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Abstract. The discovery of a significant spatial-dispersion-induced bire-
fringence (intrinsic birefringence) in CaF2 at ultraviolet wavelengths has
had a major impact on the design of 157 nm lithography systems, requir-
ing complete redesign of the optics to take account of the imaging aber-
rations resulting from the birefringence and the accompanying index an-
isotropy. This intrinsic birefringence phenomena results from a
symmetry-breaking effect of the finite wave vector of the photon on the
symmetry of the light-matter interaction in fluorite-structure cubic crys-
tals. As a follow-up to our original concise report of measurements and
theory of the effect in CaF2 and BaF2 , we present here a more detailed
analysis of the theory, focusing on the symmetry and its consequences.
We also provide the full directional dependence of the effect in useful
closed forms. We analyze the implications for precision optical design
with CaF2 optical elements, and discuss qualitatively the approaches
being considered to compensate for it. © 2002 Society of Photo-Optical Instru-
mentation Engineers. [DOI: 10.1117/1.1503350]
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1 Introduction

When the semiconductor industry began to consider de
oping optical lithography based on illumination wav
lengths below 248 nm, the system designers were force
incorporate crystalline material in the optics, due to t
optical limitations of available amorphous materials. F
193 nm lithography a second material, such as Ca2 ,
would be needed for combination with fused silica for co
rection of chromatic aberrations. At 157 nm no practic
amorphous material is transmissive enough, and it w
clear that the refractive optics would have to be made
tirely of crystalline materials, with CaF2 being the principal
candidate. Though crystalline materials in general have
isotropic optical properties and natural birefringence, it w
widely thought that for crystals with cubic crystal symm
try such as CaF2 , birefringence and index anisotropy we
symmetry forbidden in perfect crystals at sub-bandgap p
ton energies. Onlyextrinsic symmetry-breaking effects
such as strain could allow these. Experience with CaF2 at
visible wavelengths seemed to confirm this. Thus, it ca
as a surprise to the industry when measurements and
companying analysis showed that there was in fact anin-
trinsic birefringence and index anisotropy in CaF2, and that
the magnitudes were far larger than tolerable.1–3 Fortu-
nately, the symmetry-breaking effect responsible for t
JM3 1(3) 213–224 (October 2002) 1537-1646/2002/$15.00
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still preserves rather high symmetry. This has enabled
rection schemes which, though complicating the desig
have been shown to work in simulations.

The analysis of the effect in the original work was pr
sented in a very concise form,3 leaving out most of the
details, resulting in some confusion and controversy. T
purpose of this paper is to expand on the original analy
giving a thorough, rigorous treatment of the details, deri
tions of key results, and a more complete analysis of
implications for optics. Section 2 of this paper briefly di
cusses the history of the investigation of the effect. Sect
3 presents the theory of spatial-dispersion-induced biref
gence ~intrinsic birefringence! in cubic crystals. The
implications for optics are briefly examined in Sec. 4, i
cluding a qualitative discussion of the correction a
proaches proposed. Concluding remarks are given
Sec. 5.

2 History

The origin of the intrinsic birefringence and the accomp
nying index anisotropy in cubic crystals is the finite wa
vector of light q, which breaks the lowest-order isotrop
symmetry of the light-matter interaction in cubic crysta
Lorentz, best known for the Lorentz transformation of t
theory of relativity, first considered this small symmetr
breaking effect in ‘‘regular crystals’’ in 1878,4 before the
formulation of the macroscopic Maxwell equations a
over 30 yrs. before the confirmation of the existence
213© 2002 Society of Photo-Optical Instrumentation Engineers
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Burnett et al.: Symmetry of spatial-dispersion-induced birefringence . . .
Fig. 1 Measurements (symbols) and calculations (curves) of the
intrinsic birefringence (n ^1̄10&2n ^001&) in CaF2 and BaF2 as functions
of wavelength (see Ref. 3). Both measurement and calculation show
short wavelength divergent behavior for both materials with opposite
signs, and a sign change for CaF2.
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based on crystal axis clocking1–3 and an approach to elimi
nate the effect altogether at a given wavelength based
mixed solid solutions of CaF2 and BaF2

2,3 or of CaF2 and
SrF2.8 The measurements and first-principles calculatio
for CaF2 and BaF2 are presented in Fig. 1 and in Table 13

Details of the measurement procedures have been prese
previously and will not be discussed here.3 The results have
since been confirmed,9 and detailed analyses of correctio
strategies have been presented.10–12

3 Theory

The optical properties of crystalline materials are charac
ized by the complex dielectric tensore i j which describes
the effect of the polarizability of the material on the elect
field components (Ei) to give the electric displacemen
field components (Di). In terms of the inverse dielectric
tensore i j

21, the components of the two fields are related

Ei5(
j

e i j
21D j , ~1!

where the sum, as always in this paper unless otherw
stated, is over the three Cartesian coordinate directionsx1 ,
x2 , and x3 . For plane waves of frequencyv and wave
vector q, propagating in the crystal in the directionq/uqu
5q̂, Ei and Di have their spatial and time behavior go
erned byei (q•r2vt). In general,e i j

21 has a frequency and
wave-vector dependencee i j

215e i j
21(v,q). At frequencies

in the transparent region,e i j
21(v,q) is real, and it can also

be shown by energy considerations thate i j
21(v,q) is sym-

metric under the interchangei↔ j .13 For the magnitude of
q much smaller than the size of the Brillouin zone,
equivalently, the wavelengthl much larger than the size o
the unit cell, the spatial dispersion effects ofq can be ne-
glected ande i j

21(v,q) can be taken to be independent ofq
@i.e., e i j

21(v,q)'e i j
21(v,0)#.

