OPTICAL TECHNOLOGY DIVISION

NG

Intrinsic Birefringence in Cubic Crystalline Optical Materials

Eric L. Shirley, ${ }^{1}$ J.H. Burnett, ${ }^{2}$ Z.H. Levine ${ }^{3}$

(1) Optical Technology Division (844)
(2) Atomic Physics Division (842)
(3) Electron and Optical Physics Division (841) Physics Laboratory
National Institute of Standards and Technology Gaithersburg, MD 20899-8441

Tel: 3019752349
FAX: 3019752950
email: eric.shirley@nist.gov

Conceptual view of a solid

Vibrational, valence electron \& core electron degrees of freedom

EXCITATIONS

Phonon excitations
Valence excitations
Core excitations

Optical properties throughout the spectrum

* infrared absorption by phonons
* absorption by inter-band transitions
* absorption at x-ray edges

Optical Constants:

$n=$ index of refraction
$k=$ index of absorption

Properties can be approached with theory. Theory is helpful when it is predictive or complementary to

Plot taken from Palik. experiment.

Goal: develop approach for unified (n, k)-curve from far-IR to x -ray region.

Outline

> A winding, sparsely detailed trajectory circling between

- Introduction to optical excitations
- Model used to describe excitations \& excitation spectra

\}
definitions

- developed in collab. with L.X. Benedict (LLNL), R.B. Bohn (ITL), and J.A. Soininen (U. Helsinki)
- Sample ultraviolet (UV) \& x-ray absorption spectra
- Intrinsic birefringence in cubic solids

Photon interaction with electrons: coupling electron p to photon \mathbf{A} Electron Schrödinger equation:
self-energy (accounts for many-body
 Light interacts with electrons (approximately) via the replacement,- \quad level currents.
-- absorption, emission
electron momentum $\mathbf{p} \leftrightarrow$ electron current
NGT
National Instifute of
Standards and Technology

The third term couples to electron density.
--scattering

Light coupling to electronic degrees of freedom

Optical electronic excitation mechanisms

Why are electronic excitations so hard to model?

Electron-hole interaction or excitonic effects in excited state

Connection between optical excitations and optical constants, which depend on wave-vector q and angular frequency ω :

$$
\mathbf{D}=\boldsymbol{\varepsilon} \cdot \mathbf{E}=\mathbf{E}+4 \pi \mathbf{P} \text { (atomic units) }
$$

$\mathbf{E}=$ total electric field
$\mathbf{D}=$ electric displacement

$\mathbf{P}=$ polarization of material

$$
\mathbf{P}=\mathbf{P}_{\text {ion }}+\mathbf{P}_{\text {val }}+\mathbf{P}_{\text {core }}
$$

$\mathbf{P}_{\text {val }}, \mathbf{P}_{\text {core }}=$ polarization because of val./core el.

$$
\mathbf{P}_{\text {ion }}=\sum_{i=\text { ion }} \mathbf{Z}_{i}^{*} \cdot \delta \mathbf{R}_{i} \quad \begin{gathered}
\text { (Born effective charge tensor } \mathbf{Z}^{*} \\
\text { times displacement } \delta \mathbf{R} \text {) }
\end{gathered}
$$

Example: empirical pseudopotential method

* Non-interacting model
* Optical absorption by electron inter-band transitions
* Atomic pseudopotentials adjusted to match observed spectral features

Samples of work by Marvin Cohen group (UCBerkeley):

Modeling excitation spectra

(Standard time-dependent perturbation theory)

Fermi's Golden Rule :
For

$$
H^{\prime}=H+\hat{O} \exp (-\mathrm{i} \omega t)+\text { h.c. }
$$

have

$$
\begin{aligned}
S(\omega) & \left.=A \sum_{F}|\langle F| \hat{O}| I\right\rangle\left.\right|^{2} \delta\left(E_{I}+\omega-E_{F}\right) \\
& =-\frac{A}{\pi} \operatorname{Im}\left\{\langle I| \hat{O}^{+} \frac{1}{E_{I}+\omega-H+\mathrm{i} \eta} \hat{O}|I\rangle\right\}
\end{aligned}
$$

We use the Haydock recursion method, which expresses final expectation value as a continued fraction that depends on ω.

