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ABSTRACT

Wc analyze the properties of IRAS maps of interstellar clouds using Laplacian Pyramid
Transforms, a member of the class of transforms with multiscale properties. Multiscale transforms
provide a means to decompose images into their spatial frequency components such that all spatial
scales arc treated in an equivalent manner. The Laplacian Pyramid Transform has a number of
advantages over traditional orthogona wavelets for analyzing the properties of astronomical maps.
Here wc usc this transform to analyze the properties of IRAS 100 pim i naps of dust emission from
clouds in the North Polar and Chameleon regions. Wc derive their space-scale energy density,
global energy (power) spectrum, and intermittency. We also develop a set of map measures based
on statistical distributions of the properties of the fluctuations in the l.aplacian maps. Such
measures arc necessary to characterize large scale astronomical maps and to connect the map
measures to physical properties. All the image analysis reported here was done with a program we
developed called Astrophysics Pyramid image Processing, or APIP for short. The global energy
spectrum shows systematic differences among interstellar clouds depending on the degree of
evolution towards higher density structures. We identify the fluctuations in the cloud structure by
separat ing al 1 connected zero boundary regions in the Laplacian maps. The statistical properties of
these fluctuations are used to characterize the maps. 1 hese structures arc also analyzed with
respect to their Hausdorff dimension for evidence of the scaling relationships in these clouds. We
find that the structures within the maps are multi-fractal having different scaling relationships with
size. The spatial scaling of the features span the range from regular objects to filaments having
both linear and web-like structures, and including all fractal scalings in between. The lack of a
single scaling law is consistent with different forces driving the cloucl evolution and fragmentation

on different length scales.

Subject headings: methods: data analysis -- ISM: interstellar clouds -- ISM: individual: Chameleon,
North Polar Region




1. INTRODUCTION

interstellar clouds are inhomogeneous on amost all scales and this inhomogeneity results
from a complex dynamical process whose mechanisms arc not well understood, but is governed by
a variety of forces including gravity, magnetic fields, rotation, thermal pressure, and turbulence.
In addition, discrete sources inject energy into the clouds in the form of winds producing
systematic motions and shocks. A highly “clumpy” structure may reflect gravitational
fragmentation or the presence of turbulence resulting from the cascade and redistribution of energy
injected on different scales. In contrast a highly filamentary structure might result from magnetic
fields. Observers and theorists have sought the means to infer the oper sting forces and dynamical
processes from an analysis of cloud structure. Recently we suggested that Laplacian Pyramid
Transforms, a form of nonorthogonal wavelet with multiscale properties, could be used to measure
the structural and hierarchical characteristics of astronomical maps (1.anger, Wilson, and Anderson
1993). In that paper we analyzed CO maps of B5, asmall molecular cloLicl covering about one
square degree of the sky. Here we apply these transforms to IRAS 100 um infrared maps
covering about 300 square degrees of sky and encompassing diffuse cirrus clouds and denser
molecular clouds. We also discuss the types of multiscale measures that can be applied to

astronomical maps to characterize their structure and properties.

Several approaches have been applied to measure map properties and to extract and
characterize structural features from astronomical images of interstellar clouds. These structural
analyses include a search for connected objects using intensity contours (Bazell and Désert 1988;
Dickman, Horvath, and Margulis 1990; and, Williams, de Geus, and Blitz 1994), structure tree
analysis (Houlahan and Scalo 1990 and 1992), Gaussian decompositions (Stutzki and Gusten
1990), and multiscale transforms (1.anger, Wilson, and Anderson 1993). Mathematical measures
of global map properties have also been used, including Fourier power spectrum (Green 1993),

auto-correlation functions (Kleiner and Dickman 1987), wavelet transforms (Gill and Henriksen



1990; Abergel et al. 1995), and metric-space (topological) classification (Adams 1992, Adams and

Wiseman 1994, and Wiseman and Adams 1994).

The best known example of the multiscale transform is the wavelet transform (Grossman and
Morlet 1987; see also the reviews by Daubechies 1992 and Farge 1992). However, another form,
the Laplacian Pyramid Transform may be better suited to analyze maps or images (Langer €t al.
1993). Multiscale transforms provide a mathematically consistent way to measure map properties
and extract structural fluctuations from astronomical images. The multiscale transform has been
characterized as a generalization of the Fourier Transform, but one which, unlike the Fourier
Transform, is capable of representing a function in terms of spatial and frequency localization. A
key point to keep in mind is that the multiscale transforms respond to changes in the intensity of a
function, that is they measure the regions which change strongly on a particular scale. Because
wavelets and pyramids preserve scaling, localized fluctuarions of structures at different scales may
be easier to identify in the transformed space than in the original (x,y) space. Thus the wavelet and
pyramid transforms are wc]] suited to provide detailed information and deep insight into structure.
Wavelets have been used to analyze complex astronomical data, including: galaxy counts (Slezak,
Bijaoui, and Mars 1990; Martinez, Paredes, and Saar 1993); stellar photometry in globular clusters
(Auriere and Coupinot 1989); 13CO spectral data of the L]551 outflow (Gill and Henriksen 1990);
photometric analysis of galaxies (Coupinot et a. 1992); cosmic velocity fields using galaxies
(Rauzy, Lachi¢ze-Rey, and Henriksen 1993); fluctuations in 60 and 100 tm emission of high
galactic latitude clouds (Abergel et al. 1995); and, clustering of QSOS (Pando and Fang, 1995).
The Laplacian Pyramid Transform has been used to analyze CO images of the molecular cloud BS

(Langer et a. 1993).

Here we apply a multiscale transform analysis of infrared emission from clouds in the North
Polar and Chameleon regions using the IRAS Sky Flux plates and analyze their morphology,
fractal structure, and global energy spectrum. Onc advantage of the IRAS maps over existing CO

maps of the interstellar medium is that they cover alarge region of the sky and span scales from a



few arcminutes to tens of degrees. Furthermore, IR emission arises from all regions of both
atomic and molecular gas, while CO only traces the Ha regions. Another advantage is that the 60
and 100 pm emissions arc mainly optically thin in these maps. Their disadvantages are the lack of
velocity resolution which makes it impossible to separate different spatial components along the
line-of-sight, and the uncertainties in converting 60 and 100 um intensities to dust, and afterward,

gas column densities.

Infrared 60 and 100pm IRAS maps have been analyzed for scale-clependent morphology by
anumber of authors using various algorithms to characterize the features. All these algorithms rely
on connecting contours in the original (X, y) intensity maps (see also Williams and Blitz 1993;
Williams ct al. 1994). Bazell and Désert (1988) analyzed the fractal structure of interstellar cirrus
using the Sky Flux plates for three regions, one above and on¢ below the plane (b = +23° and
-140) and a third regionatb= -400 containing two high-latitude MBM clouds. Dickman,
Horvath, and Margulis (1990) analyzed 1RAS images of five molecular cloud complexes
(including the well known regions of Chameleon, p Oph, and Taurus), Both found a fractal
structure for the clouds and concluded that the clouds wer e highly turbulent. However, they each
found different scaling behavior, which is not surprising considering that one focused on
molecular clouds and the other diffuse clouds. Chappell and Scalo ( 1993) have analyzed IRAS
emission maps for the fractal structure in several cloud complexes. They found that all the regions
have multi-fractal scaling, indicating that there is not a universal scaling law for these clouds. Our
multiscale analysis of cirrus emission reveals amore complex structure than any of these analyses,
but is consistent with the conclusions of Chappell and Scale. Our analysis goes further than any of
these works in measuring the energy density (what Farge calls the “excitation level”) and global
energy (power) spectrum of the maps. In addition we define an algorithm for extracting
fluctuations and features in the clouds, and catalog their properties. ‘I’his agorithm forms the basis
for a set of statistical map measures which can be used to characterize astronomical maps.

First wc review the Laplacian Pyramid Transform and develop at greater length the ideas

presented in our earlier Letter. Then we present the 100 pm images of two regions for analysis




and their corresponding amplitude maps in the multiscale transform domain. This presentation is
followed by a discussion of the globa space-scale energy spectrum and an analysis of the
structures in the maps with regard to the distribution of local energy density, and intermittence, and

the fractal properties as determined from the lausdorff dimension.

