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ABSTf<ACT

Wc analyze the properties of IRAS maps of interstellar clouds using Laplacian  Pyramid

Transforms, a member of the class of transforms with rnul[iscale  properties. Mu]tiscale  transforms

provide a means to decompose images into their spatial frequency components such that all spatial

scales arc trcatccl  in an equivalent manner. The l.aplacian Pyramid “1’ransforrn has a number of

advantages over traditional orthogonal wavelets for analyzing the properties of astronomical maps.

Here wc usc this transform to analyze the properties of IRAS 100 pnl I naps of dust emission from

clouds in the North Polar and Charncleon  regions. Wc derive their space-scale energy density,

global encr,gy (power) spectrum, and interrnittency.  We also develop a set of map measures based

on statistical distributions of the properties of the fluctuations in the I.,aplacian maps. Such

measures arc necessary to characterize large scale astronomical maps and to connect the map

measures to physical properties. All the image analysis reported here wm done with a program we

cicvclopcd  called Astrophysics Pyramid image Processing, or APIP for short. l’he global energy

spectrum shows systematic differences among interstellar c]ouds  depending on the degree of

evolution towards higher density structures. We identify the fluctuations in the cloud structure by

sep,arat  ing a] 1 connected zero boundary regions in the L,apl  acian  maps. ‘l’he statistical properties of

these fluctuations are used to characterize the maps. 3 hese structures arc also analyzed with

respect to their Hausdorff dimension for evidence of the scaling relationships in these clouds. We

find that the structures within the maps are multi-fractal  h;lving different scaling relationships with

size. The spatial scaling of the features span the range from regular objects to filaments having

both linear and web-like structures, and including all fractal scalings in between. The lack of a

single scaling law is consistent with different forces driving the C1OUC1 evolution and fragmentation

on different length scales.
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1. INTRODUCTION

interstellar clouds are inhomogeneous on almost al] scales and this inhomogeneity results

from a complex dynamical process whose mechanisms arc not well unclcrstood, but is governed by

a variety of forces including gravity, magnetic fields, rotation, thcrma] pressure, and turbulence.

In addition, discrete sources inject energy into the clouds in the form of winds producing

systematic motions and shocks. A highly “clumpy” structure may reflect gravitational

fragmentation or the presence of turbulence resulting from the cascade and ]“cdistribution  of energy

injected on different scales. In contrast a highly filarnent:u-y  structure might result from magnetic

fields. Observers and theorists have sought the means to infer the opel sting forces and dynamical

processes from an analysis of cloud structure. Recently we suggested that Laplacian Pyramid

Transforms, a form of nonor[hogonal  wavelet  wit]] rnultiscale properties, cou]d be used to measure

the structural and hierarchical characteristics of astronomical maps (Langer, Wilson, and Anderson

1993). In that paper we analyzed CO maps of B5, a sm:dl molccu]ar  C1OLIC1 covering about one

square degree of the sky. Here we apply these transforms to IRAS 100 pm infrared maps

covering about 300 square degrees of sky and encompassing diffuse cirrus clouds and denser

molecular clouds. We also discuss the types of rnultiscalc measures that can be applied to

astronomical maps to characterize their structure and properties.

Several :ipproaches have been applied to measure map properties and to extract and

characteri~,e  structural features from astronomical images of interstellar clouds. These structural

analyses include a search for connected objects using intensity contours (Bazcll and D&ert 1988;

Dickman, Horvath, and Margulis 1990; and, Williams, de Geus, and Blitz  1994), structure tree

analysis (Houlaban and Scalo 1990 and 1992), Gaussian decompositions (Stutzki and Gusten

1990), and mu]tiscale  transforms (1.anger,  Wilson, and A]]derson  1993). Mathematical measures

of global map properties have also been used, including Fourier power spectrum (Green 1993),

auto-correlation functions (Klciner and Dickman 1987), wavelet  transforms (Gill and Henriksen



1990; Abcrgel et al. 1995), and metric-space (topological) classification (Adams 1992, Adams and

Wisernan  1994, and Wiseman  and Adams 1994).

The best known example of the multiscale  transform is the wavc]ct  transform (Grossman and

Morlet  1987; see also the reviews by Daubechies  1992 and Fargc 1992). IIowever, another form,

the Lap]acian  Pyramid Transform may bc better suited to analyze nlaps or images (Langer et al.

1993). Mu]tiscalc  transforms provide a mathematically consistent  way to measure map properties

and extract structural fluctuations from astronomical images. The multiscale  transform has been

characterized as a generalization of the Fourier Transform, but one which, unlike the Fourier

Transform, is capable of representing a function in terms of spatial and frequency localization. A

key point to keep in mind is Ihat the rnultiscale  transforms respond to changes in the intensity  of a

function, that is they measure the regions which change strongly on a particular scale. Because

wavclets and pyramids preserve scaling, localized fluctual  ions of slruct[{res  at d[jj’jerent  scales may

bc easier to ide~ltify  in the transformed space than in the original (x,y) space. Thus the wavelet  and

pyramid transforms are WC]] suited to provide detailecl  information and deep insight into structure.

Wavelets have been used to analyze complex astronomical data, inclucling:  galaxy counts (Slezak,

Bijaoui,  and Mars 1990; Martinez, Paredes, and Saar 1993); stellar pho[omctry  in globular clusters

(Auriere and Coupinot  1989); 13C0 spectral data of [he L]551 outflow (Gill and Henriksen  1990);

photometric analysis of galaxies (Coupinot et a]. 1992); cosmic velocity fields using galaxies

(Rauzy, LachiLze-Rey,  and Henriksen 1993); fluctuations in 60 and 100 pm emission of high

galactic ]atitudc  c]ouds  (Abcrgel  ct al. 1995); and, clustering of QSOS (Panclo and Fang, 1995).

The Laplacian  Pyramid Transform has been used to analy~e CO images of the molecular cloud B5

(Langcr et al. 1993).

Here we apply a rnultiscale  transform analysis of infrared emission from clouds in the North

Polar and Chameleon regions using the IRAS Sky Flux plates and analyze their morphology,

fractal structure, and global energy spectrum. Onc advantage of the IRAS maps over existing CO

maps of the interstellar medium is that they cover a large region of the sky and span scales from a



few arcminutcs to tens of degrees. Furthermore, 11< eloission arises from all regions of both

atomic and molecular gas, while CO only traces the HZ regions. Another advantage is that the 60

and 100 pm emissions arc mainly optically thin in these n]aps. Their disadvantages are the lack of

velocity resolution which makes it impossible to separate different spatial components along the

line-of-sight, and the uncertainties in converting 60 and 100 ~rn intensities to dust, and afterward,

gas column densities.

lnfrarcd 60 and 100pm lRAS maps have been anal}zed  for scale-clepcndcnt morphology by

a number of authors using various algorithms to characterize the features. All these algorithms rely

on connecting contours in the original (x, y) intensity maps (see also Williams and Blitz 1993;

Williams et al. 1994). Bazcl]  ancl D&ert (1988) analyzed the fractal structure of interstellar cirrus

using the Sky FILIX plates for three regions, one above and onc below the plane (b = +23° and

-140), and a third region at b = -400 containing two high-latitude MBM clouds. Dickman,

Horvath,  and Margulis  (1990) analyzed IRAS images of five molecular cloud complexes

(including the well known regions of Chameleon, p Oph, and Taurus), Both found a fractal

structure for the c]ouds  and concluded that the clouds we] e highly turbulent. However, they each

found different scaling behavior, which is not surprising considc]ing  that one focused on

molecular c]ouds  and the other diffuse clouds. Chappell  and Scalo ( 1993) have analyzed IRAS

emission maps for the fractal structure in several cloud complexes. They found that all the regions

have multi-fractal  scaling, indicating that there is not a universal scaling law for these clouds. Our

multiscale  analysis of cirrus emission reveals a more complex structure than any of these analyses,

but is consistent with the conclusions of Chappell  and Scale. Our analysis goes further than any of

these works in measuring the energy density (what Fargc calls the “excitation level”) and global

energy (power) spectrum of the maps. In addition we define an algorithm for extracting

fluctuations and features in the clouds, and catalog their properties. ‘l’his algorithm forms the basis

for a set of statistical map measures which can be used to characterize astronomical maps.

First wc review the Laplacian  Pyramid Transform and develop at greater length the ideas

presented in our earlier Letter. Then we present the 100 pm images of two regions for analysis
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and their corresponding amp]itude  maps in the multiscale  transform domain. This presentation is

followed by a discussion of the global space-scale energy spectrum and an analysis of the

structures in the maps with regard to the distribution of local energy density, and intermittence, and

the fractal properties as determined from the

2. MULTISCALE TRANSFORMS

hmsdorff  dilnension.