The tensore i j
21(v,q) must obey the symmetry of th

light-matter interaction. Assumingq50, this means that
e i j

21(v,0) must obey the symmetry of the crystal. CaF2 has
the cubic fluorite crystal structure~space group:
Fm3m-International notation, Oh

5-Schoenflies notation!
shown in Fig. 2. This has the highest-symmetry point gro
crystal lattices by Bragg and Laue. Lorentz worked out
basic theory of the effect by 1921 and attempted to mea
it in NaCl.5

This spatial-dispersion-induced~q-induced! birefrin-
gence in cubic crystals was first convincingly demonstra
by Pastrnak and Vedam in Si in the infrared in 1971,6 and
then by Yu and Cardona in GaAs.7 Since these and othe
measured values~see references cited in Ref. 3! were very
small and generally in nonoptical materials, these res
were viewed as curiosities. Measurements were not m
on materials important for optics, and the implications
the effect for precision ultraviolet~UV! optics were not
anticipated. In any case, the lithography optics commun
was apparently unaware of this effect when it began de
oping systems incorporating CaF2 optics for 193 and 157
nm lithography in the mid-1990s.

In May of 2001, Burnett, Levine, and Shirley1 first re-
ported measurements and calculations of intrinsic biref
gence in CaF2, and later BaF2 .2,3 They presented an analy
sis of the propagation-direction dependence of the intrin
birefringence and the accompanying index anisotro
along with their implications for precision optics in the U
They also proposed an approach for correcting the ef
Table 1 Measurements and calculations of intrinsic birefringence of CaF2 and BaF2 in the UV.

Wavelength
(nm)

CaF2 1073(n ^1̄10&2n ^001&) BaF2 1073(n ^1̄10&2n ^001&)

Measured Calculated Measured Calculated

365.06 0.1960.04 0.66 4.060.6 5.3

253.65 20.5560.07 0.84 9.561.1 12.7

193.09 23.460.2 21.4 1962 26.9

175.19 25.760.3 25.2 2562 36.4

165.72 28.360.4 29.9 2962 43.6

156.10 211.860.4a 219.7 3463 52.7

aInterpolated value for CaF2 at the excimer laser wavelength 157.63 nm is Dn5(211.260.4)
31027.
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Fig. 2 Schematic of the conventional cubic unit cell of CaF2 , with
the fluorite crystal structure. Ca atoms (dark circles on cube corners
and faces) form a face-centered cubic lattice, and fluorine atoms
(light circles on inside cube corners) form a simple cubic lattice.
Directions in the crystal are indicated by the conventional notation
with square brackets. The three orthogonal directions [100], [010],
and [001] are parallel to the cube edges. The three orthogonal di-
rections [110], [011], and [101] are parallel to the cube face diago-
nals. The direction [111] is parallel to a cube body diagonal (lower far
corner to upper near corner).
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2e(v,0)22a, for a from Ref. 3.! We expand the inverse
dielectric tensor because it is directly related to the indi
of refraction. Since CaF2 is a centrosymmetric crystal~i.e.,
it has the inversion operation as a symmetry element!, the
coefficientg i jk of the term linear inq must vanish, as well
as all terms with odd powers ofq. The first correction to
the isotropic inverse dielectric tensor is the term prop
tional to q2, with tensor coefficientb i jkl (v) that deter-
mines the anisotropies and birefringence. Actually, for lig
that is introduced into a crystal, the value ofq inside the
crystal is scaled by a factor of the indexn compared to
what it would be in a vacuum, wheren itself depends on
;q2 recursively through Eq. ~2!. These additional
q-dependent terms affecte i j

21(v,q) at fourth-order inq,
which we neglect here.

The wavelength dependence of theq2 term in Eq.~2! is
roughly the square of the small parameter,an/l, wherea
is the lattice constant andn is the index of refraction.5

Consistent with the measured and calculated results sh
in Fig. 1, the long-wavelength behavior is governed by
diminishing effect of the 1/l2 term and by the totality of
contributions to the anisotropic dielectric properties, e
band effects and exciton effects.3 The divergent short-
wavelength behavior is governed by the increasing cha
ter of 1/l2 and especially by the strong contribution of th
excitonic anisotropies near the band edge. If we cons
the key case of CaF2 , a50.546 nm, and forl5157 nm,
n51.56, we have (an/l)2;2.931025. The next nonvan-
ishing term in Eq.~2! goes asq4, or in terms of the small
parameter as (an/l)4;8.7310210, which is small enough
to justify the neglect of higher order terms at this wav
length.

Of course, for small enoughl, e.g.,l;a, Bragg scat-
tering may occur, and the analysis presented here is
valid. Also, for photon energy sufficiently close to or abo
the crystal band gap energy or near impurity levels,
crystal has an absorption component andq becomes com-
plex. This results in evanescence and an effective broad
ing of the real part ofq. An evanescent component com
plicates the birefringence analysis based on propaga
waves, and significant contributions from largeq compo-
nents may confound the conclusions drawn from the an
sis based on a Taylor series expansion in a definiteq out to
the q2 term. However, high-quality CaF2 is sufficiently
transmissive near 157 nm that these effects should no
concerns near this wavelength.

Equation~2! can be written as

e i j
21~v,q!5e21~v,0!d i j 1De i j

21~v,q!, ~3!

where De i j
21(v,q) is the anisotropic correction given t

lowest order as

De i j
21~v,q!5(

kl
b i jkl ~v!qkql . ~4!

b i jkl (v) is a fourth-rank matter tensor and must obey
the symmetry operations of the crystal. In general it h
34581 independent components, however symmetries
possible for a crystal~crystal class:m3m-International no-
tation,Oh-Schoenflies notation!, with the full symmetry of
a cube.13 The 48 point group symmetry elements for th
class consist of six distinguishable 90° rotations about
three fourfold rotation axes in thê100& directions ~cube
axes!, three 180° rotations about these axes, six 180° r
tions about the six twofold rotation axes in the^110& direc-
tions ~cube face diagonals!, eight 120° rotations about th
four threefold rotation axes in thê111& directions ~cube
body diagonals!, as well as the identity element and the
elements combined with the inversion operation. Applyi
fourfold and twofold operations along two of the cubic ax
of CaF2 constrainse i j

21(v,0) to have the forme i j
21(v,0)

5e21(v)d i j , wheree21(v) is a frequency-dependent sc
lar andd i j is the Kroneckerd. Thus for q50, e i j

21(v,0)
and the resulting optical properties are isotropic. This w
the operating assumption of the optical designers us
CaF2 optical elements. However, for finiteq, this symmetry
argument breaks down, and in generale i j

21(v,q) gives bi-
refringence and anisotropic indices. To determine this
havior we must determine the precise form ofe i j

21(v,q).

