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1 Introduction still preserves rather high symmetry. This has enabled cor-

When the semiconductor industry began to consider devel-"€ction schemes which, though complicating the designs,
have been shown to work in simulations.

oping optical lithography based on illumination wave- The analysis of the effect in the original work was pre-
lengths below 248 nm, the system designers were forced toganied in a very concise forfnleaving out most of the
incorporate crystalline material in the optics, due to the getajls, resulting in some confusion and controversy. The
optical limitations of available amorphous materials. For purpose of this paper is to expand on the original analysis,
193 nm lithography a second material, such as jCaF giving a thorough, rigorous treatment of the details, deriva-
would be needed for combination with fused silica for cor- tions of key results, and a more complete analysis of the

rection of chromatic aberrations. At 157 nm no practical implications for optics. Section 2 of this paper briefly dis-
amorphous material is transmissive enough, and it wasCUSSes the history of the investigation of the effect. Section

clear that the refractive optics would have to be made en- 3 presents the theory of spatial-dispersion-induced birefrin-

. . ) . . o gence (intrinsic birefringencg in cubic crystals. The
tirely of crystalline materials, with Cafbeing the principal implications for optics are briefly examined in Sec. 4, in-

candidate. Though crystalline materials in general have an-cluding a qualitative discussion of the correction ap-

widely thought that for crystals with cubic crystal symme- sec. 5.

try such as Caf; birefringence and index anisotropy were

symmetry forbidden in perfect crystals at sub-bandgap pho-2 History

ton energies. Onlyextrinsic symmetry-breaking effects  The origin of the intrinsic birefringence and the accompa-
such as strain could allow these. Experience with Cat=  nying index anisotropy in cubic crystals is the finite wave
visible wavelengths seemed to confirm this. Thus, it came vector of lightq, which breaks the lowest-order isotropic
as a surprise to the industry when measurements and acsymmetry of the light-matter interaction in cubic crystals.
companying analysis showed that there was in facinan  Lorentz, best kn_own_ for the Lorentz tr_ansformation of the
trinsic birefringence and index anisotropy in Gafand that theory of relatlvllty,“ first conS|dered” this small symmetry-
the magnitudes were far larger than tolerdbie Fortu- breaking effect in “regular crystals in 1878before the

natelv. the symmetrv-breaking effect responsible for this formulation of the macroscopic Maxwell equations and
Y, Y y Ing ponsi 'S over 30 yrs. before the confirmation of the existence of
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60 ————— e ——— based on crystal axis clockifig and an approach to elimi-
50 ] nate the effect altogether at a given wavelength based on
] mixed solid solutions of CaFand Bak?>® or of Cak, and
—~ 40'1 1 SrF,.8 The measurements and first-principles calculations
g 304" 1 BaF . for CaF, and Bak are presented in Fig. 1 and in Tablé 1.
3 I : Details of the measurement procedures have been presented
e 20 I 4 . . .
5 ] previously and will not be discussed héréhe results have
2 104 T 1 since been confirmetiand detailed analyses of correction
£ 4] * strategies have been presentéd?
@ " CaF
10 i
y : 3 Theory
220 4 4 . . . .
2 ] The optical properties of crystalline materials are character-
-30 . T T T ized by the complex dielectric tensey; which describes
190 200 250 300 350 400 the effect of the polarizability of the material on the electric
A (nm) . . . .
field components K;) to give the electric displacement
Fig. 1 Measurements (symbols) and calculations (curves) of the field components §;). In terms of the inverse dielectric
intrinsic birefringence (110~ Mo0)) in CaF, and BaF, as functions tensore;; !, the components of the two fields are related by

of wavelength (see Ref. 3). Both measurement and calculation show
short wavelength divergent behavior for both materials with opposite

signs, and a sign change for CaF,. E= 2 fﬁle , (1)
i

crystal lattices by Bragg and Laue. Lorentz worked out the where the sum, as always in this paper unless otherwise
basic theory of the effect by 1921 and attempted to measurestated, is over the three Cartesian coordinate directigns
itin I\_IaCI.5 o o _ o X,, and x3. For plane waves of frequenay and wave

This  spatial-dispersion-inducedq-induced birefrin-  yector g, propagating in the crystal in the directiay|q|
gence in cubic crystals was first convincingly demonstrated —§, E; andD; have their spatial and time behavior gov-
by Pastrnak and Vedam in Si in the infrared in 1§%nd erned bye@ =V |n general,e; * has a frequency and
then by Yu and Cardona in GaAsSince these and other AP .
measured valueGee references cited in Refl ®ere very ~ Wave-vector dependence; "= ¢;; (w,q). At frequencies
small and generally in nonoptical materials, these results in the transparent regioe;; *(,q) is real, and it can also
were viewed as curiosities. Measurements were not madebe shown by energy considerations tla{}tl(w,q) is sym-
on materials important for optics, and the implications of metric under the interchange- j 13 For the magnitude of
the effect for precision ultraviolefUV) optics were not g much smaller than the size of the Brillouin zone, or
anticipated. In any case, the lithography optics community equivalently, the wavelength much larger than the size of
was apparently unaware of this effect when it began devel- the unit cell, the spatial dispersion effectsgptan be ne-
oping systems incorporating Calptics for 193 and 157 glected andk;; *(w,q) can be taken to be independentopf
nm lithography in the mid-1990s. lie., e Yw,q)~e (w,0)]

In May of 2001, Burnett, Levine, and Shirfefirst re- o A R
ported measurements and calculations of intrinsic birefrin- The tensqreij (“’_'q) must O?ey the SYmme”y of the
gence in Caf, and later Bak.2® They presented an analy- Ilgqt-matter interaction. Assuming=0, this means that
sis of the propagation-direction dependence of the intrinsic €ij (@,0) must obey the symmetry of the crystal. Gdias
birefringence and the accompanying index anisotropy, the —cubic fluorite crystal structure(space group:
along with their implications for precision optics in the UV.  Fm3mtnternational notation, f)Schoenflies notation
They also proposed an approach for correcting the effectshown in Fig. 2. This has the highest-symmetry point group

Table 1 Measurements and calculations of intrinsic birefringence of CaF, and BaF, in the UV.

