C.A. Bertulani (Texas A\&M-Commerce)

Collaboration on A-ODD

Bertsch (University of Washington, Seattle)
Friedmann (University of Wisconsin)
Nazarewicz (University of Tennessee)
Schunck (University of Tennessee)
Stoitsov (University of Tennessee)

This talk: Odd-Even Staggering

Tool: ev8-odd
ev8 (Bonche, Flocard and Heenen, CPC 171 (2005) 49)

+ Blocking
- Goals:
to benchmark existing theory of even-odd mass difference
-T-odd effect neglected:
but it should decrease as $1 / \mathrm{A}$
- Good observable

3-point filter: $\quad \Delta=\frac{1}{2}(-1)^{N}[S(N, Z)-S(N-1, Z)]$

Details: Binding energies

Example:

- $\quad \mathrm{N}$-even, 521 nuclei, $\mathrm{rms}=2.83 \mathrm{MeV}$
$\mathbf{V}_{\mathrm{NN}}{ }^{\text {eff }}=$ Skyrme $=$ SLy4
$V_{\text {pairing }}=g \delta\left(\mathbf{r}_{12}\right)\left[1-\frac{\rho(\mathbf{r})}{\alpha}\right]$
Surface pairing:
$\mathrm{g}_{\mathrm{n}}=\mathrm{g}_{\mathrm{p}}=1000 \mathrm{MeV} \mathrm{fm}^{3}$
$\alpha=0.16 \mathrm{fm}^{-3}$
$V_{\text {pairing }}(k)$

Reducing rms by refitting interactions

Blocking the levels

— — _ — — _ . $\mathrm{v}^{2} \rightarrow 1 / 2, \quad \mathrm{u} \rightarrow 0$
 for one orbit and its

Starting $\mathrm{N}=$ even, $\mathrm{Z}=$ even wavefunctions from
http://gene.phys.washington.edu/ev8
Blocking added to BCS and Lipkin-Nogami
\rightarrow "ev8-odd" time-conjugate partner

See

http://gene.phys.washington.edu/ ~bertsch/pedlist.html for justification.

Odd-even staggering vs pairing strength

3-point filter:

$$
\begin{aligned}
& \Delta=\frac{1}{2}(-1)^{N}[S(N, Z)-S(N-1, Z)] \\
& \cong \frac{1}{2}(-1)^{N} \frac{\partial^{2} B}{\partial N^{2}}, \quad \mathrm{~N}=\operatorname{even}(\mathrm{e}), \operatorname{odd}(\mathrm{o}) \\
& \text { Rutz, Bender, Reinhard, Maruhn, } \\
& \text { PL B 468, } 1 \text { (1999). } \\
& B=E_{s p}-\widetilde{E}_{s p}+E_{\text {macro }}, \\
& E_{s p}=\sum_{k} e_{k}, \quad \Delta^{(o)}{ }_{s p} \approx 0, \quad \Delta^{(e)}{ }_{s p} \approx \frac{e_{n}-e_{n-1}}{2}
\end{aligned}
$$

Satula, Dobaczewski, Nazarewicz, PRL 81,3599 (1998).

Mechanism	$\Delta_{o}^{(3)}$	$\Delta_{e}^{(3)}$
Single-particle	0	$\left(e_{i}-e_{i-1}\right) / 2$
BCS correlation	$\Delta_{B C S}$	$\Delta_{B C S}$
T-odd pp	$-v_{i \bar{i}, i \bar{i}} / 2$	$\bar{v}-v_{i \bar{i}, i \bar{i}} / 2$
T-odd DFT	$\partial^{2} B_{\widetilde{E}_{s p}} / \partial N^{2}$	
T-even polarization	$-e_{c p}$	0
	$\approx \partial^{2} B_{\text {macro }} / \partial N^{2}$	

Table by Bertsch

Odd-even staggering $\quad S(N, Z)=M(N-1, Z)+M_{n}-M(N, Z)$

Dependence on pairing strength

Skyrme = SLy4
$\mathrm{V}_{\text {pairing }}=\mathrm{g} \cdot \delta\left(\mathrm{r}_{12}\right) \cdot[1-\rho(\mathrm{r}) / \alpha]$
$\alpha=0.16 \mathrm{fm}^{-3}$
search for $g_{n}=g_{p}$

From even-even to even-odd and odd-odd
(absolute value):

rms residual for LDM with known
exp. data $=0.3 \mathrm{MeV}$

Odd-even staggering with 967 masses!

Visually, HF-BCS looks like it does better!
True?

Conclusions:

Treatment	rms residual
Liquid Drop	0.28
HF-BCS surface	0.28
HF-BCS volume	0.34
Lipkin-Nogami	0.40
$(426$ nuclei $)$	

Treatment	${ }^{59} \mathrm{Ni}$	${ }^{97} \mathrm{Zr}$
HF-BCS surface	-1.09	0.86
HF-BCS volume	-0.69	1.02
Lipkin-Nogami	-.96	1.00

Two extreme cases. Energies are in MeV.
Note: ${ }^{59} \mathrm{Ni}$ with a starting deformation point is better. But not substantial.
$R M S$ residuals of $\Delta^{(3)}{ }_{o}$. There are 443 in the data set. Energies are in MeV .

- Fit to even-Z (to avoid np pairing)
- Require $\mathrm{N}>\mathrm{Z}+1$ to avoid Wigner energy
- Surface peaked pairing almost as good as LD
- Volume pairing poorer