Haydock recursion method (a.k.a. Lánczos method):

Introduce normalized vector,

$$
\left|v_{0}\right\rangle=\left(\langle I| \hat{O}^{+} \hat{O}|I\rangle\right)^{-1 / 2} \hat{O}|I\rangle \quad \rightarrow\left\langle v_{0} \mid v_{0}\right\rangle=1
$$

Establish seq. of vectors, $\left.\left\{v_{i}\right\rangle\right\}_{\text {in }}$ which $H=H^{\dagger}$ is tri-diagonal,

$$
\begin{aligned}
H\left|v_{0}\right\rangle & =a_{0}\left|v_{0}\right\rangle+b_{1}\left|v_{1}\right\rangle \\
H\left|v_{1}\right\rangle & =b_{1}\left|v_{0}\right\rangle+a_{1}\left|v_{1}\right\rangle+b_{2}\left|v_{2}\right\rangle \\
H\left|v_{2}\right\rangle & =b_{2}\left|v_{1}\right\rangle+a_{2}\left|v_{2}\right\rangle+b_{3}\left|v_{3}\right\rangle \\
& \vdots
\end{aligned}
$$

And deduce spectrum (quickly!) from linear algebra...

$$
\begin{aligned}
S(\omega) & =-\pi^{-1} A \operatorname{Im}\langle I| \hat{O}^{+}\left(E_{I}+\omega-H+\mathrm{i} \eta\right)^{-1} \hat{O}|I\rangle \\
& =-\pi^{-1} A\langle I| \hat{O}^{+} \hat{O}|I\rangle \operatorname{Im}\left\langle v_{0}\right|\left(E_{I}+\omega-H+\mathrm{i} \eta\right)^{-1}\left|v_{0}\right\rangle
\end{aligned}
$$

$$
=-\pi^{-1} A\langle I| \hat{O}^{+} \hat{O}|I\rangle \operatorname{Im}\left\{E_{I}+\omega-a_{0}+\mathrm{i} \eta-b_{1}^{2} /\left[E_{I}+\omega-a_{1}+\mathrm{i} \eta-b_{2}^{2} /(\ldots)\right]\right\}^{-1}
$$

Incorporation of electron-hole interaction:

Excited state = linear superposition of all states produced by a single electron excitation.
$E_{\text {el }}$
In each such electron-hole pair state,
 electron in band n^{\prime},
with crystal momentum $\mathbf{k}+\mathbf{q}$.
hole in [band/core-level] n,
with crystal momentum \mathbf{k},

Call such a state $\left|n n^{\prime} \mathbf{k}(\mathbf{q})\right\rangle$, total crystal momentum \mathbf{q}.

Predictive electron band theory:

Needs:

* accurate band structure methods (Schrödinger equation in solids)
* many-body corrections to band energies

GW self-energy of Hedin:

Bethe-Salpeter equation, motivation:

In a non-interacting picture, one has

$$
H\left|n n^{\prime} \mathbf{k}(\mathbf{q})\right\rangle=\left[E_{\mathrm{el}}\left(n^{\prime}, \mathbf{k}+\mathbf{q}\right)-E_{\mathrm{el}}(n, \mathbf{k})\right]\left|n n^{\prime} \mathbf{k}(\mathbf{q})\right\rangle .
$$

Thus, the states $\left\{\left|n n^{\prime} \mathbf{k}(\mathbf{q})\right\rangle\right\}$ diagonalize the Hamiltonian, H.
In an interacting picture, one has

$$
\begin{aligned}
H\left|n n^{\prime} \mathbf{k}(\mathbf{q})\right\rangle= & {\left[E_{\mathrm{el}}\left(n^{\prime}, \mathbf{k}+\mathbf{q}\right)-E_{\mathrm{el}}(n, \mathbf{k})\right]\left|n n^{\prime} \mathbf{k}(\mathbf{q})\right\rangle+} \\
& \Sigma_{n^{\prime \prime} n^{\prime \prime \prime} \mathbf{k}^{\prime}} V\left(n^{\prime \prime} n^{\prime \prime \prime} \mathbf{k}^{\prime}, n n^{\prime} \mathbf{k}\right)\left|n^{\prime \prime} n^{\prime \prime \prime} \mathbf{k}(\mathbf{q})\right\rangle,
\end{aligned}
$$

and the different states are coupled. Stationary states that diagonalize H are linear combinations of many electron-hole pair states.

