of a class (its public mem-
ber functions) and not its implementation (data members). A class which contains
little more than set/get methods for each data member is no better than a struct
(no encapsulation).

A big problem area we have run across is classes that span too many concepts or
features. A well designed class will have a single purpose and encapsulate a sin-
gle concept. We see this problem in many of the class diagrams that were shown
in the presentations.

We heard the term “self-describing data” mentioned in several talks. We felt that
in the context of these talks, that the ROOT tree is has self-describing data and
that there was a distinct advantage in having this feature. Object-Oriented pro-
gramming means that the data is private (encapsulated by the class and an imple-
mentation detail) and that access is only available through the public interface
(methods). An object included in a ROOT file is not useful without the C++ code
for the object. The only proper way to interpret the data held within the object is
through the object’s interface, which requires the C++ code for the object. If structs
are stored in the ROOT file, then browsing the data makes sense, because that is
what a struct is. Browsing a ROOT file that contains class instances does not make
sense without the code for the class. The ROOT files do not store the code for the
class in any form. A real self-describing data file will likely include more informa-
tion that ROOT included. A format such as HDF is self-describing.

We believe that self-describing data should be investigated as a low-level persis-
tency concept, but that the form of the data presented to C++ reconstruction and
analysis code should be full-featured C++ classes, not merely structs with get and
set methods.

4.2 OO implies design

To gain the benefits mentioned above, an OO system requires design, rather than
immediate production of code. Typical scripting languages or macro languages
do not lend themselves to such design. Maintainable code is not produced in an
ad hoc fashion.

It is of great benefit to take advantage of design reviews before the production of a
significant amount of code (more than a prototype) for a system. Having a solid
design leads to far less time coding, and debugging, and is more likely to lead to a
product that actually meets the requirements for the system. Early design effort is
MINOS Software Review October 5, 2000 5

http://hdf.ncsa.uiuc.edu/


more likely to lead to correct software, and software which is more easily extensi-
ble and maintainable.

5 C++ Language Issues

We strongly urge that MINOS use Standard C++, and not a partial dialect nor
vendor-specific “enhancements”. In this section, we discuss several of the reasons
for this for this recommendation, and the ramifications of accepting or ignoring
this recommendation.

5.1 Forbidden language features

There were several presentations that discussed forbidding (or discouraging) use
of some features of Standard C++. We discuss each of these major features in turn.

5.1.1 Exceptions

The use of exceptions is a part of Standard C++. A decision not to use exceptions
means a decision to make use of some vendor-specific extension to the Standard,
and is inherently an obstacle to portability.

Furthermore, exceptions have been designed into Standard C++ as part of the
method of producing robust systems. For example, it is not possible for a con-
structor to return a status indicating that it has failed. Standard C++ would use
the throwing of an exception to indicate such a failure. If non-Standard extensions
were used, preventing the throwing of such an exception, then the object would
have to be returned in an invalid state. This in turn leads to a design in which one
must be aware that any object may be in an invalid state, and so to produce robust
code, one must insert error checking in many places. Thus the “performance pen-
alty” associated with the use of exception handling may be less painful than the
performance penalty associated with robust code in the absence of exception han-
dling.

The design and coding guidelines adopted by MINOS should make a clear state-
ment of the experiment’s policy with regard to exception handling. The design of
each subsystem should also include a description of what exceptions or error con-
ditions can be produced, and how they are handled.

5.1.2 RTTI

More than one of the presentations discussed not using C++ Run Time Type Iden-
tification (RTTI), because ROOT provided such a facility (unfortunately also
called RTTI). As is exception handling, RTTI is an inherent part of Standard C++;
it can only be “turned off” with a non-Standard, vendor-specific, and inherently
non-portable language extension.
MINOS Software Review October 5, 2000 6



A basic feature of C++, the dynamic_cast mechanism, can not work without RTTI;
all implementations we have seen that allow the “turning off” of RTTI also disal-
low use of dynamic_cast when RTTI is turned off. The dynamic_cast mechanism
is the only method by which type-safe downcasts (casting a pointer-to-base-class
to a pointer-to-derived-class) can be performed in C++. Losing this ability is a
major blow, and can have devastating impact on the reliability of a C++ software
system.

