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ABSTRACT 

This paper describes the application of a semi-active variable viscous (SAVV) damper for 
reducing the response of a seismically excited hysteretic structure.  Two algorithms for 
selecting the damping properties of the SAVV damper were used: the Linear Quadratic 
Regulator (LQR) and the Sliding Mode Control (SMC) algorithms.  Both were formulated 
based on full-state feedback and static output feedback, with or without an observer.  The 
equations of motion were formulated in the state-space and in the drift (inter-story) 
coordinate system.  An eight-story shear building with a seismic isolation system 
supplemented with a SAVV was analyzed using the selected control algorithms and subjected 
to a strong earthquake.  The results of the various analyses indicate that variable dampers can 
effectively reduce both the displacement and acceleration responses, and consequently, the 
story and base shears of both linear and hysteretic structures. 
 
INTRODUCTION 
 
Semi-active control devices combine the features of active and passive control to reduce the 
response of structures to various dynamic loadings.  A significant amount of research and 
development has been conducted on these devices because of their relatively high 
performance and low energy requirement.  Most research on semi-active control systems has 
been limited to linear structures (Symans and Constantinou [1995], Sadek and Mohraz [1998], 
Jansen and Dyke [1999]).  Under strong earthquake excitations, however, structural members 
might experience yielding and the response will become non-linear.  Few studies have 



considered the performance of semi-active control for such hysteretic structures (El-Borgi, et 
al. [2000a,b]).  The main purpose of this research is to examine the effectiveness of a semi-
active variable viscous (SAVV) damper for reducing the hysteretic response of structures 
subjected to strong earthquakes.  

SAVV dampers are designed such that their damping coefficient can be adjusted during a 
dynamic event.  Several investigators have developed control algorithms for these devices, 
including a clipped optimal control algorithm (Sack [1994]), a bang-bang algorithm (Patten, 
et al. [1994]), a Linear Quadratic Regulator (LQR) algorithm (Symans and Constantinou 
[1995], Sadek and Mohraz [1998]), a Sliding Mode Control (SMC) algorithm (Symans and 
Constantinou [1995], Yang, et al. [1995]), a generalized LQR algorithm with a penalty on the 
acceleration response (Sadek and Mohraz [1998]), and a displacement-acceleration domain 
algorithm (Sadek and Mohraz [1998]). 

In this paper, two algorithms for regulating the damping coefficient of the SAVV damper 
are described, Linear Quadratic Regulator (LQR) and the Sliding Mode Control (SMC).  
Both are formulated based on full-state feedback (FSF) and static output feedback (SOF) 
with or without an observer.  The structures used in this study are modeled with a one-
dimensional, shear-type building with a hysteretic behavior.  The inelastic behavior is 
modeled using the Bouc-Wen hysteresis model.  The variable viscous damper is simply 
modeled by a linear viscous element.  Simulation results are obtained for an eight-story shear 
building with a seismic isolation system supplemented with a SAVV under the El Centro 
earthquake with a peak ground acceleration (PGA) of 0.3g. 
 
EQUATIONS OF MOTION OF CONTROLLED STRUCTURE 
 
Consider an n-degree-of-freedom hysteretic structure equipped with m SAVV dampers and 
subjected to a one-dimensional earthquake ground excitation .  Its motion is described by:  gx��

ginel xEtuDvKxKxCxM ����� ����� )(  (1) 
where x is an n-dimension vector representing the relative inter-story displacement, u is an r-
dimension vector representing the control forces generated by the SAVV dampers, M and C 
are the  element mass and damping matrices, D is the nn� rn�  element control force 
location matrix, E is an n-dimension mass vector representing the influence of the earthquake 
excitation,  and  are, respectively, the elastic and the inelastic stiffness matrices 
defined in Yang, et al. [1992], and v  is the evolutionary hysteretic n-dimension vector 
representing the behavior of the structure where each of its components is modeled by the 
Bouc-Wen model (Wen [1976]) as follows:  
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Here,  is the yield deformation of the i-th story, and , , , and define the scale, 
shape, and smoothness of the hysteresis loop corresponding to story i. 
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The state-space representation of Eq. (1) is given by: 
� � gxHBuzgz ��� ���  (3) 

where  is the 3n-dimension state vector, g(z) is a 3n-dimension vector, which 
is a nonlinear function of z, B is a  element matrix, and H is a 3n-dimension vector 
given by Yang, et al. [1992]. 
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SEMI-ACTIVE CONTROL ALOGORITHMS 
 
LQR Algorithm 
  
This algorithm is the classical linear quadratic regulator, extensively used for active and 
semi-active control of structures.  The control force, u, is obtained by minimizing the 

quadratic cost function, , over the duration of the excitation, , 

when constrained by the linearized form of Eq. (3).  Here, Q and R are positive semi-definite 
and positive definite weighting matrices, respectively.  This results in the control force 
vector, u , where the matrix G represents the control gain and P is the 
solution of the classical Riccati equation. 
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For a SAVV damper modeled by a linear viscous damper, the maximum force is max
~F� , and 

the damping coefficient, c~ , can be computed as: iii xu ��c~ , (i = 1, …, r) with 
� maxmin �~,~~ ccci �

min

.  Here,  is the relative velocity between the ends of the i-th damper, and ix�
~c max and ~c  are the minimum and maximum damping coefficients. 
  
