

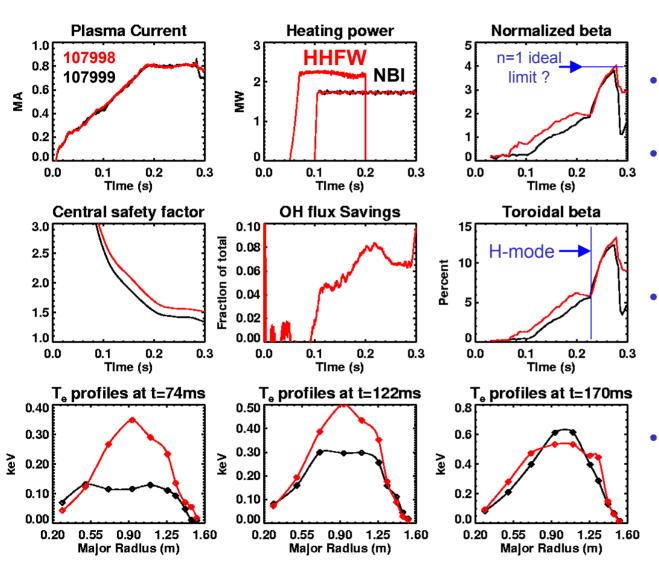
Columbia U

HHFW heating during the plasma current ramp

J.E. Menard, PPPL

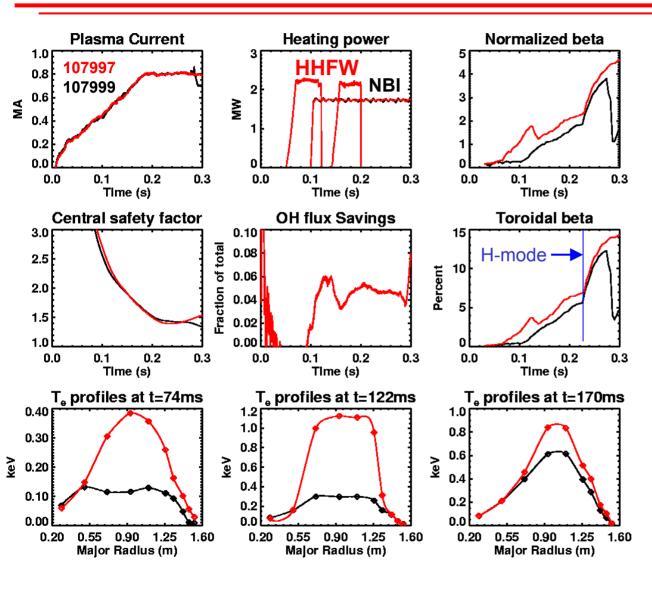
NSTX Research Forum

November 11, 2003 Princeton, NJ


Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU ORNL PPPL **PSI SNL UC Davis UC** Irvine **UCLA** UCSD **U** Maryland **U New Mexico U** Rochester **U** Washington **U Wisconsin** Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U **U** Tokyo loffe Inst TRINITI **KBSI** KAIST ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching **U** Quebec

Summary of results from XP-222

(First presented April 2002)


- OH flux consumption reduced 8%, q(0) raised 15%
- Early HHFW compatible with NBI H-mode
 - Started with $\beta_{\rm P} \approx$ 0.8 LSN, 800kA, 4.0kG, H-mode
 - 2MW HHFW on from 50-200ms with heating phasing
 - Inboard limited configuration
- Results generally <u>not</u> reproducible
 - Stan Kaye had similar experience w/ another run day

Early HHFW compatible with NBI H-mode

- 2.2 MW coupled
- Saved 8% of total OH solenoid flux
 - q(0) increased 15%
- H-mode occurs at 230ms with or without early HHFW heating
- HHFW heating most effective prior to NBI turn-on

Enhanced early HHFW heating observed in some discharges - barrier or coupling?

- T_e reaches 1.1keV by t=120ms in core
 - Barrier formation inside r/a = 0.5?
- Higher W_{TOT} moves
 plasma out too far,
 <u>causes RF trip</u>
 - Need to better optimize gap programming
- If heating could be sustained, flux savings > 10% is possible

This is worth trying again because...

NSTX

- RF feed-thrus (i.e. voltage stand-off) improved
- We think reversed q might control T_e barrier
 - Test this with $I_{\rm P}$ ramp-rate and/or density scan
- We have better plasma control
 - RF noise now reduced in control magnetics
 - We developed early diverted plasmas last run
 - Is HHFW heating more reliable with diverted target plasma?
- Why not just ramp I_P faster?
 - We will try, but HHFW might allow <u>control</u> of T_e evolution
 - HHFW to be under feedback control in near-term
 - Envision using it with H-mode transition during I_P ramp...
 - I_P flat-spot if needed would lower effective ramp-rate

Experimental Plan

- Apply HHFW power as early as possible (t=50ms)
 - Divert this early if possible
 - Match loading, increase power to several MW
- Scan I_P ramp rate: 2-10MA/s
 - Test to see if there is a threshold for T_e barrier formation Correlate with EFIT I_i and q(min)
- Vary overlap between NBI and HHFW
 - Find scenario that minimizes $\Delta \Phi_{OH}$, maximizes q(min)
- Attempt electron heating in early H-mode
 - Can HHFW aid access to H-mode during ramp-up?
 - If not, try I_P "flat-spot" technique (M. Wade)