The RTTI provided by ROOT is of a different nature. It is a part of the data dictio-
nary, and allows the answering of questions like “is class A related to class B?”.
This is not, however, a replacement for the ability of dynamic_cast, and as far as
we know, dynamic_cast is the only mechanism for safe downcasting, especially in
the presence of multiple inheritance (used heavily in many systems, for example
ROOT).

5.1.3 Templates and the Standard Library

Unlike a decision to use non-Standard extensions such as disabling exceptions or
RTTI, a decision not to use templates or not to use the Standard Library does not
mean writing non-Standard C++. However, such a decision means that MINOS
will not be taking advantage of one of the major advantages provided by C++.

First, we note that a decision not to use templates must also mean a decision not
to use the Standard Library, because almost all of the Standard Library is tem-
plate based. The C++ string, iostream (cout and cin), collections (vector, list, map...),
iterators, and algorithms are all template based. It also, of course, means prohibit-
ing the use of MINOS-defined class and function templates, and removing one of
the major tools (generic programming) provided by Standard C++.

A frequently overlooked but very important part of the Standard Library is the
algorithms presented in the header <algorithm>. These algorithms provide meth-
ods for looping, filtering, selecting, merging, and sorting (among others). These
algorithms have been produced by professionals for whom this is a specialty, and
are unlikely to be improved upon by non-experts. Prohibiting use of templates
also means prohibiting the use of these function templates -- and so these things
would have to be reproduced by MINOS programmers. Experience shows that
this will be the case, resulting is a waste of manpower for the production of an
inferior product.

We heard two major objections to the use of templates, and address each of them
in the following subsections.

5.1.3.1 Poor compiler support for templates

Several years ago, the state of compilers was generally poor, and few had ade-
quate support for templates. Today, the situation is much better. There are several
multi-platform compilers available with adequate template support, and many of
MINOS Software Review October 5, 2000 7



the vendor-supplied compilers are adequate. The situation is also rapidly improv-
ing. We do not believe that lack of compiler support (from current compilers) is a
valid reason to avoid the use of templates.

5.1.3.2 Poor support of templates by ROOT and CINT

This becomes relevant in two different domains: (1) support of templates for
ROOT I/O, and (2) support of template classes at the CINT prompt.

We would argue (as use at CDF has shown) that it is possible to use template
classes in design, and still make use of ROOT I/O with those classes. While this
would be simpler if ROOT I/O were to better understand templates, the amount
of work necessary to use ROOT I/O with custom templates has been less onerous
than would have been the lack of templates entirely. Furthermore, several of the
class templates of the Standard Library (the collection templates) are already
understood by ROOT I/O.

It is currently not possible to make reasonable use of class templates from the
CINT prompt. See Section 4.2 for our discussion of OO design principles, and
Section 5.2 for our statements in regard to CINT versus C++. We do not think that
the lack of this ability is of sufficient importance to consider making the use of
class templates outlawed by MINOS.

5.2 C++ is a multi-paradigm language

C++ allows programming in more than one style. It allows procedural program-
ming, as a “better C”, it supports object-oriented programming, and it supports
generic (template-based) programming. It also allows mixing of these paradigms.

Not all C++ code (even when using “classes”) is object-oriented. Code that
manipulates basic data types, or structs of such types, does not gain the benefits
described in Section 4. Many of the talks presented design ideas that, while exe-
cuted in C++, were not object oriented, because they did not exhibit the properties
discussed in Section 4.

We strongly believe that interactive use of C++ will not lead to any design, much
less a solid OO design. Code produced as “macros” is generally of poor quality in
terms of clarity and maintainability. The perceived advantage of the CINT
prompt is speed of development. We believe this can be achieved using a modern
development environment that allows compiled code to be integrated dynami-
cally into the running system.

5.3 Standard types

Several of the talks presented designs using the types Int_t and Bool_t. It is unclear
why these types are used. Int_t (presumably defined by ROOT, as a signed 4-byte
MINOS Software Review October 5, 2000 8



integer) is useful when it is important to explicitly fix the size of an integer -- but
this should be necessary only under special circumstances. Such cases of use
should generally be hidden by the public interface of a class. Widespread use may
lead to inefficiency. Bool_t is an ancient artifact, left over in ROOT from pre-draft-
Standard days. The built-in type bool has been a part of Standard C++ for many
years, and should be used directly.