3.1 Spatial Dispersion in Cubic Fluorite Structure
Crystals

Expanding the inverse dielectric tensor in a Taylor ser
expansion inq gives14

e i j
21~v,q!5e21~v,0!d i j 1(

k
g i jk~v!qk

1(
kl

b i jkl ~v!qkql1... , ~2!

wheree21(v,0) is the isotropic inverse dielectric consta
for q50, related to theq50 isotropic dielectric constant b
e21(v,0)51/e(v,0). ~Note b in this paper is
215J. Microlith., Microfab., Microsyst., Vol. 1 No. 3, October 2002
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constraints on the actual number of independent com
nents. First, the symmetry ofe i j

21(v,q) and the product
qkql show thatb i jkl (v) is symmetric under interchange
i↔ j and k↔ l . This reduces the 81 independent comp
nents to 36. A compressed matrix notation is convenien13

In b i jkl (v) the four indicesi 51 – 3, j 51 – 3, k51 – 3, l
51 – 3 can be replaced by two indicesi 51 – 6, j 51 – 6 by
making the associations

11→1, 22→2, 33→3, 23,32→4, 13,31→5

and 12,21→6. ~5!

Then all the independent components of the tensorb i jkl (v)
can be written as a 6 by 6matrix

b i jkl ~v!↔bab~v!

5S b11 b12 b13 b14 b15 b16

b21 b22 b23 b24 b25 b26

b31 b32 b33 b34 b35 b36

b41 b42 b43 b44 b45 b46

b51 b52 b53 b54 b55 b56

b61 b62 b63 b64 b65 b66

D
ab

. ~6!

In practice, the matrix form relatesDe i j
21(v,q) and q ac-

cording to

S De11
21

De22
21

De33
21

De23
21

De13
21

De12
21

D 5S b11 b12 b13 b14 b15 b16

b21 b22 b23 b24 b25 b26

b31 b32 b33 b34 b35 b36

b41 b42 b43 b44 b45 b46

b51 b52 b53 b54 b55 b56

b61 b62 b63 b64 b65 b66

D
3S q1

2

q2
2

q3
2

2q2q3

2q1q3

2q1q2

D . ~7!

~Technically this matrix form is not a tensor, because
does not have the coordinate transformation properties
quired of a tensor. By referring to the form as a tensor,
mean it as a short hand for the true fourth-rank tensor.!

Due to the symmetry operations of the crystal, vario
components are related. Using the symmetry operation
~threefold rotation about a cube body diagonal^111&!, 2
~twofold rotation about a cube axis^001&!, and 4~fourfold
rotation about a cube axis!, it can be shown by direc
inspection15 that the only independent tensor compone
areb11, b12, andb44 ~in the compressed notation!, and the
tensor has the form
216 J. Microlith., Microfab., Microsyst., Vol. 1 No. 3, October 2002
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b i jkl ~v!↔bab~v!

5S b11 b12 b12 0 0 0

b12 b11 b12 0 0 0

b12 b12 b11 0 0 0

0 0 0 b44 0 0

0 0 0 0 b44 0

0 0 0 0 0 b44

D
ab

. ~8!

This has the same form as the piezo-optic tensorp i jkl for
CaF2 , which governs the effect of stress on the index,
the same symmetry reasons.13 However, unlike the case o
the piezo-optical effect, where stress can be applied in
direction and the index determined in any other directio
here the perturbing influenceq has a definite relation~per-
pendicular! to an index direction, and this gives rise
further simplifications, as will be shown.

Because the components of a fourth-rank tensor tra
form like the product of the components of four vecto
V1 , V2 , V3 , andV4 , the three linearly independent scal
combinations of the four vectors (V1•V2)(V3•V4),
(V1•V3)(V2•V4), and (V1•V4)(V2•V3) imply that a
fourth-rank tensor has three scalar invariants~independent
combinations of tensor components that are invariant un
coordinate transformations.!15 Sinceb i jkl (v) is symmetric
on interchange of the first two and last two indices, t
second and third scalar invariants are equivalent, and
b i jkl (v) has two isotropic scalar invariants

J1~v!5
1

3 (
i j

b i i j j 5b1112b12, ~9!

J2~v!5
1

3 (
i j

b i j i j 5b1112b44. ~10!

The existence of the isotropic scalar invariants motiva
us to write Eq.~8! as

bab~v!5bab~v! isotropic81bab~v! longitudinal8

1bab~v!anisotropic8 ~11!

with

bab~v! isotropic85I 1~v!S 1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

D
ab

, ~12!
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De i j
21~v,q! longitudinal85I 2~v!2q2F l 1

2 l 1l 2 l 1l 3

l 2l 1 l 2
2 l 2l 3

l 3l 1 l 3l 2 l 3
2
G

i j

5I 2~v!2q2l i l j , ~19!

De i j
21~v,q!anisotropic8

5A~v!q2F 3l 1
221 22l 1l 2 22l 1l 3

22l 2l 1 3l 2
221 22l 2l 3

22l 3l 1 22l 3l 2 3l 3
221

G
i j

5A~v!q2~d i j ~5l i
221!22l i l j !, ~20!

wherel 1 , l 2 , l 3 are the direction cosines of thex1 , x2 , x3
axes, respectively.

De i j
21(v,q) isotropic8}I 1d i j gives an isotropic shift in the

inverse dielectric tensor, and therefore cannot contribut
any anisotropic effects. Moreover, becau
De i j

21(v,q) isotropic8 has the same angular dependence
e21(v,0)d i j from Eq. ~3!, it is not a practicable observ
able.

De i j
21(v,q) longitudinal8}I 2l i l j gives a shift in the dielec-

tric tensor for the directions of propagation and polarizat
aligned. For example, for propagation along thex3 axis,
l 150, l 250, andl 351, giving

De i j
21~v,qx̂3 ! longitudinal5I 2~v!2q2F 0 0 0

0 0 0

0 0 1
G

i j

. ~21!

Because the propagating waves are polarized in the tr
verse plane—thex1 , x2 plane in this example—this term
has no effect on the bulk optical properties.

