

Some Future Capabilities Under Development

Ellen Meeks

CHEMKIN in Combustion Workshop August 3, 2008

LEADING THE WAY TO CLEAN COMBUSTION DESIGN

Several new capabilities are in progress, particularly for automotive applications

• Fuel analysis tools

- Octane Number Calculator
- Cetane Number Calculator

Mechanism Reduction facility

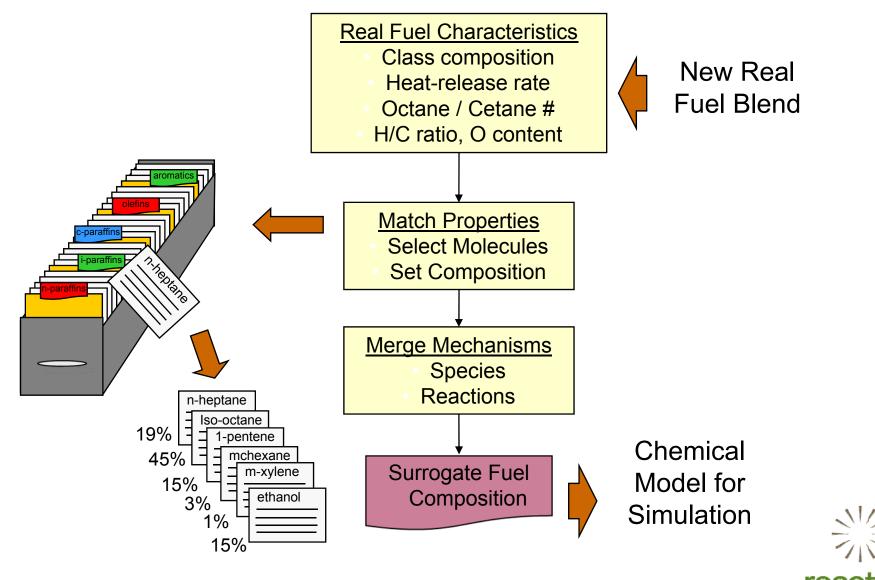
- Skeletal vs. severe-reduction methods
- Reduction to target tolerances

• More performance improvements

- Sparse-matrix solver for large mechanisms

Several new capabilities are in progress, particularly for automotive applications

