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■ Abstract The lignin biosynthetic pathway has been studied for more than a cen-
tury but has undergone major revisions over the past decade. Significant progress has
been made in cloning new genes by genetic and combined bioinformatics and bio-
chemistry approaches. In vitro enzymatic assays and detailed analyses of mutants and
transgenic plants altered in the expression of lignin biosynthesis genes have provided
a solid basis for redrawing the monolignol biosynthetic pathway, and structural analy-
ses have shown that plant cell walls can tolerate large variations in lignin content and
structure. In some cases, the potential value for agriculture of transgenic plants with
modified lignin structure has been demonstrated. This review presents a current picture
of monolignol biosynthesis, polymerization, and lignin structure.
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INTRODUCTION

Lignin is, after cellulose, the second most abundant terrestrial biopolymer, account-
ing for approximately 30% of the organic carbon in the biosphere. The ability to
synthesize lignin has been essential in the evolutionary adaptation of plants from
an aquatic environment to land. Lignin is crucial for structural integrity of the cell
wall and stiffness and strength of the stem (23, 71). In addition, lignin waterproofs
the cell wall, enabling transport of water and solutes through the vascular system,
and plays a role in protecting plants against pathogens (126).

Although researchers have studied lignin for more than a century, many aspects
of its biosynthesis remain unresolved. The monolignol biosynthetic pathway has
been redrawn many times and remains a matter of debate (36, 67). Likewise, the
biochemical processes leading to dehydrogenation of the monolignols in the cell
wall and their polymerization and deposition are fields of active discussion (31, 60,
81, 122, 128). In addition, we are only beginning to understand the transcriptional
and posttranslational mechanisms and metabolic complexes regulating the flux
through the phenylpropanoid and monolignol biosynthetic pathways.

LIGNIN COMPOSITION AND STRUCTURE

General Aspects

Lignins are complex racemic aromatic heteropolymers derived mainly from three
hydroxycinnamyl alcohol monomers differing in their degree of methoxylation,
p-coumarylM1H, coniferylM1G, and sinapylM1Salcohols (50) (Figure 1) (a Sup-
plemental Three-Dimensional View is available online: Follow the Supplemental
Material link from the Annual Reviews home page at http://www.annualreviews.
org). These monolignols produce, respectively,p-hydroxyphenylH, guaiacylG,
and syringylS phenylpropanoid units when incorporated into the lignin polymer.
The amount and composition of lignins vary among taxa, cell types, and individ-
ual cell wall layers and are influenced by developmental and environmental cues
(18). Although exceptions exist, dicotyledonous angiosperm (hardwood) lignins
consist principally ofG andS units and traces ofH units, whereas gymnosperm
(softwood) lignins are composed mostly ofG units with low levels ofH units.
Lignins from grasses (monocots) incorporateG andS units at comparable levels,
and moreH units than dicots (11).H units, derived from the incorporation of the
monolignolp-coumaryl alcoholM1H into lignins, should not be confused with
p-coumarate estersY3, which appear as pendant groups acylating grass lignins—
this confusion (and the derivation of identical products using degradative meth-
ods such as nitrobenzene oxidation) has led to overestimation ofH levels in the
past.

Lignification is the process by which units are linked together via radical cou-
pling reactions (50, 126). The main “end-wise” reaction couples a new monomer
(usually a monolignol and usually at itsβ position) to the growing polymer, giving
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rise to structuresA, B, andD2 (all of which areβ-linked). Coupling between pre-
formed lignin oligomers results in units linked 5–5D and 5–O–4E. The coupling of
two monolignols is a minor event, with resinol (β–β) unitsC or cinnamyl alcohol
end groupsX1 as the outcome. Monolignol dimerization and lignin are substan-
tially different processes (2), explaining why lignification produces frequencies of
the various units that are different from those produced by dimerization (Figure 2)
or bulk polymerization in vitro (see below).

The interconnections are described in Figure 1. The most frequent inter-unit
linkage is theβ–O–4 (β-aryl ether) linkageA. It is also the one most easily
cleaved chemically, providing a basis for industrial processes, such as chemical
pulping, and several analytical methods. The other linkages areβ–5 B, β–β C,
5–5D, 5–O–4E, andβ–1F, which are all more resistant to chemical degradation.
The relative abundance of the different linkages depends largely on the relative
contribution of a particular monomer to the polymerization process. For example,
lignins composed mainly ofG units, such as conifer lignins, contain more resistant

Figure 2 Lignification differs substantially from simple dimerization of monolignols. (a)
Dimerization of coniferyl alcohol produces only three dimers, in each of which at least one of
the coniferyl alcohols is coupled at itsβ position. The 5–5 and 5–O–4 dimers shown in most
texts (and crossed out) do not actually arise in any significant way from monomer dimerization
reactions. The new bond formed by the radical coupling reaction is noted in bold. (b) Cross-
coupling of coniferyl alcohol with aG unit gives only two main products, explaining why there
are moreβ-ethers formed during lignification than in monolignol dimerization (or in synthetic
dehydrogenation polymer (DHP) synthesis, where dimerization is too frequent). Coupling
of preformed oligomers is the source of most of the 5–5- and 5–O–4 units. Sites of further
coupling reactions during lignification are indicated by dotted arrows. Not shown: Sinapyl
alcohol analogously dimerizes to only two products (not theβ–5 analog), and polymerization
between a monolignol (either coniferyl or sinapyl alcohol) and anS unit in the polymer has
only one outcome—theβ–O–4 unit, explaining why highS lignins have elevatedβ-ether
levels. Neither 5–5 nor 5–O–4 units can be formed betweenSunits; cross-coupling ofG and
S units can furnish 5–O–4-linked structures.
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(β–5B, 5–5D, and 5–O–4E) linkages than lignins incorporatingSunits because
of the availability of the C5 position for coupling.

A Broader Definition of Lignins

It is becoming increasingly clear that lignins are derived from several more
monomers than just the three monolignolsM1 (bold in Figure 1). Many “nor-
mal” plants contain lignins substantially derived from other monomers, and all
lignins contain traces of units from apparently incomplete monolignol biosynthe-
sis and other (side-)reactions that occur during that biosynthesis (113). Many of
these units have been recently identified by their more substantial incorporation
into lignins in transgenic and mutant plants with perturbations in the monolignol
biosynthetic pathway.

