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Part 1: Athermal Systems

Abstract
Athermal, tethered chains are modeled with Density Functional (DFT) theory for both the

explicit solvent and continuum solvent cases.  The structure of DFT is shown to reduce to

Self-Consistent-Field (SCF) theory in the incompressible limit where there is symmetry

between solvent and monomer, and to Single-Chain-Mean-Field (SCMF) theory in the

continuum solvent limit.  We show that by careful selection of the reference and ideal

systems in DFT theory, self-consistent numerical solutions can be obtained, thereby

avoiding the single chain Monte Carlo simulation in SCMF theory.  On long length

scales, excellent agreement is seen between the simplified DFT theory and Molecular

Dynamics simulations of both continuum solvents and explicit-molecule solvents. In

order to describe the structure of the polymer and solvent near the surface it is necessary

to include compressibility effects and the nonlocality of the field.
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1. Introduction

Polymer chains tethered to a surface provide solutions to a number of

technologically important problems.  Such applications include the synthesis of

biocompatible materials, control of protein adsorption, stabilization of colloids, and the

modification of surfaces to control hydrophobicity.  These are applications where the

chains are in the presence of solvents, or “wet-brushes”.  The “dry-brush”, or solvent-

less, case is most applicable as a controlled adhesive.  Moreover, wet-brushes are

commonly analyzed in the dried state with, for instance, atomic force microscopy (AFM).

Consequently, it is useful to understand not only the structure of the wet and of the dry

brush states individually, but also the relationship between the two.

The purpose of the present investigation is to develop a theory to model the

equilibrium structure and properties of tethered polymer layers in the vicinity of the

surface. This problem has been studied extensively by many workers in the past. Scaling

approaches, where the polymer profile is assumed to be a step function, were developed

by Alexander1 and de Gennes2. Self-consistent field (SCF) theories were developed and

numerically implemented by a number of workers3-8.  Milner and collaborators9 were able

to obtain an analytical solution to the SCF problem under certain conditions that leads to

a parabolic density profile for the polymer. A related approach, the single chain mean

field (SCMF) theory, was developed by Carignano and Szleifer10 in a manner that, in

effect, incorporates a single chain Monte Carlo simulation as part of a self-consistent

field theory. The reader is referred to several reviews on tethered polymer chains that

have appeared in the recent literature11-13. Computer simulations of tethered chains by
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Grest and Murat14-18 and by Lai and Binder19 have provided valuable insights and made it

possible to evaluate the accuracy of the various theories.

Unlike the previous work on this problem, here we develop the theory using

classical density functional theory (DFT).  Classical DFT approaches the problem of

classical particles in an anisotropic environment from a more general perspective than

does SCF. Density functional theory was first applied to molecular liquids by Chandler,

McCoy, and Singer20 and subsequently applied to free polymers near surfaces21-24. It is

worthwhile to reformulate the tethered chain problem within the context of DFT not only

because of the theory’s generality, but also because doing so illuminates the various

approximations that are necessary to recover conventional SCF theories.

We will, first, apply DFT theory to the case of tethered polymer chains in a

continuum solvent, a problem studied extensively both by Murat and Grest15-18 and by Lai

and Binder19 with MD simulation. Carignano and Szleifer10 obtained excellent agreement

with the Murat and Grest simulations with their SCMF theory.  As will be shown later, in

the appropriate limit our DFT theory gives comparable results to the SCMF approach.

However, in our implementation of DFT we are able to obtain solutions numerically,

thereby avoiding a Monte Carlo simulation.

Second, we apply our DFT approach to the problem of tethered chains in the

presence of an explicit solvent and compare with corresponding MD simulations17. To

our knowledge, this is the first time quantitative comparisons have been made between

theory and simulation for this problem. This application serves to highlight a significant

advantage of our DFT approach which is that it points the way toward making

improvements in SCF theory.
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          In this paper we present the details of the DFT application to tethered chains in

Appendices A and B. In the theory section we discuss the approximations necessary to

make contact with SCF and SCMF theories. We also demonstrate that the theory can be

implemented in a manner that allows us to obtain numerical solutions. Later we show

results comparing our DFT theory with MD simulations, both in continuum and explicit

solvents.

 2.   Theory

Since both SCF1-9 and DFT20-24 theories are, generically, self-consistent-field

theories, the specific approximations which distinguish the meaning of the term “SCF

theory” from the broader “DFT theory” are largely determined by colloquial usage in the

literature.  The two approximations that usually distinguish SCF theory are as follows.

First, the only explicit length scale in the problem is assumed to be the radius of gyration.

This means that all interactions between sites are “local” (i.e., delta functions), and that

the chains are “Gaussian Threads” which can be described by a differential equation.

Second, the only effect of the repulsive part of the inter-molecular interactions is assumed

to be the enforcement of incompressibility.  Consequently, incompressibility is

constrained in SCF through an undetermined multiplier and repulsive (or excluded

volume) interactions are subsequently ignored. As a result, for the tethered chain

problem, the only parameters in the SCF calculation are the chain length, N; the Flory-

Huggins c-parameter; and the surface coverage, rA. One expects that such calculations

would be accurate on long length scales, but would fail to capture short range, local



10

packing effects.  In the current study, we make some, but not all, of the approximations of

SCF theory.

The solution method for the density profile of the tethered chains is essentially

that of reference 21.  The total site density, r(z), at a distance z from the wall can be

computed from the coupled functional equations

                                
r(z) = F[U0(z)]

U0(z) = G[r(z)]

(2.1)

where U0(z) is an external field whose purpose is to mimic the effects of the solvent and

of the other chains on a given tethered chain.  The specific development of the forms of

these relationships from a free energy functional is detailed in the appendices.

 A.   The Ideal and Reference Systems

The definition and careful manipulation of the ideal system are central to the

successful application of DFT to polymeric systems.  The importance of the ideal system

is clearly shown in the first of Eqs. (2.1) which represents the computation of the density

profile of a single tethered chain (i.e., the ideal system) in an external field U0(z): this is

the subject of appendix A. The term “ideal chain” in DFT theory refers to a polymer

chain that does not interact explicitly with the other chains in the system. However,

depending on the specific choice of the ideal chain, it may or may not interact with itself

via, for example, excluded volume interactions.  Even though SCF and DFT theories

reduce the many chain problem to the considerably simpler, single ideal chain problem,

this simpler problem still cannot be solved in closed form in the presence of an external

field. Since a freely-jointed-chain, or random walk model, is Markovian, we can calculate



11

the density distribution in the external field for this model numerically, for example by

using the Fourier transform technique described in appendix A.  By contrast, in the

SCMF theory of Szleifer and coworkers10 on tethered chains, and in our earlier work on

free chains22,23, the ideal chain problem was solved with intra-molecular excluded volume

interactions between chain segments. In order to compute the density distribution for this

self-avoiding walk (SAW) model, these workers required Monte Carlo techniques as part

of their self-consistent field calculation. In both ideal chain models, the two equations in

Eq. 2.1 are solved iteratively until a self-consistent density profile and external field are

obtained. Later in this paper we will demonstrate that equivalent results can be obtained

from either the random walk or SAW model as the choice for the ideal system.

In order to see the importance of the ideal system more clearly, let us consider the

problem of interest in more detail – that is, tethered polymer chains whose segments are a

distance z from the tethering surface. The external field U0(z) = G[r(z)] acts on a single

tethered chain, the ideal chain, in order to mimic the effects of the other chains in the

system in a mean field sense. The form of this field can be found by minimizing the

grand potential free energy with respect to the inhomogeneous density profile r(z). The

algebraic details of this procedure are reviewed in appendix B and leads to Eq. (B.11)

that can be rearranged as follows for the polymer and solvent fields

† 

U p
0 r( ) = Up r( ) - cp,s * Drs r( ) + w-1 -w0

-1( ) -rp,refcp,p[ ]* Drp r( )
rp,ref

U s
0 r( ) = Us r( ) - cs,s * Drs r( ) -cs,p *Drp r( )

 (2.2)

where ci,j(r) is the intermolecular direct correlation function between sites of type p

(polymer) or s (solvent). The quantity w -1(r) is the functional inverse of the intra-

molecular correlation function of the fully interacting polymer chains, and w0
-1(r) is the
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corresponding inverse for the ideal chain.  The direct correlation functions in Eq. (2.2)

are to be evaluated in the homogeneous reference state of density rp,ref. In Eq. (2.2),  “*”

denotes the convolution integral f * g r( ) = f r - r'( )g r'( ) drÚ ' .  The function U(r) is the

bare external field on the fully interacting, inhomogeneous system due to the presence of

the surface; the difference Dr(r) is r(r)-rref and r (r) is the density profile of the

inhomogeneous system. In Eq. (2.2), constant terms in U0(r) have been dropped since the

density profile is sensitive only to differences in the external field.  On the other hand, the

free energy does depend upon constant offsets in the potentials, and some care must be

taken when treating phase transitions where the value of the free energy (and not only the

location of its minimum) is of importance22.

Two choices need to be made at this point for the “ideal” and “reference”

systems.  The ideal system can be chosen to be either a random walk or a self-avoiding,

random walk (SAW) chain.  Since the random walk model can be treated numerically,

whereas a SAW model requires a simulation, the choice of a random walk model as the

ideal system is highly desirable.  Whether or not this is a suitable choice is closely tied to

the second choice that must be made: that of the reference system.

The reference system is the homogeneous state about which the Helmholtz Free

Energy of the inhomogeneous system is expanded in equation (B.6).  Commonly, the

bulk liquid in equilibrium with the inhomogeneous system is selected as the reference

state.  This is a reasonable choice for systems such as un-tethered chains in a pore that are

clearly in equilibrium with a bulk liquid reservoir. It is important to recognize, however,

that the choice of the reference state is arbitrary to a degree. In the case of chains tethered

to a surface, the system far from the wall (which the tethered chains are in equilibrium
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with) consists of pure solvent: a problematic choice for the reference system. In

particular, the division by rp,ref in Eqn. (2.2) makes the bracketed term diverge when

rp,ref=0 unless, of course, w(r)=w0(r). Consequently, for this choice of reference system, a

SAW ideal chain is required for the accurate portrayal of the single chain structure factor

of a dilute solution of a polymer in a good solvent in order to avoid the divergence of the

field in Eq.(2.2). This was the approach taken in the SCMF theory.

Rather than taking the reference system to be the far-field, polymer density, which

is zero, we instead choose the 

† 

rp,ref  to be the average density within the polymer layer. It

is physically reasonable that the density in the region where the polymer is actually

present should determine the physics of the system.  This can be achieved by using a

“mass weighted” average of the density defined as

                

† 

rp,ref = r =

r2 z( )dz
0

H

Ú

r z( )dz
0

H

Ú
                                      (2.5)

which is appropriate for the one dimensional density profile and field assumed in this

work. Note that the “number weighted” average would be zero due to the large volume of

solvent far from the surface. For this reference system, rp,ref is no longer zero and the

bracketed term in Eqn. (2.2) is not dominated by 

† 

w-1 - w0
-1( )  but is controlled by the c(r)

term. For sufficiently high surface coverages, 

† 

rA , such that r  is larger than a particular

threshold density, r*, our reference system corresponds to a uniform polymer solution in

the concentrated or semidilute regime.  This crossover density from dilute to semidilute

solutions is defined by
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                                 r* s3 ~ 3Ns3

4pRg3 ~ 3.5
N3n-1                                            (2.6)

where Rg ª sNn / 6  and n is the Flory exponent. Hence, a reasonable choice for the

ideal chain consistent with this reference system would be random walk chain with no

excluded volume (n=1/2).

