Process Equipment Cost Estimation

Final Report

Prepared for:

National Energy Technology Center
P.O. Box 10940, 626 Cochrans Mill Road

Pittsburgh, PA 15236-0940
and
P.O. Box 880, 3610 Collins Ferry Road

Morgantown, WV 26507-0880

Prepared by:
H. P. Loh
National Energy Technology Center
P.O. Box 10940, 626 Cochrans Mill Road
Pittsburgh, PA 15236-0940
Jennifer Lyons
Charles W. White, III
EG\&G Technical Services, Inc.
3604 Collins Ferry Road Suite 200
Morgantown, West Virginia 26505

January, 2002

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Table of Contents

Abstract. 1
Background 1
Results and Usage 2
Assessment 3
Conclusions/Recommendations 4
Cost Curves. 6-40
Vertical Vessel. 6
Horizontal Vessel 7
Storage Tanks. 8
Valve Tray Column - 15 psig 9
Valve Tray Column - 150 psig 10
Sieve Tray Column - 15 psig 11
Sieve Tray Column - 150 psig 12
Packed Column - 15 psig. 13
Packed Column - 150 psig. 14
Shell and Tube Heat Exchanger 16
Air Cooler 17
Spiral Plate Heat Exchanger 18
Furnace 19
Cooling Tower. 20
Package Steam Boiler 21
Evaporators 22
Crushers 23
Mills 24
Dryers 25
Centrifuges. 26
Filters 27
Agitator 28
Rotary Pump 29
Inline Pump 30
Centrifugal Pump 31
Reciprocating Pump 32
Vacuum Pump 33
Reciprocating Compressor 34
Centrifugal Compressor. 35
Centrifugal Fan 36
Rotary Blower 37
Gas Turbine 38
Steam Turbine - under 1000 Horsepower 39
Steam Turbine - over 1000 Horsepower 40
Cost Indexes 47
Appendix A 52
Appendix B 53

List of Tables

Table 1 Packing Costs 15
Table 2 Distributive Factors for Bulk Materials - Solids Handling Processes 41
Table 3 Distributive Factors for Bulk Materials - Solids - Gas Processes 42
Table 4 Distributive Factors for Bulk Materials - Liquid and Slurry Systems 43
Table 5 Distributive Factors for Bulk Materials - Gas Processes 44
Table 6 Distributive Labor Factors for Setting Equipment 45
Table 7 Factors for Converting Carbon Steel to Equivalent Alloy Costs 46
Table 8 Engineering News Record Construction Cost Index 48
Table 9 Marshall and Swift Installed-Equipment Index 49
Table 10 Nelson-Farrar Refinery Construction Index 50
Table 11 Chemical Engineering Plant Cost Index 51

Abstract

This report presents generic cost curves for several equipment types generated using ICARUS Process Evaluator. The curves give Purchased Equipment Cost as a function of a capacity variable. This work was performed to assist NETL engineers and scientists in performing rapid, order of magnitude level cost estimates or as an aid in evaluating the reasonableness of cost estimates submitted with proposed systems studies or proposals for new processes. The specific equipment types contained in this report were selected to represent a relatively comprehensive set of conventional chemical process equipment types.

Background

As part of its mission to identify and develop practical and viable processes for power production, chemicals processing, fuel processing, CO_{2} capture and sequestration, and other environmental management applications, NETL engineers and scientists need to both perform order of magnitude cost estimates and evaluate and assess cost estimates contained in proposals for novel processes. In these applications where process and technological specifics are lacking, detailed cost estimates are not justified. Rather, rough estimates that can be obtained relatively quickly are more suitable. There are a number of tools available to NETL engineers to assist in the performance and evaluation of chemical process equipment cost estimates.

One such tool is ICARUS Process Evaluator (IPE). IPE is a sophisticated and industryaccepted software tool for generating cost estimates, process facility designs, and engineering and construction schedules. The IPE equipment library contains over 320 process equipment types. Sizing is performed using common engineering methodologies from intrinsic sizing algorithms. IPE utilizes self-contained equipment, piping, instrumentation, electrical, civil, steel, insulation, and paint sizing and design algorithms for a preliminary equipment model that is properly integrated and evaluated for many safety and operability issues.

When used with appropriate values for the adjustable design and construction parameters, IPE provides a highly detailed and accurate cost estimate. However, the program is very complex and both expensive and time consuming to learn and use. Furthermore, IPE requires well-defined process configuration and process parameters that typical proposals do not provide. In general, it is not practical or cost-effective to use IPE for the assessment of cost estimates contained in proposals for novel processes or in generating rough cost estimates from laboratory scale data. Instead, the factored estimation methodology, a cost-effective methodology widely used in industry, is more suitable for that application. To leverage the cost information contained within IPE, a series of cost curves for different equipment types were generated. The cost curves and other
information contained in this report can then be used to develop the overall process plant capital cost using the factored estimation methodology.

Results and Usage

For this activity, a general file was created in ICARUS Process Evaluator version 5.0 that contained several pieces of stand-alone equipment. The specific equipment types were selected by NETL and intended to represent a relatively comprehensive set of conventional chemical process equipment types that might be encountered in processes relevant to CO_{2} capture and sequestration. Each piece of equipment was then varied in size to generate costs for a spectrum of sizes. The cost versus sizing capacity was plotted for each equipment type. The data was then regressed to provide smoothed cost curves.

The cost curves for the 31 different types of equipment examined in this report are shown on pages 6-40. In addition to the graphs, the applicable design specifications and equipment descriptions are provided as appropriate.

All graphs portray purchased equipment cost data. This total material cost includes:

- Internals, shells, nozzles, manholes, covers, etc as noted for each piece equipment.
- Vendor engineering, shop drawings shop testing, certification.
- Shop fabrication labor (and field labor if field-fabricated).
- Typical manuals, small tools, accessories.
- Packaging for shipment by land.
- FOB Vendor.

The total material cost does not include:

- Owner/contractor indirects (engineering, shop inspection, start-up/commissioning).
- Packaging for overseas/air shipment, modularization.
- Freight, insurance, taxes/duties
- Field setting costs (off-loading, storage, transportation, setting, testing)
- Installation bulks

The total capital cost of each piece of equipment includes material and labor charges. The material charges include the delivered equipment costs and installation bulk material costs. The labor charges include labor for handling and placing bare equipment and labor for installation of bulk materials.

Installation bulks consist of foundations, structural steel, buildings, insulation, instruments, electrical, piping, painting and miscellaneous. Tables 2-5 list distributive percentage factors that can be used to estimate installation bulk labor and materials for different plant types. ${ }^{1}$ The factors vary depending on the type of process and the

[^0]temperature and pressure of the system. The bare equipment cost is used as the base to apply the percentage factor for the installation material cost. This installation material cost is then used as the base to apply the percentage factor for determining the associated labor cost involved.

Handling and placing equipment involves unloading, uncrating, mechanical connection, alignment, storage, inspection, and other factors. The costs vary by type and size of equipment. The setting costs can be estimated by using historical work hours or by applying factors for labor cost as a percentage of delivered equipment cost. Table 6 shows approximate factors for setting various types of equipment. ${ }^{1}$

The total cost for installing a piece of equipment would be the bare equipment cost plus the setting labor cost plus the installation bulks material and labor costs as determined from the distributive labor percentages. See Appendix A for a detailed example.

Appendix B shows the ICARUS generated purchased/ installed costs of the equipment used in each chart. All costs in this document are reported in first quarter 1998 dollars.

Abstract

Assessment

The charts can be used for preliminary purchased equipment cost estimates (i.e. order of magnitude estimates with accuracy of $+50 \% /-30 \%$ and budget estimates with accuracy of $+30 \% /-15 \%)$. Clearly, the charts are most accurate when used for the operating conditions listed as defaults for each equipment type. Nevertheless, they should provide reasonable cost estimates for conditions that contain small or moderate deviations from the assumed design conditions. Correlations to correct for deviations in some design variables, particularly pressure, are available in the literature. Peters and Timmerhaus "Plant Design and Economics for Chemical Engineers" is one such source for correction factor data. Without appropriate correction, estimates generated for conditions that deviate markedly from those used in this study should be used with caution.

Another limitation is that most of the charts give estimates for equipment manufactured from carbon steel. Conversion factors for converting the carbon steel costs to equivalent alloy costs for a few items of equipment are shown in Table 7. ${ }^{2}$

As mentioned previously, setting costs can be estimated by using historical data or by applying factors. It should be noted that the factors do not work well for very large pieces of equipment. If available, historical work hours provide more accurate costs.

[^1]
Conclusions/Recommendations

This report contains cost curves for various equipment types at specific operating temperatures and pressures. These conditions and other design parameters are listed for each equipment type. When used within the expected design conditions, the cost estimates derived from the cost curves contained in this report will provide accurate estimates. The data can also be used to provide reasonableness estimates when the actual design conditions are outside the expected values but the level of accuracy cannot be quantified.

To help quantify the error induced by large deviations in the design conditions, it is recommended that a first-order sensitivity analysis of the cost curves be performed. Another activity that could improve the range of accuracy of the charts would be to run cases with various materials of construction to show how the price is affected. If requested, additional support can be provided to expand the set of equipment types beyond those examined in this report. For example, cost data for slurry pumps and solids conveying equipment would be useful for many of the technologies at NETL.

Cost Curves

Vertical Vessel

Description: The vertical process vessel is erected in the vertical position. They are cylindrical in shape with each end capped by a domed cover called a head. The length to diameter ratio of a vertical vessel is typically 3 to 1 . Vertical tanks include: process, storage applications liquid, gas, solid processing and storage; pressure/vacuum code design for process and certain storage vessel types; includes heads, single wall, saddles, lugs, nozzles, manholes, legs or skirt, base ring, davits where applicable.

Design Basis:

$1^{\text {st }}$ Quarter 1998 Dollars
Shell Material: A515
(Carbon Steel Plates for pressure vessels for intermediate and higher temperature service)
Design Temperature: $650{ }^{\circ} \mathrm{F}$
Design Pressure: 15 psig and 150 psig
Diameter: $\quad 2.5-8$ feet
Length: $\quad 2.7-13.3$ feet
Total Weight: $\quad 1,000-7,100$ pounds

Horizontal Vessel

Description: The horizontal vessel is a pressure vessel fabricated according to the rules of the specified code and erected in the horizontal position. Although the horizontal vessel may be supported by lugs in an open steel structure, the more usual arrangement is for the vessel to be erected at grade and supported by a pair of saddles. Cylindrical, pressure/vacuum, code design and construction, includes head, single wall (base material, clad/lined), saddles/lugs, nozzles and manholes.