Resulting coupled, electron-hole-pair Schrödinger equation ("Bethe-Salpeter" equation): difficult to solve, especially within a realistic treatment of a solid.
NGT
National Institute of
Standards and Technology

Interaction effects:

Electron-hole interaction matrix-element:

hole line

Attractive "direct part" of interaction: screened Coulomb attraction. Gives excitons, shifts spectral weight.

Repulsive "exchange part" of interaction: leads to plasmons.

Not included in a realistic framework until 1998.

Improved results:

Incorporating effects of the electron-hole interaction in realistic calculations was made feasible and efficient through use of a wide variety of numerical \& computational innovations.

The outcome (e.g., GaAs):

Besides affecting absorption spectra, index dispersion is greatly improved, especially in wide-gap materials.

Consistently better results results when incorporating electron-hole interaction effects. Standards and Technology

MgO optical constants:

National Institute of

Core excitations in MgO

Excitation of magnesium \& oxygen 1 s electrons

Quadrupole (and dipole) core-excitation spectra: Pre-edge and near-edge excitations in rutile TiO_{2}

National Institute of

Multiplet effects in 3d $L_{2,3}$ oxide spectra: $\mathrm{Ti} L_{2,3}$ in SrTiO_{3}

Bethe-Salpeter result:

157 nm Lithography Index Specifications

feature size $\sim 65 \mathrm{~nm}(\sim \lambda / 3$ for 157 nm$)$
To obtain resolution $\sim 65 \mathrm{~nm}(\sim \lambda / 3)$: phase retardance for all rays $d \lambda / 8$
\Rightarrow index variation $\sim 1 \times 10^{-7}$
CaF_{2} cubic crystal (fluorite crystal structure)

\Rightarrow isotropic optical properties?
Material problems extrinsic

* index inhomogeneity
* stress-induced birefringence

May 2001 announced an intrinsic birefringence and index anisotropy
$\sim 11 \times 10^{-7}$ over $10 \times$ specs.
Cannot be reduced!

Spatial-Dispersion-Induced Birefringence

Origin of effect:

Finite wave vector of light, \mathbf{q}, breaks symmetry of light-matter interaction.

History:

H.A Lorentz (Lorentz contraction) considered this small symmetry-breaking effect in "regular crystals" in 1879, PRIOR to verified existence crystal lattices! (Laue 1912, Bragg 1913) Worked out simple theory by 1921 - measured in NaCl ?
H.A. Lorentz, "Double Refraction by Regular Crystals," Proc. Acad. Amsterdam. 24, 333 (1921).

First convincingly demonstrated by Pastrnak and Vedam in Si (1971).
J. Pastrnak and K. Vedam, "Optical Anisotropy of Silicon Single Crystals," Phys. Rev. B 3, 2567 (1971).

Confirmed, extended by others, esp. Cardona \& colleagues - academic curiosity Values "too" small to have implications for optics - Optics industry oblivious!

We measured in CaF_{2}, material for precision UV optics for 193 nm and 157 nm lithography, and worked out the implications for optics - alerted industry.
J.H. Burnett, Z.H. Levine, E.L. Shirley, "Intrinsic birefringence in calcium fluoride and barium fluoride," Phys. Rev. B 64, 241102 (2001).

Wave Vector Dependence of the Index in Cubic Crystals spatial-dispersion-induced birefringence

Symmetry arguments "prove" natural birefringence forbidden in cubic crystals
Isotropy "proof" assumes D linearly related to \mathbf{E} by $2^{\text {nd }}$-rank tensor indept. of \mathbf{q}

$$
E_{i}=\Sigma_{j} \varepsilon_{i j}^{-1} D_{j} \quad\left(\varepsilon_{i j}^{-1} \text { inverse dielectric constant }\right)-\text { but assumes } \lambda \text { large! }
$$

