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Conceptual view of a solid

Vibrational, valence electron & core electron degrees
of freedom

EXCITATIONS

Phonon excitations

Valence excitations

Core excitations

F−−−−Li+Example: LiF



Optical proper ties 
throughout the spectrum

*  infrared absorption by phonons

* absorption by inter-band transitions

* absorption at x-ray edges

Optical Constants:

n = index of refraction
k = index of absorption

Proper ties can be approached with
theory.  Theory is helpful when it is
predictive or  complementary to
exper iment.

L iF

Plot taken from Palik.

Goal: develop approach for 
unified (n,k)-curve from far-IR 
to x-ray region.



Outline

• Introduction to optical excitations 

• Model used to describe excitations 
& excitation spectra 

- developed in collab. with L.X. Benedict (LLNL), R.B. Bohn (ITL), 
and J.A. Soininen (U. Helsinki)

• Sample ultraviolet (UV) & x-ray absorption spectra

• Intrinsic birefringence in cubic solids

}
A winding, sparsely 
detailed trajectory
circling between

quantum
mechanics

(for electrons
in solids)

definitions
of optical 
constants

numerical
calculational
techniques



Photon interaction with electrons: coupling electron p to photon A
Electron Schrödinger equation:

Light interacts with electrons (approximately) via the replacement,
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The first term is the ordinary 
electron kinetic-energy operator.

The second term couples 
electric fields to electron 
currents.

-- absorption, emission The third term
couples to electron
density.

--scatter ing

electron momentum p ↔ electron current
vector potential A ↔ electric field E ↔force on electrons
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self-energy (accounts for many-body
electron-electron interaction effects)

2
2

2
∇−

m

�

electron wave function (n=band/core level, k=crystal momentum electron
level 
energy



Light coupling to electronic degrees of freedom
Optical electronic excitation mechanisms
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Why are electronic excitations so hard to model?
Electron-hole interaction or excitonic effects in excited state



D = ε ε ε ε ⋅⋅⋅⋅E = E + 4πP (atomic units)

E = total electric field
D = electric displacement
P = polarization of material

P = Pion + Pval + Pcore

Pval, Pcore= polarization because of val./core el. 
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Connection between 
optical excitations and 
optical constants,
which depend on 
wave-vector q and 
angular frequency ω:

(Born effective charge tensor Z*  
times displacement δR)

dielectric constant

index of refraction

index of absorption



Example: empirical pseudopotential method

* Non-interacting model
*  Optical absorption by electron inter-band transitions
*  Atomic pseudopotentials adjusted to match

observed spectral features

Samples of work by Marvin Cohen group
(UCBerkeley):



Modeling excitation spectra
(Standard time-dependent perturbation theory)
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We use the Haydock recursion method,
which expresses final expectation value

as a continued fraction that depends on ω.
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Haydock recursion method (a.k.a. Lánczos method):

Introduce normalized vector,

Establish seq. of vectors, 

And deduce spectrum (quickly!) from linear algebra...

{ }iv in which H=H† is tri-diagonal,

continued fraction

NOTE:

Don’t need
to solveH.  
Just need to 
act with H.  
Use structure
of H to speed
this up.



Excited state =  linear superposition
of all states produced 
by a single electron
excitation.  

In each such electron-hole pair state, 

electron in band n′,
with crystal momentum k+q.

hole in [band/core-level] n, 
with crystal momentum k, 

Call such a state |n n′ k(q)�, total 
crystal momentum q.

momentum

Eel

Incorporation of electron-hole interaction:



Predictive electron
band theory:

Needs:

*  accurate band structure
methods (Schrödinger 
equation in solids)

*  many-body corrections 
to band energies

GW self-energy of Hedin:

Uncorrected
band gaps

Corrected
band gaps

“theory gap = expt. gap”  curve



Bethe-Salpeter  equation, motivation:

In a non-interacting picture, one has 

H |n n′ k(q)� = [ Eel( n′ , k+q) − Eel ( n, k) ] |n n′ k(q)�.