5.4 Memory management

Our experience with other reviews has taught us that the issues of memory man-
agement are many times difficult for new C++ programmers, especially program-
mers coming from the Fortran world. We strongly recommend a coding policy
that makes ownership of objects obvious at all times. Some examples of tech-
niques that can help are:

• pass-by-const-reference rather than passing pointers;

• use of the Standard Library class template auto_ptr.

Furthermore, MINOS should invest in licenses for leak checking tools such as
purify or insure++. These tools have proven to be very valuable at D0 and CDF in
solving difficult problems quickly.

5.5 Iterators

The Standard Library provides a model for iterators that is clear and concise. It is
the result of many years of work from people that study solving this problem cor-
rectly. The iterators of the standard library are extremely efficient in almost all cir-
cumstances in which they are used. This also a good solution to separating
containers and contained objects and allowing algorithm to operate on ranges of
contained objects.

Care should be taken when developing iterators that differ from the standard
ones. The interfaces should not model the standard ones unless they are exten-
sions of the standard ones. The standard iterators always exhibit uniform behav-
ior across the collection types and guarantee a certain level of performance. Many
experiments create there own iterators that have similar interfaces to Standard
Library iterators. In all these cases, the custom iterators do not yield the necessary
performance or have behavioral quirks when used in certain circumstances. All
the custom iterator packages that we have seen will have maintenance problems.
Custom iterators should have an interface of their own and be distinguished from
the standard library iterators.

We strongly recommend that the Standard Library iterators and iteration tech-
niques be used whenever possible. We further recommend that developing cus-
tom iterators should be avoided, unless they provide significant enhanced
functionality.
MINOS Software Review October 5, 2000 9



6 Presentation Comments

This section presents a series of comments targets at each of the talks. The com-
ments are presented as bullet items for brevity.

6.1 Offline Analysis Requirements
• Concrete numbers for speed of reconstruction are needed. A concrete time

budget will allow asking the question “are we fast enough”. This is, of course,
as important number; it could have a direct impact on C++ design decisions.

• Concrete numbers for speed of simulation are also needed.

• Care should be taken when selecting network service daemons (see
Section 3.2).

6.2 MINOS Fortran Software
• The new system should not be limited or constrained by what the existing For-

tran software does.

• The old system should be used to help define requirements. Functionality and
features that were good should be repeated and enhanced. Features that were
lacking or poorly implemented should be provided by the new system.

6.3 Data Model
• What software needs to run on Windows NT/Windows 2000? Is the software

that runs on Windows separable from the offline software? Is SRT support for
Windows required? Does any of the offline software need to be compiled
under Windows, including the “data objects”? If so, is gcc coupled with Cyg-
win adequate? If purchased software runs under Windows, does it need to be
extended (code added to it that uses its libraries)?

• It was mentioned that data collection must continue even if the database is
down or inaccessible. What does “Database is Inaccessible” mean? Is this cali-
bration data needed to start a run? Databases such as Oracle ODBMS (for
example) are very reliable when managed properly. The chances are that the
code written by MINOS will not be more reliable and robust than the Oracle
Database software. The integrity of long distance network links is another
problem and the data collection must be protected against this. Freeware data-
bases or freeware APIs to databases are also another issue.

• Why is there a requirement that detector status be available without referenc-
ing the database? We see no reason for monitoring detector status without the
database. The talk did not give an adequate justification for this statement. Our
opinion here could be a result of our vague understanding of the problem.

• The talk referred to objects owning their data and granting access. Does “Grant
access” mean reading only or is it writing also? Under what conditions will
MINOS Software Review October 5, 2000 10



read access be denied. If grant is for writing also, how would this be achieved?
This item needs to be more specific.

• Sounds like completely primitive, simplistic data objects. Asking the data what
detector it is associated with typically means data that is arrays of floats or ints
and that the object is covering several concepts. Asking for the type of data
could mean arrays of bytes that are really arrays of floats or ints. We are con-
cerned that this is a completely non-OO design, and subject to maintenance
problems and accidental improper use.

• The actual data model needs a review all by itself. We strongly encourage a
review of the data model and its interactions with other parts of the system.