As we proceed to still lower surface coverages, the theory is affected by a second

threshold density, the crossover surface coverage, 

† 

rA
* , from the brush to the “mushroom”

regime where the tethered chains no longer overlap with each other

                                          

† 

rA
* s2 =

s2

pR g
2 =

6
p

N-2n                                  (2.7)

As long as 

† 

rA > rA
*  we expect our assumption of a one-dimensional field and profile to be

valid. However it is possible that 

† 

r < r*  while 

† 

rA > rA
* .  When this occurs, we take our

reference system to be 

† 

rp,ref = r* . Since our reference system is still in the semidilute

regime, we can still choose our ideal system to be a random walk chain. At surface

coverages below 

† 

rA
*  the tethered chains become isolated, and the tethered layer can no

longer be described by a one-dimensional field. In this regime, it would be necessary to

treat the fields and profiles in a two dimensional generalization of the theory, in a manner

similar to the approach of Balazs and coworkers25.

Thus, it can be seen that our choice of reference system such that 

† 

rp,ref ≥ r*

allows us to take our ideal chain to be a random walk model. Consequently the term

† 

w-1 - w0
-1( )  can be safely ignored and the bracketed term in Eq. (2.2) is essentially
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controlled by the direct correlation function 

† 

cpp(r) . This choice of the reference and ideal

systems is very beneficial from a computational standpoint since the density profile

calculation in Eq. (2.1) can be performed without resorting to a simulation.

B.   The Connection Between SCF and DFT Theories

At this point, various simplifying approximations in the spirit of SCF theory can

be made.  First, the length scale associated with c(r) is assumed to be negligible, and c(r)

is treated as a delta function: c(r) = ˆ c (0)d r( ) . For our choice of ideal and reference

systems, this locality approximation leads to

Up
0 r( ) = Up r( ) - ˆ c p

+ 0( )Dr+ r( ) - ˆ c p
- 0( )Dr- r( )

Us
0 r( ) = Us r( ) - ˆ c s+ 0( )Dr+ r( ) - ˆ c s- 0( )Dr- r( )

(2.8)

where we introduce the following variable definitions:

ˆ c p
+ 0( ) = ˆ c pp 0( ) + ˆ c ps 0( )( )/ 2 ; ˆ c s

+ 0( ) = ˆ c ss 0( ) + ˆ c ps 0( )( )/ 2 ;

ˆ c p
- 0( ) = ˆ c pp 0( ) - ˆ c ps 0( )( ) / 2 ; ˆ c s

- 0( ) = ˆ c ps 0( ) - ˆ c ss 0( )( )/ 2 ; r+ =rP+rS; r- =rP-rS.  

The ˆ c 0( )  is conveniently viewed as the sum of a contribution due to the attractive site-

site interactions, ˆ c A 0( ) > 0  and one due to the repulsive interactions, ˆ c R 0( ) < 0 .  Since it

is usually the case that ˆ c R 0( ) >> ˆ c A 0( ) , the ˆ c + 0( ) are dominated by the ˆ c R 0( ) ’s.  These

terms serve as a restoring force such that for large (negative) ˆ c + 0( ) ’s, one finds that

Dr+(r)~0.  Consequently, it is often expedient to include an undetermined multiplier term

of the form l r( )Ú Dr+ r( )dr  in DW in equation (B.9) to constrain the system so that

rp + rs( )  is a constant.  When this constraint is enforced through

dW/dl=dW/dr=dW/dU0=0, the expression for the fields becomes:
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Up
0 r( ) = Up r( ) - 2ˆ c p

- 0( )rp r( ) + l r( )

Us
0 r( ) = Us r( ) - 2ˆ c s- 0( )rp r( ) + l r( )

(2.9)

where additional constant terms have been omitted. By splitting the ˆ c - 0( ) ’s into

repulsive and attractive contributions.  The fields can now be written as:

Up
0 r( ) = Up r( ) - xprp r( ) - 2cpf r( ) + l r( )

Us
0 r( ) = Us r( ) + xsrp r( ) + 2csf r( ) + l r( )

(2.10)

where

xp = ˆ c pp
R 0( ) - ˆ c ps

R 0( )( ); xs = ˆ c ss
R 0( ) - ˆ c ps

R 0( )( );
c p =

rtot
2

(ˆ c pp
A - ˆ c ps

A ); cs =
rtot

2
(ˆ c ss

A - ˆ c ps
A );

(2.11)

f(r)=rp(r)/rtot; and r tot=rP+rS.  The c’s are related22 to the Flory-Huggins c-parameter

through c=cP+cS.  In addition, by making the symmetry assumptions that cP=cS, and that

xp=xs=0 in the spirit of Flory-Huggins theory, we are led to the well known field

commonly employed in standard SCF theory

                       
Up

0 r( ) = Up r( ) - cf r( ) + l r( )

Us
0 r( ) = Us r( ) + cf r( ) + l r( ).

(2.12)

Of course, xp=xs=0 does not rigorously hold when there is asymmetry between

monomeric and solvent structure. This effect is extreme for the case of athermal polymer

brushes, where there is no solvent, or in a model where the solvent is treated as a

continuum existing solely to make up the difference between rP and rtot.  This is precisely

the system studied in the MD simulations of Murat and Grest15-18.  Since the solvent

molecules are not explicitly considered, the direct correlation functions associated with
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the solvent are zero resulting in xp = ˆ c pp
R 0; r( )  and xS=0.  Thus, in our approach for the

continuum solvent case, the fields become

             
Up

0 r( ) = Up r( ) - ˆ c pp
R 0; r( )rP r( ) - cf r( ) + l r( )

Us
0 r( ) = Us r( ) + cf r( ) + l r( )

    (2.13)

where the density of the reference system rp,ref= r  is explicitly denoted.  In the SCMF

theory, r  would be 0 while, in the current study, r  is determined through the average

in equation (2.5).  In the present investigation, we consider only the athermal solution

where c=0.  We will study both the compressible, continuum solvent where l(r)=0, as

well as, the incompressible limit where the Langrange multiplier l(r)≠0 enforces the

incompressibility constraint of rtots
3=1. Since we are dealing with tangent, hard-site

chains, the ˆ c p,p
R 0( )can be found21 from the equation of state for the bulk polymer of

density 

† 

r .  Finally, in order to model athermal, tethered chains in the presence of an

explicit solvent, we take xp=xs=0 with incompressibility enforced.

3. Results and Discussion

To provide a basis of comparison with previous work we first treat our model

with conventional SCF theory in the athermal limit for which the polymer and solvent

fields in Eq. (2.12) reduce to

                               

† 

U p
0 z( ) = Up z( ) + l z( )

U s
0 z( ) = Us z( ) + l z( ).

                          (3.1)

It can be seen from this equation that the only molecular content left in these fields is the

Lagrange multiplier l(z) that enforces the incompressibility constraint. These fields were

used to solve for the density profiles of N=50 unit tethered chains with surface coverages
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(chains/area), rAs2, of 0.01, 0.03, 0.10 and 0.20, and of N=100 chains for rAs2 of 0.03

and 0.07. As discussed earlier, our calculations were performed with a random-walk,

ideal chain in the external field using the Fourier transform method discussed in

Appendix A where 300 Fourier components were used for the N=50 chains and 600

components, for the N=100 chains. The results, which would be applicable to athermal,

wet brushes are shown in Fig. 1.  Although the chains become strongly stretched for the

two largest rA’s, it can be seen that the profiles are well described by parabolas.  These

are in good qualitative agreement with previous SCF results9; however, since most of the

literature results are lattice calculations without finite extensibility, direct comparison is

difficult.

0
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0.5

0.6

0.7

0.8

0 5 10 15 20 25 30
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0.2

0.1

0.03

0.01

Figure 1: Conventional SCF (with finite extensibility) results for ideal chains for

N=50. Surface coverages of rAs2=0.01; 0.03; 0.1; 0.2.
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In order to test the accuracy of our approach we will first make contact with the

continuum solvent, MD simulations of Murat and Grest14-18 who considered bead-spring

model chains tethered to a hard wall for a range of surface coverages. No solvent

molecules were explicitly treated in most of their simulations.  Instead, solvent-induced,

intramolecular attractions were introduced to mimic the effects of solvent quality. Here

we will focus on the athermal simulations, corresponding to good solvent conditions.  In

our theory this implies that 

† 

cp = cs = 0  in the equations developed in the previous

section.

The appropriate fields to use in this case are depicted in Eq. (2.13) which, in the

athermal limit, reduce to

                 

† 

U p
0 r( ) = Up r( ) - ˆ c pp

R 0; r( )rP r( ) + l r( )
U s

0 r( ) = Us r( ) + l r( )
                           (3.2)

Note the presence of the extra term in the polymer field that arises when the direct

correlation function, 

† 

ˆ c ps
R (0) , vanishes as a result of the lack of solvent interactions in the

system. We employed the polymer and solvent fields in Eq. (3.2) in two types of DFT

calculations using the ideal and reference systems discussed earlier. In one case we

envision the presence of ideal, gas-like solvent molecules whose only purpose is to

ensure that 

† 

rp(z) + rs(z) = constan t . This incompressibility constraint is enforced through

the Lagrange multiplier l(z). The other case we consider more closely matches the

simulation where no solvent molecules are present. This corresponds to putting l=0 in

Eqs. (3.2) thereby allowing the system to be compressible.
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In this investigation, we evaluated the polymer/polymer direct correlation

function 

† 

ˆ c pp
R (0, r ) in Eq. (3.2) from the equation-of-state of a bead-spring polymer melt

having a density of 

† 

r  corresponding to our reference state. The zero-wave-vector,

direct-correlation function can be related to the isothermal compressibility

† 

kT = - ∂ lnV /∂P( )T  according to21

                                    

† 

r ˆ C pp 0, r( ) =
1
N

-
1

r kBTkT
                                         (3.3)

The compressibility, and, hence, the direct correlation function, was obtained at each

density from simulation data28 for repulsive bead-spring chain melts and fit21 to a

Carnahan and Starling form

                                   

† 

P
r kBT

=
1
N

+
K1h + K2h

2 + K 3h
3 + K4 h4

1- h( )3                           (3.4)

where the packing fraction is 

† 

h = p r /6 , and the coefficients, Ki, have a molecular

weight dependence21 given by

                                            

† 

K1 = 4 - 2X -1.248X2

K 2 = -2 + 3.7028X + 3.976X2

K 3 = -2.653X - 3.059X 2

K 4 = 0.64178X + 0.69164X 2

                                   (3.5)

with the expansion variable 

† 

X =1-1/N .
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Figure 2: Athermal, excluded volume chains of 50 sites and surface coverage of

rAs2=0.01. DFT results of current study for l≠0 (solid line) are compared to

those of Murat and Grest14-18 (circles) and to those of Carignano and

Szleifer10,11 (dashed line).