2. MULTISCALE TRANSFORMS

The multiscale transform is important because the physical laws in many situations arc
translationally invariant and have the same structure over many levels o! scale. This scaling is the
source of the fractall/ f structure observed in many situations in naturc. in the physical domain,
for example, wavelets provide a useful description of turbulence which contains localized features
and hierarchical spatia scaling. The wavelet transform retains information about the spatial
structure of the flow and the transform coefficients at a particular scale will bc large for features
which vary strongly on that scale (Farge 1992). The structure of many astrophysical objects fits
into this category. In most cases the features in an astronomical map that vary on a particular scale
can be detected more readily by searching for variations in the wavelet coefficients at that scale

because the wavelet transform uses functions that span all scales.

Multiscale transforms provide a means to decompose images into their spatial frequency
components such that all spatial scales are treated in an equivalent manner. The concepts are
equally applicable to data of any dimension, where each axis represents some continuous physical
parameter such as spectra] wavelength, time, or in the case of images vertical and horizontal
lengths or angular displacements. An intuitive grasp of the idea can be obtained in one dimension
by considering the illustration in Figure 1. The horizontal axis represents a parameter such as
space and the vertical axis spatial frequency. If wc consider a signal S(x) that has been bandpass
limited by a fixed amount, then it can be represented by a uniform sequence of samples S(x;), as
set by the Nyquist sampling theorem, with no loss of information. Now consider passing the
signal through a bank of filters F, that are scaled copies of one another, such that

F, (k)= Fy(2" k), where the scaling by factors of 2 is chosen for convenience. The output of each
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filter treats the signal in a scale invariant fashion because of the scaling relationship between the
filters. The outputs of each filter must be sampled at a rate that is proportiona to the corresponding
bandwidth, hence each band is sampled at a rate that differs from its neighbors by afactor of 2, as
illustrated in Figure 1. This method of signal decomposition is the basis of all scale invariant
multiresolution representations such as Pyramids and Wavelets. Thesignal processing community

have labeled them as a specia class of subband encoding schemes.

The generality of this form of signal analysis is best illustrated by noting that biological
sensory systems also utilize it because this property is true of the images of natural objects, as well
as auditory signals including music. The spatial--temporal decomposition of images by the human
visual system is based on filters with a Q-factor of about an octave, while the auditory system
uses bandwidths that are about a factor of 10 smaller. The scale invariant nature of many physical
processes is what makes these representations important. The statistics of the signals and the
forms of the structures produced by these filters provide measures of how underlying physical
processes change with scale. The coefficients in these representations arc much more statistically
independent of one another than they are in the original data formats, which leads to arich set of

localized descriptors of images and better data compression for storage.

The number of such multiscale decompositions is large since there are many filter designs
whose scaled filter banks will cover the frequency range of interest with sufficient density to
prevent loss of information. This means there is a multitude of possible multiscale transforms
unlike the Fourier transform. The choice of which to usc is determined by factors such as
efficiency of computation, signal-to-noise ratios, information storage and the type of data analysis
one wishes to perform. In higher dimensional spaces the choices for the shape of the filter
bccomes increasingly more flexible and hence increases the number of possible transforms. The
orthonormal wavelets, which have recently received a lot of recognition, are a particular subset of
the multiscale transforms. These provide critically sampled representations with minimal storage,

as well as having some nice mathematical properties, but the constraint of orthogonality leads to



filter designs that arc not necessarily the best for many applications. There arc a number of
overcomplete transforms, such as the Laplacian pyramid, based on circularly symmetric filters,
oriented pyramids, which have “wave] et” like filters, and a recent new class with a property called

“shiftability” (cf. Strang 1989, Simoncelli et al. 1992) which may be better for image analysis.

Laplacian Pyramid transforms preceded and spurred the recent intcrest by mathematicians in
the more formalized orthogonal wavelets. In practice the orthogonal wivelets have proven useful
primarily in image data compression, while the Laplacian Pyramid has remained more useful for
carrying out a variety of image analysis tasks. Below wc review the properties of continuous and
discrete wavelets. For readers interested in more mathematically formal reviews of wavelets we
recommend Daubechies (1 992), Farge ( 1992), and Wickerhauser (1994) while for less formal
discussions see Martinez et al. ( 1993) and Press et al. ( 1993). Additional information on Pyramids

can be found in Strang (1 1989), Simoncelli et al. ( 1992), and Andre-son and Rakshit (1994).
2.1 Continuous Wavelet Transform

A Fourier transform decomposes a function f(x) into a linear set of trigonometric basis

functions (sines and cosines) with amplitudes defined by their Fourier coefficients,

Fy=@my ™2 [T fne™ tdx (1)

Unfortunately ¢'* oscillates forever and the information content of J(x)isdelocalized among all
the spectral coefficients f(k). Furthermore, it is difficult to identify localized features in x space
by searching through the k space because the Fourier Transform spreads power throughout all of
k space. Such transform properties are not very useful for real astronomical images which contain
a great deal of localized structure. One way to achieve localization is to usc a window to isolate the
portion of the frequency or spatial scale of interest (e.g. w(x)=1, 0<x <1, and zero elsewhere;

or the Gabor window transform - see Martinez et al. 1993).



In contrast to the windowed transform multiscale transforms usc a variable window size that

covers al scales and localizes information in both space and scale. The basic continuous Wavelet

transform has the form

F(s,x") = JR F(x)yg(x,x")dx (2)

where the analyzing functions ¥ (x, x") are generated by continuous translations and dilation of a

“Parent” function

Vi 2 12 W( - x) ©)

N
The dilation factor s spans the range of scale-space, X’ moves the center of the localized wavelet,
and R is the interval over which the integral is taken. (FHere we restrict the representation to one
dimension.) The condition that the mean value of the “Parent” function over X must be zero,

J'R y(x)dx = 0, along with alocalization constraint, makes these functions have alocal oscillatory

shape, hence the name Wavelets. The localization is related to the admissibility condition,

QI EOP I dk <oo 4

where (k) is the Fourier Transform of w(x)
v = 2! [pwxe ™ ax (5

The best known examples of a continuous wavelet transform in astronomy is the Marr, or

“Mexican Hat”, wavelet, which in one dimension has the 1 orm,
=17 22 ©)
8(z) =(17 ;2y,~27/2,

wherez = (X — b) /sand s and b are the dilation and translation terms, respectively (cf. figure 1

in Martinez et a. 1993).

Wavelets have the useful property that they preserve scaling behavior and are sensitive to

signal variations but not constant behavior. If the function is smooth locally then the wavelet




coefficient will not vary much, whereas it will change significantly for large or singular behavior in

f(x). The Fourier Transform is contained in the Wavelet transform and remains useful for
harmonic analysis or when local information is not needed. Furthermore, the wavelet coefficients

can also be defined in terms of the Wavelet transform of the 1 ‘ourier coefficients,
Fax) [ f Wi (k)dk (7)

analogous to filtering f’ (k) with afilterbank defined by ;.. k). The original function can be

reconstructed using an inverse transform,

F(x)= ng."[\) F(S’x’)d’s( x,x")dx’ds 8

The reconstruction imposes the following condition betwecn the analysis functions y/ (x, x") and

the synthesis functions ¢, (x, X’)

-[R W (x,x)0 (x7, x")dx” = 6(s - s7)6(x - x”) 9
For the class of orthonormal Wavelets ¢, (x, X’) = 1//: (x, x).
2.2 Discrete Wavelet Transform

The discrete Wavelet transform can be thought of asaset of samples of the continuous

coefficients (s, x), taken at the scales s = 2/ and points x = n, which we denote as F,(n).