The optical manifestations of the anisotropy are all co
tained inDe i j

21(v,q)anisotropic8. Thus while the cubic crysta
supports three independent tensor components, only
combination is relevant to anisotropies. This conclusion
central to the present paper. AlthoughI 1 andI 2 exist physi-
cally, they have no practical observable consequence
optics. Hence it is permissible to ignoreI 1 and I 2 when
considering the anisotropic optical behavior and birefr
gence.

Note that the form forDe i j
21(v,q)anisotropic8 obtained

above by setting the scalar invariants to zero is a trace
combination of three terms. The second and third terms
De i j

21(v,q)anisotropic8 in Eq. ~20! are proportional tod i j and
l i l j , respectively, which again give only isotropic an
purely longitudinal contributions. These terms can be s
sumed into the isotropic and longitudinal terms in Eq.~17!
giving
bab~v! longitudinal85I 2~v!S 2 0 0 0 0 0

0 2 0 0 0 0

0 0 2 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

D
ab

,

~13!

bab~v!anisotropic8

5A~v!S 2 21 21 0 0 0

21 2 21 0 0 0

21 21 2 0 0 0

0 0 0 21 0 0

0 0 0 0 21 0

0 0 0 0 0 21

D
ab

.

~14!

The new variables I 1[(2J12J2)/5 , I 2[(2J1

13J2)/10 , andA are linear combinations ofb11, b12,
andb44

S I 1

I 2

A
D 5

1

5 S 1 4 22

1 21 3

1 21 22
D S b11

b12

b44

D ~15!

or equivalently

S b11

b12

b44

D 5S 1 2 2

1 0 21

0 1 21
D S I 1

I 2

A
D . ~16!

The new variablesI 1 , I 2 , andA have physical interpre-
tations. Using Eqs.~12!–~14! in Eq. ~4!, going back to the
uncompressed notation, and summing over theq’s using
Eq. ~7!, thenDe i j

21(v,q) can be written as

De i j
21~v,q!5De i j

21~v,q! isotropic81De i j
21~v,q! longitudinal8

1De i j
21~v,q!anisotropic8 ~17!

with

De i j
21~v,q! isotropic85I 1~v!q2F 1 0 0

0 1 0

0 0 1
G

i j

5I 1~v!q2d i j ,

~18!
217J. Microlith., Microfab., Microsyst., Vol. 1 No. 3, October 2002
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De i j
21~v,q!5De i j

21~v,q! isotropic1De i j
21~v,q! longitudinal

1De i j
21~v,q!anisotropic ~22!

5@ I 1~v!2A~v!#q2d i j 1@ I 2~v!

2A~v!#2q2l i l j1A~v!5q2d i j l i
2. ~23!

Just as before, the first term may be considered as an
observable shift in the dielectric constant, and we can
nore it. The second term does not affect propagating wa
so we can also ignore it. We need to consider only the th
term. It gives a pure anisotropic contribution and has
form

De i j
21~v,q!anisotropic5A~v!5q2F l 1

2 0 0

0 l 2
2 0

0 0 l 3
2
G

i j

5A~v!5q2d i j l i
2. ~24!

The correspondingbab tensor in the compressed form
appropriate to Eqs.~4! and ~11! is

bab~v!anisotropic5A~v!5S 1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

D
ab

.

~25!

This governs, in a pure form, all the anisotropies and b
fringence resulting from spatial dispersion up to orderq2 in
the expansion Eq.~2!. Remarkably, the form of Eq.~25!
gives precisely the same results for the angle dependen
that of Eq.~14! and Eq.~8!. Despite the three independe
coefficients in Eq.~8! allowed by symmetry, the anisotro
pies are in fact proportional to just one parameter, nam
A(v)5(b112b1222b44)/5. This simplification occurs es
sentially becauseq always determines the direction of th
symmetry-breaking perturbation. Equation~25! has a de-
ceptively innocent-looking form. However, it gives rise
complex, though highly symmetric, anisotropic behav
with diverse consequences, which we discuss next.

3.2 Birefringence and Index Anisotropy

Knowing the inverse dielectric tensore i j
21(v,q) for a CaF2

crystal for all propagation directions, we may obtain t
indices of refraction. We review the prescription f
this.13,16 From the sourceless Maxwell equations in no
magnetic materials ~curlH5 1/c]D/]t, curlE5
2 1/c]B/]t, and B5H!, for a plane wave;ei (q•r2vt)

propagating with angular frequencyv and wave vectorq, it
is straightforward to show that the electric fieldE and the
electric displacement fieldD are related by the equation

~v/c!2D5E2~ q̂•E!q̂, ~26!
218 J. Microlith., Microfab., Microsyst., Vol. 1 No. 3, October 2002
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wherev is the velocity of the wave front along the wav
normalq̂5q/uqu. From the Maxwell equations,D, H, andq
must be mutually perpendicular andE must be in the plane
of q andD, as shown in Fig. 3.

Choose a coordinate system with one axis alongq̂ and
the two mutually perpendicular transverse axes arbitr
with components along these axes labeleda and b. Then
from Eq. ~26!, the D and E components along these axe
are given by

Da5~c/v !2Ea5n2Ea ~n[c/v !, ~27!

wheren[c/v is the index of refraction.
Using Eq.~1! for Ea and the fact thatD must be per-

pendicular toq̂, the following relation must hold betwee
the components ofD and the index of refractionn

(
b

S eab
212

1

n2 dabDDb50. ~28!

A nonzero solution requires that the determinant of the
efficients ofDb be zero, allowing two possible values fo
1/n2. These are given by the two eigenvalueseg

21'

5e1
21' ,e2

21' of eab
21, obtained as above by diagonalizatio

of e i j
21 in the plane transverse toq̂. Plane waves propagat

ing in the crystal must be completely linearly polarize
with the two possible polarization directions ofD deter-
mined by the two eigenvectors of Eq.~28!. The indices of
refraction of the two polarization states are given by

ng5A1/eg
21'. ~g→1,2-the eigenvalues ofeab

21!. ~29!

Thus to determine the index properties of CaF2 , we need to
find the eigenvalues ofe i j

21 projected into the plane trans
verse toq.