Design Basis:

$1^{\text {st }}$ Quarter 1998 Dollars
Shell Material: A515
(Carbon Steel Plates for pressure vessels for intermediate and higher temperature service)
Design Temperature: $650^{\circ} \mathrm{F}$
Design Pressure: 15 psig
Diameter: $2-14$ feet
Length: $\quad 4.3-81$ feet
Total Weight: $\quad 1100-59,400$ pounds

Storage Tanks

Description:

Floating Roof: Typically constructed from polyurethane foam blocks or nylon cloth impregnated with rubber or plastic, floating roofs are designed to completely contact the surface of the storage products and thereby eliminate the vapor space between the product level and the fixed roof. Floating roof tanks are suitable for storage of products having vapor pressure from 2 to 15 psia.
Cone Roof: Typically field fabricated out of carbon steel. They are used for storage of low vapor pressure (less than 2 psia) products, typically ranging from 50,000 - 1,000,000 gallons.

Design Basis:

$1^{\text {st }}$ Quarter 1998 Dollars
Shell Material: A515
(Carbon Steel Plates for pressure vessels for intermediate and higher temperature service)
Design Temperature: $650^{\circ} \mathrm{F}$
Design Pressure: 15 psig
Diameter: $2-14$ feet
Length: $\quad 4.3-81$ feet
Total Weight: $\quad 1100-59,400$ pounds

Valve Tray Column - 15 psig

Description: Pressure/vacuum column includes vessel shell, heads, single base material (lined or clad, nozzles, manholes (one manhole below and above tray stack or packed section and one manhole every tenth tray or 25 feet of packed height), jacket and nozzles for heating or cooling medium, base ring, lugs, skirt or legs; tray clips, tray supports (if designated), distributor piping, plates.

Design Basis:

$1^{\text {st }}$ Quarter 1998 Dollars
Shell Material: A515
(Carbon Steel Plates for pressure vessels for intermediate and higher temperature service)
Design Temperature: $650{ }^{\circ} \mathrm{F}$
Design Pressure: 15 psig
Height: 17-133 feet
Application: Distillation
Tray Type: Valve
Tray Spacing: 24 Inches
Tray Material: A285C
(Low and intermediate strength carbon steel plates for pressure vessels.)
Tray Thickness: 0.19 Inches

Single Diameter Valve Tray Column 15 psig Purchased Equipment Cost

Valve Tray Column - 150 psig

Description: Pressure/vacuum column includes vessel shell, heads, single base material (lined or clad, nozzles, manholes (one manhole below and above tray stack or packed section and one manhole every tenth tray or 25 feet of packed height), jacket and nozzles for heating or cooling medium, base ring, lugs, skirt or legs; tray clips, tray supports (if designated), distributor piping, plates.

Design Basis:

$1^{\text {st }}$ Quarter 1998 Dollars
Shell Material: A515
(Carbon Steel Plates for pressure vessels for intermediate and higher temperature service)
Design Temperature: $650^{\circ} \mathrm{F}$
Design Pressure: 150 psig
Height: 17-133 feet
Application: Distillation
Tray Type: Valve
Tray Spacing: 24 Inches
Tray Material: A285C
(Low and intermediate strength carbon steel plates for pressure vessels.)
Tray Thickness: 0.19 Inches

Sieve Tray Column - 15 psig

Description: Pressure/vacuum column includes vessel shell, heads, single base material (lined or clad, nozzles, manholes (one manhole below and above tray stack or packed section and one manhole every tenth tray or 25 feet of packed height), jacket and nozzles for heating or cooling medium, base ring, lugs, skirt or legs; tray clips, tray supports (if designated), distributor piping, plates.

Design Basis:

$1^{\text {st }}$ Quarter 1998 Dollars
Shell Material: A515
(Carbon Steel Plates for pressure vessels for intermediate and higher temperature service)
Design Temperature: $650^{\circ} \mathrm{F}$
Design Pressure: 15 psig
Height: 17-133 feet
Application: Distillation
Tray Type: Sieve
Tray Spacing: 24 Inches
Tray Material: A285C
(Low and intermediate strength carbon steel plates for pressure vessels.)
Tray Thickness: 0.19 Inches

Single Diameter Sieve Tray Column
 15 psig
 Purchased Equipment Cost

Sieve Tray Column - 150 psig

Description: Pressure/vacuum column includes vessel shell, heads, single base material (lined or clad, nozzles, manholes (one manhole below and above tray stack or packed section and one manhole every tenth tray or 25 feet of packed height), jacket and nozzles for heating or cooling medium, base ring, lugs, skirt or legs; tray clips, tray supports (if designated), distributor piping, plates.

Design Basis:

$1^{\text {st }}$ Quarter 1998 Dollars
Shell Material: A515
(Carbon Steel Plates for pressure vessels for intermediate and higher temperature service)
Design Temperature: $650^{\circ} \mathrm{F}$
Design Pressure: 150 psig
Height: 17-133 feet
Application: Distillation
Tray Type: Sieve
Tray Spacing: 24 Inches
Tray Material: A285C
(Low and intermediate strength carbon steel plates for pressure vessels.)
Tray Thickness: 0.19 Inches

Packed Column - 15 psig

Description: Pressure/vacuum column includes vessel shell, heads, single base material (lined or clad, nozzles, manholes (one manhole below and above tray stack or packed section and one manhole every tenth tray or 25 feet of packed height), jacket and nozzles for heating or cooling medium, base ring, lugs, skirt or legs; tray clips, tray supports (if designated), distributor piping, plates, packing not included (see Table 1).

Design Basis:

$1^{\text {st }}$ Quarter 1998 Dollars
Shell Material: A515
(Carbon Steel Plates for pressure vessels for intermediate and higher temperature service)
Design Temperature: $650^{\circ} \mathrm{F}$
Design Pressure: 15 psig
Application: Absorption

Packed Column - 150 psig

Description: Pressure/vacuum column includes vessel shell, heads, single base material (lined or clad, nozzles, manholes (one manhole below and above tray stack or packed section and one manhole every tenth tray or 25 feet of packed height), jacket and nozzles for heating or cooling medium, base ring, lugs, skirt or legs; tray clips, tray supports (if designated), distributor piping, plates, packing not included (see Table 1).

Design Basis:

$1^{\text {st }}$ Quarter 1998 Dollars
Shell Material: A515
(Carbon Steel Plates for pressure vessels for intermediate and higher temperature service)
Design Temperature: $650^{\circ} \mathrm{F}$
Design Pressure: 150 psig
Application: Absorption

Table 1
Packing Costs
Uninstalled cost, dollar per cubic feet
$1^{\text {st }}$ Quarter 1998 Dollars

Diameter (Inches)	$\mathbf{0 . 5}$	$\mathbf{1 . 0}$	$\mathbf{1 . 5}$	$\mathbf{2 . 0}$	$\mathbf{3 . 0}$
Pall Rings					
Polypropylene	33	29	21	8	-
Stainless Steel	130	118	92	76	-
INTALOX Saddles					
Ceramic	31	28	23	21	-
Porcelain	32	29	24	21	-
Ceramic	119	14	12	12	11
Porcelain	-	17	15	12	11
Stainless Steel	-	111	94	59	54
Carbon Steel	-	37	31	20	18
Activated Carbon	25				
13X Molecular Sieve	61				
Silica Gel					
Calcium Chloride	11				

Shell and Tube Heat Exchanger

Description: Shell and tube heat exchanger consists of a bundle of tubes held in a cylindrical shape by plates at either end called tube sheets. The tube bundle placed inside a cylindrical shell. The size of the exchanger is defined as the total outside surface area of the tube bundle. Maximum shell size is 48 Inches.

Design Basis:
$1^{\text {st }}$ Quarter 1998 Dollars
Type: \quad Floating Head (BES)/ Fixed Head (BEM)
Shell Material: A285C
(Low and intermediate strength carbon steel plates for pressure vessels.)
Shell Temperature: $650^{\circ} \mathrm{F}$
Shell Pressure: 150 psig
Tube Material: A214
(Electric-resistance-welded carbon steel heat exchanger and condenser tubes)
Tube Temperature: $650{ }^{\circ} \mathrm{F}$
Tube Pressure: $\quad 150$ psig
Tube Length: 10-20 Feet
Tube Diameter: 1 Inch

Air Cooler

Description: Variety of plenum chambers, louver arrangements, fin types (or bare tubes), sizes, materials, free-standing or rack mounted, multiple bays and multiple services within a single bay.

Design Basis:

$1^{\text {st }}$ Quarter 1998 Dollars
Tube Material: A214
(Electric-resistance-welded carbon steel heat exchanger and condenser tubes)
Tube Length: 6-60 Feet
Number of Bays: $1-3$
Power/ Fan: $2-25$ Horsepower
Bay Width: $4-12$ Feet
Design Pressure: 150 psig
Inlet Temperature: $\quad 300^{\circ} \mathrm{F}$
Tube Diameter: 1 Inch
Plenum Type: Transition shaped
Louver Type: Face louvers only
Fin Type: L-footed tension wound Aluminum

Spiral Plate Heat Exchanger

Design Basis:

$1^{\text {st }}$ Quarter 1998 Dollars
Material:
SS304
(High Alloy Steel - Chromium-Nickel stainless steel plate, sheet and strip for fusion-welded unfired pressure vessels)
Tube Pressure: 150 psig

Furnace

Description: Gas or Oil fired vertical cylindrical type for low heat duty range moderate temperature with long contact time. Walls of the furnace are refractory lined.

Design Basis:

$1^{\text {st }}$ Quarter 1998 Dollars
Tube Material: A214
(Electric-resistance-welded carbon steel heat exchanger and condenser tubes)
Design Pressure: 500 psig
Design Temperature: $750^{\circ} \mathrm{F}$

Cooling Tower

Description: Factory Assembled cooling tower includes fans, drivers and basins

Design Basis:

$1^{\text {st }}$ Quarter 1998 Dollars Temperature Range:
Approach Gradient:
Wet Bulb Temperature: $15^{\circ} \mathrm{F}$
$10^{\circ} \mathrm{F}$
$75{ }^{\circ} \mathrm{F}$

Package Steam Boiler

Description: Package boiler unit includes forced draft fans, instruments, controls, burners, soot-blowers, feedwater deaerator, chemical injections system, steam drum, mud drum and stack. Shop assembled.

Design Basis:

$1^{\text {st }}$ Quarter 1998 Dollars
Material:
A285C
(Low and intermediate strength carbon steel plates for pressure vessels.)
Pressure: 250 psig
Superheat: $\quad 100^{\circ} \mathrm{F}$

Evaporators

Description: Standard vertical tube evaporator and standard horizontal tube evaporator.