Thus, the states { |n n′ k(q)�}  diagonalize the Hamiltonian, H.

In an interacting picture, one has 

H |n n′ k(q)� = [ Eel( n′ , k+q) − Eel ( n, k) ] |n n′ k(q)� +

Σ n′′ n′′′ k′ V(n′′ n′′′ k′, nn′ k) |n′′ n′′′ k′(q)�,

and the different states are coupled.  Stationary states that diagonalize
H are linear combinations of many electron-hole pair states.

Resulting coupled, electron-hole-pair Schrödinger equation
( “ Bethe-Salpeter” equation): difficult to solve, especially 
within a realistic treatment of a solid.



Interaction effects:

Electron-hole interaction matrix-element:

Attractive “direct part”  of
interaction: screened Coulomb
attraction.  Gives excitons, 
shifts spectral weight.

Repulsive “exchange part”
of interaction: leads to
plasmons.

Not included in a realistic framework
until 1998.



Improved results:

Incorporating effects of the electron-hole interaction in realistic
calculations was made feasible and efficient through use of a wide
variety of numerical & computational innovations.

The outcome (e.g., GaAs):

Besides affecting absorption spectra, index dispersion is greatly
improved, especially in wide-gap materials.

Meas.

Calc.



Consistently 
better results
results when
incorporating
electron-hole
interaction
effects.

Meas.
Calc.



MgO optical constants:



Core excitations in MgO
Excitation of magnesium & oxygen 1s electrons

Expt data from Lindner et al., 1986
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Bethe-Salpeter result:

no spin-orbit,
no central core-hole potential,

no multipole interactions

central core-hole pot. only

Ti 2p spin-orbit splitting only

spin orbit and central core-hole pot. only

spin-orbit, central core-hole pot, 
and multipole interactions

���������	�

��
�		���

�	
����
� �

��
�		���

banding-induced width
included naturally

higher-lying spectral features



157 nm Lithography Index Specifications

~ 2 cm
~ 2 cm

DOF ~ 0.2 µ

feature size ~ 65 nm (~ λ/3 for 157 nm)

To obtain resolution ~ 65nm (~ λλλλ/3):
phase retardance for  all rays dddd λλλλ/8
���� index var iation ~ 1 ×××× 10-7

CaF2 cubic crystal
(fluor ite crystal structure)

� isotropic optical properties?
Mater ial problems extr insic

* index inhomogeneity
* stress-induced birefr ingence

May 2001 announced an intr insic
birefr ingence and index anisotropy
~11 ×××× 10-7 over  10 ×××× specs.

Cannot be reduced!



Spatial-Dispersion-Induced Birefr ingence
Origin of effect:

Finite wave vector of light, q, breaks symmetry of light-matter interaction.

History:
H.A Lorentz (Lorentz contraction) considered this small symmetry-breaking 

effect in “ regular crystals”  in 1879,
PRIOR to verified existence crystal lattices! (Laue1912, Bragg 1913)
Worked out simple theory by 1921 - measured in NaCl?
H.A. Lorentz, “Double Refraction by Regular Crystals,”  Proc. Acad. Amsterdam. 24, 333 (1921).

First convincingly demonstrated by Pastrnak and Vedam in Si (1971).
J. Pastrnak and K. Vedam, “Optical Anisotropy of Silicon Single Crystals,”  Phys. Rev. B 3, 
2567 (1971).

Confirmed, extended by others, esp. Cardona & colleagues – academic curiosity
Values “ too” small to have implications for optics – Optics industry oblivious!

We measured in CaF2, material for precision UV optics for 193 nm and 157 nm 
lithography, and worked out the implications for optics - alerted industry.
J.H. Burnett, Z.H. Levine, E.L. Shirley, “ Intrinsic birefringence in calcium fluoride
and barium fluoride,”  Phys. Rev. B 64, 241102 (2001).



