C.A. Bertulani (Texas A&M-Commerce)

Collaboration on A-ODD

Bertsch (University of Washington, Seattle)
Friedmann (University of Wisconsin)
Nazarewicz (University of Tennessee)
Schunck (University of Tennessee)
Stoitsov (University of Tennessee)

This talk: **Odd-Even Staggering**

Tool: ev8-odd

ev8 (Bonche, Flocard and Heenen, CPC 171 (2005) 49)

+ Blocking

• Goals:

to benchmark existing theory of even-odd mass difference •T-odd effect neglected:

but it should decrease as 1/A

• Good observable

3-point filter:
$$\Delta = \frac{1}{2} (-1)^N [S(N,Z) - S(N-1,Z)]$$

<u>Details</u>: Binding energies

<u>Reducing rms by refitting interactions</u>

Odd-even staggering vs pairing strength

3-point filter:

$$\Delta = \frac{1}{2} (-1)^{N} [S(N,Z) - S(N-1,Z)]$$

$$\approx \frac{1}{2} (-1)^{N} \frac{\partial^{2} B}{\partial N^{2}}, \qquad N = \text{even} (e), \text{ odd } (o)$$

Satula, Dobaczewski, Nazarewicz, PRL 81,3599 (1998).

Rutz, Bender, Reinhard, Maruhn, PL B 468, 1 (1999).

$$B = E_{sp} - \widetilde{E}_{sp} + E_{macro},$$

$$E_{sp} = \sum_{k} e_{k} , \qquad \Delta^{(o)}_{sp} \approx 0, \qquad \Delta^{(e)}_{sp} \approx \frac{e_{n} - e_{n-1}}{2}$$

Mechanism	$\Delta_o^{(3)}$	$\Delta_e^{(3)}$
Single-particle	0	$(e_i - e_{i-1})/2$
BCS correlation	Δ_{BCS}	Δ_{BCS}
T-odd pp	$-v_{i\overline{i},i\overline{i}}/2$	$\overline{v} - v_{i\overline{i},i\overline{i}}/2$
T-odd DFT)	
T-even polarization	$-e_{cp}$	0

 $\partial^2 B_{\widetilde{E}_{sp}} / \partial N^2$ $\approx \partial^2 B_{macro} / \partial N^2$

Table by Bertsch

Dependence on pairing strength

rms residual for LDM with known exp. data = 0.3 MeV

Odd-even staggering with 967 masses!

Visually, HF-BCS looks like it does better! True?

Conclusions:

Treatment	rms residual	
Liquid Drop	0.28	
HF-BCS surface	0.28	
HF-BCS volume	0.34	
Lipkin-Nogami	0.40	
(426 nuclei)		

RMS residuals of $\Delta^{(3)}_{o}$. *There are 443 in the data set. Energies are in* MeV.

- Fit to even-Z (to avoid np pairing)
- Require N > Z+1 to avoid Wigner energy
- Surface peaked pairing almost as good as LD

1

• Volume pairing poorer

Treatment	⁵⁹ Ni	$^{97}\mathrm{Zr}$
HF-BCS surface	1.09	0.86
HF-BCS volume	-0.69	1.02
Lipkin-Nogami	96	1.00

Two extreme cases. Energies are in MeV.

Note: ⁵⁹*Ni with a starting deformation point is better. But not substantial.*