Actually $\mathbf{D}=\mathbf{D}_{0} e^{i \mathbf{q} \cdot \mathbf{r}}=\mathbf{D}_{0}\left(1+i \mathbf{q} \cdot \mathbf{r}-(\mathbf{q} \cdot \mathbf{r})^{2} / 2+\cdots\right) \quad(q=2 \pi n / \lambda)$
Cannot neglect $(\mathbf{q} \cdot \mathbf{r})$ terms if $\left(\mathrm{a}_{\text {unit cell }} / \lambda\right) \sim 1$ or equivalently $\left(q / K_{\text {reciprocal lattice }}\right) \sim 1$
Perturbation due to ($\mathbf{q} \mathbf{r}$) terms: azimuthal symmetry about \mathbf{q}
For crystal axes w/ 3-fold or 4-fold symmetry ($\mathbf{q} \cdot \mathbf{r}$) reduces isotropic to uniaxial
\Rightarrow NO birefringence for $\mathbf{q} \|<111>$ or $\mathbf{q} \|<001>$

Theory of Intrinsic Birefringence

$$
\varepsilon^{-1}{ }_{i j}(\mathbf{q}, \omega)=\varepsilon^{-1}(0, \omega) \delta_{i j}+\sum_{\Omega_{k}} \gamma_{i j k}^{0}(\omega) q_{k}+\sum_{k l} \alpha_{i j k l}(\omega) q_{k} q_{l} \quad\left(\quad \alpha_{i j k l}\right. \text { respects cubic symmetry) }
$$

Cubic crystals (classes $\overline{4} 3 m, 432, m 3 m$) symmetry $\Rightarrow \alpha_{i j k l}$ has 3 indep. comp. $\alpha_{11}, \alpha_{12}, \alpha_{44}$

$$
\alpha_{i j}=\left(\begin{array}{cccccc}
\alpha_{11} & \alpha_{12} & \alpha_{12} & 0 & 0 & 0 \\
\alpha_{12} & \alpha_{11} & \alpha_{12} & 0 & 0 & 0 \\
\alpha_{12} & \alpha_{12} & \alpha_{11} & 0 & 0 & 0 \\
0 & 0 & 0 & \alpha_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & \alpha_{44} & 0 \\
0 & 0 & 0 & 0 & 0 & \alpha_{44}
\end{array}\right)
$$

Using the 2 independent scalar invariants of a $4^{\text {th }}$ rank tensor to separate terms:

$$
\varepsilon^{-1}{ }_{i j}(\mathbf{q}, \omega)=\left[\varepsilon^{-1}(0, \omega)+\alpha_{12} q^{2}\right] \delta_{i j}+\alpha_{44} 2 q^{2} l_{i} l_{j}+\left(\alpha_{11}-\alpha_{12}-2 \alpha_{44}\right) 5 q^{2} \delta_{i j} l_{i}^{2}
$$

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

isotropic
$\left[\begin{array}{lll}l_{1}^{2} & l_{1} l_{2} & l_{1} l_{3} \\ l_{2} l_{1} & l_{2}^{2} & l_{2} l_{3} \\ l_{3} l_{1} & l_{3} l_{2} & l_{3}^{2}\end{array}\right]$
longitudinal
$\left[\begin{array}{ccc}l_{1}^{2} & 0 & 0 \\ 0 & l_{2}^{2} & 0 \\ 0 & 0 & l_{3}^{2}\end{array}\right]$
anisotropic

isotropic index shift isotropic L-T splitting •induces dir. dep. birefringence \Rightarrow anisotropy governed by one parameter $\left(\alpha_{11}-\alpha_{12}-2 \alpha_{44}\right)^{\bullet}$ induces dir. dep. index variation \Rightarrow angular dependence determined by ONE measurement: \mathbf{q} along <110>, meas. $\mathrm{n}_{\langle 110\rangle}-\mathrm{n}_{<001>}$
J.H. Burnett, Z.H. Levine, E.L. Shirley, and J.H. Bruning, "Symmetry of Intrinsic Birefringence and its Implications for CaF_{2} UV Optics," J. Microlith., Microfab., Microsyst., 1, 213 (2002).