Variously acylated lignin unitsY were suspected to derive from acylated mono-
lignols M9–M11 (95). p-coumaratesY3 on grass lignins are regio-specifically
attached to theγ position of lignin side–chains, and on all types of lignin units,
suggesting that they are not products of postlignification derivatization (85). Re-
cent identification of novelβ–β-coupling products from kenaf lignins that could
have only arisen from sinapyl acetateM9S(i.e., preacetylated sinapyl alcohol) pro-
vides more compelling evidence (86) and suggests that all of the acylated lignins
(p-hydroxybenzoatesY2 in poplars, palms, and willows;p-coumaratesY3 in all
grasses; and acetatesY1 in palms and kenaf, as well as the low levels in many
hardwoods) derive from acylated monolignolsM9–M11. Because acetylated com-
ponents can represent a significant part of the polymer (over 50% of kenaf bast
fiber lignin units are acetylated, for example), they should be considered to be
authentic lignin “monomers.”

FerulatesM4G, and their dehydrodimers that derive from radical coupling
reactions and generate polysaccharide-polysaccharide cross-linking, are also in-
timately incorporated into lignins, particularly in grasses where they appear to
function as nucleation sites for lignin polymerization (69, 109). Tyramine ferulate
M8G (and possibly other hydroxycinnamate analogs) is intimately polymerized
into the polymer in normal tobacco and is particularly enhanced in cinnamoyl
coenzymeA (CoA) reductase (CCR)-deficient transgenic tobacco (110).

Dihydroconiferyl alcohol (DHCA)X5G and derived guaiacylpropane-1,3-diol
units X6G are always detectable in gymnosperm lignins, suggesting that the
monomerM5G is always produced with coniferyl alcoholM1G (111). DHCA-
derived unitsX5G andX6G are major components of the lignin in a cinnamyl al-
cohol dehydrogenase (CAD)-deficient pine mutant where about half are involved
in 5–5-coupled structuresD (114). Similarly, cinnamylX2 and benzylX3 alde-
hyde groups are always detected in lignins. Whether they arise from postlignifica-
tion oxidation reactions or from incorporation of the aldehyde monomers into the
polymer is unclear, but the latter is highly implicated by the recent observations
of increased levels in CAD-deficient plants, which also display products of end-
wise hydroxycinnamyl aldehyde incorporation into the growing polymer—the
hydroxycinnamyl aldehyde 8–O–4-linked unitsK , particularly predominant in
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CAD-deficient angiosperms (76a, 113). Incorporation profiles of hydroxycinnamyl
aldehydesM2 provide further evidence that lignification reactions are under simple
chemical control. In tobacco, sinapyl aldehydeM2S is found 8–O–4-coupled (in
structuresK ) to bothG andSunits, whereas coniferyl aldehydeM2G is only found
cross-coupled toSunits. Coniferyl aldehyde has not been successfully coupled to
guaiacyl models in vitro, although the 8–O–4-coupled dehydrodimer can be ob-
tained. An important corollary is that hydroxycinnamyl aldehydes are incorporated
intimately into angiospermGS lignins but only poorly into gymnospermG lignin.

The most striking example of lignins incorporating substantial quantities of a
monomer derived from truncated monolignol biosynthesis is in caffeic acid-O-
methyltransferase (COMT)-deficient angiosperms (113). Plants severely depleted
in COMT produce little sinapyl alcoholM1S but essentially substitute it with
a monomer derived from its unmethylated precursor, 5-hydroxyconiferyl alcohol
M15H. The incorporation is typically end–wise, but theo-diphenol results in novel
cyclic structures, benzodioxanesJ, in the lignin (112). As with other products, such
units can be found at very low levels in normal plants.

VARIABILITY AND TOPOCHEMISTRY

Lignin deposition is one of the final stages of xylem cell differentiation and mainly
takes place during secondary thickening of the cell wall (37). Generally, secondary
cell walls consist of three layers: the outer (S1), middle (S2), and inner (S3).
Lignin deposition proceeds in different phases, each preceded by the deposition
of carbohydrates, and starts at the cell corners in the region of the middle lamella
and the primary wall when S1 formation has initiated. When the formation of the
polysaccharide matrix of the S2 layer is completed, lignification proceeds through
the secondary wall. The bulk of lignin is deposited after cellulose and hemicellulose
have been deposited in the S3 layer. Generally, lignin concentration is higher in
the middle lamella and cell corners than in the S2 secondary wall (11, 37, 124).
However, because it occupies a larger portion of the wall, the secondary wall has
the highest lignin content. Secondary walls of vessels generally have a higher
lignin content than those of fibers. Environmental conditions also influence lignin
amount and composition; secondary cell walls of angiosperm tension wood are
characterized by the presence of an unlignified gelatinous layer, which is composed
of highly crystalline cellulose, whereas lignin distribution is normal in the rest of
the secondary cell wall. By contrast, the S2 layer of gymnosperm compression
wood is characterized by a highly lignified ring (the S2L layer) (37).

Microautoradiography and UV-microspectrometry have shown that the three
monolignols are incorporated at different stages of cell wall formation. Typi-
cally, H units are deposited first, followed byG units, andS units still later
in angiosperms (37, 139). Lignin in vessels is generally enriched inG units,
whereas lignin in fibers is typically enriched inS units (124). A large propor-
tion of S units is also found in secondary walls of ray parenchyma (44). In gym-
nosperms, the lignin deposited in compression wood is enriched inH units (141). In
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gramineous monocotyledons, lignin incorporates significant amounts of hydrox-
ycinnamate esters. Ferulate-polysaccharide estersM4G (and minor amounts of the
p-coumarate analogsM4H) are rapidly deposited at the early stages of lignifica-
tion. p-CoumaratesY3, acylating lignin side–chains mainly onS units (85), are
deposited throughout lignification (61), implicating the involvement of acylated
monomersM11. The difference in timing of monolignol deposition is associated
with variations in lignin condensation in the individual cell wall layers, as shown
by immunocytochemistry with antibodies raised against pureH, pureG, or mixed
GS synthetic lignins (23, 72).

The chemical nature of the carbohydrate matrix and the orientation of the cellu-
lose microfibrils influence lignin deposition. In the middle lamella and the primary
wall, lignin forms spherical structures, whereas in the secondary wall, lignin forms
lamellae that follow the orientation of the microfibrils (5, 37, 123). During depo-
sition, lignin may form chemical bonds with the hemicellulose component in the
wall and gradually eliminates water, forming a hydrophobic environment.

From these data, one can conclude that lignin deposition, and the relative incor-
poration of the different monolignols into the polymer, are spatially and temporally
regulated. The mechanisms controlling this process are not yet fully resolved but
are likely governed by the interplay between the spatio-temporal expression of
monolignol biosynthetic genes, the kinetics of monolignol delivery to the cell
wall, and the chemistry of monolignol coupling to the growing polymer in the
complex macromolecular environment of the cell wall.