From Eqs.~3!, ~22!, and ~23!, the dielectric tensor re-
quired in Eq.~29! is given by

e i j
21~v,q!5~e21~v,0!1„I 1~v!2A~v!…q2!d i j

1A~v!5q2d i j l i
2, ~30!

Fig. 3 Relation between the directions of the B, H, E, D, and q
vectors for light propagation in anisotropic, nonmagnetic crystals. H,
D, and q are mutually perpendicular. D, E, and q are coplanar.
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where we have ignored the longitudinal terms because
cannot affect the transverse eigenvalues. The two eigen
ues ofe i j

21(q,v) in the plane transverse toq are given by

eg
21'5~e21~v,0!1„I 1~v!2A~v!…q2!

1A~v!5q2EigVal~d i j l i
2!g

' ~g51,2!, ~31!

where EigVal(d i j l i
2)g

' is one of the two eigenvalues of th
tensor (d i j l i

2) in the plane transverse toq. Using these in
Eq. ~29! gives the indices of refraction for the two pola
ization states

ng5@~e21~v,0!1„I 1~v!2A~v!…q2!

1A~v!5q2EigVal~d i j l i
2!g

'#21/2 ~g51,2!. ~32!

This is exact to orderq2 in the expansion Eq.~2!.
Since the first term in the square root in Eq.~32! is of

order 1 and the terms proportional toq2 are, from measure
ments shown in Table 1, of order;1026, then for wave-
lengths down to at least 157 nm, the square root in Eq.~32!
can be expanded to very high accuracy. Usinge21(v,0)
51/e(v,0)51/n(v,0)2, wheren(v,0) is the isotropic in-
dex of refraction at frequencyv for q50, and using Eq.
~15! for I 1 andA, we finally get to orderq2

ng~v,q!5n~v,0!2 1
2 n~v,0!3b12q

22 1
2 n~v,0!3

3~b112b1222b44!q
2EigVal~d i j l i

2!g
'1O~q4!.

~33!

Thus the propagation direction dependence of the two
dices for the two orthogonal polarization states of lig
traveling in a fluorite-structure crystal with spatial dispe
sion, is given by the eigenvalues of (d i j l i

2) in the plane
transverse toq.

From Eq.~33!, the birefringence is given by

Dn~v,q!5@n1~v,q!2n2~v,q!#

52 1
2 n~v,0!3~b112b1222b44!q

2

3@EigVal~d i j l i
2!1

'2EigVal~d i j l i
2!2

'#1O~q4!.

~34!

The variation of the birefringence with propagation dire
tion is fully determined by the angular dependence of
eigenvalue difference, which is calculated in Sec. 3.4. T
same angular dependence occurs for all fluorite-struc
crystals at all wavelengths in the range of validity of t
model, discussed in Sec. 3.1. The magnitude is governe
the factor (n(v,0)3(b112b1222b44)q

2), which is a con-
stant for a given material and wavelength. Thus the
behavior of the intrinsic birefringence for a given mater
at a given wavelength is determined by a single birefr
gence measurement.

The average of the indices for the two polarization sta
for propagation with a wave vectorq is given by
y
l-

y

n~v,q!Av5 1
2 @n1~v,q!1n2~v,q!#

5n~v,0!2 1
2 n~v,0!3b12q

22 1
4 n~v,0!3

3~b112b1222b44!q
2@EigVal~d i j l i

2!1
'

1EigVal~d i j l i
2!2

'#1O~q4!. ~35!

The variation with propagation direction is fully dete
mined by the angular dependence of the eigenvalue s
calculated in Sec. 3.4. The magnitude of the variation
determined by the same material parameter combinatio
for the birefringence, so the full behavior of the inde
variation is also determined for a given material at a giv
wavelength by a single birefringence measurement. The
solute average index value is determined by a combina
of the large,q independent, isotropic band effects and t
small spatial-dispersion effects, which are difficult to d
tinguish experimentally.

Note that when we have (b112b1222b44)50, the op-
tical properties are completely isotropic. In principle, not
ing prevents this condition from being met in a real ma
rial at a particular wavelength, for example, in a cub
fluorite-structure crystal formed as a mixed solid solutio8

3.3 Eigenvalues of the Anisotropic Inverse
Dielectric Tensor

To obtain the indices we must determine the eigenval
and eigenvectors in the plane transverse toq for

De i j
21~v,q!anisotropic5~A~v!5q2!F l 1

2 0 0

0 l 2
2 0

0 0 l 3
2
G

i j

5~A~v!5q2!~d i j l i
2!. ~36!

We will first consider propagation in three special dire
tions, and then we find the solution for the general dire
tion. First consider the propagation direction along the cu
axis direction@001#. Evaluating the direction cosinesl i in
Eq. ~36! ~l 150, l 250, l 351! gives

De i j
21~v,q̂001!anisotropic5~A~v!5q2!F 0 0 0

0 0 0

0 0 1
G

i j

. ~37!

This is trivially diagonal and uniaxial with the axis in th
propagation direction. The transverse eignenvalues are
0. There is no birefringence for propagation along this a
or equivalent̂ 001& axes.

Now consider the propagation direction along the cu
body diagonal direction@111#. Evaluating the direction co-
sinesl i in Eq. ~36! ( l 15 l 25 l 351/)) gives

De i j
21~v,q̂111!anisotropic5~A~v!5q2!

1

3 F 1 0 0

0 1 0

0 0 1
G

i j

. ~38!
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Burnett et al.: Symmetry of spatial-dispersion-induced birefringence . . .
This is the isotropic tensor, with all eigenvalues equal
1/3, ignoring the (A(v)5q2) factor for the moment. There
is also no birefringence for propagation along this axis
equivalent̂ 111& axes.

These two results are also apparent from symme
alone, since a uniaxial perturbation~q! along a fourfold or
threefold axis in a cubic crystal reduces the isotropic sy
metry to uniaxial along the axis, so both these axes mus
nonbirefringent. However, note that the transverse eig
values for thê 001& directions and thê111& directions, 0
and 1/3, respectively, are not equal. This means that
indices for propagation in these nonbirefringent directio
are not equal. Indeed, these values of the index are
extremal values for all directions.