The multiscale transform is important because the physical laws in many situations arc

translatiormlly  invariant and have the same structure over many levels o! scale.  This scaling is the

source of the fractal  1 / ~ structure observed in many situations in natur~~.  in the physical domain,

for example, wavclcts  provide a useful description of turbulence which contains localized features

and hierarchical spatial scaling. The wavelet transforv]~  retains i~lformation  about the spatial

structure of the flow and the transform coefficients at a particular scale will bc large for features

which vary strongly on that scale (Farge 1992). The strllcture of many

into this category. In most cases the features in arl astronomical map that

can be detected more readily by searching for variations in the wavelet

because the wavelet transform uses functions that span all scales.

astrophysical objects fits

vary on a particular scale

coefficients at that scale

spatial frequency

The concepts are

Mu]tiscalc transforms provide a means to decompose images into their

components such that all spatial scales are treated in au equivalent n]anner.

equally applicable to data of any dimension, where each axis represents some continuous physical

parameter such as spectra] wavelength, time, or in the case of images vertical and horizontal

lengths or angular displacements. An intuitive grasp of the idea can bc obtained in one dimension

by considering the illustration in Figure 1. The horizo~ltal  axis rcprc.sents  a parameter such as

space and the vertical axis spatial frequency. If wc consider a signal S(x) that has been bandpass

limited by a fixed amount, then it can be represented by a uniform sequence of samples S(xi), as

set by the Nyquist samplin~  theorem, with no loss of information. Now consider passing the

signal through a bank of filters Fn that are scaled copies of one another, such that

Fn (k) = FO(2’1 k), where the scaling by factors of 2 is chosen for convenience. The output of each
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filter treats the signal in a scale invariant fashion because of the scaling relationship between the

filters. The outputs of each filter must be sampled at a rate. that is proportional to the corresponding

bandwidth, hence each band is sampled at a rate that differs from its neighbors by a factor of 2, as

illustrated in Figure 1. This method of signal decomposition is the basis of all scale invariant

multireso]ution  representations such as Pyramids and Wa\’elets. The signal processing community

have labeled them as a special class of subband encoding schemes.

The generality of this form of signal analysis is best illustrated by noting that biological

sensory systems also utilize it because this property is true of the irnagcs of natural objects, as well

as auditory signals including music. The spatial--temporal decomposition of images by the human

visua] systcm  is based on filters with a Q-factor of about an octave, while the auditory system

uses bandwidths that are about a factor of 10 smal]cr. The scale invariant n:iture of many physical

processes is what makes these representations important. The statistics of the signals and the

forms of the structures produced by these filters provide measures of how underlying physical

processes change with scale. The coefficients in these representations arc much more statistically

independent of one another than they are in the original data formats, which leads to a rich set of

localized descriptors of images and better data compression for storage.

The number of such multiscale  decompositions is large since there are many filter designs

whose scaled filter banks will cover the frequency ran~,e of interest with sufficient density to

prevent loss of information. This means there is a multitude of possible multiscale transforms

unlike the Fourier transform. The choice of which to usc is dctel-]nined  by factors such as

efficiency of computation, signal-to-noise ratios, information storage and the type of data analysis

one wishes to perform. In higher dimensional spaces the choices for the shape of the filter

bccomcs increasingly more flexible and hence increases the number of possible transforms. The

Orthonormal  wavclets,  which have recently received a lot of recognition, are a particular subset of

the multisca]e  transforms. These provide critically sampled representations with minimal storage,

as well as having some nice mathematical properties, but the constraint of orthogonality leads to



filter designs that are not necessarily the best for man} applications. There arc a number of

overcomplcte transforms, such as the Laplacian  pyramid, basecl on circularly symmetric filters,

orientccl pyramids, which have “wave] et” like filters, and a recent ncw class with a property called

“shiftability” (cf. Strang 1989, Simoncelli  et al. 1992) whit”h  may be bc[[cr for image analysis.

Laplacian  Pyramid transforms preceded and spurred the recent in[crcst  by mathematicians in

the more formalized orthogonal wavelets.  In practice the orthogonal wave]ets have proven useful

primarily in image data compression, while the l,aplacia~)  Pyranlid  has remained more useful for

carrying out a variety of image analysis tasks. Below wc review the properties of continuous and

discrete wavelets. For readers interested in more mathenlatically  formal reviews of wavelcts we

recommend Daubechics  (1 992), Farge ( 1992), and Wickerhauser  ( 1994) while for less formal

discussions see Martinez et al. ( 1993) and Press et al. ( 1993). Addi[i{)nii]  information on Pyramids

can be found in Strang ( 1989), Sirnoncelli  et al. ( 1992), and Andre-son and Rakshit (1994).

2.1 Continuous Wavc]ct  Transform

A Fourier transform decomposes a function ~(x)  into a linear set of trigonometric basis

functions (sines and cosines) with amplitudes defined by tl}eir  Fourier coefficients,

f(k) = (2z)-1/2J::f(x)e~~  ’dx (1)

Unfortunately eik’ oscillates forever and the information content of j(x) is delocalized among all

the spectral coefficients ~(k), Furthermore, it is ciifficult to identify localized features in x space

by searching through the k space because the Fourier Transform spreads power throughout all of

k space. Such transform propellies  are not very useful fol real astronomical images which contain

a great deal of localized structure. One way to achieve localization is to usc a window to isolate the

portion of the frequency or spatial scale of interest (e.g. ]v(x) = 1, 0< x <1, and zero elsewhere;

or the Gabor window transform - see Martinez et al. 1993).



In contrast to the windowed transform multiscalc  transforms usc a variable window size that

covers all scales and localizes information in both space and scale. 3’l]c basic continuous Wavelet

transform has the form

F(s,.x’) = JRF(X)  ~,(x,-x’)dx (2)

where the analyzing functions Vc$(x, x’) are generated by continuous translations and dilation of a

“Parent” function

The dilation factor

()V.y(x, x’) = s-’/2 y/ 3-2 . (3)
.s

s spans the range of scale-space, x’ moves the ccntcr of the localized wavelct,

and R is the interval over which the integral is taken. (1 lcre we restrict the representation to one

dimension.) The condition that the mean value of the “Parent” function  over x must be zero,

JR l//(x)dx = o , along with a localization constraint, makes these functions  have a local oscillatory

shape, hence the name Wavclets. The localization is related to the admissibility condition,

WJRIWW (/k<  00

where ~(k) is the Fourier Transform of ~(x)

iX~) = (zZ)-] JR I#(x)e--ikxdx

The best known examples of a

“Mexican Hat”, wavclet,  which in

continuous wavelet transform

one dimension has the i orm,

g(z) =(1
 –  z2)e-~2/2,

(4)

(5)

in astronomy is the Marr, or

(6)

where z = (x – b) /s and s and b are the dilation and translation terms, respectively (cf. figure 1

in Martinez et al. 1993).

Wavelets have the useful property that

signal variations but not constant behavior.

they preserve scaling bcilavior  and are sensitive to

If the function is smooth locally then the wavelet
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coefficient will not vary mL1ch, whereas it will change significantly for large or singular behavior in

~(x). The Fourier Transform is contained in the Wave]et transform and remains useful for

harmonic analysis or when local information is not needed. Furthermore, the wavelet  coefficients

can also bc defined in terms of the Wavelet transform of the 1

.7(LX’ ) = JR;(H Jf& (k)dfJc ,

analogous to filtering ~(k)  with a filterbank  defined by ~~~,

reconstructed using an inverse transform,

‘ouricr coefficients,

(7)

k). The original function can be

~(x) = J;mJRF(s>x’)@.v( x,.r’)dx’(l.s (8)

The reconstruction imposes the following condition betwetn the analysis functions ~<r(x,  x’) and

the synthesis functions $~(x, x’)

JR V,,(x>x’)@,’(x’,x’’)dx’  = 6(s - s’)a(x - x“) (9)

For the class of orthonormal  Wavelets  @~(x, x’) =: y/~ (x, x’).

2.2 Discrete Wavelct  Transform

l’hc discrete Wavelet transform can be thought of as a set of samples of the continuous

coefficients ~(s,  x), taken at the scales s = 21 and points x = n, which we denote as Fl(rr).

