Tape-Calendered SOFC Stack Development

Nguyen Q. Minh (nguyen.minh@alliedsignal.com; 310-512-3515) Brandon Chung (chungb@alliedsignal.com; 310-512-3999) Kurt Montgomery (kurt.montgomery@alliedsignal.com; 310-512-1557) AlliedSignal Aerospace Equipment Systems 2525 West 190th Street Torrance, CA 90504-6099

Abstract

Recent SOFC stack development efforts at AlliedSignal have been focused on demonstrating operation and performance at reduced temperatures (600 to 800 °C). A cost-effective process based on tape calendering has abeen developed for making reduced-temperature thin-electrolyte cells, and a stack design concept for this application has been evaluated. Use of thin-electrolyte cells reduces stack internal resistances, thus permitting efficient operation at lower temperatures. The proposed stack design incorporates thin-electrolyte cells with metallic interconnect assemblies (made from thin foils) to form a compact, lighweight structure. SOFC stacks based on this design have demonstrated excellent performance and high power densities.

To date, tape-calendered SOFC stacks of up to ten-cell height and 100-cm² footprint area have been fabricated. Stacks of various sizes have been tested and have shown excellent performance at reduced temperatures. For example, the power output of a two-cell stack (25-cm² footprint area) is about 26 W at 800 °C with hydrogen fuel and air oxidant (power density of 670 mW/cm²). A five-cell stack (100-cm² footprint area) produces about 270 W at 800 °C (600 mW/cm²) and 170 W at 700 °C (375 mW/cm²). High stack power densities (1.03 kW/kg and 0.90 kW/L at 800 °C) have been demonstrated.

This paper discusses the development status of the tape-calendering process and the fabrication and operation of tape-calendered stacks at reduced temperatures.

Tape Calendered SOFC Stack Development

Fuel Cells '97 Review Meeting FETC, Morgantown, WV August 26-28, 1997

Tape Calendered SOFC Stack Development

- Approach
 - Reduced Temperature Operation
 - Tape Calendering for Cell Fabrication
 - Stack Design
 - Low Cost
 - High Performance
 - Light Weight and Compactness
- Funding
 - GRI (Dr. Kevin Krist)
 - DARPA (Drs. Larry Dubois, Robert Rosenfeld, Robert Nowak)

Reduced-Temperature SOFCs

- Operating Temperature of 600° 800°C
- Conventional Materials with Thin YSZ Electrolytes
- Key Advantages
 - Wider Material Choice
 - Increased Cell Life
 - Reduced Fuel Cell Cost
 - Improved Reliability

Stack Configuration

Design Features

Thin-Film Electrolytes to Permit Efficient Operation at Reduced Temperatures

Lightweight Metallic Structures to Achieve High Power Densities

Low-Cost Materials and Fabrication Processes

Stack Assembly Processes

Thin-Electrolyte SOFC Fabrication Sequence

Photograph of Single Cell

Thin Electrolyte Cell

Fracture Surface

Element Mapping

Performance of Thin-Electrolyte Single Cell

Ten-Cell Stack

Power Density Curves of Two-Cell Stack

Performance of Two-Cell Stacks

Performance Curves of Five-Cell Stack

Performance Curves of Five-Cell Stack

100-cm² Footprint

Stack Power Densities

Technological Issues

- Performance Losses in Stacking
- Sealing
- Thermal Cycling
- Life

Summary

- Reduced-Temperature Operation Demonstrated (e.g., 5-Cell Stack, 100-cm² Footprint. 270 W at 800°C)
- Excellent Stack Performance Achieved at Reduced Temperatures (e.g., 600 mW/cm² at 800°C)
- Several Issues to Be Addressed (Performance Losses in Stacking, Sealing, Thermal Cycling, Life)