Finally, consider the propagation direction along t
cube face diagonal direction@110#. Evaluating the direction
cosinesl i in Eq. ~36! ~l 15 l 251/&, l 350! gives

De i j
21~v,q̂110!anisotropic5~A~v!5q2!

1

2 F 1 0 0

0 1 0

0 0 0
G

i j

. ~39!

This is a bit more work, but not much. We need to diag
nalize in the plane orthogonal to the direction@110#. The
eigenvectors must therefore be some linear combinatio
the two vectors@1̄10# and@001#, since these are orthogon
to @110# and to each other. They are, in fact, the transve
eigenvectors

Eigenvectors: F21
1
0

G F 0
0
1
G F 1

1
0
G . ~40!

Eigenvalues
1/2

transverse
0

transverse
1/2

longitudinal. ~41!

The transverse eigenvectors, and thus the polariza
eigenstates, are along the@ 1̄10# and the@001# axes. It can
be shown that thê110& propagation directions are the d
rections of maximum eigenvalue difference~maximum bi-
refringence!.

The two transverse eigenvalues are split by a value
which gives rise to the birefringence. The actual magnitu
and sign of the birefringence is determined using Eq.~34!
by (n^1̄10&(v,q)2n^001&(v,q))52(1/4)n(v,0)3(b11

2b1222b44)q
2. The @ 1̄10# axis is the low index~fast!

axis if we have (b112b1222b44).0. This is what is ob-
served for CaF2 at short wavelength, as shown in Table
and Fig. 1. ~BaF2 has the opposite sign.! However, as
shown in the table and figure, there is a sign change
CaF2 determined by both measurement and calculation
wavelengths below;200 nm.

This analysis applies to the three cubic crystal clas
~432, 4̄3m, and m3m-International notation;
O, Td, Oh-Schoenflies notation! that contain fourfold sym-
metry axes. The two other cubic crystal classes~23 andm3,
220 J. Microlith., Microfab., Microsyst., Vol. 1 No. 3, October 2002
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T and Th!, which do not contain fourfold symmetry axe
have a fourth material parameterb13 that complicates the
picture.

3.4 Directional Dependence of the Birefringence
and Index Anistropy

To find the indices for a general propagation directionq̂,
the tensorMi j [d i j l i

2 from Eq.~36! must be diagonalized in
the plane transverse toq̂ as discussed in Sec. 3.2. Fair
simple closed-form solutions may be obtained analytica
To obtain these, one constructs the mutually orthogo
unit vectors û and f̂ orthogonal toq̂, and projects the

tensor into the two-dimensional subspace ofû and f̂, by
forming the inner products ofMi j with the components of

û and f̂, e.g.,m115( i j M i j û i û j , m125m215( i j M i j û if̂ j ,

m225( i j M i j f̂ if̂ j . Then one solves for the eigenvalues
the 2 by 2 matrix. The solutions are the two roots of
quadratic equation. Finally, the polarization eigenstates
obtained by projecting the eigenvectors of the 2 by 2 ma
back into the Cartesian space. An explicit solution in ter
of spherical coordinatesx15sinu cosf, x25sinu sinf,
x35cosu is given by

EigVal~d i j l i
2!1,2

' 5F~u,f!6G~u,f!, ~42!

F~u,f!5 1
320 @29220 cos~2u!235 cos~4u!

240 cos~4f!sin4~u!#1 1
5 , ~43!

G~u,f!5@ 1
8 @513 cos~4f!#cos4~u!sin4~u!

2cos2~f!cos2~u!sin2~f!sin6~u!

1cos4~f!sin4~f!sin8~u!#1/2. ~44!

The last term1(1/5) in F(u,f) is the eigenvalue shift
resulting from removing the isotropic component from E
~20!, and does not affect the birefringence or anisotropy

This can be written more compactly using the directi
cosines ofq̂ with respect to thex1 ,x2 ,x3 axes,l 1 ,l 2 ,l 3 ,
related to the spherical coordinates byl 15sinu cosf, l 2

5sinu sinf, and l 35cosu. Then the solution can be writ
ten

EigVal~d i j l i
2!1,2

' 5F8~ l 1 ,l 2 ,l 3!6G8~ l 1 ,l 2 ,l 3!, ~45!

F8~ l 1 ,l 2 ,l 3!5~1/2!~12 l 1
42 l 2

42 l 3
4!, ~46!

G8~ l 1 ,l 2 ,l 3!5@~ l 1
2l 2

21 l 2
2l 3

21 l 3
2l 1

2!223l 1
2l 2

2l 3
2#1/2. ~47!

This form, written using direction cosines, transparently
veals the cubic symmetry of the effects.

The variation of the average index with propagation
rection is governed by

@EigVal~d i j l i
2!1

'1EigVal~d i j l i
2!2

'#~1/2!5F8~ l 1 ,l 2 ,l 3!.
~48!
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Fig. 4 The angular dependence of the intrinsic birefringence for
propagation directions in one octant of a sphere. Directions refer to
crystallographic directions indicated in square brackets. The magni-
tude of the birefringence in a given direction is proportional to the
distance of the surface in that direction from the origin, with the
maximum scaled to 1. A VRML (Virtual Reality Modeling Language)
version may be found in Ref. 8.
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birefringence~index out-of-plane minus index in-plane! has
a maximum in magnitude in the@110# direction. The figure
also shows a secondary birefringence maximum magnit
between the@001# and @111# directions. This occurs in the
@211# direction, and, in fact, is a saddle point. A sign chan
occurs as the propagation direction passes through the@111#
direction. The slope is nearly maximal at the zero crossi
Three gradient maxima occur very near each^111& direc-
tion. The average index curve shows that the average in
variation is about as large in magnitude as the birefr
gence, and that the extremes occur in the directions of
birefringence zeros. A similar set of plots for propagation
the plane of a cube face is shown in Fig. 7. We verified t
angle dependence by experiment, as shown in Fig. 8.

Another useful way to visualize the birefringence a
index anisotropy is with index surfaces, which represent

Fig. 5 Three-dimensional directional dependence of the intrinsic bi-
refringence from a perspective along a general low-symmetry direc-
tion shows 12 birefringence maxima directions and 14 birefringence
zero directions (seven nonbirefringent axes).
The variation of the birefringence with propagation dire
tion is governed by

@EigVal~d i j l i
2!1

'2EigVal~d i j l i
2!2

'#52G8~ l 1 ,l 2 ,l 3!. ~49!