While the scaling between levels need not occur by a factor of 2, this scaling is generally always

used because of the computational advantages it provicles, The equations for computing the

discrete coefficients and their inverse arc

F/( J!) = jRF’(x)y/(x  – n)dx (lo)

F(x) = Zij(n)g+(x– n), (11)
1,?1

where the translational invariance is made explicit by using, (x – n) in place of (x, n).
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The reconstruction of l’(x)  from the coefficients, or amplitudes, fil (n), can be as precise as

one requires if the sampling rates satisfy the appropriate requirements, as described in detail by

Daubechies ( 1992). An intuitive notion of this transform can bc obtained by thinking of the

analysis functions ~l(x) as a bank of filters, which are all scaled copies of one another with a

bandwidth of about an octave. The outputs of these filters are sampled at a rate that satisfies the

Nyquist  criterion, leading to a sampling rate that goes inversely with 1. ‘1’he synthesis functions,

@I(-x), th:lt  provide  the means to reconstruct the original function can bc thought of as interpolating

functions, where their form depends on the input filter analysis functions.

lJsLmlly  the input function is provided as a set of sal)lples (as in a discrete image) rather than

as a continuous function. In order to apply the Wavelet  t] ansform one should use the information

about how the samples were gathered to create the appropriate interpolating function to

resynthesize the input. This information is seldom, if [.vcr, used. instead one almost always

implicitly assumes that J’(x) = ~iFi~(x – i) and then applies Eq ( 10). This leads to a set of

discrete filtering operations to compute the Wavelet  amplitudes Fl(n) of the form

l,tl

2.3 Fast Discrete Wavelct  Transform

The direct computation of this discrete transform (Equation

(12)

2) is computationally  expensive

because the size of the filters becomes very large at low frequencies. The fast discrete Wavelet

transform reduces the computation time by decimating the data at different stages of filtering. This

approach is based on the observation that the first band, 1::0, contains most of the information in

the top octave in the frequency domain, while all the rest of the coefficients, 1>0, represent the

information in the lower half. Thus by starting with the highest frequency one can extract this

information at successive stages of analysis and wc)rk with progressively fewer samples. A
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recursive set of rules are usecl,  which starts with a set of i~lput samples, Go(i), and proceeds with

the following operations

(13)

where ~ and @ arc equivalent to high and low pass filtels. The highpass  filter ~ and low pass

filter co arc carefully chosen to make sure the resulting ;;(n) create a representation of a discrete

Wavelet transform. The factor of 2 on the right is used to indicate that the samples on the left are

taken at half the density of those on the right (called decimation). This operation is repeated in

increments / + 1 + 1, until there are only a few samples left in the last Gl, where edge effects will

dominate the results. Because the number of samples jn G1 is hal~cd at each stage, the total

computation required to carry out this procedure in onc dimension scales as

1 + 1 / 2 + 1 / 4 + 1 / 8 . ...= 2. This clearly results in halldljng  each level of resolution in an

equivalent fashion.

The fast discrete Wavclet  transform has proven to be very useful in compressing data that has

a 1 / f spectral distribution, but there are problems in applying this technique for data analysis.

First of all the subsampling causes appreciable aliasing,  which is acceptable for data compression

since it is encoded, and hence can be removed. ?%ere arc, however, potential problems when the

goal is to compare a localizefi measure of the variance acJ oss scale and space. Aliasing  can cause

the local squared amplitudes to change by 25 percent, or lnorc, when the input image is moved by

a single pixel. A second problem with the discrete or(honorma]  Wavelets is that no one has

discovered how to create them in climensions  higher tharl 1 other than using product functions.

Thus, in 2D the filters utilized in each stage of Eq (13) are of the forln ~(x)~(y),  v(x)o(y),

O(X) ~(y), and m(x)a( y) where the last pair is used to create the cascading low pass versions

G1. This results in the transform being sensitive to orientation.
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2.4 Lap]acian Pyramid Transforms

As indicated above one of the major difficulties with the discrete orthogonal wavelets  is that

while their basis functions display shift and scale invariant properties, the coefficients in these

expansions do not. in other words, the information in [he wavelet  subbands is unstable under

translations of the input signal (cf. Strang,  1989; Sirnoncclli  et al. 1992).  This limitation may be

problematical for signal and image analysis. In brief, these difficulties arise because the

orthogonality requirement is also a constraint of critical sampling an(i this produces aliasing  in

discrete transforms. That the power within a given scale is not invariant to translations of the input

which should bc CIIOLlgh to make one wary in applying discrete wavc]ets. This problem also exists

for the scale and orientation parameters in complex wavclet  transforms, so that two-dimensional

wavclcts  do not behave well under rotations and dilations of the input signal. Laplacian  Pyramid

Transforms overcome the problems associated with wave]et  transform analysis of images by

rc]axing  the critical sampling constraint, that is orthogonality, and by sampling signals at the

Nyquist sampling rate. Sirnoncel]i  et al. (1992) have defined transforms that are stable under

translations as “shiftab]c”  (other operations have analogous propcr[ics of “steerability” and

“orientability”). For pyr-ami(i transforms the coefficients in the expansion display shift and scale

invariant properties.

The Laplacian  transform, which precede(i  the orthogonal Wave]et transform in image

analysis, Iargcly SOIVCS  the two major difficulties discussed above (Burl and Adelson 1983). The

Laplacian transform is an ovcrcornplete,  non-orthogonal Wavelet  transform, which arc formally
.

called frames by rnathcmaticians.

in two dimensions is given by

. .

‘l’he structure of the transform is similar to that of Eq (13), and

Gf+lin, m] = H* Gl[2*n,2*m]

L/[n, m] = Gl[n, m]- H* Gl[n, rn]

Low Pass

Band Pass (14)

/’”$2//
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where }1 is a smoothing filter, 1 labels the level of the filtering, Go is the original image, H* Gl is

USCCI to denote a low pass convolution, and after each stage of filtering 1 is incremented 1 + 1 + 1.

(The notation F’ in Equation 13 comes from the reference to the “fast” wavelct  coefficients and L

in Equation 14 to the Laplacian  coefficients). If the Iowpass filter H is circularly symmetric, i.e.

Gaussian-like in shape, then all orientations are handled in an equivalent fashion. Since the band

pass components arc created by simply subtracting out the low spatial frequencies at each stage, the

filter looks very much like the Laplacian  operator. The se[ of bandpass, or Laplacian,  coefficients,

Ll[n, m] from 1 = O to any level N, plus the next lower ]owpass filter, or Gaussian, GN+l, can be

used to reconstruct the original data set. Surprisingly this is true for any filter, H, one chooses,

but for the purposes of analysis it is important 10 use filter designs that arc not only circularly

symmetric, but also do a good job of reducing aliasing.

The major difference between the Laplacian  Pyramid transform and the fast discrete Wavelet

transform is that in [he former, the bandpass components are nol subsamp]ed,  while the lowpass

components arc subsamplcd.  Since these transforms are uti]ized on data sets with a 1 / f structure

there is always a considerable amount of low frequetlcy power entering into the bandpass

components, L/, that will become aliased during the subsampling. Conversely, there is little high

frequency information to be contaminated by subsampling  in the low]mss versions. The number of

coefficients created by t h i s  p r o c e d u r e  i n d d i m e n s i o n s  i s e q u a l  t o

1+1/2’~+  1/22  f’+1/23d...  = 1 /(1 – 2–d),  which is 2 in lD and 4/3 in 211. The overhead in

higher dimensions is even less.

2.5 Gaussian and Laplacian  Coefficients

‘rhcrc is another way to view the Gaussian and 1.aplacian  coefficients that makes them

special. The process of low pass filtering is a local avel aging process, hence the G1 represents

local mean values of the original function averaged over a length scale = A021, where A. is the

size of the pixel in the original data. The Gaussian Pyran lid consists of taking the original image,
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labeled Go, and generating a series of lower resolution images, Gil, by recursively lowpass

filtering and subsampling by factors of 2 along each dimension, commonly called decimation by

the digital processing community,

G{l+l}  = Decimate (H*G1),

where H* denotes a lowpass  filter operation, This pyramid is not a repwscntation  of the data set as

are the other pyramid transforms, but it is a very powerful tool for efficicnt]y  computing the mean

values of map data on multiple scales. IL is also an essential tool used in coarse to fine search

strategies. The process is extremely efficient for computing these averages over large length

scales.

The Laplacian  components on the other hand are colnputed  by taking the difference between

each value and the local mean resulting in a quantity which is the deviation from the local mean.

Lap]acian  pyramids arc created by subtracting successive stages of the. Gaussian pyramid. These

Laplacian  pyramids are non-orthogonal, overcornpletc  scale invariant representations. They can be

viewed as providing a measure of how the signal deviates from the local mean on multiple scales.