Figure 3: Athermal, excluded volume chains of 50 sites and surface coverage of

rAs2=0.03. Symbols as in Fig. 2.
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Figure 5: Athermal, excluded volume chains of 50 sites and surface coverage of

rAs2=0.2. Symbols as in Fig. 2.
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Figure 4: Athermal, excluded volume chains of 50 sites and surface coverage of

rAs2=0.1. Symbols as in Fig. 2.  The insert shows the effect of the

incompressibility constraint.  The solid line is the l≠0 result as in the main

plot while the dashed line is the l=0 result.
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The results of our theory for continuum solvents of N=50 are shown in Figs. 2

through 5 along with the SCMF calculations performed earlier by Carignano and

Szleifer10. In these figures it can be seen that the present DFT theory is in excellent

agreement with the continuum solvent simulations of Murat and Grest. As the

dimensionless surface coverage 

† 

rAs2  increases from 0.01 to 0.20, both the theoretical

and MD profiles become more nonparabolic and extended. Furthermore, the results of the

present DFT theory are very close to those of the SCMF calculations. This is significant

since the SCMF calculations were based on a SAW ideal chain model whereas, in our

approach, a theory based on a random-walk, ideal chain was developed.  This is of

practical importance since the demands of the numerical, random-walk calculation are

relatively modest, each profile typically taking only a few minutes to generate on a

typical workstation.

          Interestingly, the enforcement of incompressibility in our theory has very little

effect on the density profile as can be seen from the insert in Fig. 4.  This is certainly not

the case for conventional SCF theory where the density profiles are strongly compressed

by the l-field.  Both the l and the ˆ c R 0( ) contributions to the field in our incompressible

DFT calculations serve to flatten and extend the density profile.  Apparently, in our

compressible DFT calculations the ˆ c R 0( ) contribution is much stronger than that of l(z)

making the latter term irrelevant; however, in conventional SCF theory where ˆ c R 0( ) is

absent, as indicated in Eq. (3.1), the more modest chain perturbation due to l(z) is made

apparent.

Examination of Figs. (4) and (5) reveals that at high surface coverages, the

polymer profile tends toward a step function where the polymer density is constant within
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the tethered layer and zero outside. Such a step profile was assumed in early scaling

theories of polymer brushes1,2. From these scaling approaches it can be demonstrated that

the layer thickness obeys the relation 

† 

z ~ NrA
1/ 3  with respect to the chain length and

surface coverage. A check of this prediction with our theory, along with the MD and

SCMF results, is depicted in Fig. (6). It can be observed from this figure that the curves

from both our theory and the Murat and Grest MD simulations, approach z µ NrA
1/3  for

large surface coverages and chain lengths in accordance with scaling predictions. Over

this same range it appears that the SCMF results have still not reached the brush-like

scaling regime11.
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Figure 6: Scaling of average site distance from wall for athermal, excluded volume

chains.  The solid line is the result of l≠0, DFT for the cases of N=50,

rAs2=0.01 to 0.2 (11 points); N=100, rAs2=0.02; N=150, rAs2=0.01.  The

dashed line represents the results of Carignano and Szleifer10,11.  The circles

are the results of Murat and Grest14-18.
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Thus far we have only considered tethered chains in a continuum solvent. We

know from MD simulations26 and PRISM theory27 that in bulk polymer solutions, the

presence of explicit solvent molecules significantly reduces the radius of gyration of the

polymer compared to the continuum solvent. Thus an explicit athermal solvent is still a

good solvent for the polymer, but not as good as a continuum solvent. One might expect a

similar effect of explicit solvent molecules in a tethered chain system. This is indeed

what was observed in the MD simulations of Grest17 who studied tethered polymers in

chain solvents of various lengths. Let us consider how the fields in Eq. (2.10) are

modified due to the presence of explicit solvent molecules. Now the direct correlation

functions associated with the solvent are no longer zero, and, as a result, the term 

† 

xp  no

longer reduces to ˆ c pp
R (0)  as in Eq. (2.13) but is a balance between polymer/polymer and

polymer/solvent direct correlation functions. A similar argument applies for the 

† 

xs  term.

As discussed earlier, one can argue that the various direct correlation functions balance

each other so that, to first approximation, 

† 

xp @ xs @ 0 . This leads to the fields in Eqs.

(2.12) or (3.1) that are commonly employed in SCF calculations, and also used in the

present investigation in Fig. (1) for N=50.

          In order to compare with the athermal MD simulations of Grest17 we performed

(finite extensibility) SCF calculations on tethered chains of N=100 for an explicit

monomeric (N=1) solvent using the fields in Eq. (3.1). In Figs. (7) and (8) these results

are compared at two surface coverages with the corresponding tethered chains in a

continuum solvent, using the fields in Eq. (3.2), along with the relevant MD simulations.

Not surprisingly, the agreement between our DFT theory and simulation for the N=100

tethered chains in continuum solvent is excellent – just as it was for N=50 chains. What is
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remarkable, however, is that the simple SCF theory does a very good job of describing

the density profiles for the tethered chains with explicit solvent molecules present.  The

effect of local packing can be seen in the inset.  Within 6s of the wall, the “solvation-

shell” structure seen in high density liquids is manifest.  In reality, the total density is not

a constant with respect to distance from the wall, and, since the diameters of the solvent

and monomer are equal in the explicit solvent simulations of Ref 17, the layering of the

total density is pronounced.  Consequently, the structure seen in the polymer density in

the six-sigma region is strongly influenced by the structure of the total density.
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Figure 7: Comparison of explicit and continuum solvents.  The symbols are the

results of computer simulation and the curves are those of DFT.  The

tethered chains are of length 100 and the explicit solvent is monatomic.

The surface coverage is rAs2=0.03.  Near-wall simulation details are not

shown.
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For walls of sufficiently small separations, the density profiles of the tethered

chains on the two walls overlap.  This is seen in Fig. (9) where the MD simulations of

Murat and Grest18 are well described by the DFT results.  Of course, solvent effects

would strongly affect the wall-wall interactions.  In particular, the presence of explicit

solvent would delay the overlap of the profiles until smaller wall separations.  This is

seen in the predictions of DFT for explicit solvents shown in Fig. (10).

4.          Conclusions

  The primary intent of the current study is to formulate a general theory for tethered

polymer chains based on atomic level interactions that is capable of describing both long

and short range structure.  We find if we sacrifice information regarding the short-range

packing, then our general DFT formalism reduces to SCMF theory in the case of

continuum-solvent brushes, and to SCF theory when the solvent molecule is treated

explicitly. The assumptions necessary for this simplification include: locality of the
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Figure 8: Comparison of explicit and continuum solvents. Symbols as in Fig. 7

except rAs2=0.1. Near-wall simulation details are shown in the insert, but

not in the main figure.
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fields, symmetry in the repulsive direct correlation functions, and incompressibility. By

going through the DFT route, it becomes apparent that the theory can be implemented

numerically through a random walk, ideal-chain model provided that the reference state

is chosen appropriately. When applied to the continuum solvent problem, this approach

gave results in agreement with SCMF theory and MD simulation. It should be

emphasized, however, that in our formulation this agreement was achieved without

resorting to a single chain Monte Carlo simulation as is required in SCMF theory.

Figure 9: Athermal (continuum-solvent) excluded volume chains of 100 sites with

rAs2=0.03 and finite wall separations, H/s = 30, 50, and 70 as indicated.

The lines are the results of the DFT with l≠0 and the circles are the MD

results of Grest.
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          In general, the repulsive, direct-correlation functions of polymer and solvent enter

DFT theory through the fields in Eq. (2.10). However, in the case of tethered, bead-spring

polymers in an athermal, monatomic solvent, we found that the symmetry between the

monomer and solvent structure causes the repulsive, direct-correlation functions to drop

out of the problem. Beyond a distance of about six monomer diameters from the wall, the

SCF-limit of the DFT theory (which includes finite extensibility) gives an accurate

description of the simulations of Grest in the presence of explicit solvent molecules. In

the case of more complex polymer and solvent models the specific direct correlation

functions would need to be included in the calculation.

          Our DFT theory, as formulated in the Appendices, is developed for a polymer

model where each monomer and each solvent molecule consists of a single site. Provided

Figure 10: Athermal, explicit-solvent, excluded-volume chains of 100 sites with

rAs2=0.03 and finite wall separations, H/s = 30, 50, and 70 as indicated.

The lines are the results of the DFT with l≠0.
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there is no long range intramolecular excluded volume, the ideal polymer chain is

Markovian. This permits the density profile to be calculated numerically as outlined in

Appendix A.  More realistic models, that faithfully reproduce monomeric and solvent

architecture with multiple sites, would give a more accurate representation of the local

structure. Such a model can be treated with DFT methods, however, even when the

excluded volume is screened, the ideal chain is no longer Markovian. In other words, the

position of the nth site on a chain will depend not just on the (n-1)st site, but may also on

the (n-2) and (n-3)st sites as well. It seems likely that a model, such as the “rotational

isomeric state” model containing local architectural details, would be amenable to

numerical solution if long range excluded volume effects are absent.

          Throughout this work we have assumed that the various direct correlation functions

are of zero range and, consequently, are proportional to delta functions. This assumption,

when inserted into Eq. (2.2), leads to solvent and polymer fields that are local in the sense

that the field at location z depends only on the density profile at this same location z, and

not on the density at nearby locations. We expect that this locality approximation would

lead to accurate predictions on long length scales, but would fail to accurately capture

local packing effects near the wall. In the MD simulations of Murat and Grest, both with

and without explicit solvent molecules, we see that the tethered chains do show

significant local packing effects in the region within six monomer diameters of the wall.

Thus the simple SCF and SCMF theories give remarkably good descriptions of tethered

chains on long length scales.  For many applications the near surface structure is

important. For instance, the degree of solvent penetration to the wall or the pressure of a

tethered chain on an opposing, bare wall would both be sensitive to the details of local
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packing.  This is similar to the case of untethered, free polymer chains near surfaces21-23

where the calculation of, for example, surface tension is sensitive to details of the six-

sigma wall region. In order to accurately probe this wall region, DFT theory needs to be

implemented with nonlocal fields incorporating the finite range of the direct correlation

functions.
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Appendix A: Evaluation of the density profile from the ideal external field:

r(z)=F[U0(z)]

The density profile, r(z), of even a simple, ideal chain cannot be solved in closed

form when the chain is interacting with an arbitrary external field, U0(z); however, the

judicious use of Fourier transforms permits a convenient numerical solution.  This

approach is discussed in some generality in reference 21, and, in this appendix, the

specific application to tethered chains is addressed.

Of particular importance for tethered chains is the maintenance of finite

extensibility.  One of the primary reasons that the lattice based treatment of self-avoiding

chains fails to quantitatively agree with off-lattice simulations is that the lattice chains do

not rigidly enforce finite extensibility.  One may also speculate that the lack of finite

extensibility in the Gaussian chains used in SCF theories of tethered chains would be as

large a source of error as the neglect of some of the excluded volume contributions.  The

approach of the current work does enforce this constraint, and, as a consequence, our

results are most easily compared to those of other off-lattice studies of chains of fixed

bond length.

The density distribution of a given site on an un-tethered chain (for instance, the

4th site of a 6 site chain) can be decomposed into the product of two integrals

r4 z4( ) µ Ileft z4( )exp -U0 z4( )( )Iright z4( ) (A.1)

where

Ileft z4( ) = exp -U0 z1( )[ ] d r2 - r1 - s( )exp -U0 z2( )[ ]ÚÚÚ

X d r3 - r2 - s( )exp -U 0 z3( )[ ] d r4 - r3 - s( ) dr1dr2dr3
; (A.2)

and
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Iright z4( ) = d r5 - r4 - s( )exp -U0 z5( )[ ]d r6 - r5 - s( )exp -U0 z6( )[ ]dr5dr6ÚÚ ; (A.3)

the fields are expressed in units of kBT; kB is the Boltzmann constant; and T is the

temperature.