SMC Algorithm 
  
The SMC algorithm used in this study is similar to the one developed by Yang, et al. [1995] 
for active control.  This algorithm is based on two steps: the first is the sliding surface design 
using an LQR algorithm, and the second is the controller design using the Lyapunov method. 
The design of the sliding surface, 0�� ZPS , consists of obtaining the sliding matrix, P , 

through the minimization of the performance index, , constrained by the 

linearized form of Eq. (3).  In the expression of the cost function, Q is a positive semi-
definite weighting matrix.  The purpose of the controller design is to drive the response 
trajectory onto the sliding surface.  The Lyapunov function V  is considered.  The 
sufficient condition for the sliding mode to be stable is given by: V .  Using the 
state equation of motion, we obtain: 
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are expressed as BPST
��  and � � � vBAzPBPu ����

�1 �gxH ��� .  B ��  is given by Yang, et al. 

[1992].  Using the control law, proposed by Yang, et al. [1995], T
�u ��u , in which � �  is 

called the sliding margin matrix and is user input, we obtain the expression for the control 
force regulated by both the structural response and the earthquake excitation: 

.  G  and  are, respectively, the feedback and feedforward gain matrices. 
The same constraints imposed for the LQR algorithm are applied to the SMC algorithm. 
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Kalman-Bucy Filter 
 
The linear Kalman-Bucy filter is used in the control loop to estimate the components of the 
state vector, z, from the measured output, y, of the following linearized form of Eq. (3): 

gxHBuAzz ��� ���  wxHuDzCy g ���� ��  (4a,b) 



We assume the measurement noise, w, is a Gaussian process.  The estimated state vector, ẑ , 
is given by the Kalman filter, � gxHuDzCyLBuzAz ���

������ ˆˆˆ
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� , whose objective is to 
minimize the prediction error, � , in the least-square sense.  L is the Kalman gain 
obtained as: , where V and W are, respectively, the covariance matrices of 

 and w, and P is the solution of Riccati equation: . 
Therefore, in the control loop the estimated state vector is used to compute the necessary 
control action on the system using either the LQR or SMC algorithm.  The control block 
diagram is illustrated in Figure 1. 
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NUMERICAL RESULTS 
 
The eight-story seismic-isolated hysteretic structure used by Yang, et al. [1995] was 
considered in this work.  The seismic isolation consists of rubber bearings supplemented with 
either an active control system or a SAVV damper.  The structural parameters are 
summarized in Table 1. The maximum control force, and the maximum and minimum 
damping coefficients are, respectively, 1000~

max �F  kN, 5
max 104.41~

��c  kNs/m, and 
5

min 1017.5~
��c

111061.3 �

��R

 kNs/m.  The structure was subjected to the El Centro earthquake with a 
PGA of 0.3g.  The response was analyzed using the LQR and SMC algorithms for the active 
and semi-active control cases, with either full state feedback (FSF) or static output feedback 
(SOF).  The Kalman-Bucy filter was used in conjunction with the SOF case.  In this case, 
only the absolute accelerations at all story levels, including the seismic isolation, were 
measured for practical and economical reasons. For the case of the SMC algorithm with FSF 
or SOF, the ground acceleration was measured, as well. For the LQR algorithm, 

 and the matrix Q = diag(5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 
0.01, 1, 1, 1, 1, 1, 1, 1, 1, 1).  For the SMC algorithm, 910�5��  and Q is the same as for 
the LQR algorithm. 

The maximum response quantities are shown in Table 2 for the cases of: (1) no control; 
(2) passive seismic isolation; (3) active control using the LQR algorithm with FSF; (4) semi-
active control using the LQR algorithm with FSF; (5) active control using the LQR algorithm 
with SOF; (6) semi-active control using the LQR algorithm with SOF; (7) active control 
using the SMC algorithm with FSF; (8) semi-active control using the SMC algorithm with 
FSF; (9) active control using the SMC algorithm with SOF; and (10) semi-active control 
using the SMC algorithm with SOF.  