CaF, 10X (N(110)= Noo1y) BaF, 107X ({10~ N(o01))
Wavelength
(nm) Measured Calculated Measured Calculated

365.06 0.19+0.04 0.66 4.0=0.6 5.3
253.65 —0.55+0.07 0.84 95+1.1 12.7
193.09 -3.4+0.2 -14 19=2 26.9
175.19 —-5.7%x0.3 —-5.2 25+2 36.4
165.72 —8.3+04 -9.9 29+2 43.6
156.10 —11.8+0.42 -19.7 34+3 527

dInterpolated value for CaF, at the excimer laser wavelength 157.63 nm is An=(—11.2+0.4)
X107,
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—e(,0) 2a, for a from Ref. 3) We expand the inverse
_____________ dielectric tensor because it is directly related to the indices
of refraction. Since Cafis a centrosymmetric crystéle.,
it has the inversion operation as a symmetry elemehée
coefficienty;;c of the term linear ing must vanish, as well
as all terms with odd powers a@f. The first correction to
the isotropic inverse dielectric tensor is the term propor-
tional to g2, with tensor coefficientB;jy (w) that deter-
mines the anisotropies and birefringence. Actually, for light
- that is introduced into a crystal, the value gfinside the
‘ Ca b N crystal is scaled by a factor of the indexcompared to
O B CaF: Unit Cell what it would be in a vacuum, whereitself depends on
~q? recursively through Eq.(2). These additional
Fig. 2 Schematic of the conventional cubic unit cell of CaF,, with g-dependent terms af-fe&tij 1(w,q) at fourth-order ing,

the fluorite crystal structure. Ca atoms (dark circles on cube corners which we neglect here.

and faces) form a face-centered cubic lattice, and fluorine atoms The wavelength dependence of tifeterm in Eq.(2) is
(light circles on inside cube corners) form a simple cubic lattice.

|
|
|
|
|
|
|
|
|
|
|
|
|

.

Directions in the crystal are indicated by the conventional notation .rOUQth th.e square of the Sma” par.amemm/)\, Wher_ea

with square brackets. The three orthogonal directions [100], [010], is the lattice constant and is the index of refraction.

and [001[]1%(]3 ngﬁlllel t% t[q% lC]ube edgeﬁ- IThe ;hreebortrogogal di- Consistent with the measured and calculated results shown
rections , , an are parallel to the cube face diago- i Ei R i

nals. The direction [111] is parallel to a cube body diagonal (lower far In. F.Ig.' 1! the Iong Wavelen%th behavior is govemeq by the
corner to upper near corner). diminishing effect of the N° term and by the totality of

contributions to the anisotropic dielectric properties, e.g.,

band effects and exciton effectsThe divergent short-
possible for a crystalcrystal classm3minternational no- Wavelengzth behavior is governed by the increasing charac-
tation, O,-Schoenflies notatiopwith the full symmetry of ~ t€r of 1A% and especially by the strong contribution of the
a cube’ The 48 point group symmetry elements for this excitonic anisotropies near the band edge. If we consider
class consist of six distinguishable 90° rotations about the the key case of Caf 320-546 nmjsa”d fon =157 nm,
three fourfold rotation axes in th€l00 directions(cube n=1.56, we havedn/\)"~2.9x10 °. The next nonvan-
axes, three 180° rotations about these axes, six 180° rota-ishing term in Eq(2) goes agj*, or in terms of the small

tions about the six twofold rotation axes in tHel0) direc-  Parameter asan/A)*~8.7x 10", which is small enough
tions (cube face diagonalseight 120° rotations about the to justify the neglect of higher order terms at this wave-
four threefold rotation axes in th€l1l) directions(cube length.

body diagonals as well as the identity element and these ~ Of course, for small enough, e.g.,A~a, Bragg scat-
elements combined with the inversion operation. Applying tering may occur, and the analysis presented here is not
fourfold and twofold operations along two of the cubic axes Valid. Also, for photon energy sufficiently close to or above
of Cah, Constramsﬁi?l(w,o) to have the formfi}l(w,o) the crystal band gap energy or near impurity levels, the

= Yw) 5, wheree }(w) is a frequency-dependent sca- crystal h_as an ab_sorption component antjecom_es com-
- plex. This results in evanescence and an effective broaden-

lar and §;; is the Kroneckers. Thus forq=0, € (w,0) ;
y X ing of the real part ofy. An evanescent component com-

and the resulting optical properties are isotropic. This was licates the birefri lvsis based i
the operating assumption of the optical designers usingplca €s the birefringénce analysis based on propagating
waves, and significant contributions from largecompo-

CaF, optical elements. However, for finitg this symmetry )
. _ . . nents may confound the conclusions drawn from the analy-
argument breaks down, and in genefgf‘(w,q) gives bi- . ) o .
) . S . . sis based on a Taylor series expansion in a defipibet to
refringence and anisotropic indices. To determine this be- 5 . . . L
havior we must determine the precise formeaf(w, ) the g° term. However, high-quality CaFis sufficiently
P 4 - transmissive near 157 nm that these effects should not be

concerns near this wavelength.