Such integrals can be evaluated with Fourier transforms. Consider Iright as an

example.  Working from right to left:

exp -U0 z6( )[ ] =
a0
2

+ a n cos npz6
L

Ê 
Ë 

ˆ 
¯ n=1

•
Â (A.4)

where 2L is the distance between the two walls of the pore; the origin of z6 has been

shifted so the function is even; and

an =
1
L

exp -U0 z( )[ ]cos npz
L

Ê 
Ë 

ˆ 
¯ 

- L

L
Ú dz . (A.5)

The right most delta function can be expressed as

d r6 - r5 - s( ) =
1

8p3 exp ik • r6 - r5( )[ ] sin ks( )
ks

dk
-•

•

Ú (A.6)

where i = -1 .  The integral over r6 is then

d r6 - r5 - s( )exp -U0 z6( )[ ]dr6Ú =
1

8p3 exp ik • r6 - r5( )[ ]sin ks( )
ks

dk
-•

•

Ú
È 

Î 
Í 

˘ 

˚ 
˙ exp -U0 z6( )[ ][ ]dr6

- L

L
Ú

=
1

2p
exp -ikzz5[ ]

sin kzs( )
kzs

exp ikzz6[ ]exp -U0 z6( )[ ]dz6
- L

L
Ú

È 

Î 
Í 

˘ 

˚ 
˙ dkz

-•

•

Ú

=
1

2p
exp -ikzz5[ ]

sin kzs( )
kzs

p a nd kz -
np

L
Ê 
Ë 

ˆ 
¯ 

n= -•

•
Â

È 

Î Í 
˘ 

˚ ˙ 
dkz

-•

•

Ú

=
a0
2

+ an
sin nps/ L( )

nps/ L
cos npz5

L
Ê 
Ë 

ˆ 
¯ n=1

•
Â . (A.7)
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The delta function d(|kz|-np/L) arises from treating exp(-U0(z)) as an even, periodic

function from z= -∞ to ∞.  Only wavelengths commensurate with the function’s period

(2L) contribute to the integral, which generates the finite Fourier transform.

The result of equation (A.7) is a function of z5 which is then multiplied by exp(-

U0(z5)), taken back into Fourier space to be multiplied by the next delta function, and so

on until the integral is evaluated.

When starting from the tethered end, an extra site is added to equation (A.2) and

fixed to the wall with a delta function:

d z0( )Ú d r1 - r0 - s( )dr0 = d x0( )d y0( )d z0 - L( ) 1
8p3 exp ik • r1 - r0( )[ ] sin ks( )

ks-•

•

Ú dk
È 

Î 
Í 

˘ 

˚ 
˙ dr0

-L

L
Ú

=
1

2p
exp ikzr1[ ]

sin kzs( )
kzs

exp -ikzz0[ ]d z0 - L( )dz0
-L

L
Ú

È 

Î 
Í 

˘ 

˚ 
˙ dkz

-•

•

Ú

=
1

2p
exp -ik zz1[ ]

sin kzs( )
kzs

2p cos kzL( )d kz -
np

L
Ê 
Ë 

ˆ 
¯ 

n=-•

•
Â

È 

Î Í 
˘ 

˚ ˙ 
dkz

-•

•

Ú

=1 +
sin nps / L( )

nps / L
2 cos np( )cos npz1

L
Ê 
Ë 

ˆ 
¯ n=1

•
Â . (A.8)

Equation (A.8) is a real space function which is then multiplied by exp(-U0(z)); taken into

Fourier space; multiplied by sin(nps/L)/(nps/L); etc., just as for Iright.  The product of the

two integrals, Iright and Ileft is multiplied by exp(-U0(z)) and normalized. For computational

convenience, the trigonometric functions needed in the Fourier transforms are calculated

at each k and at each real-space grid-point near the beginning of the program and stored

in memory to be used during the iteration process.
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Although a straightforward enough algorithm, the above is rather notationally

cumbersome.  As is often the case, denoting the integrals as graphs clarifies the

mathematical derivations.  In particular, equation (A.1) can be rewritten as

r4(z)µ                                           exp(-UO(z))  (A.9)

where the black circles are exp(-UO(z)) circles which have been integrated over; the white

circles are 1-circles which have not been integrated over; the thin lines are displaced delta

functions, d(|r1-r2|-s); s is the bond length; the heavy vertical line is the hard wall; and

density profile of this site, r4(z), is normalized so that the surface coverage, rA, is

r4 z( )Ú dz .  The total density profile (i.e., the functional F[U0(z)]) is then the sum over

the density profiles for each site along the chain.  All of the calculations reported here

were performed in slit pores of large width with identical polymer coatings on each wall.

By switching back and forth between real and Fourier space, each of the two

graphs in equation (A.9) can be found as a function of z.  One of the resulting

distributions will peak near the wall and have a tail extending, in this case, to a distance

of 4s.  The other will peak away from the wall and have a tail towards the wall.  For the

case illustrated above this would not be problematic: the product of the two distributions

would have a significant overlap region and, when properly normalized, r4(z) would

result.  However, if the right-most graph in Fig. (A.9) was, say, 100 sites long instead of

2, numerical problems would ensue.  The right-hand distribution resulting from the

procedure described above would be essentially zero over the range where the left-most
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distribution is non-zero.  Since the integrated value of r4(z) must be non-zero, the overlap

of these numerically small tails must be included in the calculation.

The calculations are performed starting from the density profile of the free end,

rEnd(z), and working in towards the sites near the tethering point.  The area of each

overlap region is calculated (before normalization to rA).  When this area drops to less

than 10-8, say for site i, then the density profile for site i+1 is used to approximate the

density both for site i and for all subsequent sites.  In particular, if the peak in ri+1(z)

occurs at zi+1 and the peak in r1(z) is approximated as occurring at 0.25, then the peak in

rj(z) would occur at zj= 0.25+(zi+1-0.25)(j-1)/i.  Consequently, rj(z) was approximated as

ri+1(0.25+(z-0.25)i/(j-1)) for those sites in the low overlap area (except for r1(z) which

was taken to be a constant between the wall and its maximum extension of 0.5s).  The

grid spacing in the z-direction was 0.25s.

Such, then, is the method we used to calculate the density profile of the polymer

from the external field, and the density profile of the solvent, rs(z), is the comparatively

trivial

rs z( ) = rs,bulk exp -Us
0 z( )[ ] (A.10)

where rs,bulk is the density of the solvent in the bulk which is in equilibrium with the

inhomogeneous solvent; and Us
0 z( )  is the ideal external field of the solvent (in units of

kBT).
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Appendix B: Evaluation of the ideal external field from the density profile:

U0(z)=G[r(z)].

Consider the energy, E, of a polymer/solvent system in the presence of external

fields:

dE = TdS - PdV + mpdnp + msdns + rp r( )dUp r( )dr
V
Ú + rs r( )dUs r( )dr

V
Ú (B.1)

where T is the temperature; S, the entropy; P, the pressure; V, the volume; m, the

chemical potential; n, the number of sites; r(r), the site density; and U(r), the external

field.  The integrals are over the system volume; “p” denotes “polymer”; and “s” denotes

solvent.  The r(r)’s are constrained so that n = r r( )dr
V
Ú .

From the definition E* = E - rp r( )Up r( )dr
V
Ú - rs r( )Us r( )dr

V
Ú , one has

dE* = TdS - PdV + y p r( )drp r( )dr
V
Ú + ys r( )drs r( )dr

V
Ú (B.2)

where y(r)=m-U(r).  The Helmholtz free energy, A, is then A=E*-TS, or

            dA = -SdT - PdV + y p r( )drp r( )dr
V
Ú + ys r( )drs r( )dr

V
Ú (B.3)

Finally, the Grand Potential Free Energy is W = A - y p r( )rp r( )dr
V
Ú - ys r( )rs r( )dr

V
Ú , or,

dW = -SdT - PdV - rp r( )dyp r( )dr
V
Ú - rs r( )dys r( )dr

V
Ú (B.4)

At fixed T,V, and r(r)’s, W will be minimized.  If constraints are added to the system to

force the densities away from equilibrium, the resulting Grand Potential Free Energy,

denoted W[rp(r),rs(r)] , will be greater that W, and
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W = Min
rp r( ),rs r( )

W rp r( ),rs r( )[ ] . (B.5)

The heart of DFT theory (and, by extension, SCF theory) is the development of an

expression for the functional W[rP(r),rS(r)] which is then minimized with respect to rP(r)

and rS(r).  These density profiles which minimize the free energy functional are the

equilibrium densities and the value of W[…] at the minimum is W .  The only

approximations in such an approach are those associated with the form of W[…].

A straightforward approach to developing an approximation for W[…] employs a

functional Taylor series of the Helmholtz Free Energy in terms of the densities and at

constant volume and temperature:

A = Aref + ys,ref Drs r( )dr
V
Ú + yp,ref Drp r( )dr

V
Ú (B.6)

+
1
2

App
' ' r - r'( )Drp r( )Drp r'( ) + 2Aps

'' r - r'( )Drp r( )Drs r'( ) + Ass
'' r - r'( )Drs r( )Drs r'( )( )drdr'

V
ÚÚ

where “ref” denotes the homogeneous, reference liquid about which the expansion is

performed; Dr(r) = r(r)-rref; and A’’ is the second functional derivative of A with respect

the indicated r(r)’s.  Since A’=y, then A’’=dy/dr and since dr/dy =rw(r-r’)+rrh(r-r’),

a definition of the direct correlation function, c(r), as dy/dr=w-1 (r-r’)/r - c(r-r’) is

consistent with liquid state theory.  Here w-1 is the functional inverse of the single chain

correlation function for the PP case, is 0 for the PS case, and is d(r-r’) for the SS case.

The pair correlation function, g(r), is h(r)+1.  In particular,
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App
'' r - r'( ) =

w-1 r - r'( )
rp

- cpp r - r'( )

Aps
'' r - r'( ) = -cps r - r'( )

Ass
'' r - r'( ) =

d r - r'( )
rs

- css r - r'( ).

(B.7)

Higher order terms in equation (B.6) are important, and, in order to correct for

these terms, the Free Energy of an “ideal” system, denoted by “0”, is also expanded and

the difference taken with equation (B.6).  This yields

A - A0( ) = Aref - Aref
0( ) + yi,ref - yi,ref

0( )Dri r( )dr
V
Ú

i=s,p
Â (B.8)

-
1
2

ci,j r - r'( )Dri r( )Dr j r'( )drdr'
V
ÚÚ

i,j=s,p
Â +

1
2

w-1 r - r'( ) - w0
-1 r - r'( )( )

rp,ref
Drp r( )Drp r'( )drdr'

V
ÚÚ

and the fundamental approximation in DFT theory is that the higher order terms have

been negated by taking this difference.  Of course, since the ideal and reference systems

have been loosely defined at this point, it is difficult to evaluate the accuracy of this

approximation; in particular, the “closer” the ideal system is to the fully interacting

system, the better the approximation.  We have allowed for a difference in w-1 for the real

and ideal systems; however, as long as the real and ideal chains are of equal length, the

integrated values of the two w-1 will be equal to 1/(chain length).