Angular Dependence of Intrinsic Birefringence

$$
n\left(l_{1}, l_{2}, l_{3}\right)=\left[(5 / 2)\left(1-S_{4}\right)\right] \pm\left[-(5 / 2)\left(4 S_{4}-4 S_{6}+S_{4}^{2}-1\right)^{1 / 2}\right], \quad S_{n}=l_{1}^{n}+l_{2}^{n}+l_{3}^{n}
$$

One octant - scaled according to $\Delta \mathrm{n}_{\max }=1$, for $\mathbf{q} \|$ [110]

Has 12 lobes

[110]

Birefringence Measurement

Intrinsic birefringence in $\mathrm{CaF}_{2}, \mathrm{BaF}_{2}$, diamond, and four semiconductors.

CaF_{2} and BaF_{2} meas. results by J.H. Burnett (NIST); semiconductor measurements found in literature as cited by Burnett et al.

National Institute of

Intrinsic Birefringence of $\mathrm{CaF}_{\mathbf{2}}, \mathrm{SrF}_{\mathbf{2}}$, and BaF_{2}

Industry Concern

WaferfabNews, July 2001

Roadblock for 157nm litho?

New measurements of calcium fluoride samples show birefringence far larger than expected, offering a potential roadblock for the development of 157 nm lithography using fluorine $\left(F_{2}\right)$ lasers.
An emergency meeting was set up at Semicon West in San Francisco on Wednesday, July 18 , so lithography experts could address this sudden emerging issue. Oninion was di-

$$
\begin{aligned}
& \text { in, } \\
& \text { phe. }
\end{aligned}
$$ vided on v for 157 nm

Optics oddity challenges microchip makers

An obscure optical effect that had faded from view for more than a century suddenly has become a hot topic for microelectronics producers. New studies show that this effect, called intrinsic birefringence, could incapacitate the next generaion of factory tools for making chips.
Researchers at the National Institute of Standards and Technology (NIST) in Gaithersburg, Md., began circulating this revelation in May. It probably will force engineers to redesign multimillion-dollar machines already slated for production, they say.
No one seems yet to know the degree of the challenge nor a pathway to its solution, says Mordechai Rothschild of the Massachusetts Institute of Technology's Lincoln Laboratory in Lexington. The NIST researchers expect the problem to crop up in several years in the chip-makng step known as lithography.

Engineers might have been more savvy had they studied the late-19th-century work of physicist Hendrik A. Lorentz, who conjectured that even highly symmetric crystals would exhibit a small intrinsic effect. At the time, Lorentz didn't have tools sufficient for testing his hypothesis. Because the effect is so small at visible wavelengths, it remained obscure
Using today's powerful tools, Burnett and his colleagues found intrinsic birefringence in calcium fluoride. At 157 nm , Burnett says, the material exhibits 12 times the effect tolerable in current stepper designs.
At press time, Burnett was slated to present his results on July 18 at the trade conference Semicon West in San Francisco.
"It clearly is a problem, but I don't think it's a showstopper," says Rothschild Fortunately, he notes, the NIST group

New Technology Week, July 16, 2001

NIST Finds Potential Next-Generation Lithography Hiccup
 NIST scientists have discovered a problem which, were

 it not detected, could have been a major roadblock in the effort to create lithography capable of producing smaller features for integrated circuits.Advances in lithography, the process of using light to etch intricate patterns onto a silicon chip, have largely been responsible for maintaining Moore's Law, which says computer processing speed will double every 12 to 18 months.

Researchers have been using light sources with narrower wavelengths in order to achieve greater precision, allowing industry to produce smaller, faster integrated uing lithography us-

In directions of greater bulging (colored lobes), a calcium-fluoride cube more strongly exhibits a nonuniform optical effect. A crystal contains many such cubes.
found the difficulty before manufacturer actually started making and shipping the 157-nm machines