3.1 Spatial Dispersion in Cubic Fluorite Structure Equation(2) can be written as

Crystals

Expanding the inverse dielectric tensor in a Taylor series E;l(w Q=€ 4,05 +A€;1(w Q) 3
expansion irg gives ij (@ ,0) 9j; ij (0,9),

where Aei]l(w,q) is the anisotropic correction given to
eﬁl(w,q): e Yw,0) Sij +Ek Yijk (@) lowest order as

+§ Bij (@) + .., (2 Afi}l(waQ):% Bijki (@) did; - (4)

wheree ™ (w,0) is the isotropic inverse dielectric constant Bijxi(w) is a fourth-rank matter tensor and must obey all
for =0, related to the)= 0 isotropic dielectric constant by the symmetry operations of the crystal. In general it has
€ Yw,0)=1/e(w,0). (Note B in this paper is 3*=81 independent components, however symmetries put
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constraints on the actual number of independent COMPO- By (@)« Bap( @)
nents. First, the symmetry (rfi]l(w,q) and the product
axd; show thatgij (w) is symmetric under interchanges

i«>] and k«|. This reduces the 81 independent compo- Bu Pz Bz 0 0 O
nents to 36. A compressed matrix notation is converfient. Bio P11 Bz O 0 0
In Bjjx (@) the four indicesi=1-3, j=1-3,k=1-3,1 0 0 0
=1-3 can be replaced by two indices 1—-6,j=1-6 by _| Pz Pz Pu )
making the associations 0 0 0 By 0 O

0 0 O 0 Bu O
11-1, 22—2, 33-3, 23,32-4, 13,315 0 0 0 0 0 Bu

ab
and 12,21-6. (5)

This has the same form as the piezo-optic tensgy for
Cak,, which governs the effect of stress on the index, for
the same symmetry reasohis-lowever, unlike the case of
the piezo-optical effect, where stress can be applied in any
Bijki (@)= Bap(w) direction and the index determined in any other direction,
here the perturbing influenaghas a definite relatiofper-
pendiculaj to an index direction, and this gives rise to
further simplifications, as will be shown.

Then all the independent components of the teghQ( )
can be written s.a 6 by 6matrix

Bll :812 1813 :814 :815 BlG

B2a1 B2 Basz Baa Pas PBos Because the components of a fourth-rank tensor trans-
Bs1 Bss Bz Ba Bas Bas form like the product of the components of four vectors
= ) (6) V4, Vs, V3, andV,, the three linearly independent scalar
Bar Baz PBaz Pas Bas Bas combinations of the four vectors V(-V,)(V3-V,),
Bsi Bsz Bsz Bsa Bss Pse (V1-V3)(V2-Vy), and (V1-V4)(Va-V3) imply that a
fourth-rank tensor has three scalar invariafsiependent
Per Pez Bes Bes Bes Beo| o combinations of tensor components that are invariant under
coordinate transformations® Since gy (w) is symmetric
In practice, the matrix form reIate(SEi]l(w,q) andq ac- on interchange of the first two and last two indices, the
cording to second and third scalar invariants are equivalent, and thus

Bijki(w) has two isotropic scalar invariants

Afl_ll B11 Bz Biz Bia Pis Bis

et 1
AE%21 Ba1 B2z B2z Bas Bas Pos Iy(w)= 52 Biij = Prrt 2B, ©
Aegg | | Bar Bsz PBss Baa Bas Bas i
A 6531 Bar Baz PBaz Bas Pas Bas
Aegs 1
A51_21 Bsi Bs2 PBs3 PBsa Pss Pse Jo(w)= 3 E Bijij = B+ 2Baa- (10)
Ber Bs2 Be3 Bes Bes BPes g
2
q% The existence of the isotropic scalar invariants motivates
qg us to write Eq.(8) as
2‘?23‘13 ' )
2q1q3 Bab(w) — ’Bab(w)isotropic’ + ﬁab(w)longitudinaf
20,0z +ﬁab(w)anisotropié (11)

(Technically this matrix form is not a tensor, because it .
does not have the coordinate transformation properties re-With
quired of a tensor. By referring to the form as a tensor, we
mean it as a short hand for the true fourth-rank temsor.

Due to the symmetry operations of the crystal, various 11100
components are related. Using the symmetry operations B 111000
(threefold rotation about a cube body diagokall)), 2 11100 0
(twofold rotation about a cube ax{®01)), and 4(fourfold lgab(w)isotropid =1,(w) . (12
rotation about a cube ajisit can be shown by direct 0 00O0O0O
inspection® that the only independent tensor components 000 00O
arefB11, B12, andB,, (in the compressed notatigrand the
tensor has the form 000000,

216 J. Microlith., Microfab., Microsyst., Vol. 1 No. 3, October 2002
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2 00 0O
0 2 00 0O
- 0O 02 00O
Ba( @) = 1y(w) | o o]
0O 0 OO 1 O
0 00O0O0OUY,_
(13
IBab(w)anisotropié
2 -1 -1 0 0 0
-1 2 -1 O 0 0
-1 -1 2 0 0 0
AL, 9 0 -1 0 o0
0 0 0 0O -1 O
0 0 0 0 o -1/,
(14)
The new \variables 1,=(23,—J5)/5, 1,=(—-J;

+3J,)/10, andA are linear combinations 0B;;, B,
and B4

I 1 1 4 -2\ /8y,
Iy | = 3 1 -1 3 Bio (15)
A 1 -1 -2/ \Ba

or equivalently
Bu\ (1 2 2\ /i
Bia|=|1 0 —1/(]|I]. (16)
Baa 01 -1/ \A

The new variable$;, 1,, andA have physical interpre-
tations. Using Egs(12)—(14) in Eq. (4), going back to the
uncompressed notation, and summing over dhe using
Eq. (7), thenAegl(w,q) can be written as

AEJ l(w’q) — Aei} l(w,q)isotropic’ + Aeﬁl(w,q)longitudinar

+A€i_j l(w,q)anisotropié a7
with
1 00
Aeal(w,q)iSOtrOpidZ|1(w)q2 0 1 0 =|1(w)q25ij,
0 0 1,
(18

2

17 Iy 143
-1 longitudinal _ 2 2

A H(w,q)0mm il =1, (w)2g?| 1ol 15 Tolg

2

Loy lal, 12

=15(w)20°;, (19
Aei} 1(w’q)anisotropié
317-1 =214, -2l
—A(w)q?| =250y 315-1 =2yl
—2l4l, —2l40, 3I3-1 '
=A(0)q%(&;(517-1)—2ll;), (20

wherel 1, I,, I3 are the direction cosines of thxg, X,, X3
axes, respectively.