MONOLIGNOL BIOSYNTHESIS

The biosynthesis of the monolignols starts with the deamination of phenylalanine
and involves successive hydroxylation reactions of the aromatic ring, followed by
phenolicO-methylation and conversion of the side-chain carboxyl to an alcohol
group. Monolignol biosynthesis can be most easily understood starting with the
metabolic grid presented in Figure 3, which includes all possible enzymatic conver-
sions that have been shown by in vitro experiments. Researchers have long thought
that the hydroxylation and methylation reactions occur at the level of the cinnamic
acids and thatp-coumaric, ferulic, and sinapic acid are subsequently converted to
the corresponding monolignols by the sequential action of 4-coumarate:CoA lig-
ase (4CL), CCR, and CAD. However, a number of in vitro enzymatic assays with
heterologously produced enzymes, the identification of novel genes implicated in
the pathway, and analyses of mutant and transgenic plants modified in monolignol
biosynthesis have cast doubt on this route, and the pathway had to be redrawn (67).
For clarity, we present only the key arguments that have led to the currently most
favored pathway.

The first revision of the pathway arose from the observation that expression
of caffeoyl-CoAO-methyltransferase (CCoAOMT) coincided with lignin depo-
sition in differentiating tracheary elements in zinnia (148). CCoAOMT methylates
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caffeoyl-CoA and 5-hydroxyferuloyl-CoA to produce feruloyl-CoA and sin-
apoyl-CoA in vitro. Further research suggested the existence of a route fromp-
coumaroyl-CoA to caffeoyl-CoA (150). Subsequently, feeding experiments with
radiolabeled monolignol glucosides showed that hydroxylation and methylation
of the aromatic C3 and C5 positions could also occur at the aldehyde or alcohol
level (28, 89, 90), indicating the existence of enzymes able to catalyze these con-
versions. Re-evaluating the substrate preference of ferulate 5-hydroxylase (F5H)
showed that the preferential substrate was not ferulic acid, but coniferaldehyde
and coniferyl alcohol (68, 98). Similarly, the products of F5H-catalyzed hydrox-
ylation, 5-hydroxyconiferaldehyde, and 5-hydroxyconiferyl alcohol proved to be
good substrates for COMT, whereas caffeic acid was a poor substrate (68, 83,
98, 100). Together, these data presented evidence that the aromatic C5 position is
hydroxylated and methylated preferentially at the cinnamaldehyde or cinnamyl al-
cohol level and that the predominant role for CCR is the reduction of feruloyl-CoA
to coniferaldehyde. In a variety of species, caffeyl aldehyde and caffeyl alcohol are
also efficientlyO-methylated, in agreement with the radiotracer studies (27a, 54,
55, 89, 100, 151). Caffeyl aldehyde is probably synthesized from caffeoyl-CoA
by CCR (54). Hence, coniferaldehyde may be synthesized from feruloyl-CoA or
from caffeyl aldehyde, depending on differences in substrate specificities between
enzyme isoforms and depending on the species (151).

CAD is a multifunctional enzyme that catalyzes the final reduction of the cin-
namaldehydes to the corresponding alcohols, at least in vitro. However, a CAD
homolog from aspen, sinapyl alcohol dehydrogenase (SAD), that preferentially
reduces sinapaldehyde to sinapyl alcohol was identified. This homolog is co-
expressed with F5H and COMT and co-localizes withS lignin in aspen (82).
Aspen CAD preferentially reduces coniferaldehyde; therefore, SAD may be the
enzyme responsible for the final step in the biosynthesis of sinapyl alcohol (82).

The enzyme that was long thought to convertp-coumaric acid into caffeic acid
has only recently been cloned fromArabidopsisand shown to be a cytochrome
P450-dependent monooxygenase (47, 127). It is interesting to note that enzymatic
assays have demonstrated that the shikimate and quinate esters ofp-coumaric
acid are the preferred substrates forp-coumarate 3-hydroxylase (C3H) and that
neitherp-coumaric acid,p-coumaroyl-CoA,p-coumaraldehyde,p-coumaryl al-
cohol, nor the 1–O-glucose ester and the 4–O-glucoside ofp-coumaric acid are
good substrates (47, 95a, 127). By incorporating C3H into the scheme for mono-
lignol biosynthesis, at least inArabidopsis, p-coumarate is first converted top-
coumaroyl-CoA by 4CL, with subsequent conversion top-coumaroyl-shikimate
andp-coumaroyl-quinate, the substrates for C3H, byp-hydroxycinnamoyl-CoA:D-
quinate- (CQT) orp-hydroxycinnamoyl-CoA:shikimatep-hydroxycinnamoyltran-
sferase (CST) (127). These enzymes, described as reversible enzymes, can convert
caffeoyl-shikimate or caffeoyl-quinate (chlorogenic acid) into caffeoyl-CoA, the
substrate for CCoAOMT (127, 144). Recently, a reversible acyltransferase with
both CQT and CST activity, designated HCT, has been purified and the correspond-
ing gene cloned from tobacco (62b). Taken together, these data argue that none of
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the C3 and C5 substitutions of the aromatic ring take place at the cinnamic acid
level in monolignol biosynthesis.

For most of the enzymes described above, multiple isoforms that are differen-
tially expressed during development and upon environmental cues (27, 66, 79, 84a)
exist that may have different kinetics and substrate preferences (39, 59, 151). Cer-
tain paths in the grid are therefore expected to be kinetically favored in given cell
types or environmental conditions, allowing for metabolic flexibility (Figure 3).
In this respect, a continuing controversy concerns the role of sinapic acid in mono-
lignol biosynthesis. Whereas 4CL isoforms of most plant species analyzed use
p-coumarate, caffeate, and ferulate as substrates, but not sinapate, isoforms of
some plants are able to convert sinapate into sinapoyl-CoA (84a), leaving the
possibility that in particular plants monolignols may be synthesized via the acid
pathway (147a).

Another level of complexity is that pathway intermediates may affect the
synthesis or activity of certain enzymes in the pathway. Cinnamic acid inhibits
phenylalanine ammonia-lyase (PAL) expression at the transcriptional (13, 91) and
posttranslational level (16) and induces the activity of CQT (77). Accordingly,
downregulation of cinnamate 4-hydroxylase (C4H) in transgenic tobacco reduces
PAL activity by feedback modulation (13). Phenylalanine concentrations also have
a profound effect on flux through the pathway. Feeding lignifyingPinus taedacell
suspension cultures with phenylalanine increasesp-coumaryl and coniferyl alcohol
synthesis andPAL, 4CL, CCoAOMT, andCCRtranscript levels, but only slightly
upregulates those ofC4HandC3H (4).