Design Basis:

$1^{\text {st }}$ Quarter 1998 Dollars
Material:
A285C
(Low and intermediate strength carbon steel plates for pressure vessels.)
Tube Material:
Carbon Steel

Crushers

Description: All crushers include motor and drive unit.
Gyratory: Primary crushing of hard and medium hard materials.
Rotary: For course, soft materials.
Ring Granulator: For primary and secondary crushing of bituminous and subbituminous coals, lignite, gypsum and some medium hard minerals.

Design Basis:

$1^{\text {st }}$ Quarter 1998 Dollars
Material:
A285C
(Low and intermediate strength carbon steel plates for pressure vessels.)

Mills

Description: All units include mill, bearings, gears, lube system and vendor-supplied instruments. Ball mill includes initial ball charge.

Design Basis:

$1^{\text {st }}$ Quarter 1998 Dollars
Material:
A285C
(Low and intermediate strength carbon steel plates for pressure vessels.)

Dryers

Description:

Atmospheric tray batch dryer includes solid materials.
Rotary and Drum dryers include motor and drive unit.

Design Basis:

$1^{\text {st }}$ Quarter 1998 Dollars
Material:
A285C
(Low and intermediate strength carbon steel plates for pressure vessels.)

Centrifuges

Description: Centrifuges include motor and drive unit.
Reciprocating Conveyor with continuous filtering centrifuge for free-draining granular solids, horizontal bowl, removal by reciprocating piston.
Continuous Filtration Vibratory Centrifuge with solids removal by vibratory screen for dewatering of course solids.

Design Basis:

$1^{\text {st }}$ Quarter 1998 Dollars
Material:
A285C
(Low and intermediate strength carbon steel plates for pressure vessels.)

Filters

Description:

Cartridge Filter consists of a tank containing one or more disposable cartridges.
Contains 5-micron cotton filter.
Drum Filter is a vacuum type, multi compartment cylinder shell with internal filtrate piping with polypropylene filter cloth, feed box with inlet and drain nozzles, suction valve, discharge trough, driver consisting of rotor, drive motor base plate, worm, gear reducer and two pillow block bearing with supports.

Defaults for Drum Filter
medium filtration rate,
0.5 tons per day/ square feet solids handling rate,
20% consistency (percent of solids in feed stream).
Tubular Fabric Filters are a bank of three without automatic cleaning option. Plate and Frame Filter default material is rubber-lined carbon steel.

Design Basis:

$1^{\text {st }}$ Quarter 1998 Dollars
Material: A285C
(Low and intermediate strength carbon steel plates for pressure vessels.)

Agitator

Description: Fixed propeller mixer with motor and gear drive. Includes motor, gear drive, shaft and impeller.

Design Basis:

$1^{\text {st }}$ Quarter 1998 Dollars
Material
A285C
(Low and intermediate strength carbon steel plates for pressure vessels.)
Speed:

Rotary Pump

Description: Rotary (sliding vanes) pump includes motor driver.

Design Basis:

$1^{\text {st }}$ Quarter 1998 Dollars
Material: Cast Iron
Temperature: $\quad 68{ }^{\circ} \mathrm{F}$
Power: $25-20$ Horsepower
Speed: 1800 RPM
Liquid Specific Gravity:1
Efficiency: 82\%

Inline Pump

Description: General service in-line pump includes pump and motor driver.

Design Basis:

$1^{\text {st }}$ Quarter 1998 Dollars
Material: Carbon Steel
Temperature: $\quad 120^{\circ} \mathrm{F}$
Speed: $\quad 1800$ RPM
Liquid Specific Gravity:1
Efficiency:
<50 GPM = 60\%
50 - 199 GPM = 65\%
$100-500$ GPM $=75 \%$
>500 GPM = 82\%
Driver Type: Standard motor
Seal Type:
Single mechanical seal

Centrifugal Pump

Description: Single and multistage centrifugal pumps for process or general service when flow/head conditions exceed general service. Split casing not a cartridge or barrel. Includes standard motor driver.

Design Basis:

$1^{\text {st }}$ Quarter 1998 Dollars
Material:
Carbon Steel
Design Temperature: $120^{\circ} \mathrm{F}$
Design Pressure: 150 psig
Liquid Specific Gravity:1
Efficiency:
<50 GPM = 60\%
$50-199$ GPM $=65 \%$
$100-500$ GPM $=75 \%$
>500 GPM $=82 \%$
Driver Type:
Standard motor
Seal Type:
Single mechanical seal

Reciprocating Pump

Description: Reciprocating duplex with steam driver. Triplex (plunger) with pumpmotor driver.

Design Basis:

$1^{\text {st }}$ Quarter 1998 Dollars
Material: Carbon Steel
Design Temperature: $68{ }^{\circ} \mathrm{F}$
Liquid Specific Gravity:1
Efficiency:
82\%

Vacuum Pump

Description: Mechanical oil-sealed vacuum pump includes pump, motor and drive unit.
Design Basis:
$1^{\text {st }}$ Quarter 1998 Dollars
Material: Carbon Steel
First Stage:
Second Stage:
0.01 MM HG (Mercury)
0.0003 MM HG (Mercury)

Reciprocating Compressor

Description: Reciprocating compressor with gear reducer, couplings, guards, base plate, compressor unit, fittings, interconnecting piping, vendor-supplied instruments, lube/seal system. Does not include intercoolers or aftercoolers and interstage knock-out drums.

Design Basis:

$1^{\text {st }}$ Quarter 1998 Dollars
Material:
Carbon Steel
Inlet Temperature: $\quad 68^{\circ} \mathrm{F}$
Inlet Pressures: 14.7/ 14.7/ 165 psia
Pressure Ratios: 4:1/ 30:1/ 30:1
Molecular Weight: 30
Specific Heat Ratio: 1.22

Centrifugal Compressor

Description: Axial (inline) centrifugal gas compressor with motor driver. Excludes intercoolers and knock-out drums.

Design Basis:

$1^{\text {st }}$ Quarter 1998 Dollars
Material Carbon Steel
Inlet Temperature: $\quad 68^{\circ} \mathrm{F}$
Inlet Pressures:
14.7/ 14.7/ 190 psia

Pressure Ratios: 3:1/ 10:1/ 10:1
Molecular Weight: 29
Specific Heat Ratio: 1.4

Centrifugal Fan

Description: Centrifugal fans move gas through a low pressure drop system. Maximum pressure rise is about 2 PSI.

Design Basis:

$1^{\text {st }}$ Quarter 1998 Dollars
Material:
Carbon Steel
Power:
Speed:
1.5-300 Horsepower

Exit

Rotary Blower

Description: This general-purpose blower includes inlet and discharge silencers. The casing of the rotary blower is cast iron and the impellers are ductile iron.

Design Basis:

$1^{\text {st }}$ Quarter 1998 Dollars
Material
Carbon Steel
Power:
Speed:
5-200 Horsepower
Exit Pressure: 1800 RPM
Exit Pressure: 8 psig

Gas Turbine

Description: Gas turbine includes fuel gas combustion chamber and multi-stage turbine expander.

Design Basis:

$1^{\text {st }}$ Quarter 1998 Dollars
Material:
Carbon Steel

Steam Turbine - under 1000 Horsepower

Description: Steam turbine driver includes condenser and accessories.

Design Basis:

$1^{\text {st }}$ Quarter 1998 Dollars
Material: Carbon Steel
Steam Pressure: $\quad 400$ psig
Speed: 3600 RPM

Steam Turbine - over 1000 Horsepower

Description: Steam turbine driver includes condenser and accessories.
Design Basis:
$1^{\text {st }}$ Quarter 1998 Dollars
Material: Carbon Steel
Steam Pressure: 400 psig
Speed: 3600 RPM

Table 2

Distributive Factors for Bulk Materials - Solids Handling Processes

Temperature		$\leq \mathbf{4 0 0}{ }^{\circ} \mathbf{F}$ $\mathbf{(\%)}$	$>400^{\circ} \mathbf{F}$ $\mathbf{(\%)}$
Foundations	Material	4	5
Structural Steel	Labor	133	133
	Material	4	2
	Labor	50	100
	Material	2	2
Insulation	Labor	100	100
	Material	---	1.5
Instruments	Labor	---	150
	Material	6	6
Electrical	Labor	10	40
	Material	9	9
Piping	Labor	75	75
	Material	5	5
Painting	Labor	50	50
	Material	0.5	0.5
Miscellaneous	Labor	300	300
	Material	3	4
	Labor	80	80

Table 3
Distributive Factors for Bulk Materials - Solids - Gas Processes

Temperature Pressure		$\leq 400{ }^{\circ} \mathrm{F}$		$>400{ }^{\circ} \mathrm{F}$	
		$\begin{gathered} \leq 150 \text { psig } \\ (\%) \end{gathered}$	$\begin{gathered} >150 \text { psig } \\ (\%) \end{gathered}$	$\begin{gathered} \leq 150 \mathrm{psig} \\ (\%) \end{gathered}$	$\begin{gathered} >150 \text { psig } \\ \text { (\%) } \end{gathered}$
Foundations	Material	5	6	6	6
	Labor	133	133	133	133
Structural Steel	Material	4	4	5	6
	Labor	100	100	50	50
Buildings	Material	2	2	5	4
	Labor	100	50	50	100
Insulation	Material	1	1	2	2
	Labor	150	150	150	150
Instruments	Material	2	7	7	8
	Labor	40	40	40	75
Electrical	Material	6	8	7	8
	Labor	75	75	75	75
Piping	Material	35	40	40	40
	Labor	50	50	50	50
Painting	Material	0.5	0.5	0.5	0.5
	Labor	300	300	300	300
Miscellaneous	Material	3.5	4	4	4.5
	Labor	80	80	80	80

Table 4
Distributive Factors for Bulk Materials - Liquid and Slurry Systems

Pressure	$\leq \mathbf{1 5 0} \mathbf{~ p s i g}$ $\mathbf{(\%)}$	$>\mathbf{1 5 0} \mathbf{~ p s i g}$ $\mathbf{(\%)}$	
Foundations	Material	5	6
	Labor	133	133
Structural Steel	Material	4	5
	Labor	50	50
Buildings	Material	3	3
	Labor	100	100
Insulation	Material	1	3
	Labor	150	150
Instruments	Material	6	7
	Labor	40	40
Electrical	Material	8	9
	Labor	75	75
Piping	Material	30	35
	Labor	50	50
Painting	Material	0.5	0.5
	Labor	300	300
Miscellaneous	Material	4	5
	Labor	80	80