Ag; M (w,)S°"PC x| 1 5, gives an isotropic shift in the
inverse dielectric tensor, and therefore cannot contribute to
any anisotropic effects. Moreover, because
Ae; H(,0)*°"PC has the same angular dependence as
e-l(w,O)ai,— from Eq. (3), it is not a practicable observ-
able.

Ae; H(w,q)nomdnal o1l gives a shift in the dielec-
tric tensor for the directions of propagation and polarization
aligned. For example, for propagation along theaxis,
[,=0,1,=0, andl;=1, giving

AEi}l(w,q)A(?))IongitudinaI:|2(w)2q2 (21)

o O O
o O O
= O O

Because the propagating waves are polarized in the trans-
verse plane—the,, X, plane in this example—this term
has no effect on the bulk optical properties.

The optical manifestations of the anisotropy are all con-

tained inA € *(w,q)2"°"°P¢. Thus while the cubic crystal
supports three independent tensor components, only one
combination is relevant to anisotropies. This conclusion is
central to the present paper. Althoughandl , exist physi-
cally, they have no practical observable consequences in
optics. Hence it is permissible to ignote and |, when
considering the anisotropic optical behavior and birefrin-
gence.

Note that the form forAe; *(w,q)*"s*"P¢ obtained
above by setting the scalar invariants to zero is a traceless
combination of three terms. The second and third terms of
A€ (w,q)3"MOPC in Eq. (20) are proportional tas; and
lil;, respectively, which again give only isotropic and
purely longitudinal contributions. These terms can be sub-
sumed into the isotropic and longitudinal terms in ELy)
giving
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Aeﬁ 1(w,q) — AEH l(w,q)isotropic_F Aeﬁ 1(w,q)longitudinal

+A€i7]- l(w,q)anisotropic (22)
=[11(0) = A(w)]0?8; + [ (w)
—A(0)]129%1+A(w)5¢5;1 2. (23)

Just as before, the first term may be considered as an un-

observable shift in the dielectric constant, and we can ig-
nore it. The second term does not affect propagating waves
S0 we can also ignore it. We need to consider only the third
term. It gives a pure anisotropic contribution and has the
form

12 0 0
AEi}1(w’q)anisotropic:A(w)5q2 0 |§ 0
0o o I3,
=A(0)50°5;17. 249

The correspondingd,;, tensor in the compressed form
appropriate to Eq94) and(11) is

0

Bab(w)anisotropic: A(w)5

OO O O O O Bk
o O O O -
O O O »r O O
O O O o o o
O O O o o o
S O o o o

ab
(25)

This governs, in a pure form, all the anisotropies and bire-
fringence resulting from spatial dispersion up to orgein
the expansion Eq(2). Remarkably, the form of Eq.25)

H,B

Fig. 3 Relation between the directions of the B, H, E, D, and q
vectors for light propagation in anisotropic, nonmagnetic crystals. H,
D, and q are mutually perpendicular. D, E, and g are coplanar.

wherev is the velocity of the wave front along the wave
normald=g/|qg|. From the Maxwell equation®), H, andq
must be mutually perpendicular aidmust be in the plane
of q andD, as shown in Fig. 3.

Choose a coordinate system with one axis algrand
the two mutually perpendicular transverse axes arbitrary,
with components along these axes labetednd 8. Then
from Eq. (26), the D and E components along these axes
are given by
D,=(c/v)?E,=n%E, (n=clv), (27
wheren=c/v is the index of refraction.

Using Eq.(1) for E, and the fact thaD must be per-
pendicular to§, the following relation must hold between
the components dD and the index of refraction

-1
6{1[‘3_

3

1

gives precisely the same results for the angle dependence as

that of Eq.(14) and Eq.(8). Despite the three independent
coefficients in Eq(8) allowed by symmetry, the anisotro-
pies are in fact proportional to just one parameter, namely
A(w)=(B11— B12— 2B44)/5. This simplification occurs es-
sentially becauseg always determines the direction of the
symmetry-breaking perturbation. Equati¢?b) has a de-
ceptively innocent-looking form. However, it gives rise to
complex, though highly symmetric, anisotropic behavior
with diverse consequences, which we discuss next.

3.2 Birefringence and Index Anisotropy

Knowing the inverse dielectric tensefjl(w,q) for a Cak
crystal for all propagation directions, we may obtain the
indices of refraction. We review the prescription for
this131® From the sourceless Maxwell equations in non-
magnetic materials (curlH= 1/cdD/dt, curle=

— 1/coB/at, and B=H), for a plane wave~e'(@ =)
propagating with angular frequeneyand wave vectog, it

is straightforward to show that the electric fictkdand the
electric displacement fiel® are related by the equation

(v/c)’D=E—(§-E)q, (26)

218 J. Microlith., Microfab., Microsyst., Vol. 1 No. 3, October 2002

A nonzero solution requires that the determinant of the co-
efficients of D ; be zero, allowing two possible values for
1/n?. These are given by the two eigenvalue§™
=€ e, of €5, obtained as above by diagonalization
of eijl in the plane transverse fp Plane waves propagat-
ing In the crystal must be completely linearly polarized
with the two possible polarization directions Bf deter-
mined by the two eigenvectors of E®8). The indices of
refraction of the two polarization states are given by

n,=Vl/e,*". (y—1.2-the eigenvalues ot.;). (29

Thus to determine the index properties of Gatwe need to
find the eigenvalues oéi]l projected into the plane trans-
verse tog.