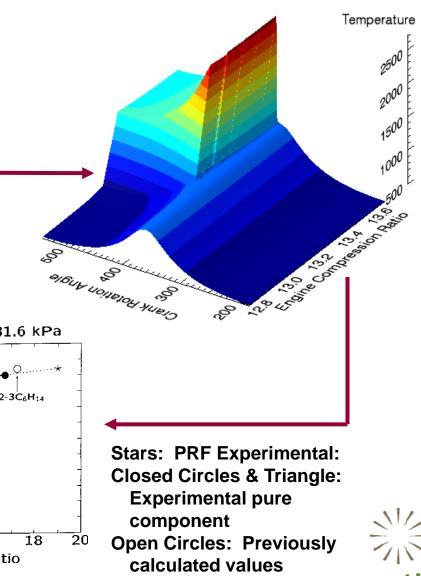
• Fuel analysis tools


- Octane Number Calculator
- Cetane Number Calculator

Mechanism Reduction facility

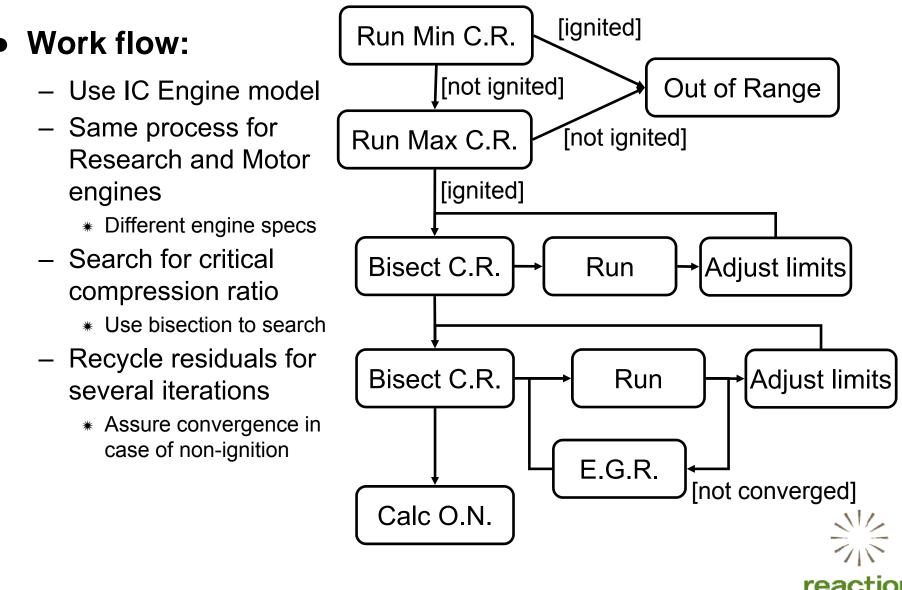
- Skeletal vs. severe-reduction methods
- Reduction to target tolerances
- More performance improvements
 - Sparse-matrix solver for large mechanisms

With a database of mechanisms, we are working toward defining surrogate blends



DESIGN

The Octane Number Calculator allows prediction of RON / MON for arbitrary fuel


- Special reactor model
 - RON / MON test conditions
- Determine critical compression ratio (CCR)
 - Lowest CR for ignition
- Correlate CCR with RON or MON

DESIG

An iterative method is used to calculate critical compression ratio

DESIG

Preliminary results show reasonable predictive capability for RON and MON

• Comparison with measured RON vs. CCR for a range of fuels

We are also developing a Cetane Number Calculator for diesel surrogates

- Two standards for evaluation were considered:
 - ASTM D 613
 - * Cooperative Fuel Research (CFR) Engine 10 BTDC
 - Difficult to reproduce
 - ASTM 6890 Ignition Quality Test
 - * Heated, constant volume combustion chamber
 - * Correlation between auto-ignition time and cetane number
 - * Measure time between injection and pressure recovery point
 - Pressure and Temperature quenching due to fuel evaporation

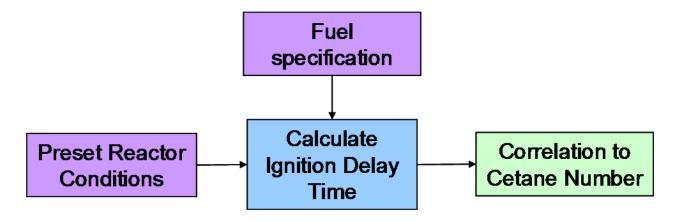
A calculation based on the ASTMD-6890 method has been selected

ASTM D 613

- Need to simulate engine
- Need accurate mechanisms for PRF*
 - Correlation between CR and CN not available (similar to that for ON)
- Spray and mixing effects
- Simulations can be very time consuming

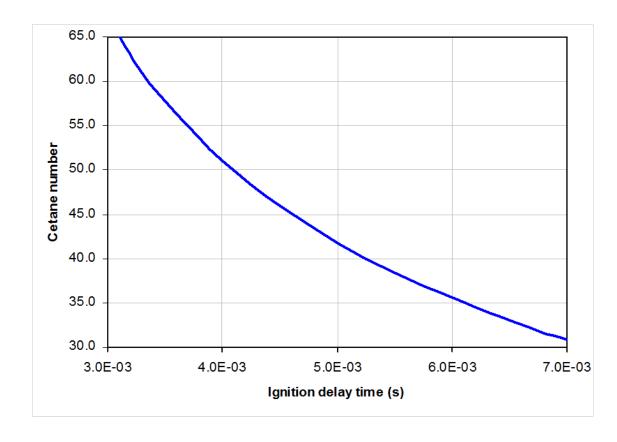
ASTM D 6890 (IQT)