In vitro enzymatic experiments have shown that 5-hydroxyconiferaldehyde
is a competitive inhibitor of caffeic and 5-hydroxyferulic acid methylation and
that coniferaldehyde is a noncompetitive inhibitor of ferulate 5-hydroxylation,
corroborating the conclusion that C3 and C5 substitutions in monolignol biosynthe-
sis do not take place at the cinnamic acid level (83, 98). In aspen, coniferaldehyde

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 3 Phenylpropanoid and monolignol biosynthetic pathways. Based on lignin
compositional analyses, enzymatic assays, and transgenic plants, the black route to-
ward the production of monolignols is expected to be most favored in angiosperms. The
gray routes also occur, depending on the species and conditions. The route from caf-
feic acid to sinapic acid and down to 5-hydroxyferuloyl-CoA and sinapoyl-CoA (white
part) does not play a significant role in monolignol biosynthesis. CAD, cinnamyl alco-
hol dehydrogenase; 4CL, 4-coumarate:CoA ligase; C3H,p-coumarate 3-hydroxylase;
C4H, cinnamate 4-hydroxylase; CCoAOMT, caffeoyl-CoAO-methyltransferase;
CCR, cinnamoyl-CoA reductase; COMT, caffeic acidO-methyltransferase; HCT,
p-hydroxycinnamoyl-CoA: quinate shikimatep-hydroxycinnamoyltransferase; F5H,
ferulate 5-hydroxylase; PAL, phenylalanine ammonia-lyase; SAD, sinapyl alcohol
dehydrogenase. ?, conversion demonstrated; ??, direct conversion not convincingly
demonstrated; 4CL??, some species have 4CL activity toward sinapic acid; CCR? and
F5H?, substrate not tested; others, enzymatic activity shown in vitro.
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is additionally a competitive inhibitor of the sinapaldehyde reduction by CAD,
whereas sinapaldehyde strongly inhibits the coniferaldehyde reduction by SAD,
indicating that SAD is predominantly involved in sinapyl and CAD in coniferyl
alcohol biosynthesis (82). Caffeic acid competitively inhibits the 4CL activation
of p-coumaric acid (59), and feedback regulation by hydroxycinnamic acid levels
has also been suggested for CCoAOMT (70).

Furthermore, transgenic plants have shown that COMT downregulation in to-
bacco induces a strong increase in CCR activity and has a negative effect on
the production of CCoAOMT (104), indicating additional regulatory mechanisms
controlling the flux through the pathway.

TRANSGENIC PLANTS

In vitro assays of individual pathway enzymes and radiolabeling experiments have
been instructive in dissecting the monolignol biosynthetic pathway, but they are
insufficient to comprehend this pathway’s complexity in vivo. Transgenic plants
provide a picture of the gross alterations on lignin amount, composition, and
primary structure and on the phenotypic effects caused by altering the expression
of a single gene. Hence, one can obtain novel insight into regulatory aspects of the
pathway and on the structure and biological roles of lignin.

Transgenic plants or mutants with modified expression of all monolignol biosyn-
thesis genes described above, except HCT, have been studied in detail (36) (for an
extensive table, see Supplemental Table: Follow the Supplemental Material link
from the Annual Reviews home page at http://www.annualreviews.org/). Below,
we focus on the main results that have contributed to our understanding of lignin
biosynthesis and structure.

Downregulation of PAL and C4H in tobacco largely reduces lignin content,
consistent with their key positions at the entry point to phenylpropanoid biosyn-
thesis (8, 43, 130). Surprisingly, lignin composition is oppositely affected in these
transgenic tobacco lines. PAL downregulation reduces mainlyG units, whereas
C4H downregulation reduces mainlyS units in lignin, an observation that cannot
easily be explained by the pathway presented in Figure 3. Three possible expla-
nations have been proposed for this apparent contradiction (36): (a) The pathway
to G lignin may bypass C4H, (b) C4H still catalyzes reactions other than the 4-
hydroxylation of cinnamic acid, or (c) C4H may be part of a metabolic channel
committed toS lignin biosynthesis. C3H, C4H, and F5H are all membrane-bound
P450 enzymes, with an endoplasmic reticulum anchor domain and, as such, poised
well to assemble multienzyme complexes at the outer face of the endoplasmic retic-
ulum membrane (25, 119, 127). Until now, however, metabolic channeling has only
been demonstrated from phenylalanine top-coumarate, involving a microsomal
PAL isoform (118).

Overexpression of PAL in tobacco leads to increased levels of chlorogenic acid
in leaves (8, 64), whereas downregulation of PAL and C4H decreases chlorogenic
acid content (8, 13), providing a link between the role of C3H in 3-hydroxylation
at the level of shikimate or quinate esters and lignin (46, 47, 127).
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Downregulation of 4CL leads to a reduction in lignin content in tobacco,Ara-
bidopsis, and aspen (65, 74, 80) and to a higher amount of cell wall–bound hy-
droxycinnamic acids (p-coumaric, ferulic, and sinapic acid) in tobacco and poplar
(65, 74). The effects onS/G lignin composition are contradictory. In tobacco, a
reduction inSunits is reported (74, 75); inArabidopsis, only G units are reduced
(80); and in transgenic aspen, theS/G ratio is similar to that of the control (65).
This differential effect on lignin composition may be explained by the existence of
multiple isoforms of 4CL with distinct substrate specificities and various functions
that are differentially affected in the transgenic plants (3, 39, 59, 65, 80).

The Arabidopsis reduced epidermal fluorescence(ref8) mutant, defective in
C3H, has a strongly reduced lignin content and accumulates a range of soluble
p-coumarate esters instead of sinapoyl malate. The lignin of this mutant is almost
entirely composed ofH units and contains large amounts of esterifiedp-coumaric
acid. These data indicate that C3H is a major control point in the production of C3-
and C5-substituted phenylpropanoids and that it is likely the sole 3-hydroxylase in
the phenylpropanoid pathway (46).