Table 5
Distributive Factors for Bulk Materials - Gas Processes

Temperature Pressure		$\leq 400{ }^{\circ} \mathrm{F}$		$>400{ }^{\circ} \mathrm{F}$	
		$\begin{gathered} \leq 150 \mathrm{psig} \\ (\%) \end{gathered}$	$\begin{gathered} >150 \text { psig } \\ (\%) \\ \hline \end{gathered}$	$\begin{gathered} \leq 150 \mathrm{psig} \\ (\%) \\ \hline \end{gathered}$	$\begin{gathered} >150 \mathrm{psig} \\ \text { (\%) } \\ \hline \end{gathered}$
Foundations	Material	5	6	6	5
	Labor	133	133	133	133
Structural Steel	Material	5	5	5	6
	Labor	50	50	50	50
Buildings	Material	3	3	3	4
	Labor	100	100	100	100
Insulation	Material	1	1	2	3
	Labor	150	150	150	150
Instruments	Material	6	7	7	7
	Labor	40	40	75	40
Electrical	Material	8	9	6	9
	Labor	75	75	40	75
Piping	Material	45	40	40	40
	Labor	50	50	50	50
Painting	Material	0.5	0.5	0.5	0.5
	Labor	300	300	300	300
Miscellaneous	Material	3	4	4	5
	Labor	80	80	80	80

Table 6
Distributive Labor Factors for Setting Equipment

Equipment Type	Factor $(\%)$	Equipment Type	Factor $(\%)$
Absorber	20	Hammermill	25
Ammonia Still	20	Heater	20
Ball Mill	30	Heat Exchanger	20
Briquetting machine	25	Lime Leg	15
Centrifuge	20	Methanator (catalytic)	30
Clarifier	15	Mixer	20
Coke Cutter	15	Precipitator	25
Coke Drum	15	Regenerator (packed)	20
Condenser	20	Retort	30
Conditioner	20	Rotoclone	25
Cooler	20	Screen	20
Crusher	30	Scrubber (water)	15
Cyclone	20	Settler	15
Decanter	15	Shift converter	25
Distillation column	30	Splitter	15
Evaporator	20	Storage Tank	20
Filter	15	Stripper	20
Fractionator	25	Tank	20
Furnace	30	Vaporizer	20
Gasifier	30		

Table 7
Factors for Converting Carbon Steel to Equivalent Alloy Costs

Material	Pumps, etc.	Other Equipment
All Carbon Steel	1.00	1.00
Stainless Steel, Type 410	1.43	2.00
Stainless Steel, Type 304	1.70	2.80
Stainless Steel, Type 316	1.80	2.90
Stainless Steel, Type 310	2.00	3.33
Rubber-lined Steel	1.43	1.25
Bronze	1.54	
Monel	3.33	
Material		
Carbon Steel Shell and Tubes		
Carbon Steel Shell, Aluminum Tubes		1.00
Carbon Steel Shell, Monel Tubes	2.08	
Carbon Steel Shell, 304 Stainless Steel Tubes	1.67	
304 Stainless Steel Shell and Tubes	2.86	

Cost Indexes

Cost indexes are used to update costs from the base time, in this case First Quarter 1998 dollars, to the present time of the estimate. Cost indexes are used to give a general estimate, but can not take into account all factors. Some limitations of cost indexes include: ${ }^{3}$

1. Accuracy is very limited. Two Indexes may yield much different answers.
2. Cost indexes are based on averages. Specific cases may be much different from the average.
3. At best, 10% accuracy can be expected for periods up to 5 years.
4. For periods over 10 years, indexes are suitable only for order of magnitude estimates.

The most common indexes are Engineering News-Record Construction Cost Index, Table 8, (published in the Engineering News-Record), Marshall and Swift Equipment Cost Indexes, Table 9, (published in Chemical Engineering), Nelson-Farrar Refinery Construction Cost Index, Table 10, (published in the Oil and Gas Journal) and the Chemical Engineering Plant Cost Index, Table 11, (published in Chemical Engineering). Annual averages for each of these indexes are included in this report.

The Marshall and Swift Equipment Cost Indexes are divided into two categories, the allindustry equipment index and the process-industry equipment index. The indexes take into consideration the cost of machinery and major equipment plus costs for installation, fixtures, tools, office furniture, and other minor equipment. The Engineering NewsRecord Construction Cost Index shows the variation in the labor rates and materials costs for industrial construction. The Nelson-Farrar Refinery Construction Cost Index uses construction costs in the petroleum industry as the basis. The Chemical Engineering Plant Cost Index uses construction costs for chemical plants as the basis.

Two cost indexes, the Marshall and Swift equipment cost indexes and the Chemical Engineering plant cost indexes, give very similar results and are recommended for use with process-equipment estimates and chemical-plant investment estimates. The Engineering News-Record construction cost index, relative with time, has increased much more rapidly than the other two because it does not include a productivity improvement factor. Similarly, the Nelson-Farrar refinery construction index has shown a very large increase with time and should be used with caution and only for refinery construction. ${ }^{4}$

[^2]Table 8
Engineering News Record Construction Cost Index
Published in the Engineering News-Record

Year	Annual Average
$\mathbf{1 9 1 3}$	$\mathbf{1 0 0}$
1960	824
1965	971
1970	1381
1975	2212
1980	3237
1985	4195
1990	4732
1995	5471
1996	5620
1997	5825
1998	5920
1999	6060
2000	6222
2001	
January	6281
February	6273
March	6280
April	6286
May	6288

Table 9
Marshall and Swift Installed-Equipment Index
Published in Chemical Engineering

Annual Average		
Year	All Industry	Process Industry
$\mathbf{1 9 2 6}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$
1964	242	241
1965	245	244
1970	303	301
1975	444	452
1980	560	675
1985	790	813
1990	915	935
1995	1027.5	1037.4
1996	1039.2	1051.3
1997	1056.8	1068.3
1998	1061.9	1075.9
1st Quarter	1061.2	1074.6
2nd Quarter	1061.8	1075.2
3rd Quarter	1062.4	1077.2
4th Quarter	1062.3	1076.6
1999	1068.3	1083.1
1st Quarter	1062.7	1078.8
2nd Quarter	1065.0	1080.7
3rd Quarter	1069.9	1084.0
4th Quarter	1075.6	1088.7
2000	1089.0	1102.7
1st Quarter	1080.6	1093.5
2nd Quarter	1089.0	1102.2
3rd Quarter	1092.0	1106.3
4th Quarter	1094.5	1108.7
2001		
1st Quarter	1092.8	1106.9

Table 10
Nelson-Farrar Refinery Construction Index
Published in the Oil and Gas Journal

Year	Annual Average	Pumps, Compressors, etc	Heat Exchangers	Misc. Equipment Average
$\mathbf{1 9 4 6}$	$\mathbf{1 0 0}$			
1964	252			
1965	261			
1970	365		618.7	578.1
1975	576		520	673.4
1980	823	777.3	755.7	797.5
1985	1074	969.9	758.6	879.5
1990	1225.7	1125.6	793.3	903.5
1995	1392.1	1316.7	773.6	910.5
1996	1418.9	1354.5	841.1	933.2
1997	1449.2	1383.9	715.8	920.3
1998	1477.6	1406.7	662.2	917.8
1999	1497.2	1433.5		
2000	1542.7	1456.4	722.7	936.2
2001			722.7	937.1
January	1565.9	1473.2		
February	1563.6	1478.9		

Table 11
Chemical Engineering Plant Cost Index
Published in Chemical Engineering

Year	Annual Average
$\mathbf{1 9 5 7 - 5 9}$	$\mathbf{1 0 0}$
1964	103
1965	104
1970	126
1975	182
1980	261
1985	325
1990	357.6
1995	381.1
1996	381.8
1997	386.5
1998	389.5
1999	390.6
2000	394.1
2001	395.4

Appendix A

The following is an example of the usage of the cost curves and tables to estimate the installed cost of a 5,000 square foot gas-gas shell and tube heat exchanger with a design temperature of $650^{\circ} \mathrm{F}$ and a design pressure of 150 psig.

From the chart on page 16, the estimated purchased equipment cost is $\$ 62,000$. From Table 6, the factor for setting a heat exchanger is 20%. Column 3 of Table 5 is used to estimate the bulk material and labor costs.

Bare cost: \$62,000
Setting Cost: \$62,000*0.2 \$12,400
Bulk Installations:
Foundations
Material
\$62,000*0.06
\$3,720
Labor
Structural Steel
Material
Labor
Buildings
Material \$62,000*0.03 \$1,860
Labor \$1,860*1.0 \$1,860
Insulation
Material $\quad \$ 62,000 * 0.02 \quad \$ 1,240$
Labor
\$1,240*1.5
\$1,860
Instruments
Material
\$62,000*0.07
\$4,340
Labor
\$4,340*0.75
\$3,255
Electrical
Material \$62,000*0.06 \$3,720
Labor \$3,720*0.4 \$1,488
Piping
Material $\quad \$ 62,000 * 0.4 \quad \$ 24,800$
Labor $\$ 24,800^{*} 0.5 \quad \$ 12,400$
Painting
Material \$62,000*0.005 \$310
Labor \$310*3.0 \$930
Miscellaneous
Material \$62,000*0.04 \$2,480
Labor \$2,480*0.8 \$1,984
Total Installed Cost:
\$150,245

From ICARUS-generated results (page 59):
 Purchased Equipment Cost
 Total Installed Cost

Appendix B

Vertical Vessels

$1^{\text {st }}$ Quarter 1998 dollars

15 psig						
Diameter (Feet)	Height (Feet)	Capacity (Gallons)	Total Weight (Pounds)	Purchased Equipment Cost (\$)	Installed Cost (\$)	
2.5	2.7	100	1,000	$\$ 6,400$	$\$ 51,800$	
3.0	4.7	250	1,400	$\$ 7,400$	$\$ 61,000$	
4.0	5.3	500	2,000	$\$ 9,800$	$\$ 68,400$	
4.0	8.0	750	2,700	$\$ 12,200$	$\$ 89,700$	
5.0	6.8	1,000	3,000	$\$ 13,000$	$\$ 96,000$	
6.0	9.5	2,000	4,200	$\$ 16,500$	$\$ 122,300$	
7.0	10.4	3,000	5,200	$\$ 18,000$	$\$ 132,300$	
7.0	13.9	4,000	6,300	$\$ 18,600$	$\$ 135,100$	
8.0	13.3	5,000	7,100	$\$ 21,000$	$\$ 139,700$	