While the scaling between levels need not occur by a factor of 2, this scaling is generally always
used because of the computational advantages it provides. The equations for computing the

discrete coefficients and their inverse arc
Fl( n) = jRF(x) Y (x n)dx (lo)

F(X) = X F(m)g;(x - n), (12)

l,n

where the translational invariance is made explicit by using (X —n) in place of (x, n).
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The reconstruction of F(x) from the coefficients, or amplitudes, 17‘, (n), can be as precise as

one requires if the sampling rates satisfy the appropriate requirements, as described in detail by
Daubechies ( 1992). An intuitive notion of this transform can be obtained by thinking of the
analysis functions y,;(x) as a bank of filters, which are all scaled copies of one another with a
bandwidth of about an octave. The outputs of these filters are sampled at a rate that satisfies the
Nyquist criterion, leading to a sampling rate that goes inversely with 1. The synthesis functions,
¢;(x), that provide the means to reconstruct the original function can be thought of as interpolating

functions, where their form depends on the input filter analysis functions.

Usually the input function is provided as a set of samples (asin adiscrete image) rather than
as a continuous function. In order to apply the Wavelet i ansform one should use the information
about how the samples were gathered to create the appropriate interpolating function to
resynthesize the input. This information is seldom, if cver, used. instead one amost always
implicitly assumes that F(x)= }:l.Fié(x—i) and then applies Eq ( 10). This leads to a set of

discrete filtering operations to compute the Wavelet amplitudes F;(n) of the form

Fy(n) =Y w,(i = n)F ()
i

F(iy= Y, ¢;(i—m)F(n) (12)

Ln
2.3 Fast Discrete Wavelet Transform

The direct computation of this discrete transform (Equation 2) is computationally expensive
because the size of the filters becomes very large at low frequencies. The fast discrete Wavelet
transform reduces the computation time by decimating the data at different stages of filtering. This
approach is based on the observation that the first band, 1::0, contains most of the information in
the top octave in the frequency domain, while all the rest of the coefficients, [ > 0, represent the
information in the lower half. Thus by starting with the highest frequency one can extract this

information at successive stages of analysis and work with progressively fewer samples. A
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recursive set of rules are used, which starts with a set of input samples, Go(i), and proceeds with

the following operations

Fytny =3 w(i—2%n) G (i)

Gr1(m) = 3, 0(i = 2%n) Gy (). (13)

where v and @ arc equivalent to high and low pass filters. The highpass filter y and low pass
filter w arc carefully chosen to make sure the resulting ;;(n) create a representation of a discrete
Wavelet transform. The factor of 2 on the right is used to indicate that the samples on the left are

taken at half the density of those on the right (called decimation). This operation is repeated in

increments / + 7 + 1, until there are only a few samples left in the last G;, where edge effects will
dominate the results. Because the number of samples inG;ishalved at each stage, the total
computation required to carry out this procedure in one dimension scales as
1+1/2+1/4+1/8...=2 This clearly results in handling each level of resolution in an

equivalent fashion.

The fast discrete Wavelet transform has proven to be very useful in compressing data that has
al/ f gpectral distribution, but there are problems in applying this technique for data analysis.
First of all the subsampling causes appreciable aliasing, which is acceptable for data compression
since it is encoded, and hence can be removed. There arc, however, potential problems when the
goal isto compare a localized measure of the variance aci 0ss scale and space. Aliasing can cause
the local squared amplitudes to change by 25 percent, or inore, when the input image is moved by
a single pixel. A second problem with the discrete orthonormal Wavelets is that no one has
discovered how to create them in dimensions higher than 1 other than using product functions.
Thus, in 2D the filters utilized in each stage of Eq (13) are of the form y(x)y(y), y(x)w(y),

w(x)y(y), and w(x)w(y) where the last pair is used to create the cascading low pass versions

G,. This results in the transform being sensitive to orientation.
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2.4 Laplacian Pyramid Transforms

As indicated above one of the mgjor difficulties with the discrete orthogonal wavelets is that
while their basis functions display shift and scale invariant properties, the coefficients in these
expansions do not. in other words, the information in the wavelet subbands is unstable under
trandlations of the input signal (cf. Strang, 1989; Simoncelli et a. 1992). This limitation may be
problematical for signa and image analysis. In brief, these difficulties arise because the
orthogonality requirement is also a constraint of critical sampling and this produces aliasing in
discrete transforms. That the power within agiven scale is not invariant to translations of the input
which should bc enough to make one wary in applying discrete wavelets. This problem also exists
for the scale and orientation parameters in complex wavclet transforms, so that two-dimensional
wavelets do not behave well under rotations and dilations of the input signal. Laplacian Pyramid
Transforms overcome the problems associated with wavelet transform analysis of images by
relaxing the critical sampling constraint, that is orthogonality, and by sampling signals at the
Nyquist sampling rate. Simoncelli et a. (1992) have defined transforms that are stable under
trandlations as "shiftable" (other operations have analogous propertics of "steerability" and
“orientability”). For pyramid transforms the coefficients in the expansion display shift and scale

invariant properties.

The Laplacian transform, which preceded the orthogonal Wavelet transform in image

. analysis, largely solves the two major difficulties discussed above (Burt and Adelson 1983). The

Laplacian transform is an overcomplete, non-orthogonal Wavelet transform, which arc formally
called frames by mathematicians. The structure of the transform is similar to that of Eq (13), and

in two dimensions is given by
Giyq|n, m]= H* G| 2%n,2% ] Low Pass

Li[n,m]=G)[n,m] - H*G|n,m] Band Pass  (14)

13
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where H isa smoothing filter, 1 labels the level of the filtering, Go is the original image, H* G, is

uscd to denote a low pass convolution, and after each stage of filtering 1isincremented [ — 1 + 1.
(The notation F in Equation 13 comes from the reference to the “fast” wavelet coefficients and L
in Equation 14 to the Laplacian coefficients). If the lowpass filter H is circularly symmetric, i.e.
Gaussian-like in shape, then all orientations are handled in an equivalent fashion. Since the band
pass components arc created by simply subtracting out the low spatial frequencies at each stage, the
filter looks very much like the Laplacian operator. The set of bandpass, or 1.aplacian, coefficients,
L;[n, m] from 1 = O to any level N, plus the next lower lowpass filter, or Gaussian, G ., can be
used to reconstruct the original data set. Surprisingly this is true for any filter, H, one chooses,
but for the purposes of analysis it is important to use filter designs that arc not only circularly

symmetric, but also do agood job of reducing aliasing.

The mgjor difference between the Laplacian Pyramid transform and the fast discrete Wavelet
transform is that in the former, the bandpass components are nor subsampled, while the lowpass

components are subsampled. Since these transforms are utilized on data setswith a1/ f structure

there is always a considerable amount of low frequency power entering into the bandpass

components, L;, that will become aliased during the subsampling. Conversely, thereislittle high

frequency information to be contaminated by subsampling in the lowpass versions. The number of
coefficients created by this procedure in d dimensions is equal to
141729417229 417234 = 1 /(1 —29), which is 2 in ID and 4/3 in 2D. The overhead in

higher dimensionsis even less.
2.5 Gaussian and Laplacian Coefficients

There is another way to view the Gaussian and 1.aplacian coefficients that makes them

special. The process of low pass filtering is a localaver aging process, hence the G; represents

local mean values of the original function averaged over alength scale = A 2!, where A. is the

size of the pixel in the original data. The Gaussian Pyraniid consists of taking the original image,
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labeled Gy, and generating a series of lower resolution images, Gy, by recursively lowpass
filtering and subsampling by factors of 2 along each dimension, commonly called decimation by

the digital processing community,

G{l+l} = Decimate (H*Gl),

where H* denotes a lowpass filter operation, This pyramid is not a representation of the data set as
are the other pyramid transforms, but it is a very powerful tool for efficiently computing the mean
values of map data on multiple scales. 1t is also an essential tool used in coarse to fine search
strategies. The process is extremely efficient for computing these averages over large length

scales.