- ✓ Simple setup
- No need to calibrate based on diesel PRF*
 - * Correlation between ignition time and CN available
- Spray and mixing effects
- ✓ Fast simulations


- * PRF for diesel: n-hexadecane and heptamethylnonane
- Spray and mixing effects in ASTM D 6890 method can be compensated by reducing the initial temperature of the bomb
 - No immediate need for a spray model

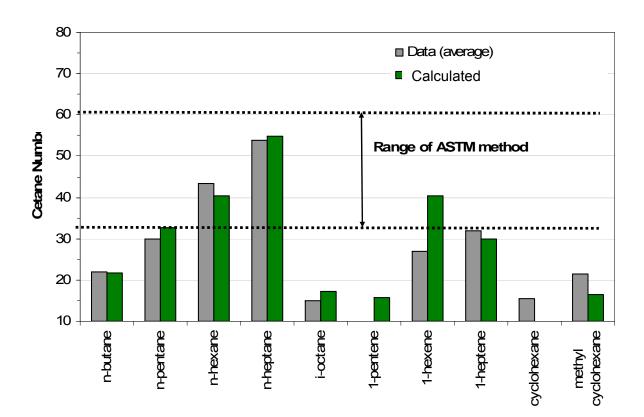
Ignition delay is calculated using a CHEMKIN Closed Homogeneous Batch Reactor

• Simulate Ignition Quality Tester (IQT) method


- Model with closed homogeneous reactor
- Reactor conditions estimated
 - * Sensitive to approximations of quenching

A correlation is used to get Cetane Number from the ignition-delay time

- Outside limits, the ASTM correlation does not apply
- Second correlation developed outside of given range



DESIGN

Preliminary results show good predictive capability for a range of fuels

Comparison to experiment

- Same multi-component mechanism used for all cases
- Data averaged from Murphy et al. (2004), NREL Compendium of Experimental Cetane Number Data

ON and CN Calculators will provide means of testing surrogate blend properties

- Use to match real-fuel properties
- Based on simulation, can be used for arbitrary fuel mixture
- Additional test for detailed mechanisms of surrogate-fuel mixtures and components

Several new capabilities are in progress, particularly for automotive applications

- Fuel analysis tools
 - Octane Number Calculator
 - Cetane Number Calculator

Mechanism Reduction facility

- Skeletal vs. severe-reduction methods
- Reduction to target tolerances
- More performance improvements
 - Sparse-matrix solver for large mechanisms

Mechanism reduction is very important for practical simulation of realistic fuels

Skeletal mechanism

 Subset of species and elementary reactions from the original master mechanism

Severely reduced mechanism

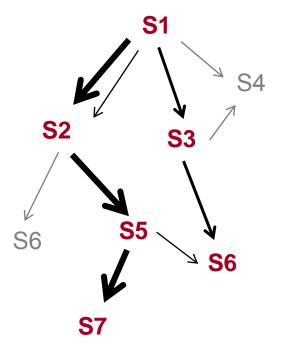
- Lumped species and/or reactions
- Assumptions:
 - * Partial equilibrium
 - * Quasi-steady-state
 - * etc.