The Helmholtz Free Energies in (B.8) can now be changed to W[…]’s:

DW = DW0 - y i r( ) - yi,ref( )ri r( )dr
V
Ú + y i

0 r( ) - yi,ref
0( )ri r( )dr

V
Ú

i=s,p
Â

i=s,p
Â (B.9)

-
1
2

ci,j r - r'( )Dri r( )Dr j r'( )drdr'
V
ÚÚ

i,j=s,p
Â +

1
2

w-1 r - r'( ) - w0
-1 r - r'( )( )

rp,ref
Drp r( )Drp r'( )drdr'

V
ÚÚ

where DW=W-Wref.  In order to minimize W (or, equivalently, DW) with respect to r(r),

the ideal system must be evaluated.
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The ideal system we consider here is that of freely jointed chains and a point

particle solvent.  The density profiles can be related to W0 through (B.4) where it is

indicated that dW/dy=r.  From the generalization of equation (A.1), it can be shown that

  
W0 = LÚ exp yp

0 ri( )
i=1

N
Â

Ê 

Ë 
Á ˆ 

¯ 
˜ S r1LrN( )dr1LdrN + exp ys

0 r( )( )drÚÚ (B.10)

where N is the number of sites on a chain and S(…) is the product of delta functions

which enforces the bonding constraints.  The ideal chemical potentials, m0, are defined so

that Nm p
0 = ln rp( )  andms

0 = ln rs( ) .

In general, the y0(r)’s cannot be expressed as a functional of the r(r)’s, and, as a

result, the minimization of DW must be performed as a constrained minimization.  This is

done through the equations dW/dy0=0 and dW/dr=0 where the expression (B.10) is used

for W0. The former of these yields r(r)=F[U0(r)] which was the subject of appendix A,

and the latter yields

Up
0 r( ) = Up r( ) - cp, j r - r'( )Dri r'( )dr'Ú

i=s,p
Â +

w-1 r - r'( ) - w0
-1 r - r'( )( )

rp,ref
Drp r'( )dr'Ú

Us
0 r( ) = Us r( ) - cs,j r - r'( )Dri r'( )dr'Ú

i=s,p
Â

 (B.11)

where constant terms have been dropped.  This equation is reasonably general; neither the

ideal nor the reference system is specified.  In the body of the paper it is used as a starting

point for the analysis of tethered chains.
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Part 2: Effect of Inter-Molecular Attractions

Abstract
Density Functional Theory (DFT) was used to study polymer chains, tethered to a surface

and in the presence of a solvent. For reasons of computational practicality, it is common

practice to remove the explicit solvent molecules from the problem.  Contact was made

with two such models that we call the “implicit-solvent” and the “continuum-solvent”

approximations. First, DFT was applied to tethered chains in an implicit-solvent. Using

the equation-of-state of bead-spring chains as input, we found excellent agreement of the

theory with density profiles obtained in the Molecular Dynamics simulations on the same

model as a function of temperature. Next, DFT was applied to tethered chains in an

incompressible, continuum-solvent. Using the Flory-Huggins theory as input, our DFT

equations reduced to conventional self-consistent field theory.  From our DFT formalism,

we demonstrated that the implicit-solvent problem, at a given temperature, is equivalent

to the continuum solvent problem, provided the chi parameter and total density are

interpreted appropriately.
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1. Introduction

Tethered polymer chains play an important role in the modulation of interactions

between surfaces.  A common example is Latex paint where strongly adsorbed chains are

used as anti-flocculants; as two polymer-coated, ceramic surfaces approach each other,

the tethered chains become entropically restricted and an effective repulsion is induced

between the surfaces.  Of course, if the solvent were a poor one, the polymer-solvent

system’s inclination to phase separate would result in an effective attraction between the

surfaces in spite of the loss in conformational entropy and the particles would flocculate.

A closely related application is in pressure-sensitive adhesives.  A bare surface is

brought in contact with a polymer-coated surface, usually without solvent present.  As

before, there is a loss in conformational entropy but, in this case, whether the surfaces

adhere or not depends upon the extent to which the polymer “wets” the bare surface.

Here, the reduction in entropy competes against surface-tension effects while, in the

flocculent case, it competes against mixing effects.  Not surprisingly, the adhesive

strength can be weakened by the presence of a small amount either of a good solvent for

the polymer or of a solvent with a strong affinity for the surface.

These, then, are the two instances to bear in mind: tethered chains, first, in a

relatively good solvent (a wet-brush) and, second, in a vacuum (a dry-brush).  The

quantity of interest in the current paper is the density profile of the chains near an isolated

surface while the effective force between two surfaces will be addressed in a future

publication.

Under normal conditions, the density profile of an isolated dry brush is relatively

uninteresting: the polymer forms a constant density layer which drops off in a step-
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function manner at a distance related to the chain length and surface coverage.  This step-

function density profile can be perturbed in two ways.  First, if a second surface has been

adhered to the chains, the density profile will develop more structural detail as the

surfaces are pulled apart and the chains stretch in an effort to continue to wet the second

surface.  Second, if the chains are heated to sufficiently high temperature, they will

attempt to vaporize and the density profile will elongate away from the wall.  In order for

the chains to be heated to the point where they extend from the wall requires

temperatures that are unreasonably high for experimentally realizable polymers (i.e.,

temperatures that would rapidly degrade the polymer); however, computer simulations

commonly probe this high temperature region.

The reason that the latter case of high-temperature, solvent-less brushes is of

interest is that the high-temperature chain structures for these brushes are similar to the

structures of room-temperature brushes in good solvents.  In other words, the wet-brush

case can be qualitatively studied with simulations of dry-brushes at high temperatures.

This is illustrated in Fig. 1.  The center schematic represents an experimentally realistic

wet-brush while the right-hand schematic represents a high temperature dry-brush where

the temperature has been tuned so that the chain distributions of the two cases are

approximately the same.  Such high-temperature, solvent-less brushes are often referred

to as being in “continuum” solvents; however, since we will use this term for a different

purpose, we refer to the high-temperature, solvent-less brush as being in an “implicit”-

solvent.  Moreover, for the remainder of the paper, we will reserve the term “dry-brush”

for the low-temperature, step-function extreme of the implicit-solvent system.
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Equations of State
A. Flory-Huggins
B. Explicit Mixture
C. Explicit Single Component

DFT
Theory

2 1

C
B

A

Continuum
Solvent

Explicit
Solvent

Implicit
Solvent

Figure 1: Mappings involved in the study of tethered chains.  The center schematic

represents wet brushes complete with explicit solvent molecules and

realistic potential energy interactions between the sites.  The right-most

schematic represents the same polymer chains as in the center but lacking

the solvent molecules.  The left-most schematic represents thread-like

chains in a continuum solvent with interactions dictated by a c-parameter

and with incompressibility enforced.  The circled numbers indicate various

approximations discussed in the text.  The circled letters indicate which

equation of state is used in each case.
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The usual mapping from the full wet-brush system with explicit-solvent to the

implicit-solvent system is straightforward, and is denoted as mapping 1 in Fig. 1.

Specifically, the radius of gyration, Rg, is found through computer simulation for a single

chain in the implicit-solvent. The temperature where Rg varies as the chain length to the

1/2 power is identified as the theta-temperature, Tq, for the implicit-polymer “mixture”.

In the long chain limit, the theta temperature corresponds to a Flory-Huggins c-parameter

of 1/2.  If c is assumed to vary inversely with temperature, T, then c for the implicit-

solvent brush is approximately Tq/(2T).  The physics of an explicit-solvent system is said

to be well approximated by the implicit-solvent system if the c’s are the same for both –

even if they are at different temperatures.  That is,

cexp licit = c vacuum

Tq
2T

Ê 
Ë 

ˆ 
¯ exp licit

=
Tq
2T

Ê 
Ë 

ˆ 
¯ vacuum

(mapping 1) (1.1)

where Texplicit ≠ Timplicit and Tq,explicit ≠ Tq,implicit.

One expects this to be an approximate mapping for several reasons.  First,

experimental expressions for c are usually of the form A+B/T (where A and B are

constants) and not, simply, B/T.  Second, the osmotic compressibility in the explicit

solvent system is only roughly mimicked by the bulk compressibility in the implicit

solvent case.  And, finally, at the molecular level, the pair correlation functions in the

explicit-solvent system are highly structured, while those in the implicit-solvent case are

more gas-like.

Previously, tethered chains have been investigated from several different

perspectives. Alexander1 and de Gennes2 used a scaling approach where the polymer

profile was assumed to be a step function. More detailed predictions have been made by a
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number of workers3-8 who have adapted Self-Consistent Field (SCF) theory to the

tethered chain problem.  Under certain conditions, the SCF problem can be simplified

and, as shown by Milner and collaborators9, an analytic solution is found with a parabolic

density profile. Finally, Carignano and Szleifer10 developed the Single Chain Mean Field

(SCMF) theory which treats the “single-chain” aspect of the problem more realistically

than SCF theory does. The reader is referred to several reviews on tethered polymer

chains that have appeared in the recent literature11-13.

Density Functional Theory (DFT) is a powerful methodology for the modeling of

inhomogeneous systems such as polymer brushes.  In DFT theory, the molecules are

treated as not interacting with each other, but, instead, an effective, medium-induced,

external field is used to mimic the effect of the medium.  There are two broad classes of

polyatomic DFT theories: those focusing on the structure of the homogeneous liquid14

and weighted-DFT theories that use the equation of state as the primary input.15, 16  The

former was applied to tethered polymer chains in an earlier work17, referred to here as

Paper I, in which a simplified version of DFT theory was developed and applied to

“athermal” tethered chains both in implicit and in explicit solvents.  The Paper I, DFT

theory is of the hypernetted chain (HNC) form.

The inclusion of attractions into DFT theory can present special problems where

the repulsions and attractions need be treated through different approximations as was

found in the application of weighted-DFT theory to polymer liquids near surfaces.18  In

the current study, tethered chains with attractive interactions are investigated.  Here, we

also find that the attractive interactions between molecules require the use of a modified

form of DFT theory in which a hybrid of HNC and Percus-Yevick (PY) DFT is
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employed.  In the appendix we show that the delta-function version of PY-DFT

developed in this study is a special case of a more general DFT that results from a well-

defined and physically motivated free energy functional. These various versions of DFT

theory are contained in the “DFT theory” box in Fig. 1.

Tethered pearl-necklace chains in an implicit-solvent have been thoroughly

studied with Molecular Dynamics computer simulations19-25.  In the first part of the

current paper, we use the results of these simulations as the basis for determining the

degree of PY character needed by the DFT theory.  The DFT theory uses the properties of

the bulk system as “input”, and, conveniently, the equation of state (EOS) for the bulk

system has recently been accurately represented in analytic form26.  This is EOS “C” in

Fig. 1.  Of course, if the results of simulations of explicit-solvent brushes were available,

and if the EOS of the polymer / explicit-solvent mixture existed in analytic form (EOS

“B” in Fig. 1), then a similar study of the explicit-solvent brush could be undertaken.

The explicit-solvent, wet-brush can be approximated in a second manner.  This is

mapping 2 in Fig. 1.  Both the polymer and solvent interaction sites are reduced to point

particles and the number of solvent molecules is increased so that the total density is

constant through out the system.  The resulting solvent is referred to as a “continuum”

and the chains, as “thread”-like.