A plot of the magnitude of the difference between t
two eigenvalues~proportional to the birefringence! is
shown in Fig. 4 for directions in one octant of a sphere
indicates the birefringence~scaled to 1 at the maximum! for
a given propagation direction, by the distance of the surf
from the origin in that direction. The figure shows birefri
gence zeros in thê100& directions~cube axes! and in the
^111& directions~cube body diagonals! as discussed in Sec
3.3. A maximum occurs in the@110# direction ~cube face
diagonal!, with the two polarization directions in the fac
diagonal@ 1̄10# and cube axes@001# directions. Thê 110&
directions are the directions of absolute extrema in biref
gence. Near these directions the birefringence falls off i
tropically. The behavior in the other octants is equivale
by symmetry.

The complexity and high symmetry of the birefringen
is demonstrated in the three-dimensional~3D! plot in Fig.
5. There are 12 directions of birefringence maxima, in
directions of the 12 cube edge centers. There are 14 d
tions of birefringence zero, along the three cube axes
the four cube body diagonals. In conventional optics~i.e.,
ignoring spatial dispersion!, crystals are classified as eith
isotropic, uniaxial~1 nonbirefringent axis!, or biaxial ~2
nonbirefringent axes!; however, optics including spatial
dispersion effects must treat cubic crystals~with the sym-
metry classes432, 4̄3m, and m3m! as heptaxial ~seven
nonbirefringent axes!. Further, whereas in biaxial crysta
the two nonbirefringent axes have the same index value
this case the index for the four^111& nonbirefringent axes
differs from the index for the threê100& axes.

The behavior of the birefringence, scaled to 1 at
maximum, in a cube diagonal plane is shown in Fig.
along with the average index. The figure shows that
-

Fig. 6 Calculated magnitudes of the intrinsic birefringence (normal-
ized to 1 at the maximum) and the average index shift, for propaga-

tion in directions in the cube diagonal plane (1̄10) containing the
[001], [111], and [110] directions, represented by the angle mea-
sured from the [001] direction. The birefringence plotted is propor-
tional to the index of refraction for the polarization normal to the

(1̄10) plane, minus the index for the polarization in the (1̄10) plane.
221J. Microlith., Microfab., Microsyst., Vol. 1 No. 3, October 2002
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Fig. 7 Calculated magnitudes of the intrinsic birefringence (normal-
ized to 1 at the maximum) and the average index shift, for propaga-
tion in directions in the cube face (001) plane containing the [100],
[110], and [010] directions, represented by the angle measured from
the [100] direction.
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Fig. 9 Index surfaces for intrinsic birefringence in cubic fluorite-
structure crystals. The indices for each of the two polarization eigen-
states for each propagation direction are represented by the dis-
tance from the origin of a continuous and a wire mesh surface. The
anisotropy is scaled to large values for visualization. The surfaces
touch in the 14 nonbirefringent directions. Plane slices through the
surfaces are shown in Figs. 10 and 11.
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two indices for each propagation direction by two nes
surfaces. For the case of cubic crystals with spatial dis
sion, the index surfaces are much more complicated obj
than those for biaxial crystals without spatial dispersio
The resulting ‘‘nested lumpy spheres’’ are shown in Fig.
with the anisotropy scaled to large values for visualizati
Slices through these index surfaces for propagation in
(1̄10) plane and~001! plane plane are shown in Figs. 1
and 11~cf. Figs. 6 and 7!.

Plots of the eigenvectors are also illuminating. Figure
shows the eigenvector directions~polarization directions!
for the larger index eigenvalues~slow axes!, for propaga-
tion directions in an octant of a sphere. The magnitude
the polarization vector is scaled to the value of the birefr
gence for each propagation direction. Consistent with F
6 and 10, the figure shows that sweeping the propaga
at
tics.
ng,
s

.

direction in the diagonal plane (11̄0), starting with propa-
gation in the@001# direction, the magnitude of the inde
difference increases from zero, with the in-plane polari
tion index larger. The indices are equal again in the@111#
direction, after which the larger index polarization directio
switches to the out-of-plane direction. The differen
reaches a maximum in the@110# direction. The figure as-
sumes (n^1̄10&2n^001&) is positive. For CaF2 near 157 nm
the value is negative, and the fast and slow axes are
versed.

4 Implications for Optics

Spatial-dispersion-induced birefringence and index anis
ropy in CaF2 are responsible for a number of effects th
can severely degrade the performance of precision op
These effects include wavefront aberrations, ray splitti
Fig. 8 Angular dependence of the intrinsic birefringence scaled to 1
at the maximum. Measured data (large squares with error bars) and
model results (small squares) given for propagation directions in the
(001) plane at the angle f from the [100] direction, as indicated in
the inset (Ref. 2). Measured results verify the model for the angular
dependence given in Eqs. (44) and (47).
Fig. 10 Slice of the index surface of Fig. 9 in a $1̄10% plane. The
surfaces touch in the nonbirefringent ^001& and ^111& directions.
They are maximally split in the ^110& directions (cf. Fig. 6).
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Burnett et al.: Symmetry of spatial-dispersion-induced birefringence . . .
Fig. 11 Slice of the index surface of Fig. 9 in a $001% plane. The
surfaces touch in the nonbirefringent ^100& directions. They are
maximally split in the ^011& directions (cf. Figs. 7 and 8).
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Each of the two polarization states experiences a differ
index, and thus accumulates a different optical path len
traveling through the crystal. For precision optical syste
with many lenses, this gets rapidly complicated. For a s
ficiently small birefringence, the ray splitting effects can
neglected, and the birefringence effect can be character
merely by a relative phase shift between the polarizat
states. However, the measured birefringence in CaF2 near
157 nm of 11.2 nm/cm may be on the margins where t
approximation is valid. A relative shift in phase as large
;l/10 causes wavefront aberrations that degrade imag
quality below the ideal diffraction limit. For anticipate
photolithography step and scan systems with 20 or
lenses with randomly oriented crystal axes, and a total
tical path length;1 m, the wavefront aberrations can fa
exceed design specifications, and corrections are requ
A related but distinct issue is that the average index a
has an anisotropy far exceeding design tolerances. T
must be corrected for as well.