Science News, July 21, 2001

Possible Alternative Solution: Mixed Crystals

- $\mathrm{CaF}_{2}, \mathrm{SrF}_{2}$, and BaF_{2} all have same fluorite crystal structure.
- Mixed crystals that retain the cubic symmetry can be made: $\mathrm{Ca}_{1-\mathrm{x}} \mathrm{Sr}_{\mathrm{x}} \mathrm{F}_{2}$ (all x), $\mathbf{S r}_{1-x} \mathrm{Ba}_{\mathrm{x}} \mathbf{F}_{2}\left(\mathbf{a l l} x\right.$), $\mathrm{Ca}_{1-x} \mathrm{Ba}_{x} \mathbf{F}_{2}\left(\right.$ some x), $\mathbf{S r}_{1-x} \mathbf{M g}_{x} \mathbf{F}_{2}$ (some x)
$\cdot \mathrm{SrF}_{2}$ and BaF_{2} have birefringence of opposite sign compared to $\mathrm{CaF}_{2} \Rightarrow$ $\left.\mathbf{x} \approx \mid \Delta \mathbf{n}\left(\mathbf{C a F}_{2}\right) /\left[\Delta \mathbf{n}\left(\mathbf{C a F}_{2}\right)\right]-\Delta \mathbf{n}\left(\mathbf{Y F}_{2}\right)\right] \mid, \mathbf{Y}=\mathbf{B a}, \mathbf{S r}$ nulls birefringence
$\bullet \mathrm{Ca}_{0.3} \mathrm{Sr}_{0.7} \mathrm{~F}_{2}$ nulls IBR at $157.9 \mathrm{~nm}, \quad \mathrm{Ca}_{0.7} \mathrm{Sr}_{0.3} \mathrm{~F}_{2}$ nulls IBR at 193.4 nm
- Have made $\mathbf{C a}_{1-x} \mathbf{S r}_{\mathrm{x}} \mathrm{F}_{2}$ for $x=\mathbf{0 . 1 - 0 . 9}$ - characterizing now!

Combination of [111] Pair and [100] Pair

Simulated 2D-Distribution of Intrinsic Birefringence - Nikon Corporation

 figure errors! \Rightarrow higher figure specs.

New Crystal Optics

conventional optics classification
with spatial dispersion
(e.g, cubic fluorite structure)

1 principal \mathcal{E} cubic
uniaxial
2 principal \mathcal{E} s hexagonal tetragonal trigonal

all prop. dir's
non-birefringent

1 prop. dir.
non-birefringent

biaxial

3 principal \mathcal{E} s orthorhombic monoclinic triclinic

2 prop. dir's non-birefringent

heptaxial

7 prop. dir's
non-birefringent

Sensitivity of birefringence to interaction (exciton) effects:

Behavior: $\quad \Delta n(\omega) \sim A \omega^{2}+B /\left(\omega^{2}-\omega_{0}^{2}\right)+C /\left(\omega^{2}-\omega_{0}^{2}\right)^{2}$

"Interband"
contribution

Contribution from exciton peak because of anisotropy in exciton oscillator strengths
「
Contribution from exciton peak because of splitting of exciton energies

Each effect can dominate!

Spurious symmetry breaking culprits:

$H=H_{e}+H_{h}+H_{e h, \mathrm{D}}+H_{e h, \mathrm{X}}$, plus matrix elements!

H_{e}, H_{h} : for faster convergence, \mathbf{k}-point meshes can be displaced from having complete symmetry. DON'T SHIFT! (Or shift \& average birefringences obtained for certain "equivalent" directions.)
$H_{e h, \mathrm{D}}$: for convenience, $\quad H_{e h, \mathrm{x}}$: for convenience, might cut off e-h interaction might have G-vectors for in real-space in non-symmetric treating off-diagonal dielectric way, e.g., related to supercell screening organized in a implied by k-point mesh spacing. USE LENGTH!
parallelepiped. USE LENGTH!

Good

Basis set for $u_{n \mathbf{k}}(\mathbf{r})$,
Basis-set can convey bias from non-symmetric k-point \& band for $\psi_{n \mathbf{k}}(\mathbf{r})=u_{n \mathbf{k}}(\mathbf{r}) \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{r}}$. sampling (PRB 54, 16464, 1996). Form basis set symmetrically, In regards to \mathbf{k}-points and degenerate band partners!

Summary

* Theoretical investigation relating
- optical constants
- quantum mechanics of electrons in solids
- numerical modeling of physical systems
* Method results shown for
-semiconductors
-wide-gap insulators
-core excitations
* Intrinsic birefringence in cubic crystalline materials

```
Acknowledgements:
JB: Office of microelectronic programs,
SEMATECH International
```