The continuum-solvent brushes can also be modeled by DFT theory.  The HNC

form of DFT theory for the mixture is used along with the (incompressible) Flory-

Huggins description of the mixture (EOS “A” in Fig. 1).  This results in a version of Self-

Consistent Field (SCF) theory3-8 (although, as discussed in Paper I, with finite

“extensibility”).  Neither attractive strength nor temperature enter SCF theory
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independently: the only measure of attractive strength and temperature is the c-

parameter.

In the second part of the current paper we demonstrate that the implicit-solvent

version of HNC/PY-DFT theory can be written in the form of the continuum-solvent

version of HNC-DFT theory (i.e., SCF theory).  Consequently, the c-parameter that is

central to SCF theory can be related to the bulk equation of state for the implicit-solvent

case.  The behavior we find for c as a function of temperature is closer to the A+B/T

form typical of explicit solvent systems.  We suggest that this is a better way of relating

the implicit-solvent to the explicit-solvent brushes than the previous c=Tq/(2T) mapping.

It is useful to consider the information needed to uniquely determine the state of

the three systems in Fig. 1.  Tethered chains with explicit-solvent require a knowledge of

the chain length, N; the solvent density, rsol; the surface coverage, rA; the temperature, T;

the potential site-site energy function for polymer-polymer, uPP(r); for solvent-polymer,

uSP(r); and for solvent-solvent, uSS(r). Tethered chains with implicit-solvent have the same

N, rA, and uPP(r) as the explicit-solvent case, but with a different T and no solvent.

Tethered chains with continuum-solvent have the same N and rA as the explicit-solvent

case, but with a different rsol; and the effect of temperature and potential energy functions

are incorporated into a single c-parameter.

In the remainder of the paper, we develop and expand upon the two issues

mentioned above.  First, we demonstrate that a highly simplified DFT theory can predict

the structure of tethered chains in an implicit-solvent. Density profiles were calculated

and compared to those found through Molecular Dynamics simulations19-25. Second, we
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show that the implicit-solvent DFT theory can be mapped onto the continuum-solvent

SCF theory3-8 of tethered-chains.

2.   Molecular Model and General Background

The model employed here has been well studied19-26.  Neighboring sites are

connected by a FENE bonding potential, and non-bonded sites interact through a

Lennard-Jones 6-12 potential.  For “thermal” chains the latter is

u r( ) = 4e
s

r
Ê 
Ë 

ˆ 
¯ 

12
-

s

r
Ê 
Ë 

ˆ 
¯ 

6È 

Î Í 
˘ 

˚ ˙ (2.1)

and for “athermal” chains, is

u r( ) = 4e
s

r
Ê 
Ë 

ˆ 
¯ 

12
-

s

r
Ê 
Ë 

ˆ 
¯ 

6
+

1
4

È 

Î Í 
˘ 

˚ ˙ r £ 21/ 6s

= 0 otherwise
. (2.2)

where e(athermal)=1kBT and kB is the Boltzmann constant.  Unless specifically indicated,

all length are in units of s, and all temperatures, in units of e/kB.  Within the DFT theory,

the bond lengths and site diameters were 1 s.  It should be noticed that although

“athermal” is often taken to mean “the high temperature limit”, the high temperature limit

of u(r)/kBT from Eq. (2.1) is zero and not the non-zero result of Eq. (2.2) with e/kBT =1.

Consequently, one should not expect the DFT results of Eq. (2.1) to approach the

athermal results in this limit.

Other miscellaneous “input” for DFT theory is also needed.  The zero wavevector

component of the direct correlation function, ˆ c 0( ) , for the single component system is

found from the equation of state and the thermodynamic relationship
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r ˆ c 0( ) =
1
N

-
1

r kBTkT
(2.3)

where kT is the isothermal compressibility of the corresponding bulk polymer (same

chain length and density).  The number of sites in a chain is N, and <r> is the mass-

averaged polymer density given by

r =

r2 z( )dz
0

H
Ú

r z( )dz
0

H
Ú

(2.4)

with H being the distance between the walls and r(z), the inhomogeneous site density of

the tethered chains.  The equation of state for athermal, hard-site chains is taken from a

Carnahan-Starling-like curve fit27 of simulation results, and, for thermal tangent site

chains, from the more complex, 33-parameter curve fit by MacDowell et al.26.

Although the DFT theory is applicable to tethered chains in the dilute, mushroom

regime, we have applied the theory only to more concentrated systems where there is

some degree of chain overlap and a one-dimensional density profile can be assumed.

That is, we restrict our attention to surface coverages, rA , greater than

                                          rA
* =

1
pRg

2 =
6

ps2 N-2n                                 (2.5)

where Rg is the radius of gyration, Rg ª sNn / 6 , and n is the Flory exponent.  Once the

chains begin to overlap, the local density experienced by a site is given by the bulk

solution average at the dilute to semi-dilute crossover:

r* ~ 3N
4pRg3 ~ 3.5

s3N3n-1 (2.6)
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As long as 

† 

rA > rA
* , we expect our assumption of a one-dimensional field and profile to

be valid. However, as discussed in Paper I, it is possible that the average density

calculated from Eqn. (2.4) is less than r* while 

† 

rA > rA
* .  When this occurs, we take our

average density, <r >, to be r *. In this lower cut-off, we take

r*=[r*(n=1/2)+ r*(n=3/5)]/2.  Consequently, r*s3 is 0.32 for N=50; 0.22 for N=100;

and 0.15 for N=200.  Of course, as the chains become longer, r* decreases in both

magnitude and computational importance.

The HNC form of the effective external fields Up
0 z( )  and Us

0 z( )  from Paper I are

Up
0 z( ) = Up z( ) - ˆ c pp 0( )rp z( ) - ˆ c ps 0( )rs z( ) + l z( )

Us
0 z( ) = Us z( ) - ˆ c sp 0( )rp z( ) - ˆ c ss 0( )rs z( ) + l z( )

(2.7)

where constant terms have been dropped.  The bare external fields are Up(z) and Us(z).

The polymer is denoted by the subscript “p” and the solvent, by “s”.  For the implicit-

solvent case, subscripts are dropped since only “p”-terms are present.  The undetermined

multiplier, l(z), is used to enforce incompressibility and is set to zero for compressible

systems.

3. Density Functional Theory for Implicit-Solvents

Density Functional Theory can be viewed as the solution of two coupled,

functional equations

r(z) = F[U0(z)]

U0(z) = G[r(z)]

(3.1)
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where F[…] is a functional which transforms an arbitrary external field, U0(z), into the

density profile of a melt of ideal chains in the presence of that field.  In the simplest case

of single, un-tethered sites, the F-functional is simply the Boltzmann function:

r z( ) = r0 exp -U0 z( )( )  where r0 is a normalization constant.  For tethered chains, F[…]

is more complex, but the density, r(z), can be computed numerically using Fourier

Transforms: details were reported in Paper I.

The G-functional is less mathematically complex; however, much of its simplicity

is the result of its approximate nature.  The HNC form of the effective external field for

an implicit-solvent is

U0 z( ) = U z( ) - ˆ c 0( )r z( ) (3.2)

which is a special case of Eqn. (2.7).  In the spirit of SCF theory, the direct correlation

function was approximated as having only a delta-function range.  For cases where there

is an attractive component to the site-site interactions, this delta-function approximation

causes the polymers to “wet” the wall in cases where it should de-wet.  To correct this,

we split the direct correlation function into a repulsive and an attractive contribution.

The repulsive contribution to the direct correlation function, ˆ c R 0( ) , comes from the hard

site equation of state as in Paper I, and the attractive, ˆ c A 0( ) , from ˆ c A 0( ) = ˆ c 0( ) - ˆ c R 0( ) .

The HNC form of the external field becomes

U0 z( ) = U z( ) - ˆ c R 0( )r z( ) - ˆ c A 0( )˜ r z( ) (HNC) (3.3)

where ˜ r (z)  is the density averaged over the range of the interaction potential and has the

effect of reintroducing non-locality into field. This introduces a length scale into the

direct correlation function.  Previous work28 has demonstrated that the detailed form of
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the direct correlation function is not crucial so long as its range and integrated area are

fixed.  If we assume that cA(|r|) is constant over the range 0≤|r|≤a, then ˜ r (z)  has the

simple form

˜ r z( ) = 3
4a3 r z + r( ) a2 - r2( )dr

-a

a
Ú (3.4)

where, unless otherwise noted, the range of the attractions, “a”, is taken to be 1s.  Similar

approaches to the averaging of the density for the attractions have been used in the DFT

context for polymer melts18.

The HNC form of the field is less accurate28,29 for high density, repulsive

interactions than that of the Percus-Yevick (PY) form:

U0 z( ) = U z( ) - ln 1 + ˆ c R 0( )Dr z( )[ ]- ˆ c A 0( )˜ r z( ) (PY) (3.5)

where Dr(z)=r(z)-<r>.  In this, the delta-function limit, the PY-field results from a well-

defined and physically motivated free energy expansion; however, in the case of more

realistic c(r)’s, the PY-form does not result in a natural manner from a free energy

functional.  Instead, as shown in the appendix, such a generalization to non-local c(r)’s,

suggests a modified PY-form.

Since when ˆ c R 0( )Dr z( )~0, the PY form is identical to that of the HNC, the two

forms are most distinct when ˆ c R 0( ) is large in magnitude.  A mixture of 60% of the HNC

form with 40% of the PY form was empirically found to result in the best overall

accuracy.  Unless otherwise indicated, this mixing was used in the calculations reported

here.

It is useful to think in terms of the effective external “force”: f(z)=-dU0(z)/dr(z)

where a positive force would tend to increase the density at a given z, and a negative
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force, to decrease it.  For the HNC field, the total force, ˆ c R 0( ) + ˆ c A 0( ) , is independent of

the local density, and, since for strong attractions, ˆ c A 0( )~- ˆ c R 0( ) , the total effective

force of the HNC field is nearly zero for all r(z).  On the other hand, the force for the PY

form of the field is ˆ c R 0( ) / 1+ ˆ c R 0( )Dr z( )[ ] + ˆ c A 0( ) .  Now, as seen in Fig. 2, even for

strong attractions, the force displays positive regions where the density is enhanced, and

negative regions where the density is strongly depressed.  In particular, at the high

-100

-50

0

50

0 0.2 0.4 0.6 0.8 1
r/rTOT

fs
3

Figure 2: The force on the site density, f=-dU0/dr, for (N=50, rAs2=0.1, kBT/e=2)

chains vs. site density for the HNC (dashed) and PY (solid) fields.  The

parameters for the 60% HNC/40%PY solution were used: <rs3>=0.511,

rtots
3=0.624, ˆ c R 0( ) = -8.85s3 and ˆ c A 0( )=8.30s3.
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density of r z( ) = ˆ c R 0( ) r -1( ) / ˆ c R 0( ) , the force becomes negative infinity and,

consequently, r(z) must be less than rtot = ˆ c R 0( ) r -1( ) / ˆ c R 0( )  at all z.