150 psig						
Diameter (Feet)	Height (Feet)	Capacity (Gallons)	Total Weight (Pounds)	Purchased Equipment Cost (\$)	Installed Cost (\$)	
2.5	2.7	100	1,300	$\$ 7,000$	$\$ 48,800$	
3.0	4.7	250	1,800	$\$ 8,300$	$\$ 52,500$	
4.0	5.3	500	2,800	$\$ 11,300$	$\$ 60,900$	
4.0	8.0	750	3,600	$\$ 13,700$	$\$ 76,900$	
5.0	6.8	1,000	4,500	$\$ 15,600$	$\$ 84,800$	
6.0	9.5	2,000	7,000	$\$ 20,900$	$\$ 100,700$	
7.0	10.4	3,000	9,600	$\$ 24,200$	$\$ 112,800$	
7.0	13.9	4,000	11,400	$\$ 24,900$	$\$ 115,800$	
8.0	13.3	5,000	14,200	$\$ 30,500$	$\$ 124,000$	

Horizontal Vessels

$1^{\text {st }}$ Quarter 1998 dollars

15 psig (Feet)							Length (Feet)	Capacity (Gallons)	Total Weight (Pounds)	Purchased Equipment Cost (\$)	Installed Cost (\$)
2.0	4.3	100	1,100	$\$ 5,700$	$\$ 51,900$						
2.5	6.8	250	1,500	$\$ 7,400$	$\$ 62,200$						
3.0	9.5	500	2,200	$\$ 8,900$	$\$ 79,600$						
4.0	8.0	750	2,600	$\$ 10,200$	$\$ 81,600$						
4.0	10.6	1,000	3,000	$\$ 11,200$	$\$ 88,500$						
6.0	14.2	3,000	5,600	$\$ 17,500$	$\$ 24,600$						
7.0	17.4	5,000	7,600	$\$ 21,800$	$\$ 32,300$						
8.0	18.6	7,000	9,400	$\$ 24,800$	$\$ 144,800$						
9.0	21.0	10,000	11,500	$\$ 29,500$	$\$ 153,100$						
11.0	35.2	25,000	21,500	$\$ 40,100$	$\$ 202,600$						
14.0	43.4	50,000	33,300	$\$ 58,200$	$\$ 251,500$						
14.5	60.7	75,000	47,000	$\$ 76,400$	$\$ 304,900$						
14.5	81.0	100,000	59,400	$\$ 94,800$	$\$ 383,500$						

150 psig						
Diameter (Feet)	Length (Feet)	Capacity (Gallons)	Total Weight (Pounds)	Purchased Equipment Cost (\$)	Installed Cost (\$)	
2.0	4.3	100	1,400	$\$ 6,300$	$\$ 48,900$	
2.5	6.8	250	1,800	$\$ 8,000$	$\$ 53,200$	
3.0	9.5	500	2,500	$\$ 9,700$	$\$ 66,000$	
4.0	8.0	750	3,500	$\$ 12,000$	$\$ 69,200$	
4.0	10.6	1,000	4,000	$\$ 13,100$	$\$ 76,400$	
6.0	14.2	3,000	8,900	$\$ 23,500$	$\$ 104,800$	
7.0	17.4	5,000	13,500	$\$ 32,100$	$\$ 117,200$	
8.0	18.6	7,000	18,300	$\$ 39,900$	$\$ 148,000$	
9.0	21.0	10,000	24,800	$\$ 51,800$	$\$ 163,800$	
11.0	35.2	25,000	54,100	$\$ 90,300$	$\$ 267,800$	
14.0	43.4	50,000	101,900	$\$ 160,400$	$\$ 373,200$	
14.5	60.7	75,000	155,000	$\$ 230,300$	$\$ 482,200$	
14.5	81.0	100,000	198,700	$\$ 285,700$	$\$ 606,700$	

Storage Tanks
$1^{\text {st }}$ Quarter 1998 dollars

Diameter (Feet)	Height (Feet)	Total Weight (Pounds)	Capacity (Gallons)	Purchased Equipment Cost (\$)	Installed Cost (\$)
Floating Roof					
17.0	32.0	41,300	50,000	$\$ 118,000$	$\$ 163,400$
20.0	32.0	46,700	75,000	$\$ 128,200$	$\$ 180,700$
24.0	32.0	55,000	100,000	$\$ 143,200$	$\$ 205,100$
37.0	32.0	89,300	250,000	$\$ 197,700$	$\$ 250,000$
47.0	40.0	142,400	500,000	$\$ 267,800$	$\$ 332,400$
57.0	40.0	195,000	750,000	$\$ 335,700$	$\$ 411,700$
66.0	40.0	245,700	$1,000,000$	$\$ 396,600$	$\$ 480,200$
134.0	48.0	858,900	$5,000,000$	$\$ 1,061,200$	$\$ 1,250,900$
175.0	56.0	$2,219,100$	$10,000,000$	$\$ 2,273,000$	$\$ 2,564,300$
Cone Roof					
17.0	32.0	21,000	50,000	$\$ 42,400$	$\$ 87,800$
20.0	32.0	26,400	75,000	$\$ 48,900$	$\$ 101,400$
24.0	32.0	34,800	100,000	$\$ 59,200$	$\$ 121,100$
37.0	32.0	69,400	250,000	$\$ 98,600$	$\$ 150,900$
47.0	40.0	123,100	500,000	$\$ 157,800$	$\$ 222,400$
57.0	40.0	176,400	750,000	$\$ 214,800$	$\$ 296,800$
66.0	40.0	228,000	$1,000,000$	$\$ 266,100$	$\$ 349,700$
134.0	48.0	853,600	$5,000,000$	$\$ 864,300$	$\$ 1,054,000$
175.0	56.0	$2,226,100$	$10,000,000$	$\$ 2,040,700$	$\$ 2,332,000$

Valve Tray Columns
$1^{\text {st }}$ Quarter 1998 dollars

		15 psig		150 psig	
Diameter (ft)	Number of Trays	Purchased Equipment Cost (\$)	Installed Cost (\$)	Purchased Equipment Cost (\$)	Installed Cost (\$)
5	2	\$30,600	\$159,500	\$35,200	\$161,300
5	6	\$42,300	\$175,700	\$50,000	\$180,600
5	10	\$49,000	\$192,100	\$57,300	\$192,000
5	14	\$56,100	\$203,400	\$67,300	\$206,200
5	20	\$69,700	\$225,900	\$84,700	\$232,500
5	26	\$82,300	\$246,200	\$95,800	\$251,000
5	34	\$99,800	\$285,800	\$118,500	\$285,300
5	40	\$115,200	\$310,300	\$134,500	\$315,300
5	46	\$132,000	\$335,200	\$145,000	\$332,700
5	52	\$164,900	\$378,000	\$185,200	\$382,600
5	60	\$204,900	\$429,700	\$226,000	\$435,000
10	2	\$62,500	\$249,000	\$89,600	\$269,500
10	6	\$88,400	\$282,100	\$122,800	\$309,900
10	10	\$109,700	\$311,100	\$151,800	\$346,700
10	14	\$128,600	\$349,700	\$180,700	\$386,000
10	20	\$160,400	\$394,800	\$220,900	\$443,400
10	26	\$188,500	\$436,200	\$254,200	\$492,200
10	34	\$233,600	\$498,700	\$312,500	\$565,800
10	40	\$263,800	\$558,700	\$356,300	\$624,000
10	46	\$297,100	\$605,000	\$391,300	\$678,300
10	52	\$343,000	\$666,100	\$450,000	\$754,600
10	60	\$388,400	\$727,700	\$501,900	\$822,100
15	2	\$119,900	\$396,200	\$221,500	\$475,100
15	6	\$171,000	\$469,300	\$293,000	\$559,000
15	10	\$225,700	\$539,500	\$364,500	\$652,400
15	14	\$262,500	\$587,100	\$425,800	\$725,200
15	20	\$332,400	\$677,700	\$522,400	\$843,700
15	26	\$387,000	\$767,500	\$600,200	\$943,900
15	34	\$473,900	\$878,600	\$722,100	\$1,089,500
15	40	\$538,600	\$958,700	\$808,900	\$1,191,500
15	46	\$620,900	\$1,061,600	\$907,000	\$1,314,300
15	52	\$689,200	\$1,147,900	\$997,700	\$1,423,400
15	60	\$786,500	\$1,269,800	\$1,145,800	\$1,594,100
20	2	\$174,900	\$574,900	\$402,000	\$806,800
20	6	\$247,900	\$674,400	\$517,300	\$945,200
20	10	\$359,400	\$815,300	\$605,100	\$1,064,600
20	14	\$421,000	\$892,200	\$715,700	\$1,190,500
20	20	\$508,000	\$1,023,200	\$857,000	\$1,363,200
20	26	\$585,300	\$1,114,100	\$993,600	\$1,520,800
20	34	\$726,300	\$1,285,400	\$1,203,000	\$1,762,200
20	40	\$834,300	\$1,421,000	\$1,347,900	\$1,931,400
20	46	\$952,800	\$1,560,900	\$1,526,400	\$2,138,200
20	52	\$1,051,100	\$1,682,200	\$1,669,100	\$2,314,600
20	60	\$1,195,500	\$1,856,100	\$1,892,600	\$2,568,700

Sieve Tray Columns

$1^{\text {st }}$ Quarter 1998 dollars

			15 psig		150 psig	
Diameter (ft)	Number of Trays	Tangent/ Tangent Height	Purchased Equipment Cost (\$)	Installed Cost (\$)	Purchased Equipment Cost (\$)	Installed Cost (\$)
5	2	17	\$30,000	\$158,900	\$34,700	\$160,800
5	6	25	\$41,200	\$174,600	\$48,900	\$179,500
5	10	33	\$47,500	\$190,600	\$55,800	\$190,500
5	14	41	\$54,200	\$201,400	\$65,400	\$204,300
5	20	53	\$67,400	\$223,500	\$82,300	\$230,000
5	26	65	\$79,500	\$243,200	\$93,000	\$248,100
5	34	81	\$96,300	\$282,200	\$115,000	\$281,700
5	40	93	\$111,000	\$305,900	\$130,300	\$310,900
5	46	105	\$126,800	\$329,700	\$140,200	\$327,700
5	52	117	\$159,500	\$372,400	\$179,800	\$377,000
5	60	133	\$203,300	\$428,100	\$218,900	\$427,500
10	2	17	\$60,600	\$247,100	\$87,700	\$267,600
10	6	25	\$84,600	\$278,200	\$119,000	\$306,100
10	10	33	\$104,500	\$305,800	\$146,500	\$341,300
10	14	41	\$122,100	\$343,100	\$174,200	\$379,400
10	20	53	\$152,300	\$386,500	\$212,800	\$435,000
10	26	65	\$178,900	\$426,300	\$244,700	\$482,300
10	34	81	\$221,100	\$485,700	\$300,000	\$552,800
10	40	93	\$248,400	\$542,700	\$341,500	\$608,600
10	46	105	\$280,200	\$587,400	\$374,400	\$661,000
10	52	117	\$324,600	\$647,000	\$430,900	\$735,100
10	60	133	\$366,300	\$704,700	\$479,800	\$798,100
15	2	17	\$115,900	\$392,100	\$217,600	\$471,200
15	6	25	\$163,200	\$461,400	\$285,200	\$551,100
15	10	33	\$214,900	\$528,600	\$353,700	\$641,300
15	14	41	\$249,100	\$573,400	\$412,300	\$711,400
15	20	53	\$315,600	\$660,400	\$505,600	\$826,600
15	26	65	\$367,100	\$746,900	\$580,400	\$923,600
15	34	81	\$446,800	\$850,800	\$696,200	\$1,063,100
15	40	93	\$509,300	\$928,700	\$778,400	\$1,160,300
15	46	105	\$585,800	\$1,025,700	\$871,800	\$1,278,100
15	52	117	\$645,700	\$1,103,400	\$958,000	\$1,382,600
15	60	133	\$739,400	\$1,221,700	\$1,100,000	\$1,546,900
20	2	17	\$168,200	\$568,100	\$395,400	\$800,100
20	6	25	\$234,600	\$661,000	\$504,000	\$931,700
20	10	33	\$341,200	\$796,700	\$586,800	\$1,046,100
20	14	41	\$398,500	\$869,100	\$693,100	\$1,167,600
20	20	53	\$479,700	\$994,300	\$828,800	\$1,334,500
20	26	65	\$551,900	\$1,080,000	\$960,300	\$1,486,500
20	34	81	\$681,100	\$1,239,200	\$1,159,400	\$1,717,400
20	40	93	\$781,300	\$1,365,200	\$1,296,600	\$1,876,900
20	46	105	\$892,200	\$1,498,500	\$1,467,400	\$2,075,600
20	52	117	\$988,200	\$1,624,000	\$1,602,400	\$2,246,100
20	60	133	\$1,120,200	\$1,778,700	\$1,815,600	\$2,489,600