The Laplacian components on the other hand are computed by taking the difference between
each value and the local mean resulting in a quantity which is the deviation from the local mean.
Laplacian pyramids arc created by subtracting successive stages of the. Gaussian pyramid. These
Laplacian pyramids are non-orthogonal, overcomplete scale invariant representations. They can be
viewed as providing a measure of how the signal deviates from the local mean on multiple scales.
The version of the Laplacian Pyramid used here is called an FSD (Filter, Subtract, and Decimate)

pyramid (cf. Van der Wal 199 1; Anderson and Rakshit 1994) which was also described in Langer
et a. (1993). In the FSD pyramid we start with the original image, designated as G (x, y), and

apply the following rules recursively to create a sequence of lowpassimages (or Gaussian levels)

G; (x, y) and bandpass images >r Laplacian levels) 1, (X,)):
G,H = H*G; Lowpass Filter}
L= G- Gy, {Subtract }
G, = {Decimate} G, (15)

The filter operation H* G, involves convolving the image G; with alowpass filter H. In this

paper we will use a separable filter, H(x, y) = h(x)h(y), and adopt a five tap filter for h(x) having
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the tap values 1/16, 1/4, 3/8, 1/4, 1/16, which produces an approximately circularly symmetric

filter in the spatial {frequency domain. The Laplacian components, L;, arc computed by subtracting

the low pass version from the unblurred one at each scale, This operation is equivalent to filtering
with a“Mexican hat” or difference of a “Gaussian-like” shaped kernal. The blurred version, G, is
then subsampled by throwing away every row and column. This declination is justified because
the lowpass filter reduces the spatial frequency content such that little aliasing is introduced by this
process. Typically the final level N is set by stopping the process when the smallest dimension of
the array G4 (X, y), would be no smaller than eight. Thus the Gaussian and Laplacian Pyramids
provide the local first order simple statistics of mean values and variances, respectively, at each

point and scale in the data set.

As discussed above it is the scale invariant nature of many physical processes that makes
these representations important. The statistics of the signals and the forms of the structures
produced by these filters provide measures of how underlying physical processes change with
scale. The coefficients in these representations are much more statistically independent of one
another than they are in the original data formats, which leads to arich set of localized descriptors
of images. The number of multiscale decompositions is large since there are many filter designs
whose scaled filter banks will cover the frequency range of interest with sufficient density to
prevent loss of information. This property means there is a multitude of possible multiscale
transforms unlike the single basis for the Fourier transform, The choice of which filter to use is
determined by factors such as efficiency of computation, signal-to-noise ratios, information storage
and the type of data analysis one desires to perform. When one goes into higher dimensional
spaces the choices for the shape of the filter becomes increasingly more flexible and hence
increases the number of possible transforms.

Reconstruction of the original image can be achieved with an inverse transform from the set

of L,and G,,; amplitudes,

Gy [n, m] = Lj{n,m] + (Expand} Gy [n,m]
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G[n,m] = Lj[n,m] +- { Expand} (l,[+1[77,m| +Gypp[n,m))

N
G[n, m]= > { Expand}' L;[n, m] (16)
i=l

where the { Expand } operator increases the number of rows and columns by a factor of 2, inserts
zeros in these, multiplies the original values by four, and smoothes tile results with a low pass
filter. The original image is generally reconstructed with some loss of information because some
of the high frequency information is removed by the { Expand} operator. Part of this information

can be recovered from low pass filtering the Laplacian,
Glz L,+H*L, + {Expand) Gl+l (17)

The reconstructed Go is reproduced to better than five percent on a pixel-by-pixel basis over the

entire image and typically is lower than 2 percent (cf. Anderson and Rakshit 1994 for an

evaluation of the implementation of different transforms for reconstruction).

It is aso worth noting that
(G))=Gyy local average mean, and

<l%> = <(G, Gy )2) local averaged squared invariance, (18)

and the complete set over al ! leads to measures of these statistics at all scales.
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2.6 Multiscale Transforms and Map Measures

Generally it iseasier to solve the equations characterizing a physical system by choosing an
appropriate basis function that represents the underlying structure and symmetry. In the cases
where filters are used to extract solutions, or information, the choice of filter (Or transform)
introduces its own response to the transform coefficients. In hydrodynamical systems the variety
of flows and structures is very large and one does not know apriori what type of filter to choose.
We are faced with a similar problem for anayzing interstellar clouds where the equations
governing the evolution of the medium arc those of a rotating gaseous fluid, partially ionized,
containing magnetic fields, and gravity. If interstellar clouds have simple wave motions then it
may be appropriate to use a Fourier Transform to describe the structure as it yields well defined
wavenumbers. However for vortices, turbulence, chaotic fields or hierarchical gravitationa
fragmentation the Fourier Transform is not a good transform to characterize structure. In these
cases multi scale transforms arc useful for analyzing turbulence or hierarchical fragmentation

because they retain information about localized spatial structure and scalings.

Wavelets arc useful descriptors of structure because they arc: 1) linear; 2) covariant under
translation and dilation; 3) differentiable, and, 4) space-scale invariant, i.e. conserve locality.
Furthermore there is no loss of information in the wavelet transform and they conserve energy
globally, so that the total energy can be written in terms of the energy at different scales. In
addition, they can measure the local regularity of a function and characterize its functional space,
thus allowing one to characterize fractals and multifractals. Farge (1992) defines a number of
uscful functional relationships for describing fields with turbulence, or “turbulent” like properties,
based on wavelets. These arc particularly useful measur cs and here we give the corresponding

formulations for the Laplacian Pyramid transforms.
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26.1 Space-Scale Global Energy Spectrum

The space-scale energy density in 1-D is

£1(x) = FE(x) (19)

while the space-scale global energy is given by

E= “F(x)]zdx =3, Zf*‘,(n)f?k (M) nk oy, (20)

In k.m

where Tin, km = ¢.l*(x = n)¢;(x — m)dx. For a complete and orthonormal Wavelet

rl,n,k,m - f,qkan,m thus

E=Y ‘F,(n)|2.

l.n

We now identify the space-scale global energy (or power) spectrum as thc sum only over n
. N
Ii[ = zll‘l()l)|
n
and notethat I =Y El, For the LPT non-orthogonal representation the overlap factors are small
!

and so we use the approximation

=3 [Lmf (21).

n

Note that £(x) = Lj(x) = square of local variance. Thus these energy measures are realy
! /

measures of the variance at different scales.
2.6.2 Intermittency

The departure of the energy at each scale from an even spatia distribution in the map is called

the local intermittence, {; (X, y f ). Intermittence is defined by,
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(22)

|L,(n)|i_

1,(X) =

(23)

<|L,(n)'2>

for the waveletand LPT cases, respectively, where (.... ), is an average over a the map. If all

locations have the same energy spectrum, as is the case for the Fourier energy spectrum, then

l;(x;,y;) = 1. On the other hand if ;(x;,y;) = [ >>1 then at space-scale 1 the position (x;¥5)

contributes 3 timesas much as the average to the Fourier energy spectrum.
2.6.3  Space-Scae Contrast

Another important measure is the space-scale contrast, which is a logarithmic derivative of
the wavelet coefficients (Farge 1992). It is particularly useful for detecting very weak coherent
structures or embedded coherent structures, where traditional threshold techniques do not work

very well (such structures do not have well defined boundaries). The space-scale contrast is

c,(n) = M (24)
o

|L,(n)|2
C(n)= I
,(n <|G,(”)|2>

(25)

for the wavelet and LPT cases, respectively, and where #; (x) = jé F(I’, x)dI" arc the amplitudes for
the Gaussian level G at scale 1. This measure is the ratio of the local squared variance over the

loca mean value.

Finaly, it is possible to calculate the local scaling and singularity spectrum with an

appropriate choice of multiscale transform (Farge 1992). These can bc used to characterize the
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fractal and multi-fractal properties of a function. Here wc do not calcul ate these properties directly,

but instead analyze the local scaling using the Hausdorff dimension of the fluctuations.
3. RESULTS

To study the properties of infrared dust emission from clouds we have chosen IRAS maps of
the Chameleon and the North Polar regions (centered at RA( 1950) = 12b and DEC( 1950) = -80°
and RA(l 950) = 0h and DEC( 1950) = 909, respectively) where line-of-sight confusion is
minimized. A rcasonable first approach isto restrict the multi scale analysis to the 100 ptm maps
and thus reduce the dependence of the results on specific dust models. We used IRAS Sky Flux
maps each measuring 12.5° on a side with 500 x 500 pixels. Although the pixel size in these
maps is 1.5 arcmin the actual angular resolution is probably closer to the 3 or 4 arcmin resolution
of the IRAS instrument at 100 pm. Figure 2 is a contour plot of the 100 um images and shows the
highly complex filamentary and globular nature of the cmission plus small nearly “point-like”
extragalactic sources. These maps show a great deal of structure on all scales and the variation in
emission is either due to increased column density, changing dust grain distribution, or the

presence of heating sources.