From Egs.(3), (22), and (23), the dielectric tensor re-
quired in Eq.(29) is given by

€ (0,0)=(e w,0)+ (I 1(0) — A())g?) &

+A(w)5025;17, (30)
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where we have ignored the longitudinal terms because theyn(w,q)"'=%[n;(w,q) + ny(w,q)]
cannot affect the transverse eigenvalues. The two eigenval-
ues ofe; *(q,w) in the plane transverse tpare given by =n(w,0)~ 3N(®,0)°B1,0°~ :n(w,0)*

B 28,2 Eigal(s.12)-
€M = (€ H(,0)+ (11(0) ~Al0)d?) P Iﬁlzlzzf’wq [i'gVa'(ﬁlj'.>1
+ A(w)5q2Eigval(8,12),  (y=1,2), (31) + Elgvallayli)z I+ Ola). 39

The variation with propagation direction is fully deter-
where EigVaI@inz)i is one of the two eigenvalues of the mined by the angular dependence of the eigenvalue sum,
tensor @jhz) in the plane transverse @ Using these in calculated in Sec. 3.4. The magnitude of the variation is

Eq. (29) gives the indices of refraction for the two polar- determined by the same material parameter combination as
ization states for the birefringence, so the full behavior of the index

variation is also determined for a given material at a given

v 2 wavelength by a single birefringence measurement. The ab-
n,=[(e"(@,0)+(1(w) = A(w))q%) solute average index value is determined by a combination
+ A(w)502EigVal( 5ij|i2)§]*1/2 (y=1,2. (32 of the large,q independent, isotropic band effects and the
small spatial-dispersion effects, which are difficult to dis-
tinguish experimentally.

Note that when we haves;— B1o— 2844 =0, the op-
tical properties are completely isotropic. In principle, noth-
ing prevents this condition from being met in a real mate-
rial at a particular wavelength, for example, in a cubic-
fluorite-structure crystal formed as a mixed solid solufion.

This is exact to ordeq? in the expansion Eq2).

Since the first term in the square root in £E§2) is of
order 1 and the terms proportionaldd are, from measure-
ments shown in Table 1, of order10 8, then for wave-
lengths down to at least 157 nm, the square root in(E#).
can be expanded to very high accuracy. Usind(w,0)
=1/e(w,0)=1/n(w,0)? wheren(w,0) is the isotropic in-
dex of refraction at frequency for g=0, and using Eq. 3.3 Eigenvalues of the Anisotropic Inverse

(15) for 1, andA, we finally get to ordeg? Dielectric Tensor
To obtain the indices we must determine the eigenvalues
n(®,9)=n(®,0)— $n(®,0)%B:1,9°— in(w,0) and eigenvectors in the plane transverse for
X (B11— B12— 249 9°EigVal( 5;j17); +O(q*). 2 0 0
B3 Ae(w,q) P (A(w)5g?)| O 13 0
Thus the propagation direction dependence of the two in- 00 I% ij
dices for the two orthogonal polarization states of light =(A(w)5q2)(6ijli2 _ (36)

traveling in a fluorite-structure crystal with spatial disper-
sion, is given by the eigenvalues ob;fl iz) in the plane
transverse ta.

From Eq.(33), the birefringence is given by

We will first consider propagation in three special direc-
tions, and then we find the solution for the general direc-
tion. First consider the propagation direction along the cube
axis direction[001]. Evaluating the direction cosinésin
An(w,q)=[ny(®,q) —Nz(w,q)] Eq. (36) (1,=0,1,=0, I,=1) gives

=— $N(@,0)3%(B11— B1o— 2B d*
X[ EigVal( &;17); — EigVal(8;17)3 1+ 0(q%).
(34)

Aei} 1(w’q001)anisotropic: (A(w)qu) (37)

o O O

0
0
0

= O O

ij

The variation of the birefringence with propagation direc-
tion is fully determined by the angular dependence of the
eigenvalue difference, which is calculated in Sec. 3.4. The
same angular dependence occurs for all fluorite-structure :
crystals at all wavelengths in the range of validity of the > E%uvgéiltggeorlghzxsﬁspagation direction along the cube
model, d|scussed3|n Sec. 3.1. The mi‘g”'t“‘?'e IS governed bybody diagonal directiofil11]. Evaluating the direction co-
the factor (i(w,0)°(B11— B12—2B44)9°), Which is a con- sinesl, in Eq. (36) (I,=1,=15=143) gives
stant for a given material and wavelength. Thus the full ' 9. 1727’3 9
behavior of the intrinsic birefringence for a given material
at a given wavelength is determined by a single birefrin-
gence measurement. Ae:

The average of the indices for the two polarization states "
for propagation with a wave vectaris given by

This is trivially diagonal and uniaxial with the axis in the
propagation direction. The transverse eignenvalues are both
0. There is no birefringence for propagation along this axis

L 1 00
l(w,qlll)anisotropic: (A( w)5q2) § 0 1 0 . (38)
0 0 1 i
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This is the isotropic tensor, with all eigenvalues equal to T andT,), which do not contain fourfold symmetry axes,
1/3, ignoring the A(w)50?) factor for the moment. There  have a fourth material parametgi that complicates the
is also no birefringence for propagation along this axis or picture.
equivalent(111) axes.
These two results are also apparent from symmetry
alone, since a uniaxial perturbatiég) along a fourfold or 3.4 Directional Dependence of the Birefringence
threefold axis in a cubic crystal reduces the isotropic sym- and Index Anistropy
metry to uniaxial along the axis, so both these axes must be
nonbirefringent. However, note that the transverse eigen- . . .
values for %he(OOl) directions and th&111) directions, 0g the tenSOMiizgiJIiz fro[n Eq.(§6) must '?e diagonalized n
and 1/3, respectively, are not equal. This means that thethe plane transverse @ as discussed in Sec. 3.2. Fairly
indices for propagation in these nonbirefringent directions Simple closed-form solutions may be obtained analytically.
are not equal. Indeed, these values of the index are theT0 obtain these, one constructs the mutually orthogonal
extremal values for all directions. unit vectors§ and ¢ orthogonal to§, and projects the
Finally, consider the propagation direction along the tensor into the two-dimensional subspacefoand ¢, by
cube face diagonal directidd10]. Evaluating the direction forming the inner products ¥ ; with the components of