We have tested several methods for automated reduction

• Two skeletal methods have been implemented

- Directed Relation Graph (DRG) *
 - * Based on species rates of production
- Principal Component Analysis (PCA) **
 - * Based on reaction-rate sensitivity analysis

* Lu and Law, 2005; 2006 ** Vajda, Valko,Turanyi; 1985


Mechanisms can be reduced to skeletal form for a particular range of conditions

- Automation of reduction process
 - Iterate method's error controls to determine smallest possible mechanism to achieve desired targets
 - * Allow "derived" targets
 - Example targets:
 - * Crank angle for 10% heat release, within 1 degree
 - * Emissions of NO_x within 50 ppm
 - Ranges of conditions set in CHEMKIN parameter study
 - * Choice of reactor model
 - * Parameter study varying equivalence ratio, pressure, temperature
 - * Run first with full "master" mechanism

The DRG method reduces paths based on species production and destruction rates

- Analyze a "baseline" solution that uses the fully detailed mechanism
 - Start with the Fuel & Oxidizer species
 - Determine which production path is above tolerance setting for each species
 - Repeat as "tree" of species is descended
 - Remove reactions that are below tolerance
 - Remove species that no longer contribute
- Our implementation considers all points in the solution(s)
 - Allows coverage of full transient analysis, as well as range of operating conditions

Test case for 5-component gasoline surrogate mechanism

• Wide range of operating conditions

- Equivalence ratio 0.1 to 2.0
- Temperature 600K to 1800K
- Pressure 0.5atm to 60atm

• 384 cases used in reduction

- For each case, 100 time points considered
 - * Total of 38,400 sampling points operated on during reduction

"Master" mechanism is gasoline surrogate blend

Fuel Component	(mole%)				
n-heptane	8				
iso-octane	60				
Toluene	20				
Methyl cyclohexane	8				
1-pentene	4				

RON=93.7 MON=90.6

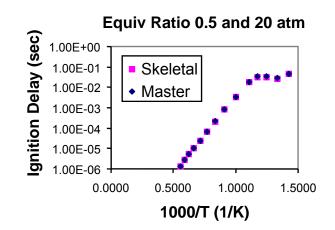
Gasoline Surrogate Base Kinetic Mechanism

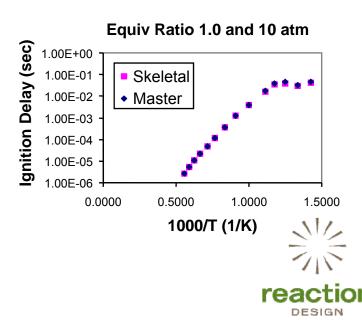
- 1380 species, 6138 reactions
 - Based on LLNL mechanism*
 - Updated mechanism and added missing reaction pathways
 - Includes low- and high-temperature pathways
 - Includes NOx pathways from GRI mechanism**
 - Includes PAH pathways from Appel et al.***

*C. V. Naik, W. J. Pitz, M. Sjoberg, J. E. Dec, J. Orme, H. J. Curran, J. M. Simmie, and C. K. Westbrook, SAE Fall Powertrain and Fluid Systems Conference & Exhibition, SAE2005-01-3742, 2005.

**G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gandiner, Jr., V. V. Lissianski, and Z. Qin, <u>http://www.me.berkeley.edu/gri_mech/</u>

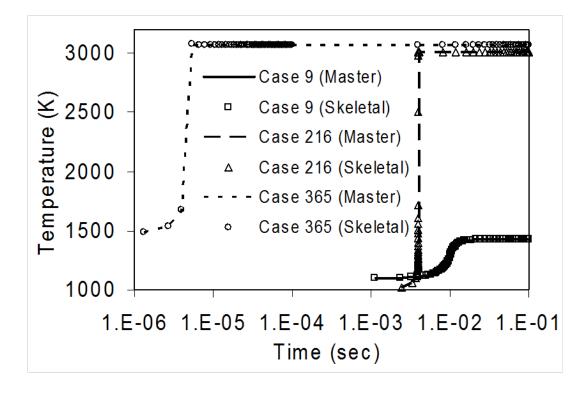
***J. Appel, H. Bockhorn, and M. Frenklach, Combustion and Flame, vol. 121, pp. 122-136, 2000


Application of DRG to ignition-delay simulations shows good accuracy


• 384 Cases used in reduction

- Equivalence ratio 0.1 to 2.0
- Temperature 600K to 1800K
- Pressure 0.5atm to 60atm