To produce the results in this paper we have used a package of programs that we developed
under NASA’s Astrophysics Data Program (ADP) called Astrophysics Pyramid Imaging
Processing, or APIP. This package currently resides at 1’AC and will be available to the general
astronomical community in the near future. APIP contains many more multiscale transforms,
image analysis tools, and map descriptors then used in this paper. We intend to describe these in a

future publication. . =7/, i

ALNR IR CATA G

3.1Multiscale Transform Images

The multi scale 1.PT anal ysis of the 100 ptm images generates an amplitude map at each space-scale

(one for each of the basis functions). These are designated 1, with 1 = O to 5 covering the space-

scales, A, = 2’/10, corresponding to 1.5’ to 48'. In addition there is one Gaussian map remaining
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after filtering, G, (the original image is labeled Go). As discussed above the Cl are mean values
computed over regions that decrease in resolution by factors of 2 and the Z, provide the local
deviations (fluctuations) from these multiscale values. The L;images represent the detailed
information in the original m.ap and have equal positive and negative areas ( Zi,j Li(x;, ;) = 0O).
The final Gaussian map, G,, which has a resolution of 96’, is smooth and positive definite over

the map. Figures 3a and 3b shows some of the Laplacian amplitude maps and the original IRAS
map, Go, in the form of gray scale images. 1t can be seen that the most prominent features in the
original IRAS 100 um maps stand out clearly in the different scale-space maps, separated at
different scales. More important, however, is that many features which arc not readily evident in
the original maps are prominent here, especially small structures (including several galaxies and
some residual striping evident in the 1 = O and 1 maps). For comparison Figure 3¢ shows a
discrete wavelet transform of the Chameleon region for / = 1 using the Daubechies wavelet four
calculated in two dimensions (see Daubechies 1992 and Presset al. 1993). Note that the
Daubechics wavelet amplitude image has a weaker correspondence between the original image and
the transform amplitudes. This difference illustrates the care that must be taken in the choice of

“filtering” to analyze maps.

3.2 Global Space-Scale Energy Spectrum

The space-scale energy density ¢;(x;, y;) isthe starting point for several important measures
of the map properties discussed above. We generate g, (X, y,) by squaring the amplitude for each

pixel of the L, (x;, y i ) map and some examples arc shown in Figure 4 in color several (thesearein

their decimated form and are smoothed for display purposes). The simplest measure is the global
energy spectrum which helpsto classify the map properties by giving the power distribution of the

entire map at different scales.

We have calculated the global space-scale energy spectrum £, for the entire 12.5° x 12.5)

area of the maps of Chameleon and North Polar regions. These are plotted in Figure 5 along with
E; for arandom image and for al3CO integrated intensity map of the Perseus region (Langer et al.
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1995). The random plot allows us to compare the 100 pm emission to that of an image with no

large scale structure. (For purposes of comparison the energy spectra have been normalized to 1

by dividing by the values at £.) It can be seen that for the random image I falls off very sharply
with 1, £ <1 over the range 1 = O — 3. In contrast the infrared and '3CO emission maps,
which trace coherent structures of the cloud, increase by an order of magnitude from /=0 — S.
Typically at the smaller scales, I = O — 1, one has to consider the effects of noise in the maps on
the power spectrum. The noise contribution will depend on the overall signal-to-noise in the maps
and the extent of noisy or emission free regions. For these IRAS maps it is not significant on
global scales (summed over the entire map) but can be important locally depending on map position

(cf. Abergel et al. 1995).

Closer inspection (Figure 5 lower panel) shows significant differences among the global
space-scale energy spectrafor these regions. The North Polar region, which is the most diffuse of
the three regions, has the steepest spectrum and thus relatively less of the power is in small
features. The Chameleon region has more gas in higher density material and this characteristic is
reflected in the flatter spectrum. Finally, 13CO traces much higher density material on average than
100 um emission, is more compact, and is generally restricted to the dense interiors. This
selectivity is apparent in the Perseus spectrum which is very flat at small scales (/=0 — 1) and
peaks at 1 =4. It shows the tendency for clumping to take place at small scales and for most of the

power, and hence most of the material, to be in features with space-scale size = 16 arcmin.

3.3 Statistical Map Properties

There is a wealth of information for each of the maps, much more than can reasonably be
presented here. Obviously there are so many fluctuations/features, especially at small scale, that it
is impossible to study each one in detail. Instead we have opted for a statistical approach for
understanding the properties of each map, To catagorize and compare maps wc need to develop

local measures of the images. The starting point for this approach is the space-scale energy density
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e(x;,y i) shown in Figure 4. To develop a descriptor of the maps we first need to identify and

categorize all the distinct features in these maps (one for each space-scale. /).

Astronomers have generally relied on techniques to find features in astronomical images,
such as thresholds and other filtering methods, that apply to sharp contours. However, molecular
cloud structures, fluid flow, turbulence, etc. have coherent structures that do not have sharp
boundaries. In these cases multiscale transforms provide a better approach because of their
filtering and scaling properties. Techniques that extract interstellar cloud features using contours
generated by cutting the original intensity maps at constant amplitude have drawbacks. The
contours arc generally poorly defined because clouds most likely have features embedded on a
range of scales, In Section 2 we discussed how multi-scale transforms are sensitive to variations
in the function but respond only weakly to slow global variations at their particular scales. In the
infrared maps the features at each scale are embedded onc within the other, and/or superimposed
along the line-of-sight. The Laplacian amplitude maps measure the localization of features on

different scales at each position. Therefore these features should be separated by their space-scale

transforms into the different Laplacian amplitude maps, L,, and energy density maps, &;.

The amplitude of the transform coefficients measures the variations in the function at a
particular scale and position. Thus the transition from negative to positive amplitudes, that is the

zero boundaries in the transform map (Laplacian amplitudes) at each scale (i.e. each Laplacian
map), shoulddefine the regions of localized features in, Z,(x;,y;). Note that a closed zero

boundary in the Laplacian amplitude map is also a zero boundary in the space-scale energy density

map ¢;. Thus identifying the closed zero boundaries in the Laplacian or energy density maps

provides a well defined algorithm for isolating separate space-scale fluctuations.

We can identify the different map features by finding all the zero boundariesin L, (xi, y ;) or

El (x;, ;). The zero boundariesin L;(x;, y; ) can easily be found from the crossings from positive

to negative amplitudes, which is computationally simple for discrete images. However, in practice

the corresponding zero boundaries in el (xi, y;) do not exist because of the discrete nature of the
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amplitude of the pixels (i.e. very few pixels actually have a value of zero). Instead we can either
find the zero crossings in Z;(x;, y;) and project them onto the &(x;,y;) map or find an

approximate solution by cutting the €/(X;, y ;) map with a constant plane having a small positive

value. This threshold will isolate the features in €; (x,, y,) space. (For each space-scale image we

use the discrete pixel images and not those in Figures 3 and 4 which have been smoothed for

display purposes). The derived map features can be cataloged in terms of their properties at each

scale 1. number, N,, perimeter, Pi, area, A, where i labels al] (he isolated features in the maps.
The local energy spectrum, E; ;,, is given by
By, » 0000 y)f dudy
Q. (26)
where ¢;(x, y) = amplitude of the Laplacian basis function for space-scale ! at (X, y). The
integration is taken over the zero boundary €; of each feature labeled with the subscript i where
the sum is over al pixels n contained within the boundary £2;. Note that the local energy

spectrum is not the same as the global energy spectrum or local energy density. Instead it is the

portion of the global energy at space-scale A, of afeature within boundary €2;.