cosined; in Eq. (36) (I,=1,=1#n2, 13=0) gives - - PN o
I v : ¢ and ¢, e.9., u11=2ijM;; 0,0, , p1o= po1=2iMj; 6, ¢;,

pas=2ijMijdib; . Then one solves for the eigenvalues of
the 2 by 2 matrix. The solutions are the two roots of a
(39) guadratic equation. Finally, the polarization eigenstates are
obtained by projecting the eigenvectors of the 2 by 2 matrix
ij back into the Cartesian space. An explicit solution in terms
of spherical coordinates;=sinf#cos¢, X,=sin@sindg,

This is a bit more work, but not much. We need to diago- Xs=C0s# is given by

nalize in the plane orthogonal to the directigtl0]. The

eigenvectors must therefore be some linear combination of EigVal( 5ijli2)i2= F(0,0)*G(6,9), (42
the two vectorg110] and[001], since these are orthogonal

to [110] and to each other. They are, in fact, the transverse _ 11 _o_ _

eigenvectors F(0,p)= 335 —9—20c0%26)—35c0%40)

To find the indices for a general propagation directépn

N| =

10
AEJ 1(w’q110)anisotropic: (A(w)qu) 0 1
0 0

o O O

—40co$4¢)sint(6)]+ £, (43)
-1 0 1
Eigenvectors: | 1 0 1]. (40) G(6,¢)=[%[5+3 cog4¢)]cos(6)sin*(6)
0 1 0 . .
—coZ(p)cog(0)sir’(p)sin’( )
1/2 0 1/2 +cod(¢)sirt(¢)sinf(6)]Y2 (44)

Eigenvalues (41)

ransverse transverse longitudinal . . . .
transverse transverse longitudina The last term+(1/5) in F(6,¢) is the eigenvalue shift
resulting from removing the isotropic component from Eq.

The transverse eigenvectors, and thus the polarization(20), and does not affect the birefringence or anisotropy.

eigenstates, are along th&10] and the[001] axes. It can This can be written more compactly using the direction
be shown that thé110y propagation directions are the di- cosines ofg with respect to thex;,x;,X3 axes,ly,l,l3,
rections of maximum eigenvalue differengaaximum bi- related to the spherical coordinates hy=sinfcose, |,
refringence. =sin#sin ¢, andlz=cosé. Then the solution can be writ-

The two transverse eigenvalues are split by a value 1/2,ten
which gives rise to the birefringence. The actual magnitude

and sign of the birefringence is determined using &4) EigVal( 5ij|i2)Ji2:F,(l1v|21|3)tG/(|1v|21|3)’ (45)
by (n<T10>(w,Q)_B001>(va)): —(U4)n(w,0)%(B1 '

— B1o—2B44)G°. The[110] axis is the low index(fasy F'(l1,05,13)=(12(1—13-15—13), (46)
axis if we have 11— B1o—2B44)>0. This is what is ob-

served for Cak at short wavelength, as shown in Table 1 G,(|1,|2,|3):[(|§|§+|§|§+|§|§)2_3|§|§| g]l/z_ (47)

and Fig. 1.(BaF, has the opposite signHowever, as

shown in th? table and figure, there is a sign change forThis form, written using direction cosines, transparently re-
CaF, determined by both measurement and calculation for o415 the cubic symmetry of the effects.

wavelengths below-200 nm. . The variation of the average index with propagation di-
This analysis applies to the three cubic crystal classesrection is governed by

(432, 43m, and m3minternational notation;

O, T4, Op-Schoenflies notatigrthat contain fourfold sym-  [EigVal( ;1)1 + EigVal(8;12)31(1/2)=F (13,1 ,13).

metry axes. The two other cubic crystal clas&@®andm3 (48
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[001]

[110]

Fig. 4 The angular dependence of the intrinsic birefringence for
propagation directions in one octant of a sphere. Directions refer to
crystallographic directions indicated in square brackets. The magni-
tude of the birefringence in a given direction is proportional to the
distance of the surface in that direction from the origin, with the
maximum scaled to 1. A VRML (Virtual Reality Modeling Language)
version may be found in Ref. 8.

Fig. 5 Three-dimensional directional dependence of the intrinsic bi-
refringence from a perspective along a general low-symmetry direc-
tion shows 12 birefringence maxima directions and 14 birefringence
zero directions (seven nonbirefringent axes).

birefringencgindex out-of-plane minus index in-plankas
a maximum in magnitude in tHel10] direction. The figure
also shows a secondary birefringence maximum magnitude
between th¢001] and[111] directions. This occurs in the
[211] direction, and, in fact, is a saddle point. A sign change

; 12\l e 2L 9 occurs as the propagation direction passes througH. itig
[BigVal(3;17)1 — Eigval(5;17)2]1=2G"(11,12,1s). - (49) direction. The slope is nearly maximal at the zero crossing.
Three gradient maxima occur very near e&thl) direc-
tion. The average index curve shows that the average index
¢ variation is about as large in magnitude as the birefrin-
gence, and that the extremes occur in the directions of the
birefringence zeros. A similar set of plots for propagation in
the plane of a cube face is shown in Fig. 7. We verified this
angle dependence by experiment, as shown in Fig. 8.