The version of the Laplacian  Pyramid used here is called an FSD (Filter, Subtract, and Decimate)

pyramid (cf. Van der Wal 199 1; Anderson and Rakshit  1994) which was also described in Langer

et al. (1993). In the FSD pyramid we start with the original image, designated as Go(x, y), and

apply the following rules recursively to create a sequence of Iowpass ilnages  (or Gaussian levels)

Gf (x, y) and bandpass images

~1+1 = H* G1

.
L1 = G1 – Gl+l

x Laplacian  levels) l.l (x,)):

Lowpass Filter}

{Subtract }

Cl+ ~ = {Decimate} ~1+ I (15)

The filter operation H* Gl involves convolving the image Gl with a lowpass filter H. In this

paper we will use a separable filter, H(x, y) = h(x)h(y),  ar]d adopt a five tap filter for h(x) having
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the tap values  1/16, 1/4, 3/8, 1/4, 1/16, which  prodLlces  anapproxin]:ttely  circul:lrly  symmetric

fi]tcrin  thespatia  ]frequencyclomain.  The Laplacia  ncom]Jonents,  Ll, arccornput ed bysubtracting

the low pass version from the unblurred one at each scale, This operation is equivalent to filtering

with a “Mexican hat” or difference of a “Gaussian-like” shaped kcrna].  The blurred version, G1 is

then subsamp]cd  by throwing away every row and colunm. This declination is justified because

the lowpass filter reduces the spatial frequency content suc”h that little aliasing is introduced by this

process. Typically the final level N is set by stopping the process whet] the smallest dimension of

the array Gl+l (x, y), would be no smaller than eight. Thlls the Gaussian and Laplacian  Pyramids

provide the local  first order simple statistics of mean values and var-ianccs, respectively, at each

point and scale in the data set.

As discussed above it is the scale invariant nature of many physical processes that makes

these representations important. The statistics of the signals and the forms of the structures

produced by these filters provide measures of how underlying physical processes change with

scale. ‘1’he coefficients in these representations are much more statistically independent of one

another than they are in the original data formats, which leads to a rich set of localized descriptors

of images. The number of multisca]e  decompositions is large since there are many filter designs

whose scaled filter banks will cover the frequency ran~e of interest with sufficient density to

prevent loss of information. This property means thele is a multitude of possible multiscale

transforms unlike the single basis for the Fourier transform, The choice of which filter to use is

dctermincc]  by factors such as efficiency of computation, signal-to-noise ratios, information storage

and the type of data analysis one desires to perform. When one goes into higher dimensional

spaces the choices for the shape of the filter becomes increasingly more flexible and hence

increases the number of possible transforms.

Reconstruction of the original image can be achieved with an inverse transform from the set
A

of L1 and Gf+l amplitudes,

Gf [n, m] = Ll[rz, m] + (Expand} Gl+l [n, m]
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Gl[n, m] = Li[n,  m] +- {Expand} (Ll+l [n, m I + Gf+2[n,  m])

where the {Expand } operator

zeros in these, multiplies the

N
Gl[H, m] = ~{ Expand}’ Ll[n, m] (16)

i=[

increases the number of rows and columns by a factor of 2, inserts

original values by four, and smoothes tile results with a low pass

filter. The original image is generally reconstructed with some loss of information because some

of the high frequency information is removed by the {Expand} operator. Part of this information

can bc rccovcred  from low pass fi ltcring the Laplacian,

G, = L1 + H*L1 + {Expand) Gl+l (17)

The reconstructed Go is reproduced to better than five percent on a pixel-by-pixel basis over the

entire image and typically is lower than 2 percent (cf. Anderson and Rakshit 1994 for an

evaluation of the implementation of different transforms for reconstruction).

It is also worth noting that

(Gl) = Gl+l local average mean, and

()((
1; = G, – G,+ ~ )2

)
local averaged squared invariance,

and the complete set over all 1 leads to measures of these statistics at all scales.

(18)
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2.6 Multiscale  Transfornls  and Map Measures

Generally it is easier to solve the equations characterizing a physical system by choosing an

appropriate basis function that represents the underlyin{l  structure and symmetry. In the cases

where filters are used to extract solutions, or information, the choice of filter (or transform)

introduces its own response to the transform coefficients. In hydrodynamical  systems the variety

of flows and structures is very large and one does not know  apriori what type of filter to choose.

We are faced with a similar problem for analyzing interstellar clouds where the equations

governing the evolution of the medium arc those of a rotating gaseous fluid, partially ionized,

containing magnetic fields, and gravity. If interstellar clouds have simple wave motions then it

may be appropriate to use a Fourier Transform to descril)c the struclurc  as it yields well defined

Wavcnumbcrs. FIowevcr  for vortices, turbulence, chaotic fields 01 hierarchical gravitational

fragmentation the Fourier Transform is not a good transform to characterize structure. In these

cases multi scale transforms arc useful for analyzing tu]”bulence  or hierarchical fragmentation

because they retain information about localized spatial structure and scalings.

Wavelcts arc useful descriptors of structure because they arc: 1 ) linear; 2) covariant under

translation and dilation; 3) differentiable, and, 4) space-sca]e invariant, i.e. conserve locality.

Furthermore there is no loss of information in the wavc]et  transform and they conserve energy

globally, so that the total energy can be written in tern)s of the energy at different scales. In

adclition, they can measure the local regularity of a function  and characterize  its functional space,

thus allowing one to characterize fractals  and multifracta]s. Fargc (1992) defines a number of

uscfu] functional relationships for describing fielcls  with turbulence, or “turbulent” like properties,

based on wavclets. These arc particularly useful rncasul  cs and here we give the corresponding

formulations for the Laplacian  Pyramid transforms.
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2.6.1 Space-Scale Global Energy  Spectrum

The space-scale energy density in 1-D is

E/(x) = F;(x) (19)

while the space-scale global energy is given by

Ii = JlF(x)12dx = y, xF/(Jl)Fk(Ill)r’l, Il,k, rll (20)
l,IL k,ttl

JWhere rl,,l, k,,,, = O;(X -- Hhjk(X –- t7~)dx. F~or a complete  and or~honormal  W a v e l e t

– 6 8 thus‘I,n,k,m  –  1,~ n,ln

We now identify the space-scale global energy

El = ~lF1(i2)12
tl

(or power) spectrum as lhc sum only over n

and note that E = ~ El, For the LI)T non-orthogonal representation the overlap factors are small
1

and so we LISC the approximation

E, = ~ ll@)12 (21).
n

Note that Sl(x) = l;(x) = square of local variance. l’hus these energy measures are really

measures of the variance at different scales.

2.6.2 lntcrmittcncy

The departure of the energy al each scale from an even spatial distribution in the map is called

the local intermittence, 11 (xi, yj ). Intermittence is defined by,
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F,(x) 2
l,(x) =

( )F,(X) 2
(22)

lL,(,t)12
l,(x)

W}

(23)

for the wavelct and LPT cases, respectively, where (.... .),r is an average over al the map. If all

locations have the .samc energy spectrum, as is the case for the Fourier energy spectrum, then

l~(x~,y~)  = 1. On the other hand if l~(xi,yj)  = P >>1 then at space-scale 1 the position (X~, yj)

contributes ~ times as much as the average to the l~ouricr  energy spectrum.

2.6.3 Space-Scale Contrast

Another important measure is the space-scale contmst, which is a logarithmic derivative of

the wavclct coefficients (Fargc 1992). It is particularly useful for cietecting very weak coherent

structures or embedded coherent structures, where traditional threshold techniques do not work

very well (sLlch structures do not have well defined boundw-ies). The space-scale contrast is

F’,(n) 2
c,(n) =

( )F,(n) ‘

for the wavelet  and LPT cases, respectively, and

(24)

(25)

where ~i (x) = ~~ #(/’, x)d/’ arc the amplitudes for

the Gaussian lCVC1 G1 at scale 1. This measure is the ratio of the local squared variance over the

local mean value.

Finally, it is possible to calculate the lc>cal  scaling and sjng, ularity  spectrum with an

appropriate choice of multiscalc transform (Far~c 1992). These can bc used to characterize the
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fracta] and multi-fractal  properties of a function. Here wc do not calculate these properties directly,

but instead analyze the local scaling using the Hausdorff  climension  of the fluctuations.