Wave Vector  Dependence of the Index in Cubic Crystals
spatial-dispersion-induced birefr ingence

hν

q

Symmetry arguments “prove”  natural birefringence forbidden in cubic crystals

Isotropy “proof”  assumes D linearly related to E by 2nd-rank tensor indept. of q

Ei = Σjε−1
ijDj        (ε−1

ij inverse dielectric constant)   - but assumes λ large!

Actually D = D0e iq·r =  D0(1 + iq.r − (q.r )2/2 + …) (q = 2πn/λ)

Cannot neglect (q.r ) terms if (aunit cell/λ) ~ 1 or equivalently (q/Kreciprocal lattice) ~ 1 

Perturbation due to (q.r ) terms: azimuthal symmetry about q

For crystal axes w/ 3-fold or 4-fold symmetry (q.r ) reduces isotropic to uniaxial

� NO birefringence for q || <111> or q || <001>
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Cubic crystals (classes 43 ,432, 3m m m) symmetry �   ijklα  has 3 indep. comp. 11 12 44, ,α α α  
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  (same form as for piezo-optic tensor) 

Using the 2 independent scalar invariants of a 4th rank tensor to separate terms: 
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     isotropic     longitudinal   anisotropic 
 

� anisotropy governed by one parameter (α11 − α12 − 2α44) 

� angular dependence determined by ONE measurement: q along <110>, meas. n<110>- n<001> 

Theory of Intr insic Birefr ingence
0

isotropic index shift isotropic L-T splitting • induces dir. dep. birefringence
• induces dir. dep. index variation

 q 
|q|

[010]

[100]

l2

l1

l3

J.H. Burnett, Z.H. Levine, E.L. Shirley, and J.H. Bruning, “Symmetry of Intrinsic Birefringence and 
its Implications for CaF2 UV Optics,”  J. Microlith., Microfab., Microsyst., 1, 213 (2002).



[001]
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Angular  Dependence of Intr insic Birefr ingence
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One octant - scaled according to ∆nmax = 1, for q || [110]

Has 12 lobes



Ar mini-arc
or Hg lamp

parabolic
mirror

aperture

CsI or CsSb
PMT detector

filter MgF2 Rochon
linear polarizer

aperture

MgF2 Rochon
linear polarizer
crossed polarized aperture

aperture

shutter

chopper

parabolic
mirror

lock-in 
amplifierspherical

collection
mirror to chopper

MgF2 
Soleil-Babinet 
Compensator

sample

rotation
stage

Birefr ingence Measurement

I/I0=sin2(πd∆n/λ)sin2(2θ) ∆n = (λ/d)(RPS/2π)

∆n = n[-110] − n[001]

MgF2 
Compensator

45°

θ

polarization
direction

sample

Intensity Through Crossed Pol Relative Phase Shift

[110]

[1-10]

[001]

CaF2 sample

propagation
direction

[001]

[100]

[010]

axes

[110]



Intr insic birefr ingence
in CaF2, BaF2, diamond,
and four  semiconductors.

CaF2 and BaF2 meas.
results by J.H. Burnett 
(NIST); semiconductor
measurements found in
literature as cited by 
Burnett et al.



150 200 250 300 350 400
-30

-20

-10

0

10

20

30

40

50

60

193.4 nm

157.6 nm

CaF
2

SrF
2

BaF
2

 

 
In

tr
in

si
c 

B
ire

fr
in

ge
nc

e 
(1

0-7
)

λ (nm)

Mater ial 193.39 nm 
(10-7)(meas) 

157.63 nm 
(10-7)(int/extrap) 

CaF2 −3.4±0.2 −11.2±0.4 
SrF2 6.60±0.2 5.66±0.2 
BaF2 19±2 33±3 

 