Packed Columns

$1^{\text {st }}$ Quarter 1998 dollars

				15 psig		150 psig	
Diameter (Feet)	Tangent/ Tangent Height (Feet)	Packed Height (Feet)	Number of Sections	$\begin{gathered} \text { Purchased } \\ \text { Equipment } \\ \text { Cost (\$) } \end{gathered}$	Installed Cost (\$)	Purchased Equipment Cost (\$)	Installed Cost (\$)
1	10	8	1	\$6,700	\$64,000	\$6,600	\$62,000
1	20	18	3	\$8,700	\$73,400	\$9,000	\$67,800
1.5	10	8	1	\$10,300	\$75,500	\$11,300	\$69,800
1.5	20	18	2	\$13,900	\$83,000	\$15,400	\$77,600
1.5	30	28	3	\$16,600	\$89,700	\$18,700	\$84,800
2	10	8	1	\$12,900	\$82,800	\$13,900	\$76,500
2	20	18	2	\$16,900	\$90,900	\$18,500	\$85,000
2	30	28	2	\$18,600	\$97,000	\$20,100	\$90,900
2	40	38	3	\$21,500	\$105,500	\$23,600	\$101,400
2.5	10	8	1	\$14,700	\$92,200	\$15,400	\$82,400
2.5	20	18	1	\$16,700	\$98,700	\$17,600	\$89,000
2.5	30	28	2	\$22,400	\$112,000	\$23,800	\$104,200
2.5	40	38	2	\$23,200	\$116,000	\$24,600	\$108,000
2.5	50	48	3	\$30,000	\$127,800	\$31,800	\$119,800
3	10	8	1	\$16,200	\$98,700	\$17,200	\$89,400
3	20	18	1	\$21,900	\$110,800	\$23,500	\$101,900
3	30	28	2	\$24,300	\$119,700	\$25,900	\$112,100
3	40	38	2	\$26,500	\$125,300	\$29,200	\$118,500
3	50	48	3	\$31,200	\$135,400	\$34,700	\$129,500
3	60	58	3	\$35,400	\$147,400	\$37,500	\$135,900
3.5	10	8	1	\$20,600	\$112,300	\$23,100	\$100,000
3.5	20	18	1	\$26,400	\$125,000	\$30,600	\$118,200
3.5	30	28	2	\$30,400	\$135,800	\$35,000	\$126,300
3.5	40	38	2	\$31,500	\$140,800	\$36,300	\$131,300
3.5	50	48	3	\$38,700	\$157,600	\$45,000	\$145,700
3.5	60	58	3	\$43,400	\$166,600	\$48,000	\$152,500
3.5	70	68	4	\$48,400	\$178,500	\$57,600	\$168,000

Shell and Tube Heat Exchangers
$1^{\text {st }}$ Quarter 1998 dollars

Surface Area, (Square feet)	Purchased Equipment Cost (\$)	Installed Cost $\mathbf{(\$)}$
100	$\$ 13,200$	$\$ 48,300$
200	$\$ 13,600$	$\$ 55,800$
300	$\$ 14,500$	$\$ 57,300$
400	$\$ 16,100$	$\$ 59,100$
500	$\$ 16,200$	$\$ 68,000$
600	$\$ 16,600$	$\$ 68,400$
700	$\$ 18,000$	$\$ 70,000$
800	$\$ 18,400$	$\$ 70,400$
900	$\$ 20,300$	$\$ 72,600$
1000	$\$ 20,800$	$\$ 73,100$
2000	$\$ 31,900$	$\$ 95,800$
3000	$\$ 44,700$	$\$ 109,600$
4000	$\$ 53,900$	$\$ 132,900$
5000	$\$ 62,100$	$\$ 141,800$
6000	$\$ 70,800$	$\$ 151,100$
7000	$\$ 99,600$	$\$ 203,500$
8000	$\$ 107,900$	$\$ 212,400$
9000	$\$ 117,100$	$\$ 222,100$
10000	$\$ 124,200$	$\$ 229,800$
15000	$\$ 186,300$	$\$ 321,500$
20000	$\$ 248,400$	$\$ 427,000$
30000	$\$ 354,000$	$\$ 573,900$
40000	$\$ 479,100$	$\$ 767,500$
50000	$\$ 582,500$	$\$ 953,000$
60000	$\$ 708,300$	$\$ 1,106,600$
70000	$\$ 839,000$	$\$ 1,425,600$

Air Cooler

$1^{\text {st }}$ Quarter 1998 dollars

Surface Area, (Square feet)	Purchased Equipment Cost $\mathbf{(\$)}$	Installed Cost $\mathbf{(\$)}$
100	$\$ 21,300$	$\$ 47,600$
200	$\$ 24,100$	$\$ 51,800$
300	$\$ 26,100$	$\$ 54,800$
400	$\$ 29,100$	$\$ 58,100$
500	$\$ 30,900$	$\$ 59,900$
600	$\$ 33,000$	$\$ 62,000$
700	$\$ 36,000$	$\$ 65,300$
800	$\$ 38,100$	$\$ 67,400$
900	$\$ 40,300$	$\$ 69,900$
1,000	$\$ 42,000$	$\$ 71,600$
2,000	$\$ 60,800$	$\$ 94,100$
4,000	$\$ 96,900$	$\$ 144,700$
6,000	$\$ 135,400$	$\$ 184,700$
8,000	$\$ 179,100$	$\$ 239,000$
10,000	$\$ 217,300$	$\$ 278,200$

Spiral Plate Heat Exchanger
$1^{\text {st }}$ Quarter 1998 dollars

Heat Transfer Area, (Square feet)	Purchased Equipment Cost (\$)	Installed Cost (\$)
40	$\$ 6,700$	$\$ 19,200$
100	$\$ 9,100$	$\$ 25,100$
200	$\$ 13,200$	$\$ 34,000$
300	$\$ 21,100$	$\$ 49,400$
400	$\$ 25,500$	$\$ 57,400$
500	$\$ 29,900$	$\$ 65,000$
600	$\$ 34,400$	$\$ 72,400$
700	$\$ 42,600$	$\$ 85,300$
800	$\$ 35,500$	$\$ 74,200$
900	$\$ 40,000$	$\$ 81,300$
1,000	$\$ 44,700$	$\$ 88,500$
1,100	$\$ 49,600$	$\$ 95,700$
1,200	$\$ 54,700$	$\$ 102,900$
1,300	$\$ 60,100$	$\$ 110,400$

Furnace

$1^{\text {st }}$ Quarter 1998 dollars

Heat Duty (MMBTU per hour)	Purchased Equipment Cost (\$)	Installed Cost (\$)
2	$\$ 124,600$	$\$ 96,300$
10	$\$ 263,100$	$\$ 355,100$
25	$\$ 399,000$	$\$ 518,600$
50	$\$ 625,400$	$\$ 771,100$
100	$\$ 1,081,500$	$\$ 1,272,800$
200	$\$ 1,868,900$	$\$ 2,641,500$
300	$\$ 2,573,100$	$\$ 3,534,400$
400	$\$ 3,228,000$	$\$ 4,354,800$
500	$\$ 3,848,400$	$\$ 5,126,000$

Cooling Tower

$1^{\text {st }}$ Quarter 1998 dollars

Water Rate (Gallons/ minute)	Purchased Equipment Cost (\$)	Installed Cost (\$)
150	$\$ 4,000$	$\$ 60,200$
300	$\$ 6,500$	$\$ 65,000$
600	$\$ 11,400$	$\$ 70,500$
1,000	$\$ 18,000$	$\$ 81,700$
2,000	$\$ 34,400$	$\$ 106,100$
3,000	$\$ 50,900$	$\$ 134,200$
4,000	$\$ 67,100$	$\$ 158,800$
5,000	$\$ 83,200$	$\$ 180,400$
6,000	$\$ 99,200$	$\$ 211,100$

Package Steam Boiler

$1^{\text {st }}$ Quarter 1998 dollars

Capacity (Pound per hour)	Purchased Equipment Cost (\$)	Installed Cost (\$)
10,000	$\$ 91,700$	$\$ 283,100$
25,000	$\$ 148,100$	$\$ 368,900$
50,000	$\$ 212,700$	$\$ 468,900$
100,000	$\$ 305,700$	$\$ 607,300$
150,000	$\$ 439,400$	$\$ 783,600$
200,000	$\$ 568,400$	$\$ 920,600$
250,000	$\$ 694,000$	$\$ 1,109,100$
300,000	$\$ 816,900$	$\$ 1,238,600$