6.4 OO Talk
• Simplicity of the detector - does this really make the software infrastructure

any easier then other bigger experiments? We do not believe this makes the
infrastructure any easier. The requirements for the bigger experiments are sim-
ilar and the number and type of software subsystems is similar.

• The software seems to be very ROOT centric. Is this due to the perception that
ROOT has most of everything done for you already and you just need to add a
few bits and pieces? We suspect much more is needed.

• Minfast: This is not an OO project. This is a procedural project involving direct
manipulation of structures and data (see Section 4). OO experience will not be
gained by this project, only simple C++ syntax and procedural programming
experience.

• Why have ROOT containers been chosen over Standard C++ (see Section
5.1.3)?

• The statement “Flexible data format with abstract interfaces” was made in
III.2.B. Abstract interfaces do not lend themselves to browsing expect through
the interface itself. Again, it appears that your objects are not objects, but
structs. Creating an abstraction comes at a price, one such price being perfor-
mance. Having many abstractions is proving to be complex for uses to follow
and understand at CDF and D0. Many times the intention is to have many spe-
cializations for the abstraction, but only one concrete implementation appears.
They is overhead and complications in storing and using objects in there
abstract form. Returning objecting in their abstract form and expecting users to
convert them back to their actual form is poor practice. Can objects in their
abstract form be mixed that should never be mixed (a parameter set for jet
finder paired with a tracking algorithm because a algorithm handle is an
abstract parameter set and an abstract algorithm pair)?

• Lack of manpower (III.C.1) and turnover means that it is critical to have a good
OO design - this is the strength of OO (see Section 4).
MINOS Software Review October 5, 2000 11



6.4.1 Database Issues

• (III.B.4) MINOS needs to understand in detail the requirement for analysis at
all institutions. This does not appear to be a short term requirement. Sufficient
care should be given to this problem to make sure the solution will work and
be maintainable in the long term. For example, we immediate wanted to ask
the following questions. How should data be delivered? By FTP? Tapes by
mail? DVD? Direct access of files over AFS? Should it be abstracted so it can
evolve?

• It was mentioned that Minimarts (MySQL) will be used for information such as
calibration, alignment and run conditions. Does this include the event catalog?
Is MySQL adequate? MINOS should specify requirements for the database,
such as concurrency, rollback, backup, etc. instead of choosing a database tech-
nology first.

• Need to define remote/local database requirement clearly. Such requirements
could be that updates to MySQL remotely are allowed, but data must be sub-
mitted to central system. Are remote institution requirements different then
local ones? Will the database technology be different local and remote?

• What are coding standard that apply to database standards (see Section 3.2)?

• CD, D0 and CD have valuable experience in the area of databases; both have
been working on the distribution and access problems for quite some time.

6.4.2 ROOT

• (IV.B.1) CINT macros are a drawback when it comes to coding in C++, not a
benefit (see Section 5.2). Again, a good development environment could reduce
the need for macros.

• (IV.B.2.a.1.c) The self-describing data format of ROOT is mentioned here. How
is this feature important to MINOS? If the idea is that the data can be inter-
preted without code, then this is incorrect (see Section 4.1). If an object is
stored, then the code for the object is required to interpret the data.

• (IV.B.2.a.1.a-b) How is sequential or random access or full or partial access to
events managed or handled? Is ROOT going to give you this ability for free? If
so, how?

• (IV.B.2.e.1) Dynamic loading is part of the OS and fairly easy to take advantage
of. Versioning of the libraries immediately becomes important in order to
record the relationship between the data that was produced and the code that
produced it. CDF and D0 are exploring this problem right now.

• (IV.B.2.b.4) Abstract interface to graphics is not always best solution. Many
times you get least common denominator of all packages or quirky, limited
behavior on certain platforms. This is a tough problem and generally the
classes are not at all easy to use. Again, D0 and CDF have been working on
event displays using many different technologies, including ROOT, MINOS
should talk with them.
MINOS Software Review October 5, 2000 12



• (IV.B.2.e.2) RTTI of root being used instead of the one built into C++ (see Sec-
tion 5.1.2).

• (IV.B.2.d) How robust and modern are the networking tools and solutions of
ROOT compared with the standards from industry? See Section 3.2.