In addition wc have found the following two quantities, integrated intensity and average

intensity useful for identifying noise features and extragalactic objects.

intensity: I ;= §o,(x,y)dxdy (27)
Q;
Average Intensity: (I,,,-> = A7 ﬁ @1 (x,y)dxdy . (28)
Q; '

3.3.1 Number of Features

There arc two practical problems with identifying a fluctuation or feature in the maps, one
associated with noise and the other with the pixel size. Noise in the original maps will result in

regions of positive and negative amplitude in the l.aplacian images covering small areas, especialy
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at the smallest scales. These will be extracted as a feature by our zero crossing algorithm.
Furthermore, while the pixel size in our mapsis1.5arcniin the resolution of the IRAS Sky Flux
images at 100 pum isroughly 3 to 4 arcmin so that some features with small areas may not be real.
We can eliminate almost all of the noise clumps by considering only closed features with area, A =
15 arcmin’corresponding to the IRAS 100 m beam (see also the method discussed by Abergel et
al. 1995). This approach significantly reduces the number of small noise features that are extracted
by our feature finding algorithm. In other maps where the pixel size equals the resolution we can
still set alower limit on area. However, as the correct choice cannot be exactly known, some rea
but small features will be excluded. Map regions with poor signal-to-noise have the worst

problemsin this regard.

The number of distinct features in the energy density maps arc plotted in Figure 6 for two
cases: (1) all fluctuations (pixel area >2,25 arcmin2), and, (2) only for features greater than the
IRAS resolution (area > 15 arcmin?). At large space-scales ( /> 2) the two regions have a very
similar number of features, whereas at the smallest space- scale the North Pole region has roughly
twice as many features as the Chameleon region. The majority of featuresin the 1 = O maps (> 80
percent) have very small areas ( <15arcmin2) less than the resolution of the IRAS Sky Survey
maps and are probably noise. If even a modest fraction of them are real then the majority of the

smaller features in the space-scale maps are weakly emitting, low density fragments.

The average intensity, (1), can also be used to eliminate features produced by noise in the
original images. In the JR cirrus maps (I) tends to fall within a fairly well defined range for most
features with good signal-to-noise, while noisy regions with poorly defined features have small
values of (I). We tested this assumption by inspecting (I) in regions with very little dust
emission (poor signal-to-noise) and then chose an average value of (1) as a threshold to decide
whether a feature anywhere else in the map isreal or not, In the IRAS maps where the signal-to-
noise is generaly very high amost al these low amplitude features are eliminated from

consideration just by our constraint on the minimum area (> 15 arcmin?). We have also found (I)
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to be useful for identifying features that may not be cirrus clouds, for example galaxies in the IR

maps stand out as having much larger (7) than average at small scales.

Figure 7 shows the relationship of (J) with area for Chameleon and North Pole regions only

for positive amplitude features and for A;>15 arcmin®. Note that (/) stays in a fairly narrow

range and tends to increase with area. Several features appear clearly in both regions for small
areas, having about an order of magnitude larger value than average. Most of these positive
amplitude features can be identified with galaxies, they have sharply peaked emission over a small
size. Another set of points have very small{I) at small to modest area, especialy in the North
Pole maps, These are either remaining noise features or arc regions with low column density, and

perhaps represent diffuse gas. They only make up a few pm-cent of the features.

Another problem inherent in the analysis of the prop erties of the fluctuations is the discrete
nature of the pixels. In calculating the perimeter and area wc follow the boundaries of the pixels
(squares in this case), whereas the real cloud features are continuous boundaries. In this case the
perimeters and areas will be overestimated, with the former suffering more severely. For example,
adiagonal line will be covered by a diagonal of pixels and [racing the edges of these defining pixels
overestimates the length by /2 (an average over al angles of inclination produces an average
overestimate of 4/m). The overestimate of the area will be small for regions covered by many
pixels, but can be roughly a factor of two for regions covered by only a few pixels. In this paper

wc have not attempted to correct for the discrete nat urc of the boundaries.
3.3.2 Distribution of Local Energy

The local energy of all the fluctuations versus areais plotted in Figure 8 for all of the space-
scale maps combined and shows that local energy grows rapidly with area, E~<AThe larger
features have more local energy not only because they are larger but because the larger features are
intrinsically more intense. The smaller features contain less emission, less concentration of

material and/or are colder. A plot of their number distribution shows the peak in the local energy
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distribution for the North Pole region is much less than that for Chameleon (Figure 9). Both

regions have features with very large, but similar, values of local energy. The North Pole region is
cut off more sharply at small values mainly because of the truncation of small area features which

arc more prominent in this region.
3.3.3 H ausdorff Dimension

One measure of the scale dependent morphology, or fractal structure, of the cirrus clouds is
the Hausdorff dimension, D, (cf. Bazell and Désert 1988, Dickmanet a. 1990). Idedly, the
geometrical structure and the scale dependence provides information about the forces at work in the

cloud. D isdefined from the area-perimeter relationship AV2= kPP 1o be

p=p2loel (29)
dlogA

Most authors use a linear fit to a plot of log(perimeter) versus log(area) where the slope
yields D / 2 and the intercept equals —D(log K). Regular geometrical objects (circles, ellipses,
squares, etc. ) al have D = 1 (i.e. the same scaling) but different intercepts (i.e. K depends on
shape). The scaling relationship expected for Kolmogorov turbulence (incompressible,
homogeneous, isotropic turbulence) is D=4 /3 (see the discussion by Dickman et al.).
Filamentary structures that scale only with length, on the other hand, have D = 2, as would be
characteristic of gas supported by ordered magnetic fields. We have evaluated the perimeter-area
relationship for the energy density maps using the features derived for the localized energy. In
Figure 10 we show plots of log P — log A for the space-scales 1 =1 and 2 for both maps. D
derived from a linear fit to all of thelog P —log A graphs is plotted in Figure 11 as a function of
space-scale 1 and the corresponding fits are shown in Figure 10. The value of D islarge at small

space-scales and decreases at the largest scale.

It isreadily apparent, however, that alinear fit does apoor job of matching thelog P —log A
plots at small space-scalesin Figure 10. Closer examination shows log  —log A isnonlinear and

thus there is no single scaling relationship, rather the IRAS emission is multifractal for both map
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regions. We find that a polynomial is required to fit the data for small space-scales and these arc
shown for / = 1 and 2 in Figure 10. At larger scales (for / = 5 and, sometimes / = 4) only a linear
fit can be made because there are not enough features in the larger scale maps to make an accurate
polynomial fit. Most of the variation in D is due to changes in the scaling relationships and the
structural nature of the objects embedded in the images, but some is due to the properties of the
filters and the use of discrete pixels. For the very smallest arcas the only possible perimeter-area
relationship is that for regular geometrical objects because one to three pixels can only combine to
make squares, rectangles, etc. all of which scale with dimension D = 1. Furthermore, the very
largest areas possible at small space-scales will be filamentary or web-like because we use
separable filters H(x,y) = h(x)h(y). As discussed above filaments are extracted with H(x,y)
wherever aregion varies significantly in only one dimension. The scaling for filaments yields a
value of D approaching 2.

The relationship of D versus A derived from a polynomial fit for equation (29) is shown in
Figure 12 for a few maps. The smallest objects remain somewhat regular, the largest filamentary,
and those in between have a fractal-like geometry. We calculated the number of features in each
energy density map as a function of the fractal dimension D. As shown in Figure 13 N(D)
decreases with D and most of the features in the maps (excluding 1 = O) have either regular
structures, D = 1, or turbulent structures, D = 1.2 — 1.4. Only few features have the characteristics

of filamentary structures with a nearly linear scaling.

3.3.4 Intermittency

To measure the degree of localization of energy in the IRAS maps we evaluated the intermittence

and characterized it locally over regions similar to those defined in the energy density maps,

(14) = ff1(x,y)dxdy (30)

]

We isolated all connected regions above a constant planc defined by (1,(x;,Y})) 20.25 for small
space scales and <Ll(x,-,y,)>22.0 at 1=4and5. The different threshold values are required
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becausce the large space-scale maps merge into very few features at low threshold due to the

discrete nature of the pixels. Severa of these distributions are shown in Figure 14. In the
Chameleon maps it can be seen that for ( 11,,-> most fluctuations have small values of less than one

over alarge range of area, while a few features have very large values. The smaller fluctuations
tend to cluster around a constant value with(1;) less than one. Somec features, most likely

extragalactic, have very large values of (1;) at small arcas. For the larger space-scales the

distributions tend not to have much correlation. Thereisaslight trend in most of the maps to have
the average intermittency increase at large areas. However, these features may not be distinct

objects as many of them are duc to overlapping emission fi om clouds along the line-of-sight.