Evaporator
$1^{\text {st }}$ Quarter 1998 dollars

	Vertical Tube		Horizontal Tube	
Area (Square feet)	Purchased Equipment Cost (\$)	Installed Cost (\$)	Purchased Equipment Cost (\$)	Installed Cost (\$)
100	$\$ 62,600$	$\$ 120,800$	$\$ 34,500$	$\$ 73,300$
500	$\$ 151,600$	$\$ 273,500$	$\$ 81,100$	$\$ 161,300$
1,000	$\$ 221,900$	$\$ 388,400$	$\$ 117,100$	$\$ 226,300$
2,000	$\$ 324,700$	$\$ 555,200$	$\$ 169,000$	$\$ 317,100$
3,000	$\$ 405,700$	$\$ 689,100$	$\$ 209,500$	$\$ 386,300$
4,000	$\$ 475,200$	$\$ 803,300$	$\$ 244,100$	$\$ 444,300$
5,000	$\$ 537,100$	$\$ 904,700$	$\$ 274,400$	$\$ 496,800$
6,000	$\$ 593,700$	$\$ 997,000$	$\$ 302,600$	$\$ 545,600$
7,000			$\$ 328,300$	$\$ 590,500$
8,000			$\$ 352,400$	$\$ 632,400$
9,000			$\$ 375,100$	$\$ 671,900$
10,000			$\$ 396,600$	$\$ 709,200$

Crusher
$1^{\text {st }}$ Quarter 1998 dollars

Diameter (Inches)	Driver Power (Horsepower)	Purchased Equipment Cost $\mathbf{(\$)}$	Installed Cost (\$)
Gyratory Crusher			
20	40	$\$ 29,300$	$\$ 52,400$
40	150	$\$ 253,600$	$\$ 294,400$
60	350	$\$ 698,200$	$\$ 787,200$
80	600	$\$ 1,400,900$	$\$ 1,553,600$
100	900	$\$ 2,415,500$	$\$ 2,666,100$
120	1250	$\$ 3,778,800$	$\$ 4,171,200$
Rotary Crusher			
	2	$\$ 2,300$	$\$ 5,200$
	4	$\$ 3,700$	$\$ 6,800$
	8	$\$ 6,100$	$\$ 9,500$
	12	$\$ 8,100$	$\$ 11,800$
	16	$\$ 9,900$	$\$ 13,900$
	20	$\$ 11,600$	$\$ 15,800$
	25	$\$ 13,600$	$\$ 18,100$
Ring Granulator		$\$ 23,400$	$\$ 28,100$
	75	$\$ 50,700$	$\$ 58,000$
	125	$\$ 75,900$	$\$ 85,900$
	250	$\$ 197,400$	$\$ 218,700$
	600	$\$ 303,300$	$\$ 335,600$
	1000	$\$ 346,400$	$\$ 382,200$

Mill
$1^{\text {st }}$ Quarter 1998 dollars

Diameterl Length (Inches)	Driver Power (Horsepower)	Purchased Equipment Cost (\$)	Installed Cost (\$)
Ball Mill			
$3 / 3$	7.5	$\$ 25,100$	$\$ 62,900$
$4 / 4$	20	$\$ 57,500$	$\$ 97,900$
$5 / 5$	50	$\$ 182,900$	$\$ 153,500$
$6 / 6$	100	$\$ 255,600$	$\$ 234,400$
	200	$\$ 411,300$	$\$ 311,700$
	300	$\$ 492,200$	$\$ 578,500$
	400	$\$ 585,200$	$\$ 673,100$
	450		$\$ 100$
	30	$\$ 107,500$	$\$ 76,900$
	75	$\$ 164,200$	$\$ 131,100$
Roller Mill		$\$ 195,800$	$\$ 233,000$
	150	$\$ 224,400$	$\$ 265,800$
	200	$\$ 250,900$	$\$ 296,100$
	250	$\$ 275,700$	$\$ 324,400$
	300	$\$ 299,100$	$\$ 351,000$

Dryers
$1^{\text {st }}$ Quarter 1998 dollars

Area (Square feet)	Driver Power (Horsepower)	Purchased Equipment Cost $\mathbf{(\$)}$	Installed Cost $\mathbf{(\$)}$
Direct Contact Rotary Dryer			
100		$\$ 26,500$	$\$ 42,400$
400		$\$ 99,500$	$\$ 142,800$
800		$\$ 192,700$	$\$ 264,800$
1200		$\$ 283,600$	$\$ 380,800$
1600		$\$ 373,100$	$\$ 493,400$
2000		$\$ 461,500$	$\$ 603,500$
Single Atmospheric Drum Dryer			
10	5	$\$ 53,900$	$\$ 73,800$
40	10	$\$ 125,800$	$\$ 162,900$
80	15	$\$ 192,300$	$\$ 243,800$
120	20	$\$ 246,500$	$\$ 309,100$
160	20	$\$ 293,900$	$\$ 365,900$
200	25	$\$ 337,100$	$\$ 417,400$
Atmospheric Tray Batch Dryer			
30		$\$ 6,400$	$\$ 10,900$
60		$\$ 8,400$	$\$ 13,900$
90		$\$ 9,800$	$\$ 16,000$
120		$\$ 10,900$	$\$ 17,700$
150		$\$ 11,900$	$\$ 19,200$
180		$\$ 12,800$	$\$ 20,500$
200		$\$ 13,300$	$\$ 21,300$

Centrifuge
$1^{\text {st }}$ Quarter 1998 dollars

Screen Diameter (Inches)	Driver Power (Horsepower)	Purchased Equipment Cost (\$)	Installed Cost (\$)
Batch Bottom-Suspended Filtering Centrifuge			
20	1.5	\$10,100	\$21,500
25	2	\$11,900	\$23,500
30	3	\$13,600	\$25,500
35	5	\$15,300	\$27,400
40	7.5	\$16,900	\$29,300
45	10	\$18,400	\$31,100
48	10	\$19,300	\$32,200
Batch Top-Suspended Filtering Centrifuge			
20	1.5	\$12,000	\$23,400
25	2	\$16,000	\$27,700
30	3	\$20,200	\$32,300
35	5	\$24,700	\$37,100
40	7.5	\$29,300	\$42,100
45	10	\$34,100	\$47,300
50	15	\$39,100	\$52,800
Continuous Filtration Vibratory Centrifuge			
48	30	\$58,600	\$91,900
50	40	\$66,700	\$100,900
52	50	\$75,500	\$113,000
54	60	\$85,000	\$124,000
56	75	\$95,400	\$135,800
Reciprocating Conveyor, w/Continuous Filtering Centrifuge			
15		\$112,900	\$140,500
25		\$175,200	\$213,200
35		\$246,100	\$295,100
45		\$317,200	\$376,200
50		\$352,900	\$416,800

Filter
$1^{\text {st }}$ Quarter 1998 dollars

Flow Rate (Gallons per minute)	Frame Capacity (Cubic feet)	Surface Area (Square feet)	Purchased Equipment Cost (\$)	Installed Cost (\$)
Cartridge Filter				
30			\$1,100	\$5,200
100			\$1,700	\$6,800
300			\$2,400	\$8,300
600			\$4,200	\$10,300
900			\$5,800	\$13,500
1200			\$7,300	\$15,200
Automatic Plate and Frame				
	10		\$100,200	\$145,500
	20		\$114,200	\$160,400
	30		\$123,300	\$170,100
	40		\$130,200	\$177,500
	50		\$135,900	\$183,600
Tubular Fabric Filter				
100			\$5,500	\$13,000
500			\$15,700	\$27,100
1000			\$24,700	\$39,900
1500			\$32,200	\$51,200
2000			\$38,800	\$59,500
2500			\$44,900	\$69,200
3000			\$50,600	\$76,400
3400			\$54,900	\$81,700
Drum Filter				
		100	\$63,400	\$104,200
		250	\$87,700	\$134,400
		500	\$120,200	\$175,400
		750	\$145,000	\$205,200
		1000	\$168,900	\$237,400
		1500	\$192,900	\$275,700
		2000	\$208,300	\$298,900

Agitators

$1^{\text {st }}$ Quarter 1998 dollars

Driver Power (Horsepower)	Purchased Equipment Cost (\$)	Installed Cost (\$)
2	$\$ 7,700$	$\$ 9,500$
10	$\$ 13,900$	$\$ 15,900$
25	$\$ 19,500$	$\$ 21,600$
50	$\$ 35,400$	$\$ 37,700$
75	$\$ 50,200$	$\$ 52,700$
100	$\$ 64,300$	$\$ 67,000$

Rotary Pump

$1^{\text {st }}$ Quarter 1998 dollars

Capacity (Gallons/ minute)	Purchased Equipment Cost (\$)	Installed Cost (\$)
10	$\$ 1,500$	$\$ 9,000$
50	$\$ 2,100$	$\$ 10,900$
100	$\$ 2,400$	$\$ 12,600$
150	$\$ 3,000$	$\$ 13,200$
200	$\$ 3,400$	$\$ 13,700$
250	$\$ 4,100$	$\$ 16,000$
300	$\$ 4,400$	$\$ 16,300$
400	$\$ 5,300$	$\$ 17,300$
500	$\$ 7,000$	$\$ 19,200$
600	$\$ 8,700$	$\$ 21,000$
700	$\$ 10,700$	$\$ 25,700$
750	$\$ 11,600$	$\$ 26,600$

Inline Pump

$1^{\text {st }}$ Quarter 1998 dollars

Capacity (Gallons/ minute)	Pqurchased Equipment Cost $\mathbf{(\$)}$	Installed Cost (\$)
10	$\$ 1,500$	$\$ 9,000$
50	$\$ 2,100$	$\$ 10,900$
100	$\$ 2,400$	$\$ 12,600$
150	$\$ 3,000$	$\$ 13,200$
200	$\$ 3,400$	$\$ 13,700$
250	$\$ 4,100$	$\$ 16,000$
300	$\$ 4,400$	$\$ 16,300$
400	$\$ 5,300$	$\$ 17,300$
500	$\$ 7,000$	$\$ 19,200$
600	$\$ 8,700$	$\$ 21,000$
700	$\$ 10,700$	$\$ 25,700$
750	$\$ 11,600$	$\$ 26,600$

Centrifugal Pump
$1^{\text {st }}$ Quarter 1998 dollars

Capacity (Gallonsl minute)	Purchased Equipment Cost (\$)	Installed Cost (\$)
100	$\$ 3,400$	$\$ 22,800$
200	$\$ 4,100$	$\$ 23,800$
300	$\$ 4,700$	$\$ 27,700$
400	$\$ 5,300$	$\$ 28,500$
500	$\$ 5,800$	$\$ 29,000$
1,000	$\$ 8,700$	$\$ 37,500$
2,000	$\$ 10,200$	$\$ 44,800$
3,000	$\$ 15,200$	$\$ 58,100$
4,000	$\$ 19,500$	$\$ 72,300$
5,000	$\$ 23,800$	$\$ 77,100$
6,000	$\$ 28,400$	$\$ 93,400$
7,000	$\$ 37,800$	$\$ 103,000$
8,000	$\$ 41,300$	$\$ 119,700$
9,000	$\$ 47,300$	$\$ 126,200$
10,000	$\$ 51,200$	$\$ 144,800$