Another useful way to visualize the birefringence and
index anisotropy is with index surfaces, which represent the

The variation of the birefringence with propagation direc-
tion is governed by

A plot of the magnitude of the difference between the
two eigenvalues(proportional to the birefringengeis
shown in Fig. 4 for directions in one octant of a sphere. |
indicates the birefringendscaled to 1 at the maximunfor
a given propagation direction, by the distance of the surface
from the origin in that direction. The figure shows birefrin-
gence zeros in th€l00 directions(cube axesand in the
(112) directions(cube body diagonalsas discussed in Sec.
3.3. A maximum occurs in thgl10] direction (cube face
diagona), with the two polarization directions in the face
diagonal[ 110] and cube axef001] directions. The(110
directions are the directions of absolute extrema in birefrin-
gence. Near these directions the birefringence falls off iso-
tropically. The behavior in the other octants is equivalent
by symmetry.

The complexity and high symmetry of the birefringence

is demonstrated in the three-dimensiof@D) plot in Fig.
5. There are 12 directions of birefringence maxima, in the
directions of the 12 cube edge centers. There are 14 direc-
tions of birefringence zero, along the three cube axes and
the four cube body diagonals. In conventional optics., 00
ignoring spatial dispersioncrystals are classified as either

0.2 [wm [110]
isotropic, uniaxial(1 nonbirefringent axis or biaxial (2 '

nonbirefringent axes however, optics including spatial- 044 intrinsic birefringence y
T T T T T M T T T T

dispersion effects must treat cubic crystaisth the sym- 0 10 20 30 40 50 60 70 80 90

metry classest32, 43m, and m3m) as heptaxial (seven Angle From [001] (degrees)
nonbirefringent axes Further, whereas in biaxial crystals ) o
the two nonbirefringent axes have the same index values, in_Flg. 6 Calculated magmtudes of the intrinsic blrefrlngence (normal-
. . . . ized to 1 at the maximum) and the average index shift, for propaga-
this case the index for the foyill) nonbirefringent axes T . — i
differs from the index for the threélOO) axes tion in directions in the (_:ube_ diagonal plane (110) containing the
. . . : [001], [2111], and [110] directions, represented by the angle mea-
The behavior of the birefringence, scaled to 1 at the sured from the [001] direction. The birefringence plotted is propor-
maximum, in a cube diagonal plane is shown in Fig. 6, tional to the index of refraction for the polarization normal to the

along with the average index. The figure shows that the (110) plane, minus the index for the polarization in the (110) plane.

12—
1.0

0.8

average index shift
—> [010)

0.6

0.4 4

0.2 -

Relative Index Changes
(scaled to max. birefringence=1)

J. Microlith., Microfab., Microsyst., Vol. 1 No. 3, October 2002 221



Burnett et al.: Symmetry of spatial-dispersion-induced birefringence . . .

-
N

-
[=}
il

o
=]
1

o o
s [}
P

o
N
L

o
(=]

Relative Index Changes
(scaled to max. birefringence=1)

Y [110] [010] |

-0.2

0 '1'0'2'0' ' '4'0'5I0'6'0'7'0'81 '90
Angle From [100] (degrees)

Fig. 7 Calculated magnitudes of the intrinsic birefringence (normal-
ized to 1 at the maximum) and the average index shift, for propaga-
tion in directions in the cube face (001) plane containing the [100],
[110], and [010] directions, represented by the angle measured from
the [100] direction.

[001]

Fig. 9 Index surfaces for intrinsic birefringence in cubic fluorite-
structure crystals. The indices for each of the two polarization eigen-
states for each propagation direction are represented by the dis-

tance from the origin of a continuous and a wire mesh surface. The
anisotropy is scaled to large values for visualization. The surfaces
L . . . touch in the 14 nonbirefringent directions. Plane slices through the
two indices for each propagation direction by two nested surfaces are shown in Figs. 10 and 11.

surfaces. For the case of cubic crystals with spatial disper-

sion, the index surfaces are much more complicated objects o

than those for biaxial crystals without spatial dispersion. direction in the diagonal plane {0), starting with propa-

The resulting “nested lumpy spheres” are shown in Fig. 9, gation in the[001] direction, the magnitude of the index

with the anisotropy scaled to large values for visualization. difference increases from zero, with the in-plane polariza-

Slices through these index surfaces for propagation in thetion index larger. The indices are equal again in [thil]

(110) plane and001) plane plane are shown in Figs. 10 direction, after which the larger index polarization direction

and 11(cf. Figs. 6 and V. switches to the out-of-plane direction. The difference

Plots of the eigenvectors are also illuminating. Figure 12 reaches a maximum in tHé.10] direction. The figure as-

shows the eigenvector directioripolarization directions sumes Q11— Noop) IS positive. For Cag near 157 nm

for the larger index eigenvaludslow axe$, for propaga- the value is negative, and the fast and slow axes are re-

tion directions in an octant of a sphere. The magnitude of versed.

the polarization vector is scaled to the value of the birefrin- o )

gence for each propagation direction. Consistent with Figs. 4 Implications for Optics

6 and 10, the figure shows that sweeping the propagationSpatial-dispersion-induced birefringence and index anisot-
ropy in Cak are responsible for a number of effects that
can severely degrade the performance of precision optics.

1.2 ———— These effects include wavefront aberrations, ray splitting,
3 [ - calculated rom modet | i ITO]
CE 1.0 4 INTLL [
< S
Z o8 A\ [001]
g 981 [210]..- }
8 os. . é "Measurements
= . poi}
=) [310].- o
;E 0.4 4 tl .‘r. * // po1) /7: N
7
I3 pFopalga on ol ¥---—-([m]:
@ go] directions [ R
2 [100] o >
© Joeeet”” _a ]
g 0.04 b e s
-0.2 T v T T T g T y T
0 10 20 30 40 50
Angle Phi From [100] to [110] (deg)
Fig. 8 Angular dependence of the intrinsic birefringence scaled to 1 \ %

at the maximum. Measured data (large squares with error bars) and
model results (small squares) given for propagation directions in the
(001) plane at the angle ¢ from the [100] direction, as indicated in
the inset (Ref. 2). Measured results verify the model for the angular
dependence given in Egs. (44) and (47).