Intr insic Birefr ingence of CaF2, SrF2, and BaF2

SEMATECH 
157nm target:
1×10-7=1 nm/cm

polarized 
phase fronts



Industry Concern

Science News, July 21, 2001

WaferfabNews, July 2001 New Technology Week, July 16, 2001



Possible Alternative Solution: Mixed Crystals
• CaF2, SrF2, and BaF2 all have same fluor ite crystal structure.
• Mixed crystals that retain the cubic symmetry can be made: Ca1-xSr xF2 (all x),

Sr1-xBaxF2 (all x), Ca1-xBaxF2 (some x), Sr1-xMgxF2 (some x) 
• SrF2 and BaF2 have birefr ingence of opposite sign compared to CaF2 ����

x ≈≈≈≈ |∆∆∆∆n(CaF2)/[∆∆∆∆n(CaF2)] −−−− ∆∆∆∆n(YF2)] | , Y = Ba,Sr nulls birefr ingence
• Ca0.3Sr0.7F2 nulls IBR at 157.9 nm,      Ca0.7Sr0.3F2 nulls IBR at 193.4 nm
• Have made Ca1-xSr xF2 for  x=0.1-0.9  – character izing now!

Lines=theory
Points=data

Birefr ingence of cubic
BaF2, SrF2,CaF2,
MgF2 (theo.), and

Ca1−−−−xSr xF2 (x shown)
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Scale

60 deg.
Rotated

[111] Axis

[111] Axis 15mm

45 deg.
Rotated

15mm

10mm

10mm

[100] Axis

[100] Axis

Group of 4 Lenses

Wave aberration is
perfectly corrected.

Combination of [111] Pair  and [100] Pair
Simulated 2D-Distr ibution of Intr insic Birefr ingence – Nikon Corporation

However, must then give up “clocking”  to reduce 
figure errors! � higher figure specs.



New Crystal Optics

isotropic
1 principal ε

cubic

uniaxial
2 principal ε’s

hexagonal
tetragonal
trigonal

biaxial
3 principal ε’s
orthorhombic
monoclinic
triclinic

heptaxial

conventional optics classification with spatial dispersion
(e.g, cubic fluor ite structure)

all prop. dir’s
non-birefringent

1 prop. dir.
non-birefringent

2 prop. dir’s
non-birefringent

7 prop. dir’s
non-birefringent

optic axis
2 optic axes

7 optic axes

•



Sensitivity of birefr ingence to interaction (exciton) effects:

Behavior:   ∆n(ω) ~ Aω2 + B / (ω2−ω0
2) + C / (ω2 − ω0

2)2

“ Interband” 
contribution

Contribution from
exciton peak because

of anisotropy in 
exciton oscillator strengths

Contribution from
exciton peak because
of splitting of exciton

energies

Each effect can dominate!



Spur ious symmetry breaking culpr its:

H=He+Hh+Heh,D+Heh,X, plus matrix elements!

He, Hh: for faster convergence,
k-point meshes can be displaced
from having complete symmetry.
DON’T SHIFT! (Or shift &
average birefringences obtained
for certain “equivalent”  directions.)

Heh,D: for convenience,
might cut off e-h interaction
in real-space in non-symmetric
way, e.g., related to supercell
implied by k-point mesh 
spacing.  USE LENGTH!

Heh,X: for convenience,
might have G-vectors for 
treating off-diagonal dielectric
screening organized in a 
parallelepiped.  USE LENGTH!

Basis-set can convey bias from non-symmetric k-point & band
sampling (PRB 54, 16464, 1996). Form basis set symmetrically,
In regards to k-points and degenerate band partners!

Basis set for unk(r ), 
for ψnk( r  ) = unk( r  ) e i k ⋅⋅⋅⋅ r.



Summary

*  Theoretical investigation relating
- optical constants
- quantum mechanics of electrons in solids
- numerical modeling of physical systems

* Method results shown for 
-semiconductors
-wide-gap insulators
-core excitations

*  Intrinsic birefringence in cubic crystalline materials
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