3. RESULTS

To study the properties of infrared dust emission from clouds we have chosen IRAS maps of

the Chameleon and the North Polar regions (centered at RA( 1950) = 12t] and DEC( 1950) = -80~

and RA(l 950) = 011 and DF.C( 1950) = 900, rcspcctivcly)  where line-of-sight confusion is

minimized. A rcasonab]c  first approach is to restrict the multi scalc analysis to the 100 ~m maps

and thus reduce the dependence of the results on specific dust models. We used IRAS Sky Flux

maps each measuring 12.50 on a side with 500 x 500 pixels. Although the pixel size in these

maps is 1.5 mcmin the actual angular resolution is probably closer to the 3 or 4 arcmin resolution

of the IRAS instrument at 100 pm. Figure 2 is a contour l}lot of the 100 pm images and shows the

highly complex filamentary and globular nature of the (:mission  plus small nearly “point-like”

extraga]actic  sources. These maps show a great deal of structure on all scales and the variation in

emission is either due to incrcascd column density, changing dust grain distribution, or the

presence of heating sources.

To produce the results in this paper we have used a package of programs that we developed

under NASA’s Astrophysics Data Program (ADP) called Astrophysics Pyramid Imaging

Processing, or APIP. This package currently resides at 11’AC and will be available to the general

astronomical community in the near future. APIP cont:lins  many more multiscale transforms,

image analysis tools, and map descriptors then used in this paper. We intend to describe these in a

future publication. . ~ “ / / ‘‘ , /!\l
.! .,)\l’:1’/  ‘,”.(’ (/’:[

3.1 Multisca]c Transform Images

The multi scale I.PT anal ysis of the 100 ~m images genera(es  an amplitude  map at each space-scale

(one for each of the basis functions). These are designate(i  L1 with 1 = O to 5 covering the space-

scales, Af = 21 Ao, corresponding to 1.5’ to 48’. In adclition there is onc Gaussian map remaining
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after filtering, G6 (the original image is labeled Go). As discussed above the Cl are mean values

computed over regions that decrease in resolution by factors of 2 and the L1 provide the local

deviations (fluctuations) from these multiscale values. The Ll in~agcs  represent the detailed

information in the original n~ap and have equal positive and negative areas ( ~i,j Ll(xi, yj) = O).

The final Gaussian map, G6, which has a resolution of 96’, is smooth and positive definite over

the map. Figures 3a and 3b shows some of the I,aplacia\l  amplitude maps and the original IRAS

map, Go, in the form of gray scale images. lt can bc see[l that the most prominent features in the

original IRAS 100 pm maps stancl  out clearly in the clifferent  scale-space maps, separated at

different scales. More important, however, is that many features which arc not readily evident in

the original maps are prominent here, especially small structures (incluciillg several galaxies and

some residual striping evident in the 1 = O and 1 maps). For comparison Figure 3C shows a

discrete wavelet transform of the Chameleon region for 1 = 1 using the Daubechies wavelet four

calculated in two dimensions (see Daubechies 1992 ond Press ct al. 1993). Note that the

Daubechics  wavelet amplitude image has a weaker corres~~ondence  between the original image and

the transform amplitudes. This difference illustrates the care that must be taken in the choice of

“filtering” to analyze maps.

3.2 Global Space-Scale Energy Spectrum

The space-scale energy density &l (xi, yj ) is the starting point for several important measures

of the map properties discussed above. We generate S1 (xi, yj ) by scluaring  the amplitude for each

pixel of the LI (xi, yj ) map and some examples am shown in Figure 4 in color several (these are in

their decimated form and are smoothed for display purposes). The simplest measure is the global

energy spectrum which helps to classify the map properties by giving the power distribution of the

entire map at different scales.

We have calculated the global space-scale energy s~)ectrun-1  ~~1 for the entire 12.5° x 12.5’)

area of the maps of Chameleon ancl North Polar regions. These are plotted in Figure 5 along with

El for a random image and for a I ~CO integrated intensity
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1995). The random plot allows us to compare the 100 pm emission to that of an image with no

]argc scale structure. (For purposes of comparison the energy  spectra have been normalized to 1

by dividing by the values at EO.) It can be seen that for the random irnajy  El falls off very sharply

with 1, El = 1–3 over the range 1 = O -+ 3. In contrast the infrared and I ~CO emission maps,

which trace coherent structures of the cloud,  increase by an order of magnitude from f = O + S.

Typically at the smaller scales, 1 = O -+ 1, one has to consider the effects of noise in the maps on

the power spectrum. The noise contribution will depend on the overall signal-to-noise in the maps

and the extent of noisy or emission free regions. For tllcsc IRAS maps it is not significant on

global scales (summed over the entire map) but can be important locally depending on map position

(cf. Abcrgel  et al. 1995).

Closer inspection (Figure 5 lower panel) shows significant differences among the global

space-scale energy spectra for these regions. The North I)olar region, which is the most diffuse of

the three regions, has the steepest spectrum and thus relatively less of the power is in small

features. l’he Chameleon region has more gas in higher density matcria]  and this characteristic is

reflected in the flatter spectrum. Finally, l~CO traces much higher densi(y material on average than

100 Lm emission, is more compact, and is generally restricted to the dense interiors. This

selectivity is apparent in the Perseus spectrum which is very flat at sn~al]  scales ( 1 = O -+ 1) and

peaks at 1 =4. It shows the tendency for clumping to take place at small scales and for most of the

power, and hence most of the material, to bc in features with space-scale size = 16 arcmin.

3.3 Statistical Map Propellies

There is a wealth of information for each of the maps, much more than can reasonably be

presented here. Obviously there are so many fluctuations/featurm, especially at small scale, that it

is impossible to study each one in detail. Instead we have opted for a statistical approach for

understanding the properties of each map, To catagorizc  and compatc maps wc need to develop

local measures of the images. The starting point for this approach is the space-scale energy density
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‘~(x~, yj) shown in Figure 4. To develop a descriptor of the maps wc first need to identify and

categorize all the distinct features in these maps (one for each space-scale. 1) .

Astronomers have generally relied on techniques to find features in astronomical images,

such as thresholds and other filtering methods, that apply to sharp contours. However, molecular

cloud structures, fluid flow, turbulence, etc. have coherent structures that do not have sharp

boundaries. ]n these cases multiscale transforms provide a better approach because of their

fil(cring  and scaling properties. Techniques that extract interstellar cloud features using contours

generated by cutting the original intensity maps at constant amplitude have drawbacks. The

contours am generally poorly defined because clouds most likely have features embedded on a

range of scales, In Section 2 we discussed how multi-scale transforms are sensitive to variations

in the function but respond only weakly  to slow global variations at their particular scales. In the

infrared maps the fea(ures at each scale are embedded onc within the other, and/or superimposed

along the line-of-sight. The I.aplacian amplitude maps measure the localization of features on

different scales at each position. Therefore these features should bc separated by their space-scale

transforms into the differcn’t L,aplacian  amplitude maps, L1, and energy clcnsity  maps, El.

The amplitude of the transform coefficients measures the variations in the function at a

particular scale and position. Thus the transition from negative to positive amplitudes, that is the

zero boundaries in the transform map (Laplacian  arnplit{ldes)  at each scale (i.e. each Laplacian

map), shoLlld clcfinc  the regions of localized features in, lJ[(Xi, Jzj). Note that a closed zero

boundary in the Laplacian  amplitude map is also a zero boundary in the space-scale energy density

map El. Thus identifying the closed zero boundaries in the Laplacian or energy density maps

provides a well defined algorithm for isolating separate space-scale fluctuations.

We can identify the different map features by finding all the zero boundaries in L1 (xi, Yj ) or

El (xi, Yj ). The zero boundaries in Ll(xi, ~~j ) can easily bc found from the crossings from positive

to negative amplitudes, which is computationally  simple for discrete images. However, in practice

the corresponding zero boundaries in El (xi, yj ) do not exist because of the discrete nature of the
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amplitude of the pixels (i.e. very fcw pixels actually have a value of zero). Instead we can either

find the zero crossings in Ll(Xi,  yj) and project thenl onto the ~l(.~i,  yj) map or find an

approximate solution by cutting the El(Xi, yj) map with a constant plane having a small positive

value. This threshold will isolate the features in &l (xi, yj ) space. (For each space-scale image we

use the discrete pixel images and not those in Figures 3 and 4 which have been smoothed for

display purposes). The clerived  map features can be catalogecl  in terms of their properties at each

scale 1: number, Nf, perimeter, Pi, area, Ai, where  i labels al] (he isolated features in the maps.