6.4.3 Language Features

• (IV.C.1.b) Poor old compiler support of templates is not a good argument for
not using them, especially since the old compiler is not used (see Section 5.1.3).

• (IV.C.1.a) Use of an important language features should not be limited because
of CINT deficiencies. Not all code or class needs to be available is its raw form
at the CINT prompt.

• (IV.C.2.a) ROOT directly supports vector and list, can they be used instead of
root container classes? In what circumstances do they not work properly?

• (IV.C.3) A decision should be made about a standard or main iterator model.
Having a secondary ones is fine, as long as they do not pretend to be STL or
pretend to be STL compliant (see Section 5.5).

• (IV.C.4) CPP macros are a poor substitute for templates. They are usually
unmaintainable, awkward to use, and produce difficult to follow error mes-
sages from the compiler. They also do not work well with language features
such as typedefs.

• (IV.C.5) Asserts go away when the optimizer is turned on. They are only to be
used for finding problems like logic errors - not runtime data validation. It is a
mistake to ignore exception handling and error checking, especially now at this
early stage. These rules should be spelled out now for error handing.

• There are many products from the HEP communities and commercial sector
for GUIs and data manipulation. A disadvantage of using ROOT classes for
everything, including RTTI, is that incorporating these third party products
can become very difficult. With the long lifetime of MINOS and the current rate
at which products are evolving, we feel it is a mistake to disregard them.

6.4.4 Philosophy and Goals

• (V.B) Rules should be established for the organization of SRT packages. This
must include directory structures, testing, and documentation procedures.

• We recommend that MINOS use the Fermilab SoftRelTools.

• CDF has substantial experience (Art Kremer of the PAT group) in distributing
code and releases using CVS and SRT, make use of this experience. We do not
recommend CDF’s nightly build strategy, but prefer the test release build pro-
cedures from D0.

• Clarity of the two time scales is good. Focus should be on what needs to be
done, not how it will be done.
MINOS Software Review October 5, 2000 13



• Long term goals: Mentioned assess, rewrite, redesign. Should also be reassess-
ing the requirements, and should not be surprised if large portions need to be
thrown away.

• General requirements: Should have been made already; even in a short, simple
form. Now MINOS needs something for real; not just a simple feature sheet
(see Section 2.1)

6.5 Framework

The talks in this group seemed to be overlapping; they also seemed to be address-
ing similar things in different ways. Trying to figure out their relationship and
how they work together was not clear. The framework itself and JobOptions are
in need of a separate detailed review. The Candidate package appears to be par-
tially in the event model area.

6.5.1 Candidate and Algorithm Packages

• There appears to be an undesirable dependency graph, where data objects
depend on algorithm objects. Data objects depending on algorithms is unlike
any other use that we see. MINOS must discern between quickly changing
code (algorithms) and slowly changing code (a muon object). The physical
dependency tree must reflect this. Never make the slowly changing code
depend on the rapidly changing code. An example would be that one cannot
make a transverse momentum distribution of muons from already recon-
structed data without including all the muon reconstruction code. If there are
many algorithm types, then all the various algorithms need to be pulled in also.

• Universal Object IDs are a well-known technology, examples of places where
they appear are in CORBA, COM-DCOM, and DCE. This is difficult business
and you should consult books on the subject before jumping in and decide if it
is really necessary. Typically they IDs are large and associated with objects that
do a large function, such as manipulation of a spread sheet. There is usually
assignment and scaling problems associated with these IDs.

• What purpose does the abstract algorithm serve? Why does it exist?

• The design looks very complex, which is not going to be good for users, espe-
cially ones that are not good with C++. Experience from CDF/D0 shows that
users will not want to learn complex structures and will try to bypass them.

• Implementing this design without templates will pose a maintenance problem
(see Section 5.1.3).

• (II.A.2) The use of Set/Get methods in a class to manipulate data members
implies no encapsulation, just composition. (see Section 4).

• (II.A.3) You must carefully address the problem of labeling data objects when
more than one instance can exist in the event, produced by more than one algo-
rithm. Be very careful when you think there will be just one instance of a partic-
ular data object, it is likely to be an incorrect assumption.
MINOS Software Review October 5, 2000 14



• (II.A.4) Data object history (version of code, package, library version, parame-
ter set, derivation from other objects in the event) is critical for reproducing
results and must be managed properly. Quality control measures should be
put in place (code inspection) at the data object level to make sure that history
is populated correctly.