In Fig. 3a, the HNC; the 60%HNC/40% PY; and PY cases are shown for 50 site

chains at a temperature of 2 and a surface coverage of 0.1.  Here the attractive
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Figure 3: Density profiles of (N=50, rAs2=0.1, kBT/e=2) chains.  The dots are the

simulation results of Grest et al.21.  The solid lines, from least to most

extended, are the results of DFT theory for pure PY; for 60% HNC/40%PY;

and for pure HNC.  In (A), the range of the density average in ˜ r z( )  is zero

(a=0), and, in (B), the range is one (a=1).  In (B), the “mixture” parameters

for the 60/40 case are rtots
3=0.624, c∞

A=2.59, c∞
R=-0.946, and c∞=1.64.
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contribution has a cutoff a=0 in the average of Eqn. (3.4).  Both the PY and

60%HNC/40% PY fields have strong step function characters; however, all three fields

yield density profiles that are too strongly weighted towards the wall.  By setting the

range of the average to a=1 (that is, introducing a non-local character to the field), the

density profile is pulled away from the wall as seen in Fig. 3b.

The mechanics of the iterative solution are, roughly, as follows.  The density

profile is guessed to be a constant between the walls and zero otherwise.  The field is

calculated from this density profile, and a new density profile is calculated from the field.

The initial density profile is mixed with the new profile to yield an input density, and the

loop begun again.  The process is repeated until no point in the “new” density profile

differs from the “input” profile by more than a maximum “test” value (usually set at

~1%).  The mixing of the density profiles has 1 to 5% of the “new” density.  The distance

between the walls is divided into bins of width 0.25s.  The evaluation of the “F”-

functional requires between 300 and 600 Fourier components, and between 100 and 400

Picard iterations are needed for convergence.

4. Results for Implicit-Solvents

We have compared the density profile results of DFT theory to a wide range of

simulation results.  The only large “adjustment” of the theory was in the choice of the

ratio of HNC to PY character (60%HNC) in the field.  Other “smaller” adjustments –

such as the range and shape of the direct correlation function – were selected to be as

simple as was reasonable.  Again, the primary feature that is captured by the new version

of DFT theory is the step-like nature of the density profile at large surface coverages,

large chain lengths, and low temperatures.
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In the next few figures, the ability of the 60/40 DFT theory to reproduce

simulation results is demonstrated.  Density profiles for N=50, athermal chains are shown

in Fig. 4a and the DFT theory is seen to be of a quality similar to the HNC-DFT theory of

Paper I.  In Fig. 4b, the effect of temperature on N=50 chains is explored, and the DFT

theory captures the chain collapse to a high degree of accuracy.  In Fig. 5, the densities of

N=100 chains are displayed for a variety of surface coverages and temperatures, and the

agreement between DFT theory and simulation is excellent for all cases.  In Fig. 6a, the

densities for N=200, rAs2=0.03 are compared: the theory predicts a slightly stronger

condensation on the wall than seen in the simulation, but, over all, DFT theory works

well.  Finally, in Fig. 6b, the densities for N=200, rAs2=0.1 are shown – for both

simulation and DFT theory - and are seen to develop a very pronounced step behavior at

low temperature.
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Figure 4: Density profiles for N =50 chains.  In (A), the chains are athermal and rAs2

is, from low to high peak values, 0.01,0.03,0.1,0.2.  In (B), from lowest to

highest peak value the results are for (r As2=0.03,athermal),

(rAs2=0.03,T=3), (rAs2=0.1,athermal), (rAs2=0.1,T=2).  The symbols are

the results of the simulations of Murat et al.20; the lines, of

60%HNC/40%PY DFT theory.
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Figure 5: Density profiles for N=100 chains, from lowest to highest peak values:

(rAs2=0.027,T=4), (rAs2=0.036,T=5), (rAs2=0.03,T=3), (rAs2=0.05,T=3),

(rAs2=0.1,T=2). The symbols are the results of the simulations of Grest et

al.21,24, the rAs2=0.027 and 0.036 cases have small but non-zero wall

attractions; the lines are the results of 60%HNC/40%PY DFT theory.
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Figure 6: Density profiles for N=200 chains.  In (A), rAs2=0.03, and in (B), rAs2=0.1.

In both cases, the temperatures from lowest to highest peak values are: 4, 3,

2. The symbols are the results of the simulations of Grest et al.21; the lines,

of 60%HNC/40%PY DFT theory.
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5. Mapping of the Implicit onto the Continuum-Solvent

In section 3 we considered the implicit-solvent which permitted us to make

detailed comparisons with the results of Molecular Dynamics simulations. Now, we turn

our attention to the continuum-solvent, which will permit us to make contact with SCF

theory.  It will then be seen that the two different solvent-types can be mapped one onto

the other.

The development of the implicit-solvent DFT theory begins with the general

HNC-DFT equation for a mixture and with the direct correlation functions evaluated

from the Flory-Huggins theory30 of mixtures:

AMix = V rP
N

ln fP( ) +rS ln fS( ) + rSfPc AÈ 
Î 

˘ 
˚ 

(5.1)

where AMix is the Helmholtz Free Energy of mixing on a constant volume, V, lattice.  The

volume fraction of the polymer, fP, is rP/(rP+rS) and the solvent volume fraction is

defined in an analogous manner where “S” denotes “solvent” and “P”, “polymer”.  In the

zero wavevector limit, the inverse structure factors, ˆ S a,g
-1 0( ) , are related to

thermodynamic derivatives of Eqn. (5.1):

ˆ S a,g
-1 0( ) =

1
kBTV

∂2AMix
∂ra∂rg

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

T,V
(5.2)

which are in turn related31 to the direct correlation functions:

ˆ C PP 0( ) - ˆ C PS 0( ) =
1

NrP
- ˆ S PP

-1 0( ) + ˆ S PS
-1 0( )

ˆ C PS 0( ) - ˆ C SS 0( ) = -
1

NrP
- ˆ S PS

-1 0( ) + ˆ S SS
-1 0( )

. (5.3)

This results in
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ˆ C PP 0( ) - ˆ C PS 0( ) = - 1
rP+rS

1 - 1
N - 2cAfS[ ]

ˆ C PS 0( ) - ˆ C SS 0( ) = - 1
rP +rS

1- 1
N + 2cAfP[ ]

. (5.4)

As a result, the HNC field for the incompressible mixture of Eqn. (2.7) becomes

UP
0 z( ) = UP z( ) + 1 - 1

N - 2cA 1 - fP( )[ ] fP z( ) - fP( ) + l z( )

US
0 z( ) = US z( ) + 1- 1

N + 2cA fP[ ] fP z( ) - fP( ) + l z( )
(5.5)

where fP  is the average polymer density divided by the total density, rtot.  The

undetermined multiplier, l(z), enforces rtot=rP(z)+rS(z).  Since l(z) is a function which is

only defined so that this constraint is true, it can be replaced with ¢ l z( ) = l z( ) + f(z)

where f(z) is any function of z.  As a result of this manipulation, the fields can be written

as

UP
0 z( ) = UP z( ) - cAfP z( ) + ¢ l z( )

US
0 z( ) = US z( ) + cAfP z( ) + ¢ l z( )

(5.6)

which is the form most often employed in SCF theory3-8.  This permits us to connect the

SCF and DFT theories.

 Moreover, if the undetermined multiplier in Eqn. (5.6) is eliminated, then a

mapping is seen between the continuum and implicit-solvent systems.  In particular, since

the F functional can be written analytically for the solvent

species:rS z( ) = rtot exp -US
0 z( )( ) , the second equation in Eqn. (5.6) can be used to

eliminate ¢ l z( ) .  The resulting polymer field is

UP
0 z( ) = UP z( ) - US z( ) - 2cAfP z( ) - ln 1 - fP z( )( ) . (5.7)

(Incidentally, this is a reformulation of SCF theory without the use of undetermined

multipliers.)
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Now let us compare the continuum-solvent field (Eqn. (5.7)) with the one for

implicit-solvents (Eqn. (3.5)).  It can be seen that the SCF field becomes the “implicit-

solvent” PY field if the following substitutions are made

rtot ´
ˆ C R 0( ) r -1

ˆ C R 0( )

2cA

rtot
´ ˆ C A 0( )

, (5.8)

and if a constant, which does not influence the density profile, is dropped.  Of course,

since both r  and the ˆ C 0( )' s  are self-consistently linked to the density profile, “rtot” and

“cA” will depend on surface coverage, chain length and temperature in a complex

manner.

The 60%HNC/40%PY form of DFT theory used here can be written as

UP
0 z( ) = UP z( ) - US z( ) - 2 cA + cR( )fP z( ) - ln 1- fP z( )( ) (5.9)

where the entropic cR is a function of volume fraction

2cR ´ a rtot
ˆ C R 0( ) -

ln 1- fP z( )( )
fP z( )

È 

Î Í 
˘ 

˚ ˙ (5.10)

where a=0 for pure PY; a=1 for pure HNC; and, in our work, a=0.6.  In order to explore

the temperature dependence of c=cA+cR, the large z limit of c, c∞, is taken to give

c = c• +
a

2
1+

ln 1 - fP z( )( )
fP z( )

È 

Î Í 
˘ 

˚ ˙ . (5.11)

For the 60%HNC/40%PY case in Fig. 3b, this yields rtots
3=0.624, c∞

A=2.59, c∞
R=-0.946,

and c∞=1.64 for these quantities.
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6. Results for the Continuum-Solvent

As discussed above, a “melt” of tethered chains (defined by N, rA, and T) can be

viewed as a polymer solution (defined by N, rA, rtot, and c).  Consequently, every density

profile generated by DFT can also be predicted by SCF theory with the correct choice of

parameters.  Clearly, the relationships between the SCF parameters (N, rA, r tot, c) and

the DFT parameters (N, rA, and T) are non-trivial.  Indeed, an arbitrary selection of SCF

parameters may be inconsistent with the behavior of the system at any N, rA, and T.

From the calculations for the implicit-solvent that resulted in Figs. 3b – 6, the

value of c∞ that would apply to the continuum-solvent can be extracted.  This quantity is

plotted as a function of 1/T in Fig. 7.  The functional form of c∞ is seen to be roughly as

expected from Flory-Huggins theory. Specifically, c∞ varies inversely with temperature,

but with a non-zero intercept due to the repulsive (or entropic) contribution of cR.  The q-

temperature for isolated chains of this system is roughly 3 as found in a number of

studies: Grest and Murat21 reported 3.0±0.1; Weinhold and Kumar25, 3.0; Harismiadis and

Szleifer32, 3.9; and Kumar33, 2.75.  Consequently, the c in the continuum-solvent

interpretation of the DFT treatment of the tethered chains should be roughly 0.5 at a

temperature of approximately 3 – as it is.

Tracking the average extension of the chain, or layer thickness, as defined by

Zavg = zr z( )dz
0

H /2
Ú r z( )dz

0

H / 2
Ú  can be used to monitor the formation of the dense layer of

polymer on the surface.  As seen in Fig. 8, Zavg decreases slowly with temperature at high

temperature; rapidly at intermediate temperature; and is a constant at low temperature.

The temperature where the chain extension starts to drop rapidly can be quantified by
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drawing straight lines for the high temperature and intermediate temperature results.  The

location of this “knee” in the behavior is plotted as a function of chain length in Fig. 9.

In the insert to Fig. 9, it is seen that the “transition” temperature varies roughly as the

chain length to the 0.28 power.  Also plotted are the liquid-gas critical points for chains

of varying lengths.

Figure 7: The c∞ parameter in the polymer solution interpretation of the DFT theory.

