
Figure 2: Experimental Overview

l Cellular Growth & Metabolic Labeling
u Identical E. coli K12 MG1655 cultures were grown in 14N- and 15N-enriched M9 medium with 

ammonium chloride as the sole nitrogen source, as described previously6 . 
l Protein Isolation & Sample Preparation

u Two types of cold osmotic shock-based periplasmic enrichments were isolated from both 
14N-enriched (“light”) and 15N-enriched (“heavy”) E. coli cultures:
v Periplasmic isolation with H2O as the hypotonic shock buffer1; and,
v Periplasmic isolation with gadolinium chloride (GdCl3) as the hypotonic shock buffer2.  

u The soluble portion of E. coli cell lysate was isolated from a “light” culture.
u The protein isolates described above were quantified by the MicroBCA Assay (Pierce) and 

mixed at equal protein concentrations as illustrated in Figure 2.

l Two-dimensional nanoHPLC & Tandem Mass Spectrometry
u Proteolytic peptides were separated using the multiple dimensional protein identification 

technology (MudPIT)7 coupled to a linear ion trap mass spectrometer (ThermoFinnigan 
LTQ).  
v The “3-phase” MudPIT separation was performed as described previously7, over a course of 22 

hours.  
v The LTQ mass spectrometer was operated in data dependent mode with dynamic exclusion 

enabled.

l Proteome Informatics
u The SEQUEST8 algorithm matched tandem mass spectra of peptide ions to the predicted 

proteome of E. coli K12 without enzyme specificity.  
u Perl scripting was used to:

v identify 166 known periplasmic proteins from the HAMAP SwissProt proteome, 
v prepare two separate sequences for each periplasmic protein, corresponding to presence or 

cleavage of  an amino-terminal sequence (i.e. signal peptides, and
v concatenate the resulting 332 proteins, along with common contaminant proteins (e. g. 

keratins), to the predicted HAMAP proteome for a total of 4,708 proteins.     
u DTASelect9 filtered and organized peptide identifications.  Peptide and protein abundance 

ratios were calculated by ProRata10.  

EXPERIMENTAL
l Isolation of selected cellular fractions is a prerequisite to 

detailed proteomic characterization of microbial cells.
l Often, selected protein isolations are difficult to characterize

by existing qualitative proteomics techniques due to the 
presence of contaminant proteins released as an artifact of 
enrichment.  

l Here, we describe a quantitative methodology that employs 
differential isotopic labeling of periplasm-enriched versus 
whole cell lysates from E. coli K12.  

l The measurement of isotopic ratios for proteins in 
isotopologous mixtures of disparate cellular fractions 
assists in distinguishing bona fide periplasmic proteins from 
“contaminant” cytoplasmic proteins.

l This approach highlighted the identification and 
quantification of:
u 60 periplasmic proteins isolated by the H2O cold osmotic shock 

isolation1, and  
u 61 periplasmic proteins isolated by the GdCl3 cold osmotic shock 

isolation2; however, 
u A few abundant non-periplasmic proteins were also quantified in 

both  periplasmic isolations.

l Periplasmic proteins play important roles in electron transport,
binding of nutrients, cell wall biosynthesis, and modification of 
molecules that will eventually enter the cytoplasm3 (see Figure 1 
below). 

l Cold osmotic shock-based periplasmic enrichment1 often results 
in a residual amount of cellular lysis4-5, complicating the biological 
interpretation of results. 

l The measurement of the relative abundance of a protein in a 
cold-osmotic shock periplasmic enrichment versus a whole cell 
lysate in differentially-labeled protein mixtures provides a 
measurement that may be used to distinguish bona fide
periplasmic proteins.

l This measurement is expressed as the periplasmic-to-whole cell 
lysate ratio (PP:WCL).
u Bona fide periplasmic proteins should have a high PP:WCL 

ratio in the differentially-labeled protein mixtures, while 
u cytoplasmic proteins originating from cellular lysis during the 

cold-osmotic shock should have a low PP:WCL ratio.
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OVERVIEW

INTRODUCTION

l Differentially-labeled mixtures of periplasmic 
isolates yielded similar distributions of 15N:14N 
isotopic ratios and protein quantifications for 
both of the periplasmic isolation methods 
tested.
u GdCl3 isolation – 81 periplasmic proteins 

quantified (Figure 5A). 
u H2O isolation – 85 periplasmic proteins quantified 

(Figure 5B).
u Periplasmic proteins represented the majority of 

high PP:WCL ratios for both methods. 

l Differentially-labeled mixtures of periplasmic 
isolates and cell lysates quantified: 
u 60 periplasmic proteins from the H2O isolation 

(Figure 3).
u 61 periplasmic proteins from the GdCl3 isolation 

(Figure 4).
u Both methods resulted in reproducible isolation 

of approximately 60 periplasmic proteins in 2 or 
more of 4 LC-MS/MS experiments, suggesting 
that they are comparable methods of enrichment.

l Some proteins may be artifacts of either the 
periplasmic or cell lysate isolation, such as:
u Non-periplasmic proteins with high PP:WCL 

ratios
v flagellin (Figures 3-4/Table 1) 

u Periplasmic proteins with low PP:WCL ratios
u spheroplast protein Y,

v expressed only in spheroplasts
v rarely identified 15N isotoplog

u periplasmic trehalase, 
v expressed only during osmotic downshock; 

perhaps the osmotic shock procedure.  

l Thus, our strategy was able to identify a large 
portion of the periplasmic proteome with 
increased confidence based on measured 
abundances of enriched periplasmic proteins 
relative to the cell lysate.