• The event will need to record “world state” information, such as alignment/
calibration set identifiers.

• The concept of separation of persistent and transient store is missing. Recon-
struction and analysis modules should communicate with a transient store. At
one place in the framework, the decision of what goes to persistent store is
made and how it gets there is know.

• (II.7) There is a requirement that one algorithm cannot modify an object with-
out disturbing other algorithms that are running. Copying the object is the only
way that we know of. There needs to be a strong statement and policy made
about modifying objects in the event - with reproducibility as a key concept.

• (III.B, III.E) A “clone” method is needed to copy objects that are manipulated in
an abstract form. Is cloning/copying deep or shallow? This is a complicated
question. Maintaining associations becomes a serious problem. Do the associ-
ated objects get copied (implied by a deep copy)? Do the associated not get
copied, which means that you cannot navigate to them and modify them?

• Reverse associations are very difficult to manage correctly and should be
avoided at all costs. They should be handled externally from the objects them-
selves in “associative collections” (similar in concept to the CLEO Lattice pack-
age). If the Lattice package manages connections between objects
(relationships), why would pointers from daughter to parent be needed at all?

• (II.9) The generic concepts of “overlap” and “equality” is not valuable. They
terms only have meaning for specific types matched against the same types.

• What is the lifetime of Candidate objects? If the event is the lifetime, then this is
easy, because we know when the object need to be cleaned up. If it is not the
event, how is lifetime managed and what does it mean? The reason for an
event (frame) object is to facilitate this. Having these objects float around sys-
tem is bad.

• The talk makes a good statement on objects being created in proper state. All
objects should be constructed like this.

• Parameter setting in algorithms should never have defaults coded directly into
the algorithm. These parameters will be difficult to trace.

• Reference counting with not-obvious or strange rules (copying when ref count
> 1) will cause problems and confusion for users (issue of managing complex-
ity). Usually rules like this are needed because of design problems. If perfor-
mance is an issue, then we should remember the point from an earlier talk
about “performance is not an issue now”.
MINOS Software Review October 5, 2000 15



• This is a package that needs to be reviewed at the same time as the JobOptions/
Module package.

6.5.2 JobOptions and Modules

• Methods without arguments or return type usually indicate that data needed
to operate comes from global areas. This is generally a bad design choice and
should be looked at in the review of this subsystem.

• Is driving the framework event loop from the ROOT prompt a requirement?
This may put significant constraints on the framework design.

• Other experiments at Fermilab have ways to configure their frameworks and
modules. Why are they not adequate?

• Appears that Module class is a “super” object, with many concepts within one
class. This is bad practice and leads to inflexible code and makes it more diffi-
cult to use.

• The interface from the ROOT prompt shown in the sample session is very unin-
tuitive. We have seen several frameworks; it is not immediately obvious how
this one works and how to manipulate it.

6.6 MINOS Persistency
• One of the things this project was based on was ATLFast++. This project (ATL-

Fast++) is being converted to the Athena - a framework based on Gaudi, which
is similar to the event store concepts at CDF, D0, and BaBar. This type of event
store allows for multiple persistent back-ends.

• What about schema evolution and automatically generated streamers? Does
ROOT directly support what is needed by MINOS? Will MINOS need to write
the streamers by hand to perform of schema evolution, as does CDF? Has
MINOS demonstrated how schema evolution will work in regards to ROOT
and the MINOS data objects?

• Self-describing object format of ROOT may not be what you want, see Section
4.1.

• Simple pointers in objects may not work as expected in ROOT, especially in
regards to split file mode.

• Are users to be aware of all the branches and streams? How do users navigate
though the TTree? We recommend a event model that provides tools to do this
navigation and hind the TTree and directly manipulation from the users.

• ROOT does not claim to be an object database. Distributing data over multiple
files is difficult and carries several restriction that should be understood. The
ROOT web site and experts in this area should be consulted to understand the
limitations and restrictions.
MINOS Software Review October 5, 2000 16



• Package objectives should be completed as soon as possible (requirements).
The problem should be understood first, then figure out what technology will
satisfy the requirements.

• This package and plan needs a review of its own.