The local energy spectrum, E’l, i, is given by

‘/,i “ fll@/(~,  J’)12d.Tdy
Q, (26)

where @l(x,  y) = amplitude of the Laplacian basis function for space-scale f at (x, y). The

integration is taken over the zero boundary Qi of each fe:iture labeled with the subscript i where

the sum is over all pixels n contained within the boundary K)i. Note that the local energy

spectrum is not the same as the global energy spectrum or local ener~y density. lnstcad it is the

portion of the global energy at space-scale Al of a feature within boundary Qi.

In addition wc have found the following two quantities, integrated intensity and average

intensity useful for identifying noise features and cxtragalactic  objects.

intensity:

Average Intensity:

3.3.1 Number of Features

There arc two practical

(27)

(28)

problems with identifying a fluctuation or feature in the maps, one

associated with noise and the other with the pixel size. Noise in the original maps will result in

regions of positive and negative amplitude in the Laplacian  images covering small areas, especially
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al the smallest scales. ‘llcse will be extracted as a feature by OL]I’ zero crossing algorithm.

Furthermore, while the pixel  size in our maps is 1.5 arcn I in the resolution of the IRAS Sky Flux

images at 100 ~ml is roughly 3 to 4 arcmin so that some features with small areas may not be real.

We can eliminate almost all of the noise clumps by considering only closed features with area, A 2

15 arcmin2 corresponding to the IRAS 100 ~m beam (see also the method cliscussccl by Abergel  et

al. 1995). This approach significantly reduces the number of small noise features that are extracted

by our feature finding algorithm. In other maps where the pixel size equals the resolution we can

still set a lower limit on area. However, as the correct choice  cannot bc exactly known, some real

but small features will be excluded. Map regions with poor signal-to-noise have the worst

problems in this regard.

The number of distinct features in the energy density maps arc plotted in Figure 6 for two

cases: (1) all fluctuations (pixel area >2,25 arcminz),  and, (2) only for features greater than the

IRAS resolution (area > 15 arcmin2). At large space-scales ( 12-2 ) the two regions have a very

similar number of features, whereas at the smallest space- scale the NorLh Pole region has roughly

twice as many features as the Chameleon region. The majority of features in the 1 = O maps (> 80

percent) have very small areas ( S 15 arcminz) less than ~hc resolution of the IRAS Sky Survey

maps and are probably noise. If even a modest fraction of them are r~iil then the majority of the

smaller features in the space-scale maps are weakly emitting, low density fragments.

The average intensity, (1), can also be usecl to elin~inate features produced by noise in the

original images. In the JR cirrus maps (1) tends to fdl within a fairly well defined range for most

features with good signal-to-noise, while noisy regions with poorly defined features have small

values of (1). We tested this assumption by inspectitlg (1) in regions with very little dust

emission (poor signal-to-noise) and then chose an average value of (1) as a threshold to decide

whether a feature anywhere else in the map is real or not, In the IRAS maps where the signal-to-

noise is generally very high almost all these low amplitude features are eliminated from

consideration just by our constraint on the minimum area (> 15 arcminz). We have also found (1)
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to be useful for identifying features that may not be cirrus clouds, for example galaxies in the IR

maps stand out as having much larger (1) than average at small scales.

FigL~r~ 7 shows the relationship of (]) with area for Chanleleon  and North Pole regions only

for positive amplitude features and for Ai >15 arcmin2. Note that (1) stays in a fairly narrow

range and tends to increase with area. Several features appear clearly in both regions for small

areas, having about an order of magnitude larger value than average. Most of these positive

amplitude features can be identified with galaxies, they have sharply peaked emission over a small

size. Another set of points have very sm:ill (1) at small to modest area, especially in the North

Pole maps, These are either remaining noise features or arc regions with low column density, and

perhaps represent diffuse gas. They only make up a few pm-cent of the features.

Another problem inherent in the analysis of the pro]) erties of the fluctuations is the discrete

nature of the pixels. In calculating the perimeter and area wc follow the boundaries of the pixels

(squares in this case), whereas the real cloud features are continuous boundaries. In this case the

perimeters and areas will be overestimated, with the former suffering more severely. For example,

a diagonal line will be covered by a diagonal of pixels and [racing the ed~es of these defining pixels

overestimates the length by {2 (an average over all anp:les of inclination produces an average

overestimate of 4/7c).  The overestimate of the area will be small for regions covered by many

pixels, but can be roughly a factor of two for regions covered by only a few pixels. In this paper

wc have not attempted to correct for the discrete nat urc of the boundaries.

3.3.2 Distribution of Local Energy

The local energy of all the fluctuations versus area is plotted in Figure 8 for all of the space-

] 5 The largerscale maps combined and shows that local energy grows rapidly with area, E K A .

features have more local energy not only because they are larger but because the larger features are

intrinsically more intense. The smaller features contain less emission, less concentration of

material and/or are colder. A plot of their number distribution shows the peak in the local energy
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distribution for the North Pole region is much less than that for Chameleon (Figure 9). Both

regions have features with very large, but similar, values of local energy. The North Pole region is

cut off more sharply at small values mainly because of the truncation of small area features which

arc more prominent in this region.

3.3.3 H ausdorff Di mcnsion

One measure of the scale dependent morphology, OJ fractal structure, of the cirrus clouds  is

the Hausclorff  dimension, D, (cf. 13azell  and Ddsert  1988, Dickman  ct al. 1990). Ideally, the

geometrical structure and the scale clependence  provides information about the forces at work in the

cloud. D is defined from the area-perinleter  relationship A ‘/2 = h7P]/D, to be

(29)

Most authors use a linear fit to a plot of log(perinieter)  versus log(area) where the slope

yields D / 2 and the intercept equals –D(log  K). Regular geometrical objects (circles, ellipses,

squares, etc. ) all have D = 1 (i.e. the same scaling) but different intercepts (i.e. K depends on

shape). The scaling relationship expected for Kollnogorov  turbulence (incompressible,

homogeneous, isotropic turbulence) is D = 4 / 3 (see the discussion by Dickman et al.).

Filamentary structures that scale only with length, on the other hand, have D = 2, as would be

characteristic of gas supported by ordered magnetic fields. We have evaluated the perimeter-area

relationship for the energy density maps using the features derived for the localized energy. In

Figure 10 we show plots of log P – log A for the space-scales 1 == 1 aIlcl 2 for both maps. D

derived from a linear fit to all of the log P – log A graphs is plotted in l;igure  11 as a function of

space-scale 1 and the corresponding fits are shown in Figure 10. The J’aluc of D is large at small

space-scales and decreases at the largest scale.

It is readily apparent, however, that a linear fit does a poor Job of matching the log P – logA

plots at small space-scales in Figure 10. Closer examination shows log P – log A is nonlinear and

thus there is no single scalin[: relationship, rather the lRAS emission is multifractal  for both map

28



regions. We find that a polynomial is required to fit the {iata for small space-scales and these arc

shown for 1 = 1 and 2 in Figure 10. At larger scales (for / = 5 and, sometimes 1 = 4) only a linear

fit can bc made bccausc  there are not enough features in tile larger scale maps to make an accurate

polynomial fit. Most of the variation in l) is due to changes in the scaling relationships and the

structural nature of the objects embedded in the images, but some is due to the properties of the

filters and the use of discrete pixels. For the very smallest areas the only possible perimeter-area

relationship is that for regular geometrical objects because one to three ~)ixels  can only combine to

make squares, rectangles, etc. all of which scale with dilnension  l) = 1. I:urthermore, the very

largest areas possible at small space-scales will bc filamentary or web-like because we use

separable filters H(x,  y) = h(.x)h(y). As discussed above filaments are extracted with

wherever a region varies significantly in only one dimension. The scaling for filaments

H(x,y)

yields a

value of D approaching 2.

The relationship of D versus A derived from a polynomial fit for equation (29) is shown in

Figure 12 for a few maps. The smallest objects remain somewhat regular, the largest filamentary,

and those in between have a fractal-like  geometry. We c:dculated  the number of features in each

energy density map as a function of the fractal  dinmnsitm  D. As shown in Figure 13 ~(~)

decreases with D and most of the features in the maps (excluding 1 = O) have either regular

structures, D = 1, or turbulent structures, D = 1.2 – 1.4. only  few features have the characteristics

of filamentary structures with a nearly linear scaling.