3.3.5 Area and Intensity Distributions

To gain further insight to the properties of the Laplacian amplitude maps wc have evaluated
the distributions in A, 1, and E for each space-scale. Differences between the Chameleon and
North Pole regions are illustrated in Figure 15 for two scales, / = 1 and 4, corresponding to the
small and large scale structures. For I = 1 the distributions for arca, intensity, local energy for the
regions are similar in shape, but the North Pole tends to have (on average) smaller features, lower
intensity and local energy, yet many more features at small scale. The distribution in area shows
that the number of features decreases significantly with increasing area and that only a few features
are very large. It might seem surprising at first that a space-scale of only 3 arcmin would produce
a few features with areas of order 104 arcmin?, however the multiscale filters (here the separable
filters H(x,y) = h(x)h(y)) will produce a response as long as the intensity varies along one
dimension. (We intend to report on the use of orientablc filters which should not produce such
features, in a future publication.) Thus long filamentary- or thread-like structures will be extracted
with large areas but small scalesin only one direction The Chameleon and North Pole maps tend
to exhibit the same behavior at large space-scales, as indicated by the 1 = 4 distributions, that is

they are broad and flat, and hence show no preference for features of a particular size. These large
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area features are probably independent of one another in a dynamical sense, however, it should

aso be borne in mind that the number of features is statistically small at these large scales.
3.4 Features Reflected in Positive and Negative Amplitudes

Isthere any physical difference in the closed featu: es defined by the areas of positive and
negative amplitudes? By definition the mean value of the wavelet and pyramid coefficients over the

entire sample domain is zero so that the sum over the positive and negative amplitudes arc equal,

D.bi= 20 (31)
$=0 ¢<0
However, the corresponding space scale energy densities (or variance) are not in genera equal,
that is
2 2
Lol # 2lel 32)
$=0 $<0
This differenceis most clearly illustrated for the extragalactic featuresin the IRAS maps, which are
small intense localized regions of emission and nearly pointlike at the IRAS resolution. In the

I = o amplitude map, L; (x;, y ). the extragalactic features appear with a large positive amplitude

over asmall circular area surrounded by a larger area ring of small negative amplitude. In the /=0
energy densitymap, g, . y ;). galaxies appear as an intense positive circular feature surrounded

by a weaker intensity ring.

In Figure 16 we plot the ratio of the power contained in features with positive amplitude to

the total power in the map at each space-scale. In both maps, on a global basis,

Slof? > Sa* . . Chameleon, which has more localized emission region, this fraction
$20 9<0

dominates at all space-scales, especially for /< 4, while in the more diffuse North Polar region it
is less dominant on a global basis. Visual inspection of the energy density maps in Figure 4 with

the original contour maps (Figure 2) shows a strong relationship between their structures.
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Features at each scale have more sharply defined peaks in the energy densit y space-scale maps than
the Laplacian maps or even the original data. Therefore, to first order the positive features in the

amplitude map can be identified with the localized physical objects.

3.8 Mass Spcctrum

Visual inspection of the Laplacian amplitude images for the IRAS maps, as well as the earlier

study of CO emission maps for the cloud 135 (Langer et a. 1993), shows a correlation between

regions of enhanced cloud material and positive amplitudes in L;, and bubbles or valleys in
emission and negative amplitudesin L,. Because the Laplacian Pyramid Transform removes the
amplitudes at each scale before operating on the next scale it acts as a decomposition of the origina
map. Therefore, to first order wc can use the intensities in the positive amplitude maps to estimate
the mass distribution of the dominant features in the maps. The mass spectrum of the clumps, or
fluctuations, is an important cloud property, which reflects the fragnientation, coagulation, and
turbulence of the gas. For the IRAS 100 pum maps we assume the mass is roughly proportional to
the dust emission assuming a constant heating rate. The mass spectrum can be approximated by
the distribution of intensity, 1, of features derived from the Laplacian maps (cf. Figure 9). In
Figure 17 we plot the number of features as a function of intensity 7. Both regions show a similar
distribution, with a peak at modest, but different, values of /. Fitsto thelog N —log I plots at
small and large values of I give roughly similar results: for the high end of the mass spectrum,
N(I) o< 1795 and N(1) < 1798 for the Chameleon and North Pole maps, respectively; the
corresponding fits for the low end are, N(I)e< 1'% and N(I)ocll'“. The similarity in the slope
for large intensity implies a common fragmentation mechanism and source of the fluctuations in
both regions, The break in the slope, which occurs at a slightly different 7 in both regions, is
significant in that the lowest intensity fluctuations perhaps do not form by hierarchical
fragmentation but arise from some other formation mechanism, for example turbulent fluctuations

in the gas clouds leading to transient features. This picture would be consistent with our results for
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the Hausdorff dimension since most of the lowest intensity featuresin the / = O map have avalue

D=12-14.

The mass distribution of clumpsin clouds has also been derived using molecular line tracers
(mainly CO, but some CS) by Stutzki and Giisten (1990) and Williams, de Geus, and Blitz
(1994). The former have analyzed their maps using a sum of tri-axial gaussians (their routine is
called Gaussclumps) while the latter have developed aprogram called Clumpfind which is based
on searching for contours which divide the peaks and valleysin the data cube. Williams et al. find
N(M) e M~032 for the Rosette molecular cloud and N(M) e pm- 044 for the Maddelana
molecular cloud. Stutzki and Giisten found N(M) « M 72 for M 17 usi ng Gaussclumps while
Langer et a. found a similar relationship for B5, N(M) e M™"* using the multi-scale approach
discussed here. If we assume that these differences arc real, anti not an artifact of the various
algorithms used to extract the mass spectrum, then there is a difference in the formation process for

clumps and fluctuations among the different types of clouds.

The number of features as a function of local energy is plotted in Figure 18. Both
distributions have nearly the same slope, NE)< E7%% and N(E) o< ;7034 for Chameleon and
North Pole. Thusin a statistical sense each region is divided up into features with similar relative

“power”, though the Chameleon region has larger range of local energy.

4. SUMMARY

Multiscale transforms represent map information in a form that lends itself to disentangling
the underlying fluctuations in the structure. In this paper we have extended the usc of Laplacian
Pyramid Transforms presented in an earlier work (Langcr, Wilson, and Anderson 1993) to large
scale IRAS 100 pm maps of infrared emission of the Chameleon and North Polar regions. The

LPT technique consists of a multiscale filtering and decomposition of the intensity maps which
represents detailed information on each scale by a function, called the 1.aplacian of theimage, L, at

ascalel, and the smoothed information at that scale by another function, the Gaussian, G,. The

set of Laplacian maps at different logarithmic scales and the residual Gaussian after filtering out all
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the detailed information successively constitute the space-scale representation of the map. These
representations and the corresponding energy density maps provide arich set of descriptors with
which to characterize the map properties. We have drawn on analogous properties of wavelet
transforms and their application to turbulence to define a set of map measures: space-scale energy
density, global energy spectrum, local energy spectrum, and intermittency. In addition we have
used the zero crossings in the amplitude and energy density maps to define the physical boundaries
of map fluctuations and features. For each of these we evaluated their area, perimeter, and local
space-scale energy. The distribution of these quantities provide a statistical measure of the maps,
which may lead to a better understanding of the physics and dynamics in the interstellar medium

and in interstellar clouds.