4.1 Lens Orientation

For the special case of light rays traveling through a Ca2
crystal in a^001& or ^111& direction, the material exhibits no
birefringence. Thus for lenses with axis of symmetry o
ented in â 001& or ^111& direction, paraxial rays suffer little
effect. Further, as can be seen from Fig. 6, the aver
index has extrema in thê001& and ^111& directions and is
relatively insensitive to propagation direction near the
axes. However, high resolution imaging requires large
merical apertures, involving a large cone of rays about
central axis. As can be seen from Fig. 6, for^111&-oriented
lenses, the birefringence reaches about 1/3 of its maxim
value for propagation directions only about 10° off ax
The maximum effect is cos21@(2/3)1/2#'35° away. This
rapid increase is a result of the large slope of the birefr
gence through zero, which is due to the threefold crys
symmetry in that direction. Near a^001& direction, the four-
fold crystal symmetry requires there be an extremum~zero
slope! in birefringence in this direction. This stationary n
ture of the effect near â001& direction results in a much
weaker birefringence increase for angles close to the a
The maximum effect is 45° away. Thuŝ001&-oriented
lenses exhibit less birefringence than^111&-oriented lenses
for a given numerical aperture, up to cone angles includ
^110& directions. However, because of the high numeri
apertures required for high-resolution imaging, substan
corrections are required even for^001&-oriented lenses, in
157 nm lithography optics designs.

4.2 Compensation by Crystal Axis Clocking

While the intrinsic nature of the birefringence is its mo
disturbing quality since it cannot be reduced by mate
improvements in a pure material, it is also its redeem
quality. The predictability and high symmetry of the effe
can be exploited for correction by combining lenses w
different crystal axis orientations.1–3,10–12

The threefold symmetry of the effect about a^111& CaF2
crystal axis, as seen by the eigenvector plot of Fig.
ensures that the phase retardation between different p
ization states of light traveling symmetrically through
^111&-oriented plate or lens will have a threefold symmet
altered polarization states, and aberrations due to ave
index anisotropy. Since the magnitudes of these effects
CaF2 near 157 nm are in general far larger than toleranc
they must be dealt with and designed around. For exam
the intrinsic birefringence in CaF2 at 157.6 nm, 11.2 nm
cm, is over ten times the industry target birefringen
specification of 1 nm/cm for 157 nm lithography.17

In general, a light ray entering a birefringent crys
splits into two propagating eigenstates with orthogonal
ear polarizations and different propagation directionsq̂.

Fig. 12 Birefringence indicated for propagation directions in one oc-
tant of a sphere, by plot of large-index (slow axis) polarization eigen-
vectors. The magnitude of the polarization vector is scaled to the
value of the index difference for each propagation direction. The
figure shows birefringence zeros in the ^001& and ^111& directions
and maxima in the ^110& directions. The figure assumes (n ^1̄10&
2n ^001&) is positive. For CaF2 near 157 nm the value is negative,
and the fast and slow axes are reversed.
223J. Microlith., Microfab., Microsyst., Vol. 1 No. 3, October 2002
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Burnett et al.: Symmetry of spatial-dispersion-induced birefringence . . .
Then the effect of a second̂111&-oriented plate or lens
with its transverse crystal axes rotated relatively by o
multiples of 60°, is to partially compensate for this az
muthal variation in the relative phase retardation. Simila
the fourfold symmetric azimuthal variation in the relativ
phase retardation resulting from light traveling through
^001&-oriented plate or lens can be partially compensa
by including in the light path a second^001& plate or lens
with its transverse crystal axes rotated by odd multiples
45°. Both of these combinations still leave radial depe
dences to the relative phase retardations. However, by
specting the eigenvector plot of Fig. 12, along with t
angular dependence shown in Fig. 6, it can be seen tha
radial dependences of the relative phase retardations fo
^111& and ^001& clocked pairs are of opposite sign. Thu
combining these pairs can be used to reduce the radia
pendence as well.11,12

Simulations show that for parallel plates with approp
ate thicknesses, the relative phase retardations from th
refringence can be compensated nearly perfectly.12 Com-
mercial optical modeling software have been upgrad
using the results of Sec. 3.4 to take account of the intrin
birefringence effects in realistic optical design. Simulatio
have shown that, for realistic lens systems, the resid
wavefront aberrations and their resulting imaging abe
tions can be reduced by this method to acceptable levels
157 nm lithography.12

Thus correction schemes based on crystal orienta
clocking have been shown to be capable of adequately
recting for the aberrations caused by intrinsic birefringen
in CaF2 . There is, however, a penalty for this. Besides
added design complexity entailed, the requirement
clocking to compensate for intrinsic birefringence effe
reduces the degrees of freedom available for lens-elem
clocking to compensate for surface figure and index hom
geneity aberrations. This may require even tighter to
ances for these parameters in 157 nm lithography syste

5 Conclusions

We have described in detail the effect of the finite pho
wave vector~spatial dispersion! on the refractive index
properties in cubic crystals with the crystal structure
CaF2 . The theory predicts a breakdown of the isotrop
optical properties at short wavelength, resulting in a bi
fringence and index inhomogeneity. We have fully char
terized this behavior, and shown that it depends on on
single parameter for a given material at a given wavelen
The effect has interesting symmetries, and new approa
are required for precision optics in the UV with this he
taxial optical behavior. Our measurement of the single
rameter for CaF2 has shown that the magnitude of the effe
224 J. Microlith., Microfab., Microsyst., Vol. 1 No. 3, October 2002
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for this material far exceeds the birefringence target sp
fication for 157 nm lithography. Previous 157 nm lithogr
phy system designs ignoring this effect will not wor
However, exploiting the high symmetry of the effect, com
pensation schemes based on combining optical elem
with different crystal-axis orientations have been shown
adequately reduce the aberrations resulting from the eff
Still, for precision optics design in the VUV using CaF2 , it
is now generally recognized that the crystal axis orien
tions for all CaF2 refractive elements will have to be care
fully controlled to minimize the intrinsic birefringence e
fects.
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