6.7 Geometry
• A single source for all geometry was mentioned in this talk. This single source

would be used for Geant3/Geant4 geometry initialization, and for reconstruc-
tion. This is a very good idea. How will this be realized? CDF is doing this and
should be consulted on the matter. We have heard that ROOT also has an
abstract interface to Geant3/Geant4 that could also be explored. Thought
should be given to using the Geant4 geometry as this single source.

• We would like to look over the design for the magnetic field management
classes. This seems like it could be a bottleneck for reconstruction and an area
of performance problems.

6.8 Event Display
• The MVC architecture is good, it breaks down the problem properly.

• Separation of the event display GUI and framework event loop controls is a
good concept and should be explored further.

• The idea of being able to use tools other then the ROOT GUI is good. MINOS
will be around for a long while, it is good to be able to adapt to new technolo-
gies.

• C++ based GUIs are known not to be the easiest tools to use; many scripting
languages have much easiest to use GUI toolkits.

• MVC facilitates proxies to remote event display servers. The idea of separating
graphics manipulation into separate processes is good.

• Development of this system will be a lot of work. Be sure to have a clear list of
objectives and goals (features and requirements) before you start to ensure that
a product will be ready (see Section 2.1).

6.9 Navigators
• We strongly discourage the use of CPP macros in place of C++ templates (see

Section 6.4.3).

• What is the overhead associated with using this package - in terms of memory
and CPU? Is incrementing an iterator a virtual function call? This could
severely impact performance in a negative way.

• The iterator and container concepts here are very different than the Standard
Library. (see Section 5.5).
MINOS Software Review October 5, 2000 17



• The NavKey class contains overlapping concepts and inappropriate use of
inheritance. These features will cause the class to be used incorrectly and will
be the source of maintenance troubles.

• It is unclear what the advantage is of this package. It appears to be complex to
use - a feature that users to not like at all when it comes to C++. There may be
other, easier ways to manage this problem using combinations of Standard
Library algorithms and containers.

• Is this a substitute for a data model? It appears that the CLEO Lattice is tool
used in conjunction with a data model, used to relate objects (bidirectional if
necessary). It is unclear that MINOS has the same goal. For MINOS, it appears
to be a tool used to temporarily relate objects for analysis use in a single job.
The use of C++ templates make it clear how CLEO Lattice is to be used - associ-
ations between objects are expressed through templates. This is a sophisticated
and powerful concept.

6.10 Database API
• MINOS should be talking with D0/CDF - they are doing similar things with

relational databases. MINOS should be using CD database resources to help
design tables.

• Hiding database access through interfaces in C++ is a very good thing (data-
base independence - no database structure visible in C++ - users should not
need to learn or see SQL). We recommend consideration of the ODBC stan-
dard.

• Oracle replication is being tested and used at CDF and D0. MINOS should con-
sult with them - they have important experience with this feature.

• Who will design the tables that contain the data? Who will design the manage-
ment tables? It would be good to see database table layouts soon, to verify that
the system will manage data properly. We would like to see the mapping
between data administration tables and C++ objects.

• How are new database tables introduced and schema evolution managed? Will
it be through SRT releases, or by a separate management tool? How will access
code be synchronized with the database tables?

• Cascading sounds like a powerful idea. However, it can cause confusion for
users. There must be a way to determine from which database each set of con-
stants came. Documentation must be clear and easily available.

• Do not use a “SuperObject” to manipulate data from all the databases. Make a
separate class for each database interface and for each table. The making of
SuperObjects is bad design: it causes physical coupling problems, and mainte-
nance problems.
MINOS Software Review October 5, 2000 18



6.11 Event Generator
• MINOS should talk with the Fermilab CD/PAT group about use of HepMC,

instead of StdHep++.

• It is a very good idea to include all information relating to testing and valida-
tion within the package that is being tested. This concept should be propagated
to other MINOS software packages.

• This subsystem should have its own detailed review.

6.12 Supported Compilers and Platforms

Many of our comments relevant to this talk are in Section 5.

• The most recent gcc compiler (2.95.2) has reasonable Standard Library support,
with the exception of some of the streams classes.

• We strongly suggest avoiding non-standard C++. Turning off RTTI and turn-
ing off exceptions or using “long long” are examples of non-standard C++. You
should think long and hard before doing this, the experiment is going to be
around for a long time and compilers and libraries are quickly improving.