3.3.4 lnterrnittency

To measure the degree of localization of energy in the IRAS maps we evaluated the intermittence

and characterized it locally over regions similar to those dcfhed  in the energy density maps,

(%) = H 4~>y)dxdy (30)

Qi

We isolated all connected regions above a constant plane defined by ( Il(xi, y-j )) ~ 0.25 for small

space scales and (~l(xi, yj))  22.0 at 1 = 4 and 5. The different threshold values are required
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bccausc the large space-scale maps merge into very few features at low threshold due to the

discrete nature of the pixels. Several of these distributions are shown in Figure 14. In the

Chameleon maps it can bc seen that for ( Ll,i) most fluctuations have small values of less than one

over a large range of area, while a few features have ver~ large values. The smaller fluctuations

tend to cluster around a constant value with(~l) less than one. Some features, most likely

extragalactic,  have very large values of (11) at small areas, For the larger space-scales the

distributions tend not to have much correlation. There is a slight trend in most of the maps to have

the average intermittcncy increase at large areas. However, these features may not be distinct

objects as many of them are duc to overlapping emission fl om clouds along the line-of-sight.

3.3.5 Area and ]ntcnsity  Distributions

To gain further insight to the properties of the Laplacian amplitude maps wc have evaluated

the distributions in A, 1, and E for each space-scale. Differences between the Chameleon and

North Pole regions are illustrated in Figure 15 for two scales, 1 = 1 and 4, corresponding to the

small and large scale structures. For 1 = 1 the distributions for area, intensity, local energy for the

regions are similar in shape, but the North Pole tends to have (on avera~e) smaller features, lower

intensity and local energy, yet many more features at small scale. The distribution in area shows

that the number of features decreases significantly with increasing area and that only a few features

are very large. It might seem surprising at first that a space-scale of only 3 arcmin would produce

a few features with areas of order 104 arcmina, however the multisca]c  filters (here the separable

filters H(x,y) = h(x)h(y))  will produce a response as long as the intensity varies along one

dimension. (We intend to report on the use of orientabl~:  filters which should not produce such

features, in a future publication.) Thus long filamentary- or thread-like structures will be extracted

with large areas but small scales in only one direction

to exhibit the same behavior at large space-scales, as

they are broad and flat, and hence show no preference
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indicated by the 1 = 4 distributions, that is

for features of a particular size. These large



area features are probably independent of one another in a dynamical sense, however, it should

also be borne in mind that the number of features is st:itistically small at these large scales.

3.4 Features Reflected in Positive and Negative Amplitudes

IS there any physical difference in the closed featul es defined by the areas of positive and

negative amplitudes? By definition the mean value of the wavclet  and pyramid coefficients over the

entire sample domain is zero so that the sum over the positive and negative amplitudes arc equal,

(31)

However, the corresponding space scale energy densities (or variance) are not in genera

that is

equal,

32)

This difference is most clearly illustrated for the extragalactic  features ill the IRAS maps, which are

small intense localized regions of emission and nearly pointlikc at the IRAS resolution. In the

1 = o amplitude Inap, L1 (xi ,j~j ), the extragalactic  features appear with a large positive amplitude

over a small circular area surrounded by a larger area ring of small negative amplitude. In the 1 = O

energy density Imp, El (xi, yj ), galaxies appear as an intense positive circular feature surrounded

by a weaker intensity ring.

In Figure 16 we plot the ratio of the power contained in features with positive amplitude to

the total power in the map at each space-scale. In both maps, on a global basis,

~l~i~ > ~l$if ~ ‘ n  chamc]cO1l which has more localized emission region, this fraction
(p>() $<()

dominates at all space-scales, especially for 1 S 4, while in the n-lore  diffuse North Polar region it

is less dominant on a global basis. Visual inspection of {he energy density maps in Figure 4 with

the original contour maps (Figure 2) shows a strong relationship between their structures.
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Features at each scale have more sharply defined peaks in the energy densit y space-scale maps than

the Laplacian  maps or even the original data. Therefore, to first order the positive features in the

amplitude map can bc identified with the localized physical objects.

3.8 Mass Spcctrurn

Visual inspection of the Laplacian amplitude images for the IRAS maps, as well as the earlier

study of CO emission maps for the cloud 135 (Langer ct al. 1993),  shows a correlation between

regions of enhanced cloud material and positive amplitudes in L/, and bubbles or valleys in

emission and negative amplitudes in L1. Because the Lal)lacian  Pyramicl Transform removes the

alllp]itLldeS  at each scale before operating on the next scale it acts as a decomposition of the original

map. Therefore, to first order wc can use the intensities in the positive amplitude maps to estimate

the mass distribution of the dominant features in the maps. The mass spectrum of the clumps, or

fluctuations, is an important cloud property, which reflects the fragn lcntation,  coagulation, and

turbulence of the gas. For the IRAS 100 ~m maps we assume the mass is roughly proportional to

the dust emission assuming a constant heating rate. The mass spectrum can be approximated by

the distribution of intensity, 1, of features derived from the Laplacian maps (cf. Figure 9). In

Figure 17 we plot the number of features as a function of intensity 1. Both regions show a similar

distribution, with a peak at modest, but different, values of 1. Fits to the log N – log 1 plots at

small and large values of 1 give roughly similar results: for the high end of the mass spectrum,

~(1) ~ ~-o.55 ‘0”58 for the Chameleon and North Pole maps, respectively; theand N(l) w 1

corresponding fits for the low end are, N(l) = 1]8 and N(l) cc 11”65. The similarity in the slope

for large intensitY implies a common fragmentation mechanism and source of the fluctuations in

both regions, The break in the slope, which occurs at a slightly different 1 in both regions, is

significant in that the lowest intensity fluctuations perhaps do not form by hierarchical

fragmentation but arise from some other formation mechanism, for example turbulent fluctuations

in the gas clouds  leading to transient features. This picture would be consistent with our results for

32



the Hausdorff  dimension since most of the lowest intensity features in the 1 = O map have a value

D=l.2-1.4.

The mass distribution of clumps in clouds has also been dmived using molecular line tracers

(mainly CO, but some CS) by Stutzki  and Gtistcn  (1990) and Williams, de Gcus, and Blitz

(1994). The former have analyzed their maps using a su]n of tri-axial gaussians  (their routine is

called Gaussclumps) while the latter have developed

on searching for contours which divide the peaks and

N(M)  cc M-0”32 for the Rosette molecular cloud

a program called Clumpflnd  which is based

valleys in the datil cube. Williams et al. find

- o.~1 for the Maddelanaand N(M) = M

- ‘)72 for M 17 using GaL]SSCILIn~pS  whilenlolccuiar  cloud.  Stutzki  and Gtistcn  founcl N(M)  = M

Langer et al. found a similar relationship for B5, N(M)  K M-o”so, using the multi-scale approach

discussed here. If we assume that these differences arc real, anti not an artifact of the various

algorithms used to extract the mass spectrum, then there is a difference in the formation process for

clumps and fluctuations among the different types of clouds.

The number of features as a function of local energy is plotted in Figure 18. Both

-0.SO for Chanleleon  anddistributions have nearly the same slope, N(E)  = E-0”59 and N(E)  ~ h

North Pole. Thus in a statistical sense each region is divided up into features with similar relative

“power”, though the Chameleon region has larger range of” local energy.

4. SUMMARY

Mu]tiscale  transforms represent map information in a form that lends itself to disentangling

the underlying fluctuations in the structure. In this pape] we have extended the usc of Laplacian

Pyramid Transforms presented in an earlier work (Langcr,  Wilson, and Anderson 1993) to large

scale IRAS 100 pm maps of infrared emission of the Cllarneleon  and North Polar regions. The

LPT technique consists of a multiscale  filtering und decomposition of the intensity maps which

represents detailed information on each scale by a function, called the Laplacian  of the image, L1 at

a scale 1, and the smoothed information at that scale by another function, the Gaussian, G1. The

set of Laplacian  maps at different logarithmic scales and the residual Gaussian after filtering out all
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the detailed information successively constitute the space-scale representation of the map. These

representations and the corresponding energy density maps provicle a rich set of descriptors with

which to characterize the nlilp properties. We have drawn on analogous properties of wavelet

transforms and their application to turbulence to define a set of map measures: space-scale energy

density, global energy spectrum, local energy spectrum, and intcrmit(ency,  In addition we have

used the zero crossings in the amplitude  and energy density maps to define the physical boundaries

of map fluctuations and features. For each of these we evaluated their area, perimeter, and local

space-scale cncr,gy.  The distribution of these quantities provide a statistical measure of the maps,

which may lead to a better understanding of the physics and dynamics in the interstellar medium

and in interstellar clouds.

The Chameleon and North Pole regions have different global energy (“power”) spectra, and

this difference is a measure of the clegree  to which condellsation  has ta.kcn  place. Chameleon has

relatively more energy density at small space scales (small features) than the North Pole, but not as

much as the molecular material in the Perseus region. Tile distributions in average intensity and

average intcrmittency per feature in the two maps supports this point of view and indicates that

Chameleon has fewer low contrast features, and more higher density fragments. This result is

suggested by the much larger spread in the average intermit tency (11 ) in the small space-scale maps

of the North Pole region. The clifferences  in the global space-scale energy spectrum and

intermittcncy  maps suggests that the clouds in these two regions either have different forces

dominating their structure and/or arc at different stages of evolution.