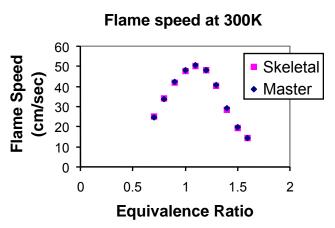
Results show good results for ~60% reduction

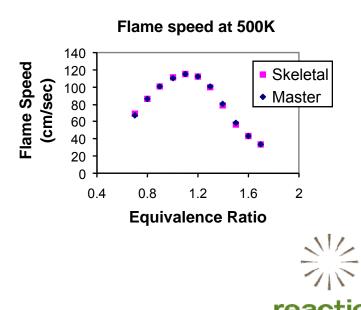

- Start: 1328 species, 5835 reactions
- Finish: 560 species, 2818 reactions
- Relative mean-square-root error is 3.9%
 - Largest error is 24%
 - 19 cases above 10% error

Detailed temperature profiles agree well for single-zone engine model

- Skeletal mechanism predicts same temperature profile as master mechanism
- Wide range of conditions
 - P=0.5-60 atm, phi=0.1-2, T=1000-1500 K

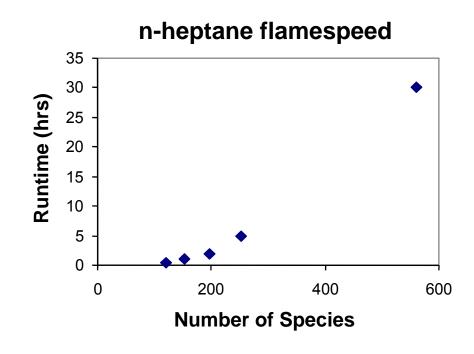
More reduction can be achieved for hightemperature conditions (flames)

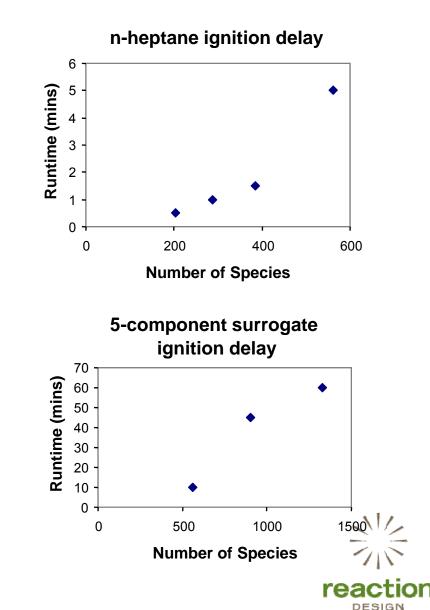

- 55 Cases used in n-heptane mechanism reduction
 - Equivalence ratio 0.7 to 1.7
 - Temperature 300K to 700K
 - Pressure 1atm


• Good results for ~80% reduction

- Start: 561 species, 2539 reactions
- Finish: 121 species, 538 reactions

• Relative mean-square-root error is 2.2%


- Largest error is 9.6%
- 3 cases over 5% error



Timing comparisons show how mechanism size relates to CPU time

 Reduction of species results in significant reduction of CPU time

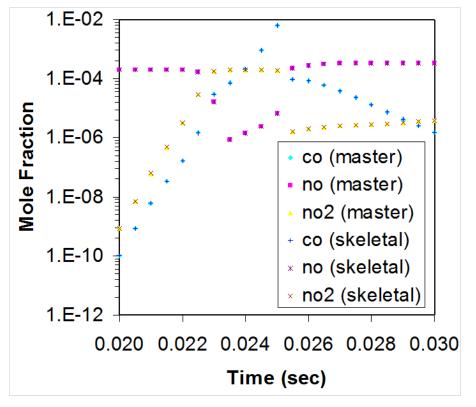
Operating conditions considered

• Gasoline HCCI Target conditions (8 multi-zone runs):