Downregulation of CCoAOMT results in less lignin, and in an increasedS/G
ratio mainly because of a reduction inG units (55, 93, 105, 149). In alfalfa, down-
regulation of CCoAOMT reducesG lignin but does not affectS lignin biosynthe-
sis, suggesting that, in alfalfa, CCoAOMT is not essential inSunit biosynthesis in
vivo and COMT is involved in the 3-methylation step, in agreement with the sub-
strate specificity of alfalfa COMT allowing the methylation of caffeyl aldehyde
and caffeyl alcohol (27a, 55, 100). Metabolic profiling of stem tissues revealed
the accumulation of solubleO–β-D-glucosides of vanillic, caffeic, and sinapic
acids in transgenic poplar (93), and caffeoyl-β-D-glucoside in alfalfa (55); all
are compounds that probably derive from caffeic acid upon de-esterification of
caffeoyl-CoA by a thioesterase. In poplar, elevated levels of free and wall-bound
p-hydroxybenzoic acidY2 were found (93, 149), and lignin is less condensed and
less cross-linked (149).

Downregulation of COMT to low activity levels reduces lignin content in al-
falfa, maize, and poplar by 30%, 30%, and 17%, respectively. Consistent with the
predominant role for COMT in methylating the C5 hydroxyl group, the most strik-
ing effect of COMT deficiency is the reduction inS units and the incorporation
of 5-hydroxyconiferyl alcoholM15H into the lignin polymer (6, 24, 55, 73, 112,
113, 145, 150). Accordingly, the lignin of transgenic poplar and alfalfa downreg-
ulated for COMT is characterized by a reduced frequency of bonds involvingS
units (55, 73, 78). COMT-downregulated poplars have more 5–5D and lessβ–β
C structures in lignin (78), and they have high amounts of novel benzodioxane
structuresJ derived from incorporation of the 5-hydroxyconiferyl alcoholM15H
(112) (see Supplemental Three-Dimensional View of the altered lignin structure
in a COMT-deficient poplar).

In tobacco, downregulation of CCR has a marked effect on both lignin content
and lignin composition (106, 110). TheS/G ratio is increased mainly because
of a reduction inG units, but lignin is more condensed. A higher amount of
tyramine ferulateM8G is incorporated as an integral component of the polymer.
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In addition, increased amounts of cell wall–bound phenolics, such as ferulic acid,
sinapic acid, acetosyringone, and tyramine ferulateM8G, were released by mild
alkaline hydrolysis of the cell wall. Tyramine ferulateM8G is likely the sink for
the anticipated buildup of feruloyl-CoA. The higher levels of hydroxycinnamates
may have contributed to the abnormally high degree of cross-linking.

Lignin of theArabidopsismutant defective inF5H (fah-1) is characterized by
the absence ofSunits and enhanced phenylcoumaranB and dibenzodioxocin struc-
turesD2 (26, 88), whereas upregulation of F5H inArabidopsis, tobacco, and poplar
results in lignin almost entirely constituted ofS units, therefore containing no
phenylcoumaranB or dibenzodioxocinD2 structures (48, 88, 92). It is interesting
to note that benzodioxaneJ structures, which are found in plants with suppressed
COMTexpression, are also present in the lignin ofF5H-overexpressingArabidop-
sis plants, probably because of the increased flux to 5-hydroxyconiferaldehyde
and 5-hydroxyconiferyl alcoholM15H without an associated increase in COMT
activity (113). These data show that F5H plays a major role in 5-hydroxylation and
that it is possible to modulate theS/G ratio in plants from one extreme to the other.

Although CAD catalyzes the last step in monolignol biosynthesis, lignin content
is only slightly affected in most CAD-deficient plants (9, 10, 58, 62, 78, 87, 103,
134). This can, at least in part, be explained by the incorporation of other phenolics
that compensate for the reduced availability of monolignols for polymerization.
Indeed, downregulation of CAD in tobacco and poplar results in coniferaldehyde
and sinapaldehyde incorporation into the lignin polymer (76a, 113). In pine, a
CAD mutation has been associated with an increased amount of coniferaldehyde
X2G and unanticipated dihydroconiferyl alcoholX5G units (114, 128). The CAD-
deficientbm1mutant of maize has a 20% reduced lignin content (57) and stains
more strongly for aldehydes; however, no aldehyde resonances were seen in nuclear
magnetic resonance spectra (107).

The expression of two or three genes of the monolignol biosynthetic pathway
has been altered either by crossing single transformants downregulated for partic-
ular genes [COMTandCCR(104),COMTandCCoAOMT(105),CAD andCCR
(22, 23)], by double transformation [COMTandCCoAOMT(55, 150)], or by in-
troduction of a chimeric construct consisting of fragments of three genes [COMT,
CCR, andCAD (1)] (for additional information, see Supplemental Table).

A striking characteristic of transgenic plants downregulated for 4CL,
CCoAOMT, CCR, CAD, and COMT is the reddish or brownish discoloration
of the xylem tissues, initially observed in the maize “brown-midrib” (bm) mutants
(see Supplemental Table) (Figure 4). The reddish coloration of CAD- and COMT-
deficient plants has been attributed to the incorporation of cinnamaldehydes in the
polymer; synthetic DHPs of coniferyl alcohol and coniferaldehyde also form a red
polymer (62a). However, in plants downregulated for 4CL, CCoAOMT, and CCR,
the incorporation of other phenolics into the lignin polymer is likely the cause of
the xylem discoloration.

Taken together, the results obtained by analyzing transgenic plants modified in
monolignol biosynthesis have demonstrated that plants can tolerate large variations
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in lignin content and composition, that monomers other thanp-coumaryl, coniferyl,
and sinapyl alcohol are incorporated into the lignin polymer, and that the copoly-
merization of these uncommon monomers may result in novel lignin structures.
These data show that the lignin polymer is extremely flexible in its composition.

Besides having contributed to our understanding of lignin biosynthesis and
structure, the same transgenic lines have also demonstrated that lignin is impor-
tant for the structural integrity of the cell wall. Plants downregulated in C3H,
CCoAOMT, and CCR all had reductions in lignin content associated with a col-
lapse of the vessels and altered growth, phenotypes that may significantly vary
according to developmental and environmental conditions (104, 105). Such col-
lapsed vessels have been studied in detail in CCR-downregulated tobacco and
Arabidopsis irx4mutants and have an expanded S2 secondary wall with individu-
alized cellulose microfibrils (23, 71, 104), indicating an important role for lignin as
cohesive between cellulose microfibrils. However, in some cases, reduced lignin
content is not associated with growth abnormalities (80) and, in the case of 4CL
downregulation in aspen, even with increased growth, showing that lignin content
per se is not essential for structural integrity of the cell wall and that the reduced
lignin content can be compensated by other cell wall constituents (65). The in-
crease in cellulose coupled to a decrease in lignin observed in 4CL-downregulated
poplars does not seem to be a general phenomenon;irx4 mutants defective in CCR
have less lignin but no increase in cellulose (71).

