SECA Solid Oxide Fuel Cell Program

Presenter: Nguyen Minh

SECA Annual Workshop and Core Technology Program Peer Review Boston, MA, May 11 – 13, 2004

Program Objectives

Overall objective

> Demonstrate a fuel-flexible, modular 3-to-10-kW solid oxide fuel cell (SOFC) system that can be configured to create highly efficient, costcompetitive, and reliable power plants tailored to specific markets

Development team

- > GE Energy
 - Torrance, CA
 - Schenectady, NY
 - Greenville, SC
- > GE Global Research
 - Niskayuna, NY

SECA SOFC System Concept

System Key Features

• SOFC

- > High-performance reduced-temperature cells
- > Operation on light hydrocarbons
- > Tape calendering manufacturing process

Fuel processor

- > Low-cost, fuel-flexible fuel processor design
- > Catalytic autothermal (ATR) process
- > Pre-reforming function

Other subsystems

- > Integrated thermal management
- > Flexible control system

Program Features

Phase I Work Elements

- System analysis
- Cost estimate
- Stack technology development
- Fuel processing
- Thermal management
- Control and sensor development
- Power electronics
- System prototype demonstration

SECA Phase I Requirements

PARAMETER	PHASE I REQUIREMENTS
POWER RATING (net)	3Kw - 10 kW
COST	\$800/kW
EFFICIENCY (AC or DC/LHV)	Stationary-35%
STEADY STATE TEST @	1500 hrs
NORMAL OPERATING	80% avalability
CONDITIONS	Delta Power = 2% degradation/500 hrs at a constant stack V with R >= 0.95
TRANSIENT TEST	10 cycles
	Delta Power = 1% degradation after 10 cycles at a constant stack voltage
TEST SEQUENCE	1) Steady state 1000 hours
	2) Transient test
	3) Steady state 500 hours
FUEL TYPE	Operate the prototype on either a commercial commodity,
	or a representative fuel. Utilize external or internal primary fuel reformation or
	oxidation
MAINTENANCE INTERVAL	> 1000 hours
DESIGN LIFETIME	Not less than 40,000 operating hours for stationary applications

SOFC Stack Requirements

Stack Performance:

- Power density: 0.3W/cm²
- Stack LHV efficiency: 47% on ATR fuel
 - Average cell voltage: 0.7V
 - Fuel utilization: 80%
- Degradation rate: <6%/1000 hours</p>

Cell Performance:

- Power density: 0.3W/cm²
- Cell LHV efficiency: 51.7% on ATR fuel
 - Cell Voltage: 0.7V
 - Fuel Utilization: 88%
- Degradation rate: <6%/1000 hours</p>

Cell Component:

Total ASR: < 560 mohm-cm²

Anode Development

Reduce anode polarization and maintain/improve cell flatness and strength

- Porosity
- Anode thickness
- Microstructure
- Layer configuration

- 10% performance increase with improved anode
- To be verified with larger cells

Cathode Development

Reduce cathode polarization and reduce thickness

- Cathode thickness
- Microstructure
- Material characteristics
- Formulation/process

Cathode Thickness (microns)

- Performance improved with modified cathode
- To be verified with larger cells

Interconnect Evaluation-Oxidation Test

Interconnect Evaluation—Fuel Cell Test

Single Cell Module Thermal Cycling

Performance Stability after 10 Thermal Cycles

Single Cell Module Performance Improvement

SECA 5-Cell Stack Performance

- 265mW/cm² (3.09V @ 0.428A/cm²) with 64% H₂ at 800°C and 70% fuel and 12% air utilization (total power output 188 W)
- No performance degradation after 5 thermal cycles (performance measured at 0.317 A/cm² with 64% H₂ at 800°C and 70% fuel and 12% air utilization)

imagination at

Five-Cell Stack Performance - Simulated ATR Fuel

Current density, A/cm²

Ten-Cell Stack Performance

Current Density, A/cm²

 355mW/cm^2 (6.6 @ 0.542A/cm²) with 64% H₂ at 800°C and 36.5% fuel utilization (total power output 500 W);

Fuel Processing

- Focus on natural gas
- Autothermal pre-reformer
- Internal reforming

ATR Fuel Processor (Pre-Reformer) -Performance and Characteristics

Burner In

<u>Ability to Meet SECA System</u> <u>Requirements</u>

- ✓ Inlet steam-to-carbon ratio
- ✓ Inlet oxygen-to-carbon ratio
- ✓ Inlet fuel gas temperature
- ✓ Methane slip level
- ✓ Minimum hydrogen production level
- ✓ Pressure drop
- ✓ Capacity to support 5 kW_{net} stack
- ✓ Lifetime
- Outlet reformate gas temperature
- Unit cost

ATR Pre-Reformers

New Design

Earlier Design

ATR Pre-Reformer Short-Term Performance Stability

ATR Pre-Reformer Test Using Propane

Propane Tests

- Objective was to demonstrate potential operation of pre-reformer with other fuels.
- Propane selected as fuel. Liquid propane fuel used as fuel supply for the test.
- Test conducted on third day of operation.
- Unit operated for 6 continuous hours with no sign of carbon formation.

SOFC Operation on Hydrocarbon Containing Fuels

Internal Reforming Capability Test

On–Anode Methane Steam Reformation

Inverter Requirements

- Efficiency
 - Target = 95 %
 - Low spec limit (LSL) = 92%
- Output
 - 120/240 VAC, 60 Hz
- Voltage Range
 - 88V to 153V
- Current Range
 - 0 to 80A

Design Curves for Inverter

Inverter Performance

- > Demonstrated peak efficiency of 94.5%
- > Further testing of unit
 - Assess dynamic performance
 - Assess reliability
- > Possible modifications to unit
 - Increase peak power output
 - Increase DC voltage range

Control System Design

- > Fuel Cell Dynamic Component Model Library
 - Rapid development of dynamic system models
 - Design of control systems through simulation
- > Rapid prototyping tools
 - Allow for direct transfer of controls designed in simulation to control of fuel cell system
 - Advanced control and sensing techniques can be investigated through simulation trade studies
 - Most promising approaches can be easily implemented in system hardware
- Improved system operation through explicit consideration of dynamics and controllability in design

Design for Control

Control Software Development

- > Control software from simulation environment updated to support real-time environment
- > A full set of software was implemented successfully on real time controller
- > Meets real time requirement with significant margin

Graphical User Interface

Control Strategy Validation

- > Component testing
 - Cells/stacks
 - Blowers
 - Heat exchangers
 - Valves
 - Sensors
- > Lower level control loop testing
 - Verify simulation results
- > Subsystem integrated testing

Prototype System Design Diagram

Prototype System Development

- Conduct system design and performance analysis
- Define system component requirements
- Develop prototype system package
- Perform component testing and integration

Preliminary Prototype System Package

Summary

Progress in several key areas

- SOFC stack
- Pre-reformer
- Controls and power electronics
- Prototype system development
- Plan to demonstrate a prototype system in 2005

Acknowledgments

• DOE/NETL

- Wayne Surdoval
- Travis Schultz
- Don Collins

GE SECA SOFC Team