Reciprocating Pump

$1^{\text {st }}$ Quarter 1998 dollars

		Duplex	Triplex		
Capacity (Gallonsl minute)	Driver Power (Horse- power)	Purchased Equipment Cost (\$)	Installed Cost $\mathbf{(\$)}$	Purchased Equipment Cost (\$)	Installed Cost (\$)
25	2	$\$ 4,100$	$\$ 10,600$	$\$ 7,700$	$\$ 15,500$
50	5	$\$ 7,000$	$\$ 14,600$	$\$ 13,800$	$\$ 22,700$
100	7.5	$\$ 8,800$	$\$ 17,800$	$\$ 17,900$	$\$ 28,200$
200	15	$\$ 13,100$	$\$ 22,500$	$\$ 27,900$	$\$ 38,600$
300	25	$\$ 17,600$	$\$ 28,800$	$\$ 38,700$	$\$ 51,200$
400	30	$\$ 19,600$	$\$ 31,000$	$\$ 43,500$	$\$ 56,200$
500	40	$\$ 23,100$	$\$ 34,700$	$\$ 52,300$	$\$ 65,300$
600	50	$\$ 26,300$	$\$ 38,100$	$\$ 60,300$	$\$ 73,400$
700	60	$\$ 29,200$	$\$ 43,700$	$\$ 67,800$	$\$ 83,700$
800	60	$\$ 29,200$	$\$ 43,700$	$\$ 67,800$	$\$ 83,800$
900	75	$\$ 33,300$	$\$ 48,100$	$\$ 78,200$	$\$ 94,500$
1,000	75	$\$ 33,300$	$\$ 48,200$	$\$ 78,200$	$\$ 94,500$

Vacuum Pump
$1^{\text {st }}$ Quarter 1998 dollars

Capacity (Gallons/ minute)	Stages	Purchased Equipment Cost $\mathbf{(\$)}$	Installed Cost $\mathbf{(\$)}$
30	1	$\$ 4,100$	$\$ 18,600$
75	1	$\$ 6,400$	$\$ 21,100$
150	1	$\$ 8,900$	$\$ 24,000$
200	1	$\$ 11,500$	$\$ 26,900$
300	1	$\$ 16,200$	$\$ 32,300$
400	1	$\$ 20,800$	$\$ 37,100$
500	1	$\$ 25,200$	$\$ 41,800$
600	1	$\$ 29,500$	$\$ 46,300$
700	1	$\$ 33,700$	$\$ 50,800$
30	2	$\$ 6,100$	$\$ 20,600$
75	2	$\$ 8,500$	$\$ 23,200$
150	2	$\$ 11,000$	$\$ 26,100$
200	2	$\$ 13,600$	$\$ 29,000$
300	2	$\$ 18,500$	$\$ 34,600$
400	2	$\$ 22,900$	$\$ 39,200$
500	2	$\$ 27,100$	$\$ 43,700$
600	2	$\$ 31,000$	$\$ 47,800$
700	2	$\$ 34,800$	$\$ 51,900$

Reciprocating Compressor

$1^{\text {st }}$ Quarter 1998 dollars

Stages	Actual Capacity (Cubic feet/ minute)	Driver Power (Horsepower)	Purchased Equipment Cost $\mathbf{(\$)}$	Installed Cost (\$)
1	250	40	$\$ 186,200$	$\$ 245,500$
1	500	75	$\$ 233,700$	$\$ 300,300$
1	1,000	125	$\$ 301,700$	$\$ 380,400$
1	5,000	600	$\$ 589,600$	$\$ 717,500$
1	10,000	1,250	$\$ 810,400$	$\$ 970,700$
1	25,000	3,000	$\$ 1,891,500$	$\$ 2,139,000$
1	50,000	5,500	$\$ 4,024,800$	$\$ 4,469,700$
1	60,000	7,000	$\$ 4,837,400$	$\$ 5,354,000$
3	250	100	$\$ 297,000$	$\$ 358,800$
3	500	150	$\$ 355,400$	$\$ 422,200$
3	1,000	300	$\$ 431,400$	$\$ 509,700$
3	5,000	1,500	$\$ 822,400$	$\$ 932,300$
3	10,000	3,000	$\$ 1,489,700$	$\$ 1,646,100$
3	25,000	7,000	$\$ 3,794,300$	$\$ 4,135,200$
3	35,000	10,000	$\$ 5,519,000$	$\$ 6,038,600$
3	250	800	$\$ 389,400$	$\$ 467,200$
3	500	1,500	$\$ 534,100$	$\$ 627,400$
3	1,000	3,000	$\$ 1,080,700$	$\$ 1,211,500$
3	5,000	15,000	$\$ 3,750,700$	$\$ 4,211,800$
3	7,000	22,500	$\$ 4,712,700$	$\$ 5,317,700$

Centrifugal Compressor
$1^{\text {st }}$ Quarter 1998 dollars

Stages	Actual Capacity (Cubic feet/ minute)	Driver Power (Horsepower)	Purchased Equipment Cost (\$)	Installed Cost (\$)
4	500	60	$\$ 595,400$	$\$ 702,700$
4	1,000	125	$\$ 626,400$	$\$ 749,300$
4	5,000	600	$\$ 719,700$	$\$ 907,100$
4	10,000	1,250	$\$ 1,114,800$	$\$ 1,339,000$
4	50,000	6,000	$\$ 2,699,800$	$\$ 3,247,700$
4	100,000	12,000	$\$ 5,275,800$	$\$ 6,142,000$
4	150,000	17,000	$\$ 8,722,600$	$\$ 9,735,100$
4	200,000	25,000	$\$ 9,627,600$	$\$ 10,980,400$
9	500	125	$\$ 975,600$	$\$ 1,066,700$
9	1,000	250	$\$ 1,011,200$	$\$ 1,118,500$
9	5,000	1,250	$\$ 1,146,600$	$\$ 1,286,000$
9	10,000	2,500	$\$ 1,889,300$	$\$ 2,060,500$
8	50,000	12,000	$\$ 4,821,600$	$\$ 5,356,700$
8	100,000	25,000	$\$ 12,444,800$	$\$ 13,267,000$
7	150,000	37,500	$\$ 18,991,500$	$\$ 19,966,000$
7	200,000	50,000	$\$ 19,394,300$	$\$ 20,624,400$
9	500	1,750	$\$ 1,446,400$	$\$ 1,548,200$
9	1,000	3,500	$\$ 1,560,500$	$\$ 1,680,300$
9	5,000	16,000	$\$ 2,258,600$	$\$ 2,527,000$
9	10,000	32,500	$\$ 4,053,700$	$\$ 4,467,800$
9	15,000	50,000	$\$ 5,171,000$	$\$ 5,718,400$

Centrifugal Fan

$1^{\text {st }}$ Quarter 1998 dollars

Actual Capacity (Gallons/ minute)	Purchased Equipment Cost (\$)	Installed Cost (\$)
700	$\$ 1,100$	$\$ 7,000$
1,500	$\$ 1,100$	$\$ 7,400$
5,000	$\$ 1,800$	$\$ 9,800$
10,000	$\$ 2,500$	$\$ 13,100$
25,000	$\$ 6,700$	$\$ 27,900$
50,000	$\$ 13,300$	$\$ 49,900$
75,000	$\$ 19,900$	$\$ 64,900$
100,000	$\$ 31,400$	$\$ 93,400$
150,000	$\$ 44,600$	$\$ 126,500$

Rotary Blower

$1^{\text {st }}$ Quarter 1998 dollars

Actual Capacity (Gallonsl minute)	Purchased Equipment Cost (\$)	Installed Cost (\$)
100	$\$ 4,800$	$\$ 11,500$
500	$\$ 10,400$	$\$ 19,100$
1,000	$\$ 15,000$	$\$ 24,900$
2,000	$\$ 22,000$	$\$ 34,800$
3,000	$\$ 28,100$	$\$ 44,400$
4,000	$\$ 36,700$	$\$ 54,600$

Gas Turbine

$1^{\text {st }}$ Quarter 1998 dollars

Power Output (Horsepower)	Purchased Equipment Cost (\$)	Installed Cost (\$)
1,000	$\$ 476,200$	$\$ 565,200$
5,000	$\$ 1,254,100$	$\$ 1,376,400$
10,000	$\$ 1,903,000$	$\$ 2,051,300$
50,000	$\$ 9,639,300$	$\$ 9,975,400$
100,000	$\$ 16,148,100$	$\$ 16,738,600$
150,000	$\$ 21,837,300$	$\$ 22,659,400$
200,000	$\$ 27,052,000$	$\$ 28,056,000$
250,000	$\$ 31,940,100$	$\$ 33,192,400$
300,000	$\$ 36,583,000$	$\$ 37,998,000$
350,000	$\$ 41,031,000$	$\$ 42,609,000$
370,000	$\$ 42,764,000$	$\$ 44,407,000$

Steam Turbine
$1^{\text {st }}$ Quarter 1998 dollars

Power Output (Horsepower)	Purchased Equipment Cost (\$)	Installed Cost (\$)
10	$\$ 19,100$	$\$ 36,000$
50	$\$ 25,200$	$\$ 46,500$
100	$\$ 28,500$	$\$ 53,600$
500	$\$ 37,700$	$\$ 108,800$
950	$\$ 42,100$	$\$ 126,700$
1,000	$\$ 85,000$	$\$ 169,800$
2,500	$\$ 269,000$	$\$ 364,400$
5,000	$\$ 575,000$	$\$ 688,000$
7,500	$\$ 781,400$	$\$ 907,900$
10,000	$\$ 971,400$	$\$ 1,106,600$
15,000	$\$ 1,320,100$	$\$ 1,477,100$
20,000	$\$ 1,641,100$	$\$ 1,825,200$
30,000	$\$ 2,230,200$	$\$ 2,447,300$

[^0]: ${ }^{1}$ AACE Recommended Practices and Standards - "Conducting Technical and Economic Evaluations in the Process and Utility Industries," adopted November 1990.

[^1]: ${ }^{2}$ Perry, Robert H. , and Don W. Green, "Perry’s Chemical Engineers' Handbook," The McGraw-Hill Companies, Inc., 1999.

[^2]: ${ }^{3}$ Humphreys, Dr. Kenneth K. PE CCE, "Preliminary Capital and Operating Cost Estimating (for the Process and Utility Industries)," course notes.
 ${ }^{4}$ Peters, Max S. and Klaus D. Timmerhaus, "Plant Design and Economics for Chemical Engineers" McGraw-Hill, Inc. 1991.