(’), ),( /[;, ‘

Our results for the Hausdorff  dimension in the IRAS data j~ quite different from -that of

previous authors. In our multi-scale analysis the average Hausdorff dimension D as determined

from a linear fit to log P – log A (see Figures 10 and 11) ranges fron] 1.3 to 1.7 for Chameleon

and 1.2 to 1.7 for the North Pole cirrus features, with typical values about 1.45 if we neglect the 1

= O space-scales. These values are larger than the average value  of 1.25 found by Bazell and

D6sert  in an analysis of three cirrus maps. However, there was variation within each of several
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images they analyzed (see their figure 2) with a maximum ~ralue of D = 1.40 for plate 2. Dickman

et al.’s study of 100 ~m maps of molecular regions also found D = 1.25, similar to those found

for cirrus clouds. Whereas the cloud B5 studied with CO maps (Langer et al. 1993) has D

ranging from 1.3 to 1.7.

However, the strong dcpcndcnce  of D on area (Figure 12) shows

fractal  with D ranging from 1.1 to 1.8, and can not be characterized b}

hat these maps are multi-

a single scale. Chappell

and Scalo (1993) also concludecl  that the cirrus maps of several regions were multifractal. In

general D incrcascs with area reaching values about 1.8. This dcpcndcnce suggests that the

smallest features arc regular objects, probably determined by the pixelization (discreteness)

inherent in the maps, but that the majority of features obc.y a scaling law for turbulence (but not

necessarily Kolmogorov turbulence), while the largest features at Ll and la are filamentary-like

structures. Visual inspection shows these largest features consist of long single filaments and

web-like structures. The latter are likely due to the overlap of separate clouds along the line-of-

sight which appear as onc object in projection due to the lack of velocity information in the IRAS

maps. Further analysis of the turbulent nature of the ma] )S is limited by the lack of this velocity

information. What we need are hydrodynamic] model calculations which can produce scaling

laws for comparison to the observations. However, within the limitations of the data the dynamics

of the gas does not appear to be dominated by either gl avity or ordcreci magnetic fields. Our

results suggcs 4“that the forces that control the structure at large and small scales in the cirrus map

arc different. We do not find this surprising considering tile very large range  of scales and objects

contained in the lRAS maps.

In conclusion, we have explored the question of whether multisca]e  transforms can be used

to provide statistical and global measures of astronomical emission maps, and whether they can be

used to distinguish maps. We found that the Lap] acian Pyramid Transform provides an amplitude

space that can be used to distinguish maps and characterize their properties. The development of

such computational, tools is important for the analysis of the very large body of spatial and spatial-
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spectral data bases that are becoming available with currcult  radio ancl infrared survey instruments.

More work remains to bc done to derive connections between the various map measures and the

underlying dynamical forces. We expect to extend this line of analysis to other types of maps and

to regions evolving uncler different forces and energy sources.
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Figure Captions

Figure 1. Scale invariant filter bank. Filter responses, /il (k)= FO (2” k), are plotted on the left.

Figure 2a

Figure 2b

Figure 3a.

Figure 3b.

Figure 3c.

Typica] filtered signals are drawn on top of the appropriate sampling intervals in the

figure.

Contour plot of the 100 micron image of the chameleon  region (map centered at

DEC( 1950) = 12h and RA(l 950) = -800), where the axis arc in arcmin with respect to

the center. Intensity contours range from 2 x 10~ to 1.48 x 10~ Jy Sr-1 in increments

of2x lob.

Contour plot of the 100 micron image of tile North Polar region (map centered at

DEC = 900, RA = Oh and RA goes counterclockwise with 6h on the left ), where the

axis are in arcmin with respect to the center. Intensity contours range from 1.5 x 106

to 1.65 x 107 Jy Sr-l in increments of 1.5 x 106.

Gray scale images of GO, the original map, and the Laplacian  amplitude maps ~,

Ll, and ~ of the Chameleon region (clockwise starting from upper left). In the

Laplacian maps the light and dark regions are positive and negative amplitudes,

respective] y.

Gray scale images of GO, the original map, and the Lap]acian  amplitude maps ~,

Ll, and ~ of the North Polar region (clockwise starting from upper left). In the

Laplacian maps the light and dark regions are positive and negative amplitudes,

respectively.

Comparison of the 1 = 1 Laplacian  amplitude map (left pane]) for Chameleon with the

corresponding space-scale amplitude map for a wavc]et transform using the

Daubechies wavelet  four transform (right panel). The wavelet Daubechies map (in

gray scale) shows less correspondence wit]] physical structure than the Laplacian

40



l’yraIllid  Tral)sforlll  with the original map. While both transform scanbe used to

reconstruct the original map to very high accuracy their utility for identifying

structural components is different. The number scale along the axes label the pixels.

Figure 4a Space-scale energy density maps ~, Ll, 1,2, and L3 for the Chameleon region in

color.

Figure 4b Space-scale energy density maps ~, Ll, ZQ, and 1,3 for the North Pole region in

color.

Figure  5 Global energy (power) spectrum for three maps, Chameleon and North Pole 100 pm

emission, and Perseus 1 ~CO emission, a!ld a random image (top panel). For

comparison all power spectrum have been normalized to onc at 1 = O. The bottom

panel shows only the three astronomical il)lages in order to make it easier to see

differences in the dependence with 1.

Figure 6 The nLlmber of clistinct  features isolated in [Ile energy derl~ity maps as a function of

space-scale. TWO plots are shown for each region, one for all features in the maps

and the other for all features with area greater than 15 arc.rnin2,  the resolution of the

IRAS beam at 100 pm. The North Pole region  is dominated by small scale features,

with area less than 15 arcminL, which are probably due to noise.

FigL,rc  7 Average intensity versus area for positive amplitude feat urcs extracted from the LPT

transform maps for all space-scales combinecl,  ~ L,l . A log-- log fit to these data is
1=0

shown in the panels.

Figure 8 The local energy E is plotted versus area and shows the tendency for the larger

features to have a higher energy density. l~its  to log E -- log A are given in each

panel.
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Figure 9

Figure 10.

I;igurc 11

F~igure 12

Figure 13

Figllrc 14

Figure 15

Histograms of the area, intensity, local energy, and average intensity, <1>, of each

of the positive amplitude features extracted from the LPT transform maps combined

for all space-scales, ~ L,l.
[=0

Plot of log P versus log A for features in the 1 = 1 and 1 = 2 space-scale maps for the

Chameleon and North Pole regions, These plots indicate that D is a function of area

and is mu]ti-fractal.  Also shown in the figures are linear  and quadratic fits, where it

can bc seen that the lat[er  gives a much better fit to the data.

Hausdorff dimension,

log P – log A, using the

D can be considered an

D, versus space-scale derived from a linear fit to

entire range in area for features in the energy density maps.

average value for ea(.h of the maps. For both regions D has

the same general behavior with space-scale.

The Hausdorff dimension, D, derived froln a polynomial fit to log P – log A is

plotted as a function of area A for fe:iturcs extracted from three energy density space-

sca]c maps in the Chameleon and North Pole regions. These plots show that D is

multi-fracta]  in both cloud regions.

Number of features N versus Hausdorff dimension D for features extracted from the

energy density maps for three space-scales.

‘Ile average intermittence for each feature in four space-scale maps for the

Chameleon and North Pole regions. This Ineasure can be used to categorize and

identify features in the maps, for example ~:alaxies  have. large (L) at small areas,

while noise or small diffuse features have very low values of ( z).

Histograms of the area, intensity,

extracted from the LPT transform

space-scales 1 = 1 and 1 =4.

and local energy of positive amplitude features

maps of Chameleon and North Pole regions for



Figure

FigLlre

6

7

Figllre 18

Fraction of power contained in features wi(ll positive amplitude to total power as a

fL]nction  of 1 for Chameleon and North Pole regions.

NL]nlber  of features as a function of intensity I for a]] of the amplitude maps

combined. Fits to a log N – log 1 are given separately for the behavior at small and

large areas. l“hcse curves are, to first ap}u-oximation,  proportional to the mass

distribution of fragments in the maps.

Number of features versus local energy for all the fcatllrcs extracted from the energy

dcnsi(y  maps. Fits to log N – log E are givcIl in the panels.
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