Fig. 10 Slice of the index surface of Fig. 9 in a {1_10} plane. The
surfaces touch in the nonbirefringent (001) and (111) directions.
They are maximally split in the (110) directions (cf. Fig. 6).
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A [100]

v

Fig. 11 Slice of the index surface of Fig. 9 in a {001} plane. The
surfaces touch in the nonbirefringent (100) directions. They are
maximally split in the (011) directions (cf. Figs. 7 and 8).

persion-induced birefringence . . .

Each of the two polarization states experiences a different
index, and thus accumulates a different optical path length
traveling through the crystal. For precision optical systems
with many lenses, this gets rapidly complicated. For a suf-
ficiently small birefringence, the ray splitting effects can be
neglected, and the birefringence effect can be characterized
merely by a relative phase shift between the polarization
states. However, the measured birefringence in,Gafar

157 nm of 11.2 nm/cm may be on the margins where this
approximation is valid. A relative shift in phase as large as
~\/10 causes wavefront aberrations that degrade imaging
quality below the ideal diffraction limit. For anticipated
photolithography step and scan systems with 20 or so
lenses with randomly oriented crystal axes, and a total op-
tical path length~1 m, the wavefront aberrations can far
exceed design specifications, and corrections are required.
A related but distinct issue is that the average index also
has an anisotropy far exceeding design tolerances. This
must be corrected for as well.

4.1 Lens Orientation
For the special case of light rays traveling through a.CaF

altered polarization states, and aberrations due to averagérystal in a001) or (111) direction, the material exhibits no
index anisotropy. Since the magnitudes of these effects forbirefringence. Thus for lenses with axis of symmetry ori-
CaF, near 157 nm are in general far larger than tolerances, €nted in €001 or (111) direction, paraxial rays suffer little

they must be dealt with and designed around. For example,&fféct. Further, as can be seen from Fig. 6, the average

the intrinsic birefringence in CgFat 157.6 nm, 11.2 nm/
cm, is over ten times the industry target birefringence
specification of 1 nm/cm for 157 nm lithographfy.

In general, a light ray entering a birefringent crystal
splits into two propagating eigenstates with orthogonal lin-
ear polarizations and different propagation directidns

A [001]

Fig. 12 Birefringence indicated for propagation directions in one oc-
tant of a sphere, by plot of large-index (slow axis) polarization eigen-
vectors. The magnitude of the polarization vector is scaled to the
value of the index difference for each propagation direction. The
figure shows birefringence zeros in the (001) and (111) directions
and maxima in the (110) directions. The figure assumes (Ne110)
—Nyooyy) is positive. For CaF, near 157 nm the value is negative,
and the fast and slow axes are reversed.

index has extrema in th@01) and(111) directions and is
relatively insensitive to propagation direction near these
axes. However, high resolution imaging requires large nu-
merical apertures, involving a large cone of rays about the
central axis. As can be seen from Fig. 6, {dl1)-oriented
lenses, the birefringence reaches about 1/3 of its maximum
value for propagation directions only about 10° off axis.
The maximum effect is cos[(2/3)"?]~35° away. This
rapid increase is a result of the large slope of the birefrin-
gence through zero, which is due to the threefold crystal
symmetry in that direction. Near(@01) direction, the four-
fold crystal symmetry requires there be an extren{@aro
slop@ in birefringence in this direction. This stationary na-
ture of the effect near €01) direction results in a much
weaker birefringence increase for angles close to the axis.
The maximum effect is 45° away. Thu®01)-oriented
lenses exhibit less hirefringence théil1)-oriented lenses
for a given numerical aperture, up to cone angles including
(110 directions. However, because of the high numerical
apertures required for high-resolution imaging, substantial
corrections are required even f@01)-oriented lenses, in
157 nm lithography optics designs.

4.2 Compensation by Crystal Axis Clocking

While the intrinsic nature of the birefringence is its most
disturbing quality since it cannot be reduced by material
improvements in a pure material, it is also its redeeming
quality. The predictability and high symmetry of the effect
can be exploited for correction by combining lenses with
different crystal axis orientatiorls 1012
The threefold symmetry of the effect aboutld 1) CaF,

crystal axis, as seen by the eigenvector plot of Fig. 12,
ensures that the phase retardation between different polar-
ization states of light traveling symmetrically through a
(11D-oriented plate or lens will have a threefold symmetry.
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Then the effect of a second1l)-oriented plate or lens, for this material far exceeds the birefringence target speci-

with its transverse crystal axes rotated relatively by odd fication for 157 nm lithography. Previous 157 nm lithogra-

multiples of 60°, is to partially compensate for this azi- phy system designs ignoring this effect will not work.

muthal variation in the relative phase retardation. Similarly, However, exploiting the high symmetry of the effect, com-

the fourfold symmetric azimuthal variation in the relative pensation schemes based on combining optical elements

phase retardation resulting from light traveling through a with different crystal-axis orientations have been shown to

(001)-oriented plate or lens can be partially compensated adequately reduce the aberrations resulting from the effect.

by including in the light path a secor@01) plate or lens Still, for precision optics design in the VUV using CaRt

with its transverse crystal axes rotated by odd multiples of is now generally recognized that the crystal axis orienta-

45°. Both of these combinations still leave radial depen- tions for all Cak refractive elements will have to be care-

dences to the relative phase retardations. However, by in-fully controlled to minimize the intrinsic birefringence ef-

specting the eigenvector plot of Fig. 12, along with the fects.

angular dependence shown in Fig. 6, it can be seen that the

radial dependences of the relative phase retardations for theacknowledgments
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