- Equivalence ratio=0.1, 0.2, 0.5, 1
- Initial temperature adjusted so that ignition occurs at TDC and at TDC-10CAD
- Mass distribution of 10 zones sames as that of Aceves et al., (SAE 2000-01-0327)

• Engine characteristics:

- Starting pressure = 1 bar
- Engine speed = 1200 rpm
- Displacement volume = 1600 cm³
- Engine compression ratio = 15.0
- Starting crank angle = 180
- EGR = 20%
- Engine connecting rod to crank radius ratio = 3.7


Zone #	1	2	3	4	5	6	7	8	9	10
Region		С	revic	e		Bou ai La	г <mark>у</mark>	Core		
Mass %	2	1	1	1	2	5	10	18	25	35

Results show that, for emissions, DRG works well only up to ~44% reduction

• Results are good for 44% skeletal reduction with DRG

- 1380 species $\rightarrow 774$
- 6138 reactions \rightarrow 3572
- 170 hours run-time \rightarrow 52
- All results within 10% relative tolerance and 0.01 ppm absolute tolerance
 - * 658 species and 3182 reactions with 20% relative tolerance and 1 ppm absolute tolerance
- Reduction size limited due to need for keeping more pathways to get NO_x and CO right

Phi=0.5 and ignition at TDC

There are limits to how small you can get with a skeletal approach

- Maximum reduction without compromising accuracy: 50-80%
 - n-heptane ignition delay: 561 -> 256 species
 - n-heptane flamespeed: 561 -> 121 species
 - 5-component surrogate ignition delay: 1328 -> 560 species
 - 5-component surrogate emissions: 1380 -> 774
- Further reduction results in significant error
- Skeletal methods are usually a "first step"

Several new capabilities are in progress, particularly for automotive applications

- Fuel analysis tools
 - Octane Number Calculator
 - Cetane Number Calculator
- Mechanism Reduction facility
 - Skeletal vs. severe-reduction methods
 - Reduction to target tolerances
- More performance improvements
 - Sparse-matrix solver for large mechanisms

Complementary efforts have been placed on further improvements to solver speed

- Implementation of new sparse-matrix technology
 - Important for large mechanisms
 - * Species interaction matrix is sparse
 - Important for complex problems
 - * Large reactor clusters in reactor networks
 - * Multi-zone Engine simulations
- Advanced methods of coupling kinetics to transport (CFD) simulations

Initial results for multi-zone engine simulations are very promising

- Speed-up is relative to CHEMKIN-PRO
- Hours ⇒ a few minutes

Days ⇒ ½ hour

	-	-	-			120	00 -	
Problem Description	# Species	# Zones	CPU tim	ne (h:m:s)	Speed -up	100		•
			Before	After		9).O -	
Closed system – MFC gasoline	1440	1	0:11:36	0:02:03	5.7	<u>н</u> 60	0.0 -	
Closed system – n-hexadecane	2116	1	0:20:15	0:01:00	20.3	Spe	0.0	•
Multi-zone Engine – GRI-mech	53	10	0:00:36	0:00:16	2.3		0.0 - 0.0 -	
Multi-zone Engine – n-heptane	561	10	1:26:01	0:03:03	28.2		(0 5000 10000 15000 Number of Species * Number of Zones
Multi-zone Engine – 5-component	1477	10	56:14:17	0:30:28	110.8			

Benchmarks from a 64-bit Linux Blade server (Dual Core Xeon Processor, 4MB Cache, 2.0GHz, 1333MHZ FSB forPowerEdge 1955, 16GB RAM)

Summary: Stay tuned – more on the way

- More speed
- Usability of larger mechanisms
- Automated mechanism reduction
- Practical tools for fuels analysis
- More advanced connectivity to multidimensional simulation