The results indicate the following: (a) the use of the isolation bearing dramatically 
reduces the response of the structure (linear super-structure) at the cost of large isolator 
displacements; (b) using active and semi-active control, the isolator displacement decreases 
substantially; (c) for active and semi-active control, the LQR algorithm results in smaller 
isolator displacement, but larger inter-story drifts and accelerations as compared with the 
SMC algorithm with the same force requirement; (d) semi-active control using SAVV 
dampers results in a response comparable to that using active control, considering that the 
larger semi-active displacements are accompanied by substantially reduced control forces; (e) 
for active and semi-active control using either LQR or SMC algorithms, the response with 
FSF, in terms of inter-story displacements or acceleration, is comparable to that with SOF 
with acceleration measurement.  
 



 

CONCLUSION 
 
The results of these simulations show the advantages of using both passive seismic isolation 
and isolation combined with active or semi-active control devices.  The passive isolation 
produced the most significant performance improvement, but addition of the active and semi-
active controllers further improved the structural response while reducing the drift in the 
isolation.  Both the active and semi-active systems were able to reduce the displacements and 
drifts, without greatly increasing the accelerations.  The sliding mode controllers tended to 
provide the best overall performance, minimizing both the drifts and story accelerations, 
without causing large displacements or accelerations in the isolation.  Finally, one of the 
most important results was the performance of the system with the static output feedback.  
Even without measuring the full state vector, the controllers were able to produce responses 
that are nearly identical to the full state feedback controllers. 
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Table 1:  Structural parameters of the eight-story building model 

Story Number Base 1 2 3 4 5 6 7 8 
Mass (103 kg) 450 345.6 345.6 345.6 345.6 345.6 345.6 345.6 345.6 

Damping (103 kNs/m) 26.17 490 467 410 386 349 298 243 196 
Stiffness (103 kN/m) 18.05 340 320 285 269 243 207 169 137 
Ratio of pre-yield to 
post-yield stiffness 

0.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Yield displacement (cm) 4.0 2.4 2.3 2.2 2.1 2.0 1.9 1.7 1.5 
 

Table 2: Maximum response quantities of the building model under El Centro with PGA 0.3g 
(D: Interstory-displacement (cm); A: Absolute acceleration (mm/sec2)) 

Story Number Base 1 2 3 4 5 6 7 8 
D --- 2.04 2.10 2.14 2.38 2.64 3.19 4.33 1.98 1 No Control  

U = 0 kN A --- 380.4 433.4 494.8 458.9 561.2 463.7 590.4 614.9 
D 21.37 0.62 0.60 0.65 0.63 0.63 0.64 0.60 0.41 2 Passive Isolation 

U = 0 kN A 122.4 113.5 112.5 111.5 101.9 91.5 103.0 131.5 163.4 
D 8.97 0.53 0.57 0.65 0.68 0.66 0.65 0.74 0.58 3 LQR-FSF-A     

U = 1270.0 kN A 151.6 148.7 138.2 111.5 110.1 124.0 147.5 157.8 131.9 
D 9.15 0.52 0.54 0.61 0.65 0.65 0.65 0.74 0.58 4 LQR-FSF-SA   

U = 1000.0 kN A 151.6 148.7 137.9 135.9 114.4 114.8 140.5 157.7 231.9 
D 8.95 0.53 0.57 0.66 0.68 0.66 0.65 0.75 0.59 5 LQR-SOF-A  

U = 1274.1 kN A 152.1 149.2 138.5 111.9 110.4 124.3 148.1 158.2 232.7 
D 9.15 0.53 0.54 0.61 0.65 0.65 0.65 0.75 0.59 6 LQR-SOF-SA  

U = 1000.0 kN A 152.1 149.2 138.4 136.6 115.0 115.6 141.1 158.2 232.6 
D 9.94 0.21 0.18 0.17 0.16 0.15 0.16 0.15 0.12 7 SMC-FSF-A  

U = 1270.0 kN A 163.0 50.8 42.8 47.9 39.3 40.3 45.1 44.4 45.9 
D 12.65 0.22 0.20 0.19 0.18 0.18 0.17 0.16 0.12 8 SMC-FSF-SA  

U = 1000.0 kN A 240.5 47.7 34.9 39.5 38.8 43.8 45.0 46.0 46.4 
D 9.82 0.21 0.18 0.17 0.16 0.15 0.16 0.15 0.12 9 SMC-SOF-A    

U = 1269.7 kN A 163.6 50.7 43.0 48.1 39.3 40.1 45.3 44.7 46.0 
D 10.87 0.19 0.19 0.18 0.17 0.16 0.16 0.16 0.12 10 SMC-SOF-SA  

U = 1000.0 kN A 228.5 48.6 35.4 40.6 38.0 42.8 45.3 39.3 46.7 
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Figure 1: Control block diagram 
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