TRANSPORT OF MONOLIGNOLS

After their synthesis, the lignin precursors are transported to the cell wall where
they are oxidized and polymerized. In gymnosperms and some angiosperms, mono-
lignol 4–O–β-D-glucosides accumulate to high levels in the cambial tissues (132).
It has been hypothesized that these monolignol glucosides are storage or transport
forms of the monolignols and that a uridine diphosphate glucose (UDPG) coniferyl
alcohol glucosyl transferase (132), together with coniferin-β-glucosidase (CG),
may regulate storage and mobilization of monolignols for lignan and/or lignin
biosynthesis (34, 125). Whether these glucosides are transported via Golgi-derived
vesicles or through direct plasma membrane pumping by ABC transporters is still
unknown (125).

By taking advantage of the completed sequence of theArabidopsisgenome and
by combining bioinformatics with a biochemical approach, two UDPG-glysosyl
transferases (UGTs) that were able to 4–O-glucosylate sinapyl alcohol into sy-
ringin were identified, one of which could also glucosylate coniferyl alcohol to
coniferin in vitro (84). Identifying theseUGT genes enables one to study the role
of monolignol glucosides in vivo by reverse-genetics.

If monolignol glucosides were indeed the monolignol transport (or storage)
forms, the aglycon would have to be liberated by a CG prior to dehydrogenation.
Based on peptide sequence information obtained from a purified lodgepole pine
CG, the corresponding cDNA has been cloned and shown to encode a secretory
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family-1 glycosyl hydrolase (34, 35). CG has been immunolocalized to xylem
secondary walls (125). However, no genetic evidence for its role in lignification
has been obtained yet.

According to early studies with radiolabeled monolignol precursors, lignifica-
tion of the cell wall has been hypothesized to proceed after cell death (102). These
findings are now supported by experiments with the zinnia cell system showing
that lignification of tracheary elements that have undergone programmed cell death
still progresses by supply of monolignols from the surrounding xylem parenchyma
cells (63).

DEHYDROGENATION

After transport of the monolignols to the cell wall, lignin is formed through de-
hydrogenative polymerization of the monolignols (29). The dehydrogenation to
monolignol radicals has been attributed to different classes of proteins, such as per-
oxidases, laccases, polyphenol oxidases, and coniferyl alcohol oxidase. Which of
these enzymes or a combination thereof are responsible for the dehydrogenation
of the monolignols in planta and whether monolignol oxidation occurs through
redox shuttle-mediated oxidation are still unclear (97).

Peroxidases use hydrogen peroxide (H2O2) to oxidize their substrates (29).
How H2O2 is generated in the cell wall is still a matter of debate. Evidence is
emerging for a role for an NADPH oxidase in lignifying tissues, which would
supply H2O2 for monolignol oxidation (96, 121). However, a copper amine oxidase
(CuAO) that generates H2O2 by oxidizing putrescine has also been co-localized
with lignin staining and peroxidase activity in tracheary elements ofArabidopsis
(94). Oxalate oxidase is another enzyme possibly involved in H2O2 generation
(17), and peroxidase itself is able to generate H2O2 from a variety of reducing
substrates, such as cysteine, glutathione, NADPH, ascorbate, and indole-3-acetic
acid (15, 29, 45).

The high number of peroxidase genes [73 in theArabidopsisgenome (142)]
is one reason why isozymes that are responsible for monolignol oxidation in vivo
cannot be identified easily. In addition, most peroxidases isolated from a variety
of species catalyze very similar reactions, such as the oxidation of the monolignol
coniferyl alcohol. Thus, oxidation of coniferyl alcohol is no proof for peroxidase
involvement in lignin polymerization. Although several anionic and cationic per-
oxidases are expressed in lignifying cells, and some can generate lignin ectopically
in planta upon overexpression (30, 40–42, 99, 108, 120), peroxidase involvement in
the developmentally regulated deposition of lignin still needs to be unambiguously
demonstrated.

Laccases (p-diphenol:O2 oxidoreductases) are copper-containing, cell wall–
localized glycoproteins that are encoded by multigene families in plants. In contrast
to peroxidases, laccases consume O2 instead of H2O2 to oxidize the monolignols.
Laccases of a variety of species are expressed in lignifying cells (7, 38, 117, 133).
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However, downregulation of laccase in aspen and yellow poplar did not affect
lignin content or composition (33, 116).

POLYMERIZATION

Radical Generation and Radical Coupling

After their dehydrogenation, the radicals, which are relatively stable owing to
electron delocalization that provides single-electron density to the side-chainβ

position, are coupled. The most important reaction is cross-coupling to the grow-
ing polymer to extend the complex three-dimensional lignin network (Figure 2).
But, such coupling reactions are radical quenching. Each extension of the poly-
mer requires new radicals on each of the two coupling partners. Radicals on the
growing lignin polymer are thought to be generated by radical transfer from mono-
lignols or other intermediaries.p-Coumarates function as efficient intermediaries
in sinapyl alcohol–coupling reactions; they are rapidly oxidized by peroxidases,
and then transfer the radical to sinapyl alcohol, which forms a more stable radical
(59a, 136). As a result, sinapyl alcohol is far more rapidly oxidized in the pres-
ence ofp-coumarates; thep-coumarates are not coupled until all of the sinapyl
alcohol is depleted. This radical transfer step is assumably one of the functions
of monolignolp-coumarate estersM11 in maize, where the peroxidases seem to
be poor at oxidizing sinapyl alcohol directly. Similar radical transfer mechanisms
can be envisioned between the monolignols and the growing polymer, i.e., the
monolignols may act as the radical shuttles. When a monolignol radical encoun-
ters a polymer radical, it may cross-couple with it, but when the polymer is not
electron-deficient, radical transfer may occur and the monolignol will diffuse back
to the peroxidase/laccase to be reoxidized. Alternatively, redox shuttles, such as
an Mn2+/Mn3+ system (97), may be involved.

Polymerization Process

The actual process of polymer formation, lignification, occurs without the rigid
biochemical controls seen in the biosynthesis of the precursor monolignols, giving
rise to a unique class of polymers. Lignins are racemic (115), deriving from radical
coupling reactions under chemical (but no apparent biochemical control) between
phenolic radicals in an essentially combinatorial fashion.