The Chameleon and North Pole regions have different global energy (“power”) spectra, and
this difference is a measure of the degree to which condensation has taken place. Chameleon has
relatively more energy density at small space scales (small features) than the North Pole, but not as
much as the molecular material in the Perseus region. The distributions in average intensity and
average intermittency per feature in the two maps supports this point of view and indicates that
Chameleon has fewer low contrast features, and more higher density fragments. This result is
suggested by the much larger spread in the average intermit tency (11 ) in the small space-scale maps
of the North Pole region. The differences in the global space-scale energy spectrum and
intermittency maps suggests that the clouds in these two regions either have different forces

dominating their structure and/or are at different stages of evolution.

‘//'2‘ //i/i)t

Our results for the Hausdorff dimension in the IRAS data js quite different from -that of
previous authors. In our multi-scale analysis the average Hausdorff dimension D as determined
from alinear fit to log P —log A (see Figures 10 and 11) ranges from 1.3 to 1.7 for Chameleon
and 1.2 to 1.7 for the North Pole cirrus features, with typical values about 1.45 if we neglect the 1
= O space-scales. These values are larger than the average value of 1.25 found by Bazell and

Désert in an analysis of three cirrus maps. However, there was variation within each of several

34



images they analyzed (see their figure 2) with a maximum value of D = 1.40 for plate 2. Dickman
et al.'s study of 100 um maps of molecular regions also found D= 1.25, similar to those found
for cirrus clouds. Whereas the cloud BS5 studied with CO maps (L.anger er al.1993) has D
ranging from 1.3 to 1.7.

However, the strong dependence of D on area (Figure 12) shows hat these maps are multi-
fractal with D ranging from 1.1 to 1.8, and can not be characterized by a single scale. Chappell
and Scalo (1993) also concluded that the cirrus maps of several regions were multifractal. In
general D increases with area reaching values about 1.8. This dependence suggests that the
smallest features arc regular objects, probably determined by the pixelization (discreteness)
inherent in the maps, but that the majority of features obcy a scaling law for turbulence (but not
necessarily Kolmogorov turbulence), while the largest features at L;and I are filamentary-like
structures. Visual inspection shows these largest features consist of long single filaments and
web-like structures. The latter are likely due to the overlap of separate clouds along the line-of-
sight which appear as onc object in projection due to the lack of velocity information in the IRAS
maps. Further analysis of the turbulent nature of the mayps is limited by the lack of this velocity
information. What we need are hydrodynamic] model calculations which can produce scaling
laws for comparison to the observations. However, within the limitations of the data the dynamics
of the gas does not appear to be dominated by either gravity or ordered magnetic fields. Our
results suggcsvthat the forces that control the structure at large and small scales in the cirrus map
arc different. We do not find this surprising considering the very large range of scales and objects

contained in the IRAS maps.

In conclusion, we have explored the question of whether multiscale transforms can be used
to provide statistical and global measures of astronomical emission maps, and whether they can be
used to distinguish maps. We found that the Lap] acian Pyramid Transform provides an amplitude
space that can be used to distinguish maps and characterize their properties. The development of

such computational, tools isimportant for the analysis of the very large body of spatial and spatial-
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spectral data bases that are becoming available with current radio and infrared survey instruments.

More work remains to be done to derive connections between the various map measures and the
underlying dynamical forces. We expect to extend this line of analysis to other types of maps and

to regions evolving under different forces and energy sources.
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Figure Captions

Figure 1. Scale invariant filter bank. Filter responses, F, (k)= k(2" k), are plotted on the left.

Figure 2a

Figure2b

Figure 3a

Figure 3b.

Figure 3c.

Typical filtered signals are drawn on top of the appropriate sampling intervals in the

figure.

Contour plot of the 100 micron image of the Chamelcon region (map centered at
DEC( 1950) = 12h and RA(l 950) = -800), where the axis arc in arcmin with respect to
the center. Intensity contours range from 2 x 106 to 1.48 x 108 Jy Sr-1 in increments

of2x 100,

Contour plot of the 100 micron image of the North Polar region (map centered at
DEC =900, RA = 0h and RA goes counterclockwise with 61 on the left ), where the
axis are in arcmin with respect to the center. Intensity contours range from 1.5 x 106

to 1.65 x 107 Jy Sr! in increments of 1.5 x 106,

Gray scale images of GO, the origina map, and the Laplacian amplitude maps L,
L;,and L, of the Chameleon region (clockwise starting from upper left). In the
Laplacian maps the light and dark regions are positive and negative amplitudes,

respective] y.

Gray scale images of GO, the original map, and the Laplacian amplitude maps Ly,
L;,and L, of the North Polar region (clockwise starting from upper left). In the
Laplacian maps the light and dark regions are positive and negative amplitudes,

respectively.

Comparison of the! = 1 Laplacian amplitude map (left pane]) for Chameleon with the
corresponding space-scale amplitude map for a wavelet transform using the
Daubechies wavelet four transform (right panel). The wavelet Daubechies map (in

gray scale) shows less correspondence with physical structure than the Laplacian
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Figure 4a

Figure 4b

Figure 5

Figure 6

Figure 7

Figure 8

Pyramid Transform with the origina map. While both transform can be used to
reconstruct the original map to very high accuracy their utility for identifying

structural components is different. The number scale along the axes label the pixels.

Space-scale energy density maps Ly, L;,1,,and 15 for the Chameleon region in

color.

Space-scale energy density maps Ly, Ly, 1,,and 15 for the North Pole region in

color.

Global energy (power) spectrum for three maps, Chameleon and North Pole 100 pm
emission, and Perseus!3CO emission, and a random image (top panel). For
comparison all power spectrum have been normalized to one at / = O. The bottom
panel shows only the three astronomical images in order to make it easier to see

differences in the dependence with 1.

The number of distinct features isolated in the energy density maps as a function of
gpace-scale. Two plots are shown for each region, one for al features in the maps
and the other for all features with area greater than 15 arcmin?, the resolution of the
IRAS beam at 100 pm. The North Pole region is dominated by small scale features,
with arealess than 15 arcmin2, which are probably due to noise.

Average intensity versus areafor positive amplitude feat urcs extracted from the LPT
transform maps for all space-scales combincd,% L,. Alog-log fit to these data is

1=0

shown in the panels.

The local energy E is plotted versus area and shows the tendency for the larger

features to have a higher energy density. Fitstolog E -- log A are given in each

panel.

41



Figure 9

Figure 10.

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

Histograms of the area, intensity, local energy, and average intensity, <1>, of each

of the positive amplitude features extracted from the LPT transform maps combined
5

for all space-scales, ), L, .

1=0

Plot of log P versuslog A for featuresinthe 1 = 1 and 1 = 2 space-scale maps for the
Chameleon and North Pole regions, These plots indicate that D is a function of area
and is multi-fractal. Also shown in the figures are linear and quadratic fits, where it

can be seen that the latter gives a much better fit to the data.

Hausdorff dimension, D, versus space-scale derived from a linear fit to
log P —log A, using the entire range in area for features in the energy density maps.
D can be considered an average value for each of the maps. For both regions D has

the same genera behavior with space-scale.

The Hausdorff dimension, DD, derived from a polynomial fit to log P —log A is
plotted as a function of area A for featurcs extracted from three energy density space-
scale maps in the Chameleon and North Pole regions. These plots show that D is

multi-fractal in both cloud regions.

Number of features N versus Hausdorff dimension D for features extracted from the

energy density maps for three space-scales.

The average intermittence for each feature in four space-scale maps for the
Chameleon and North Pole regions. This ineasure can be used to categorize and
identify features in the maps, for example galaxies have. large (L) at small areas,

while noise or small diffuse features have very low values of ().

Histograms of the area, intensity, and local energy of positive amplitude features
extracted from the LLPT transform maps of Chameleon and North Pole regions for

space-scales/=1and 1 =4.
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Figure 6

Figure 7

Figure 18

Fraction of power contained in features with positive amplitude to total power as a

function of 1 for Chameleon and North Pole regions.

Number of features as a function of intensity 7 for all of the amplitude maps

combined. Fits to alog N —log I are given separately for the behavior at small and
large areas. These curves are, to first approximation, proportional to the mass

distribution of fragments in the maps.

Number of features versuslocal energy for all the features extracted from the energy

density maps. Fitsto log N —log E are given in the panels.
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