• We agree that circular dependencies are bad, and should be disallowed; it is
good that this talks points this out.

• We suggest that MINOS organize the build system to do layered releases, in
which packages are placed into a hierarchy, and in which each level in the hier-
archy can be released separately.

• Testing is essential. Each package should supply enough tests that will verify
that the package is operating correctly -- within the context of the package and
the system.

6.13 Schedule

Our comments on the schedule can be found in Section 2.2.

7 Conclusion

This document has covered only the more obvious issues brought to our attention
during the review, and has not gone into sufficient detail for the many parts of the
system presented during the talks. We see a clear need for a series of more
detailed focused reviews. These reviews should be both smaller in scope, and
longer in duration, than this initial review. It is also important that these reviews
have some continuity in the review committee, because these subsystems must be
integrated, and so their designs are to some extent inter-related. We have sug-
gested reviews for at least the following subsystems:

• Data model
MINOS Software Review October 5, 2000 19



• Persistency

• Framework

• Event generator

• Magnetic field management

We are concerned about MINOS’s lack of developer manpower. It is clearly nec-
essary to make the most out of the available talent; toward this end, we have
made the following recommendations:

• MINOS should adopt a “software process”, including the establishment of
design guidelines, coding guidelines, milestones of sufficient concreteness to
be useful to both management and developers, standardized testing proce-
dures, and reviews (as mentioned above).

• MINOS should use established standards whenever possible: Standard C++
(including the Standard Library), standard data formats, standard database
APIs, standard networking APIs, etc.

In addition, MINOS should take more advantage of the experience within CDF
and DØ, and within the Fermilab Computing Division (especially the PAT and
Special Assignments groups). MINOS may also benefit by combining efforts
wherever possible (for example, in producing a reconstruction and analysis
framework, data model, and persistency scheme) with some of the smaller Fermi-
lab experiments that have a compatible timescale.

We are concerned about the complexity of some of the proposed subsystems pre-
sented during the review. This complexity comes in several varieties: ease-of-use
for non-experienced people, difficulty of maintenance when original designers
move on to other projects, scalability and performance, and integration with other
subsystems.
MINOS Software Review October 5, 2000 20


	ReportTitle - MINOS Software Review
	Heading1 - 1 Introduction
	Heading1 - 2 Software Decision Process and Resolving Issues
	Heading2 - 2.1 Software Process
	Heading2 - 2.2 Schedule

	Heading1 - 3 Analysis
	Heading2 - 3.1 Requirements
	Heading2 - 3.2 Standards

	Heading1 - 4 OO Design Issues
	Heading2 - 4.1 Benefits of OO design
	Heading2 - 4.2 OO implies design

	Heading1 - 5 C++ Language Issues
	Heading2 - 5.1 Forbidden language features
	Heading3 - 5.1.1 Exceptions
	Heading3 - 5.1.2 RTTI
	Heading3 - 5.1.3 Templates and the Standard Library

	Heading2 - 5.2 C++ is a multi-paradigm language
	Heading2 - 5.3 Standard types
	Heading2 - 5.4 Memory management
	Heading2 - 5.5 Iterators

	Heading1 - 6 Presentation Comments
	Heading2 - 6.1 Offline Analysis Requirements
	Heading2 - 6.2 MINOS Fortran Software
	Heading2 - 6.3 Data Model
	Heading2 - 6.4 OO Talk
	Heading3 - 6.4.1 Database Issues
	Heading3 - 6.4.2 ROOT
	Heading3 - 6.4.3 Language Features
	Heading3 - 6.4.4 Philosophy and Goals

	Heading2 - 6.5 Framework
	Heading3 - 6.5.1 Candidate and Algorithm Packages
	Heading3 - 6.5.2 JobOptions and Modules

	Heading2 - 6.6 MINOS Persistency
	Heading2 - 6.7 Geometry
	Heading2 - 6.8 Event Display
	Heading2 - 6.9 Navigators
	Heading2 - 6.10 Database API
	Heading2 - 6.11 Event Generator
	Heading2 - 6.12 Supported Compilers and Platforms
	Heading2 - 6.13 Schedule

	Heading1 - 7 Conclusion