Much of what is known of the radical–coupling process and the parameters that
determine the frequency of interunit bonds and the structure of lignin has been ob-
tained via synthetic dehydrogenation polymers (DHPs). Lignin-like polymers can
be artificially synthesized in vitro by dehydropolymerization of lignin precursors,
using peroxidase/H2O2 or laccase/O2 as oxidizing agents (126). The Zutropf DHPs,
formed by adding lignin precursors slowly and continuously to a solution contain-
ing H2O2 and peroxidase, are called end-wise polymers and structurally resemble
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isolated wood lignins more closely than Zulauf DHPs or bulk polymers, which are
formed by adding the precursors in a single batch (49). Such DHP experiments
have indicated that lignin structure depends on the supply rate of the monomers,
the rate of radical generation (2, 135, 138), the presence of polysaccharides in
the DHP mix (137, 138, 140), and the presence of the growing lignin polymer
(53).

The accepted model for lignin polymerization, based on simple chemically
controlled combinatorial coupling reactions, was recently challenged. According
to Lewis’ group (31), the macromolecular assembly of lignin is not based on
“random coupling” of monolignols. Instead, this group proposes a strong biological
control over the outcome of phenoxy radical coupling in vivo. The new theory arose
from the discovery of a fascinating class of dirigent proteins implicated in lignan
biosynthesis (32); lignans are dehydrodimers of monolignols and are typically
optically active. The first such dirigent protein discovered guided the dimerization
of coniferyl alcohol radicals to produce an optically active lignan, pinoresinol. The
corresponding gene was cloned and shown to encode a cell wall–localized protein.
The finding was extrapolated to lignification, suggesting that such proteins would
logically be responsible for specifying the exact structure of the lignin polymer,
bringing lignins in line with proteins and polysaccharides that are more carefully
biosynthesized (31, 81). However, no strong arguments invoke a role for dirigents
in lignification, and numerous facts do not fit the proposed model for absolute
structural control over lignification (60, 113, 122, 128). Reverse genetics will
tell whether dirigents play any role in lignin biosynthesis in addition to their
involvement in lignan biosynthesis.

Nucleation Sites

As discussed above, lignin is first deposited in the middle lamella and the cell
corners of the primary wall after the formation of the secondary wall has started, at
the so-called nucleation sites, from which the lignin polymers can grow. The nature
of these nucleation sites is unknown. Ferulates, conjugated to polysaccharides, and
their dehydrodimers are well established as being incorporated into grass lignins.
There is some evidence that ferulates and diferulates may act as attachment sites
for monolignols (109). Structural cell wall proteins rich in aromatic residues, such
as glycine-rich proteins (76), may have a similar function. It is interesting to note
that several apoplastic peroxidases from zucchini and horseradish bind pectin in
their Ca2+-induced conformation (101); one such peroxidase has been cloned (19,
20). Given that the middle lamella and the cell corners are rich in Ca2+ pectate
(21) and are the first sites to be lignified, Ca2+ pectate-bound peroxidases may
conceivably play a role in the spatial control of lignin deposition, and changes in
Ca2+ and H+ concentrations may modulate the location of these peroxidases (19).

The negatively charged pectins are also good binding sites for polyamines (19)
and, hence, may be suitable sites for H2O2 generation by polyamine oxidases (94).
It is tempting to speculate that pectin-binding peroxidases and polyamine oxidases
may act locally in the early stages of lignin deposition both for H2O2 generation and
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oxidation of monolignols, cinnamic acids bound to polysaccharides or polyamines,
or aromatic residues on certain proteins, such as glycine-rich proteins (76).

BIOTECHNOLOGY

Lignin biosynthesis is an active field of research partly because of its economic
relevance. For the production of high-quality paper, lignin needs to be extracted
from the pulp by expensive and environmentally hazardous processes requiring
large amounts of energy and chemicals. For the paper industry, it would be ben-
eficial to process wood with either less lignin or lignin with an altered chemical
reactivity.

The first attempts to reduce lignin content involved downregulation of CAD and
COMT. Surprisingly, large reductions in CAD activity only slightly reduced lignin
content because the plants were able to circumvent the block in CAD activity by
shipping its substrates, the cinnamaldehydes, to the cell wall for polymerization.
An additonal surprise was that the altered lignin structure did not affect overall
plant growth and development. These data show how adaptable plants are in build-
ing their cell wall (10, 58, 62, 76a, 78, 87, 134). Interestingly, chemical pulping
experiments with wood harvested from 4-year-old, field-grown transgenic poplars
downregulated for CAD have demonstrated that the modifications in lignin struc-
ture result in an altered chemical reactivity, which reduces the consumption of
chemicals needed to remove lignin from the pulp. The pulp yield was simultane-
ously enhanced. These data also show that significant improvements in pulping ef-
ficiency can be achieved without strong reductions in lignin content (103). Similar
results were obtained in chemical pulping experiments with wood from transgenic
tobacco plants downregulated for CAD and CCR (95b).

Another unanticipated observation was that downregulation of COMT primarily
affected the biosynthesis ofSunits, a first indication that the pathway that had been
described in textbooks for many years was wrong (6, 145). In these plants, a novel
unitM15H was copolymerized in the polymer and resulted in new types of chemical
bondsJ, again demonstrating the extraordinary flexibility of the lignin polymer.
Pulping experiments of wood from field-grown COMT-downregulated poplars
show that lignin of these plants is more difficult to extract from the pulp, presum-
ably because of the reduced synthesis ofSunits and the presence of etherified units
derived from 5-hydroxyconiferyl alcoholM15H, which are not cleavable in base
(73, 78, 103). Although these plants are not very interesting for the chemical pulp
industry, the results demonstrated that lignin composition plays an important role
in lignin extractability and that it can be modified without affecting plant viability.

An additionally appealing objective is to engineerS lignin in gymnosperms.
The rationale behind this objective is that a lignin polymer enriched inSunits is less
cross-linked than lignin rich inG units. As discussed above, results from enzymatic
assays and transgenic plants have demonstrated that angiosperm F5H, COMT, and
SAD are the enzymes responsible forSbiosynthesis; upregulation of F5H results
in lignin almost entirely composed ofSunits (48, 88, 92), whereas F5H deficiency
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essentially abolishesS unit biosynthesis (26, 88). Likewise, downregulation of
COMT limits Sunit synthesis. No transgenic plants have been made yet for SAD,
but enzymatic assays indicate it preferentially reduces sinapaldehyde, the last step
in the biosynthesis of sinapyl alcohol (82). Through the combined expression of
these three angiosperm genes (F5H, COMT, andSAD) in gymnosperms, it should
be possible to divert coniferaldehyde and coniferyl alcohol toward the synthesis
of S units and to improve lignin extractability.