CONCLUSIONS

l Differentially-Labeled Mixtures of Periplasmic Isolations and Cellular Lysates
u 15N H2O Periplasmic Isolation mixed with a 14N Cellular Lysate (Figure 3) 

u 15N GdCl3 Periplasmic Isolation mixed with a 14N Cellular Lysate (Figure 4)

Figure 5AFigure 5A shows average 15N:14N isotopic ratios calculated for 573 proteins that represent the union of 2 LC-MS/MS experiments of the same 
GdCl3 periplasmic isolation.  80% of the ratios ranged from log2 2.0 to -2.0. 15N:14N isotopic ratios were calculated for 81 periplasmic proteins in
this mixture, ranging from log2 3.5 to -7, representative of 15N:14N abundance ratios of 11 to 0.01, respectively. 

Figure 5BFigure 5B shows the average 15N:14N isotopic ratios calculated for 621 proteins that represent the union of 2 LC-MS/MS experiments of the 
same H2O periplasmic isolation.  87% of the ratios ranged from log2 2.0 to -2.0. 15N:14N isotopic ratios were estimated for 85 periplasmic 
proteins in this mixture, ranging from log2 6.5 to -3.5, representative of 15N:14N abundance ratios of 91 to 0.09, respectively.  

Figure 5: Distributions of Protein Quantifications from Differentially-Labeled Periplasmic Enrichment Mixtures
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Table 1: 20 Largest PP:WCL Ratios of Proteins in the Differentially-Labeled Mixtures of Periplasmic Isolations and Cellular Lysate

l 381 total protein quantifications were similar between the H2O and GdCl3 isolations. The 20  proteins quantified with the largest 
calculated PP:WCL ratios in BOTH mixtures of:
l “heavy” H2O periplasmic isolation and “light” cell lysate (shown in Figure 3) and
l “heavy” GdCl3 periplasmic isolation “light” cell lysate (shown in Figure 4) are shown above in Table 1.  
l The average log2 values for PP:WCL ratio and confidence interval width are shown for each set of measurements.    

l If the processed N-terminal peptide of a periplasmic protein was identified, it is denoted in the “Signal Peptide Cleavage Identified”
column, followed by the number of MS/MS identification spectra for each processed N-terminus. 

l Both the GdCl3 and H2O periplasmic isolation protocols enrich periplasmic proteins along with a few non-periplasmic contaminants 
and membrane proteins.  

l Differentially-Labeled Mixtures of Periplasmic Isolations
u 14N GdCl3 Periplasmic Isolation mixed with a 15N GdCl3 Periplasmic Isolation (Figure 5A)

u 14N H2O Periplasmic Isolation mixed with a 15N H2O Periplasmic Isolation (Figure 5B)

A total of 421 protein quantifications were calculated by ProRata in at least 2 of 4 total LC-MS/MS experiments.

Most of the largest average log2 PP:WCL ratios (-3 to 5.2) were annotated as periplasmic proteins. Of 18 other 
proteins with log2 ratios >0, 10 were annotated as non-periplasmic; 4 as membrane; and, 4 as hypothetical.  

Most non-periplasmic proteins were quantified with PP:WCL ratios < -3.0.  However, flagellin, an extracellular
protein, was calculated with an average PP:WCL ratio of 3.4.  It is plausible that this extracellular protein co-
enriches with the periplasmic proteins during isolation.  Abundant cellular proteins, such as ribosomal protein L20 
and ribosome binding factor A, were also quantified, with PP:WCL ratios of -3.5 and -1.8, respectively.    

Figure 3: Distribution of Protein Quantifications from H2O 15N-periplasmic 
isolates and 14N-cell lysate

A total of 473 protein quantifications were calculated by ProRata in at least 2 of 4 total LC-MS/MS experiments.  

Again, most of the largest average log2 PP:WCL ratios, ranging from -3.0 to 3.1, corresponded to periplasmic 
proteins. Of the other 22 proteins with log2 ratios >0, 11 were annotated as non-periplasmic; 5 as membrane; and, 1 
as hypothetical. 

The non-periplasmic protein flagellin was again observed as co-enriching with the periplasmic proteins, with a 
PP:WCL ratio of 3.4.

Figure 4: Distribution of Protein Quantifications from GdCl3
15N-Periplasmic Isolates and 15N-Cell Lysate
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Figure 1: E. coli Cell Membrane.
The four structures of the gram-negative cell membrane are shown above: the 
outer membrane (OM), the periplasm (PP), the inner membrane (IM), and the 
cytoplasm (CP).  1Percentages of the total 4,337 proteins in the predicted E. 
coli high-quality automated and manually annotated proteome (HAMAP) based 
on SwissProt keyword annotation.  2Membrane is a combination of OM- and 
IM-annotated proteins.  3Non-periplasmic includes proteins annotated as 
cytoplasmic, hypothetical, and unknown.
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