The filled circles denote (r As2=0.1,N=50); the filled squares,

(rAs2=0.03,N=50); the open circles, (rAs2=0.1,N=100); the open squares,

(rAs2=0.03,N=100); the solid crosses, (rAs2=0.03,N=200). The Maltese

cross denotes the q-point predict from the bulk simulations of Grest et al.21.

The line which roughly fits the data is 2.4e/kBT – 0.23.
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Figure 8: The average extension of the chains relative to the extension of athermal

chains. Results are presented for chain lengths N=20, 30, 40, 50, 60, 70, 80,

90, and 100 with larger chain lengths corresponding to smaller relative

extensions.  In all cases, rAs2 = 0.03.
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7.          Conclusions

In the current paper, the connection between the DFT and SCF theories was

further elucidated.  In order to do so, DFT theory was expressed in its simplest form that

was consistent with computer simulations of tethered chains.  In the first phase of this

effort (Paper I), it was found that an HNC form of the DFT equations with all coefficients

taken to be “local” in nature worked very well for athermal chains.  On the other hand,

Figure 9: The “transition” between extended and collapsed.  The circles denote the

temperature at the “knee” of the curves in Fig. 8.  The triangles are critical

temperatures for polymer melts26, and the square is the “q-temperature” for

chains of infinite length21.
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chains with attractions demand a modification of the form of the equations with the

repulsive contribution to the DFT equations having a degree of PY character.

When this was done, the coarse features of simulations of tethered chain profiles

were reproduced.  At high temperature the chains extended from the surface while at low

temperature, the chains formed an (essentially) constant density layer.  In order to capture

the detailed nature of the low temperature profiles, a non-local nature was added to the

attractive contribution to the density.  This was done by averaging the density used in the

attractive field term over a radius of s - an approach similar to that used for

inhomogeneous melts18. As a result and in keeping with simulation, the polymer sites

tended to “de-wet” from the wall in order to maximize their number of neighbors.

Considering the simplicity of the theory, the simulation results were predicted extremely

well.

While the ability to model tethered chains with DFT theory was a satisfying

outcome, the most interesting aspect of our work was the furthering of our understanding

of the relationship between the (continuum-solvent) SCF and (implicit-solvent) DFT

theories.  By writing (single-component) DFT theory in the same form as (binary-

mixture) SCF theory, it was shown that the pure PY form of the DFT theory is identical

to SCF theory except that rtot and c of the mixture are dictated by the single-component

polymer equation-of-state rather than being free parameters.  In the form of the DFT

theory that best describes the tethered chain behavior (60%HNC/40%PY), the c

parameter turned out to have a volume-fraction dependence.  The c far from the wall, c∞,

was found to be roughly linear with inverse temperature in keeping with Flory-Huggins
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theory but with a non-zero intercept.  Moreover, c∞ was found to be insensitive to surface

coverage and to converge quickly with chain length.

Finally, we demonstrated that as the temperature is decreased, the chains go

through a region of rapid collapse analogous to the liquid-gas transition in a bulk

polymer.  Through the mapping of the “implicit” polymer brush onto the mixture of

polymer / continuum-solvent, we predict a similar transition in the wet polymer brush.

Appendix: Incompressible Density Functional Theory

An important aspect of the inter-relationship between the implicit and the

continuum solvent treatment of tethered chains is the route that it suggests for the

development of a new density functional – a functional we refer to as Ye-McCoy-Curro

Density Functional Theory (YMC-DFT).  The field resulting from the minimization of

the YMC-DFT has a strong Percus-Yevick flavor, however, there has been no previous

treatment at the free energy functional level.

For the purposes of this development, we drop the implicit solvent notation and

treat an inhomogeneous polymer with only a single site type, although the generalization

to different site types and to mixtures is straightforward.  The Hypernetted Chain (HNC)

approximation to the Grand Potential free energy34 is

DW = DWp
0 + Dyp

0 r( )Ú rp r( )dr - Dyp r( )Ú rp r( )dr

-
kBT

2
cpp r - r'( )Drp r( )Drp r'( )drdr'ÚÚ

(A.1)

where W=-PV = -(pressure)(volume).  The superscript “0” denotes the ideal system; and

the difference “D”, the inhomogeneous minus the homogeneous state (for instance,
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Dyp r( ) = yp r( ) - Dy p,h  where “h” denotes the homogeneous state).  The subscript “p”

denotes “polymer” and cpp(r) is the direct correlation function.  The generalized field is

y(r)=m-U(r) where m is the chemical potential and U(r) is the external field.  The ideal

Grand Potential functional is

  
Wp

0 = -kBT L exp b yp
0 ri( )

i=1

N
Â

È 

Î Í 
˘ 

˚ ˙ S r1,L,rN( )dr1,L,drNÚÚ (A.2)

where the summation is over the sites on the polymer and the function S contains the

bonding constraints (a product of displaced delta functions for the freely jointed chain).

This functional is then minimized with respect to the density under the constraint

  

rp r( ) = L
1
N

d rj - r( )
j=1

N
Â

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

exp b y p
0 ri( )

i=1

N
Â

È 

Î Í 
˘ 

˚ ˙ S r1,L,rN( )dr1,L,drNÚÚ . (A.3)

Minimizing the free energy with respect to both the density and the ideal field enforces

this constraint.  As long as the free energy is in the form given in Eq. (A.1), the

undetermined multiplier is zero – resulting in a notational simplification.  The condition

dDW
dyp

0 r( )
= 0  results in Eqn. (A.3) while dDW

drp r( )
= 0  results in the HNC-field

Dyp
0 r( ) = Dy p r( ) + kBT cpp r - r'( )Ú Drp r'( )dr' (A.4)

which, to within a constant becomes Eqn. (3.2) when the direct correlation function is

approximated as a delta function.

Undetermined multipliers are useful for enforcing an equality such as in Eqn.

(A.3); however, enforcing an inequality such as r(r)≤rtot requires other methods.  One

such method relies upon the introduction of a second species whose only role is to

enforce this inequality.  In particular, let us imagine that there is a background,
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incompressible “solvent” in the problem in the spirit of the continuum-solvent discussed

above where

rtot = rp r( ) + rs r( ) (A.5)

at all r in both inhomogeneous and homogeneous cases where rtot is the “total density”

and “s” denotes “solvent”.  The mixture generalization of Eqn. (A.1) is

DW = DWp
0 + Dyp

0 r( )Ú rp r( )dr - Dyp r( )Ú rp r( )dr

+DWs
0 + Dys

0 r( )Ú rs r( )dr - Dys r( )Ú rs r( )dr

-
kBT

2
ci,j r - r'( )Dri r( )Dr j r'( )drdr'ÚÚ

i, j=p,s
Â

. (A.6)

Before minimizing this functional, notice that for an atomic solvent, the constraint (A.3)

can be inverted to give

ys
0 r( ) = kBT ln rs r( )( ) (A.7)

Substituting Eqn. (A.5) and (A.7) into the free energy (A.6) yields

DW = DWp
0 + Dyp

0 r( )Ú rp r( )dr - Dyp r( )rp r( )drÚ

+kBT Drp r( )drÚ + kBT rs,h - Drp r( )( )ln
rs,h - Drp r( )

rs,h

È 

Î Í 
˘ 

˚ ˙ Ú dr

-
kBT

2
cpp r - r'( ) - 2csp r - r'( ) + css r - r'( )[ ]Drp r( )Drp r'( )drdr'ÚÚ

. (A.8)

The minimization of (A.8) with respect to y p
0 r( )  still results in Eqn. (A.3) while the

minimization with respect to rp(r) yields

Dyp
0 r( ) = Dy p r( ) + kBT ln 1-

Drp r( )
rs,h

È 

Î Í 
˘ 

˚ ˙ 

+kBT cpp r - r'( ) - 2csp r - r'( ) + css r - r'( )[ ]Drp r'( )dr'Ú

. (A.9)
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To this point, we have not specified the properties of the “solvent” other than that

it “fills-up” the density to rtot at all r.  This fictitious “solvent” can be expected to limit

the range of rp(r) to be less than rtot; however, in order to be consistent, the YMC-field

(A.9) should agree with the HNC-field (A.4) for small Drp(r).  Consequently,

2csp r( ) - css r( ) = -
d r( )
rs,h

(A.10)

and the density of the solvent in the homogeneous system, rs,h, can then be used to “tune”

the potential.  A reasonable choice is to split the contributions to the field between

attractive and repulsive contributions.  This can be done by choosing rs,h = -1/ ˆ c pp
R 0( )

where ˆ c pp
R 0( )  is the integrated value of the direct correlation function of the polymer melt

with only repulsive interactions.  The YMC-field then becomes

Dyp
0 r( ) = Dy p r( ) + kBT ln 1 + ˆ c pp

R 0( )Drp r( )[ ]
+kBT cpp r - r'( ) - ˆ c pp

R 0( )d r - r'( )[ ]Drp r'( )dr'Ú
. (A.11)

More concisely, this can be written as

Dyp
0 r( ) = Dy p r( ) + kBT ln 1 + ˆ c pp

R 0( )Drp r( )[ ] + kBTˆ c pp
A 0( )D˜ r p r( ) (A.12)

where

ˆ c pp
A 0( ) = cpp r( )[ ]drÚ - ˆ c pp

R 0( ) (A.13)

and

˜ r p r( ) =
cpp r - r'( ) - ˆ c pp

R 0( )d r - r'( )[ ]rp r'( )dr'Ú
ˆ c pp

A 0( )
. (A.14)

To within an additive constant, Eqn. (A.12) is Eqn. (3.5).

Once minimized, the field can be substituted into Eqn. (A.8) to give



76

DW = kBT rp,h -
1

ˆ c pp
R 0( )

Ê 

Ë 
Á 

ˆ 

¯ 
˜ ln 1 + ˆ c pp

R 0( )Drp r( )[ ]Ú dr

+
kBT

2
cpp r - r'( ) - ˆ c pp

R 0( )d r - r'( )[ ]Drp r( ) rp r'( ) + rp,h[ ]drdr'ÚÚ

. (A.15)

In addition to tuning the field through the selection of rs,h, the average between the HNC

and YMC Functionals can be taken as

DW = aDWHNC + 1 - a( )DWYMC (A.16)

where DWYMC is the functional of Eqn. (A.8) and DWHNC, of Eqn. (A.1).  In the current

study, we found that a=0.60 worked well.

An interesting generalization is to use an averaged polymer density in the density

constraint: rtot = rp r( ) + rs r( )  where rp r( ) = k r - r'( )rp r'( )dr'Ú  and k(r) is a normalized

weighting function.  Following the minimization procedure outlined above, the full

YMC-DFT field becomes

Dyp
0 r( ) = Dy p r( ) + kBT k r - r'( )ln 1 + ˆ c pp

R 0( )Drp r'( )[ ]dr'Ú

+kBT cpp r - r'( ) - cpp
R r - r'( )[ ]Drp r'( )dr'Ú

(A.17)

where, in Fourier space, the weighting function is

ˆ k k( )[ ]2 =
ˆ c pp k( )
ˆ c pp 0( )

. (A.18)

In the delta-function limit, the YMC-field becomes identical to the PY-field;

however, for other cases, the YMC-field has different physics.  The degree to which the

YMC-theory differs from PY will depend upon the application.  On the other hand, the

YMC approach results from the minimization of a free energy while the PY has a

corresponding free energy only in the case of direct correlation functions that are delta

functions.
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