Transgenic poplars downregulated for 4CL also hold great promise for the pulp
industry; they have less lignin and more cellulose, and they grow taller for still
unkown reasons. These three factors may significantly affect pulp yield (65).

Lignin also inhibits forage digestibility by ruminants (147). Downregulation of
COMT, PAL, and CCoAOMT resulted in improved digestibility (56). Tobacco and
alfalfa, downregulated for CAD, had higher in situ disappearance of cell walls (9,
12), and cell walls prepared from theArabidopsis ref8mutant deficient in C3H and
having lignin almost entirely composed ofH units are more susceptible to polysac-
charide hydrolases than wild type (46). Experiments have shown thatH, G, andS
lignins have similar effects on wall degradability when other cell wall factors are
kept constant (52). Therefore, alteringS/G composition per se probably does not
modify digestibility, but lignin content (131), other compositional and structural
factors (such as cross-linking), or overall changes in agronomic characteristics
(such as leaf-to-stem ratio).

Lignin research may well be validated in breeding programs. Several quanti-
tative trait loci for lignin composition in eucalyptus coincide with map positions
of genes involved in lignin biosynthesis (51), and maizebmmutants with altered
agronomic performance have defects in monolignol biosynthesis genes (57, 146),
paving the way for the use of molecular markers in marker-assisted selection
programs.

CONCLUSIONS AND PERSPECTIVES

The analysis of transgenic plants and mutants has significantly contributed to
understanding the in vivo role of the enzymes of the lignin biosynthetic pathway
and, in several cases, has demonstrated that in vitro enzymatic assays with a set
of presumed substrates can be misleading. Nevertheless, several factors call for a
careful interpretation of the results obtained with transgenic plants and mutants
too. Altering the activity of a single enzyme of the pathway may modify the
level of pathway intermediates, thus affecting the expression of other genes at
the transcriptional or posttranslational level (4, 13, 14, 59, 82, 104). Additionally,
the expression of unknown functional homologs of the gene under study may be
affected. Hence, the pleiotropic phenotype displayed by several of the mutant lines
under study is the result of both direct and indirect consequences of the mutation;
the latter is the product of a number of unknown molecular events.

With the advent of microarray technology, the full spectrum of transcriptional
events caused by altering the expression of a single gene will be revealed. Coupled
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with metabolite profiling of the same tissues through high-perfomance liquid chro-
matography and gas chromatography combined with mass spectrometry (143), and
reverse-genetics approaches, these data should deepen our understanding of the
interrelationships between biosynthetic pathways and plant development.
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Figure 1 Lignin monomers and structures in the polymer. (Monomers) Lignins de-
rive primarily from the three traditional monolignols, the hydroxycinnamyl alcohols:
M1H, M1G, andM1S. The fourth hydroxycinnamyl alcohol,M15H, is a significant
monomer in COMT-deficient plants. AldehydesM2 andM3 probably incorporate into
all lignins and increasingly so in CAD-deficient plants. Hydroxycinnamate estersM4,
particularly ferulatesM4G, incorporate into lignins in grasses. Dihydroconiferyl al-
coholM5G, and the guaiacylpropane-1,3-diolM6G derived from it, are monomers in
softwood lignification and are highly elevated in a CAD-deficientPinus taedamutant;
whether the syringyl analogs are also produced and incorporated into angiosperms
is not known. ArylglycerolsM7 are implicated by glycerol structuresX7 in lignins,
but may come from the isolation process. Variously acylated monolignolsM9–M11
are implicated in many plants. Tyramine hydroxycinnamateM8, particularly tyramine
ferulateM8G, appears to be a monomer in tobacco lignins. Note that it is conventional
to useα,β, andγ for the side chain positions in the hydroxycinnamyl alcoholsM1 and
related products, but 7, 8, and 9 for the analogous positions in hydroxycinnamyl alde-
hydesM2 and hydroxycinnamate estersM4 andM8. Bracketed compounds have not
been established as authentic monomers. (Lignin Polymer Units) Units are generally
denoted based on the methoxyl substitution on the aromatic ring asH, G, S (and5H);
dashed bonds represent other potential attachments via coupling reactions. The most
common structures in lignins from normal and transgenic plants are shown as structures
A–L with the bond formed during the radical coupling step (in bold);p-hydroxyphenyl
units are not shown. The dashed bonds indicate substitutions by methoxyl (in syringyl
components) or other attachments from coupling reactions; generic side chains are
truncated (zigzag lines). Most units arise from cross-coupling reactions of a monomer
with the growing polymer or by polymer-polymer coupling reactions. Resinol unitsC
are from monolignol-monolignol coupling (followed by further cross-coupling reac-
tions). Most 5–5-linked unitsD are in the form of dibenzodioxocinsD2. bis-Aryl ether
unitsA2 are rare in most lignins, but relatively prevalent in tobacco. UnitsA3 are seen
in isolated lignins but may result from the isolation process. UnitsF, β-1 structures,
may not occur in lignins as drawn but as spirodienones, for example (129). Benzo-
dioxanesJ are the main units resulting from the incorporation of 5-hydroxyconiferyl
alcoholM15H monomers into lignins, particularly in COMT-deficient angiosperms.
Units K are prevalent in CAD-deficient angiosperms and arise from endwise cou-
pling of hydroxycinnamyl aldehydesM2 into lignins. UnitL is a single example of a
ferulate-monolignol cross-coupling product seen in grass lignins. (End Groups) End
groups arise from coupling reactions that are not at the sidechainβ-position. Hy-
droxycinnamyl end groupsX1 arise from dimerization reactions and represent only a
small percentage of the units (2). End groupsX2 to X6 derive from the corresponding
monomersM2–M6; X6b is possibly an isolation artifact from oxidation ofX6 units.
GlycerolsX7 may be from monomersM7 or may be produced during ball milling
from β-ether unitsA. (γ -Acylated Units) Any of the unitsA–L bearing aγ -OH may
also bear an acyl group, partial structuresY1–Y3. They arise almost certainly from
the corresponding monolignolsM9–M11. (Miscellaneous) Finally, some other groups
resulting from incorporation reactions are not accommodated by the other structures.
Partial structuresZ1 arise from incorporation of monomerM8; general aldehydes can
arise from hydroxycinnamyl aldehyde monomersM2; general esters result from the
incorporation of ferulates and dehydrodiferulates.
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