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Several new capabilities are in progress, 
particularly for automotive applications
● Fuel analysis tools

– Octane Number Calculator
– Cetane Number Calculator

● Mechanism Reduction facility
– Skeletal vs. severe-reduction methods
– Reduction to target tolerances

● More performance improvements
– Sparse-matrix solver for large mechanisms
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With a database of mechanisms, we are 
working toward defining surrogate blends
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The Octane Number Calculator allows 
prediction of RON / MON for arbitrary fuel
● Special reactor model

– RON / MON test conditions

● Determine critical 
compression ratio (CCR)
– Lowest CR for ignition

● Correlate CCR with RON or 
MON

Stars:  PRF Experimental: 
Closed Circles & Triangle: 

Experimental pure 
component

Open Circles:  Previously 
calculated values



6

An iterative method is used to calculate 
critical compression ratio
● Work flow:

– Use IC Engine model
– Same process for 

Research and Motor 
engines

Different engine specs

– Search for critical 
compression ratio

Use bisection to search

– Recycle residuals for 
several iterations

Assure convergence in 
case of non-ignition

Run Min C.R.

Run Max C.R.

Bisect C.R. Run Adjust limits

Bisect C.R. Run Adjust limits

E.G.R.

Out of Range

[ignited]

[ignited]

[not ignited]

[not ignited]

[not converged]
Calc O.N.
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Preliminary results show reasonable 
predictive capability for RON and MON
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We are also developing a Cetane Number 
Calculator for diesel surrogates

● Two standards for evaluation were 
considered:
– ASTM D 613

Cooperative Fuel Research (CFR) Engine 10 BTDC
Difficult to reproduce

– ASTM 6890 Ignition Quality Test
Heated, constant volume combustion chamber
Correlation between auto-ignition time and cetane number
Measure time between injection and pressure recovery point

Pressure and Temperature quenching due to fuel evaporation
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A calculation based on the ASTMD-6890 
method has been selected

ASTM D 613
– Need to simulate engine
– Need accurate mechanisms 

for PRF*
Correlation between CR and 
CN not available (similar to 
that for ON)

– Spray and mixing effects
– Simulations can be very time 

consuming

ASTM D 6890 (IQT)
Simple setup
No need to calibrate based on 
diesel PRF*

Correlation between ignition 
time and CN available

– Spray and mixing effects
Fast simulations

* PRF for diesel: n-hexadecane and heptamethylnonane

● Spray and mixing effects in ASTM D 6890 method can be 
compensated by reducing the initial temperature of the bomb
– No immediate need for a spray model 
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Ignition delay is calculated using a CHEMKIN 
Closed Homogeneous Batch Reactor

● Simulate Ignition Quality Tester (IQT) method
– Model with closed homogeneous reactor
– Reactor conditions estimated

Sensitive to approximations of quenching



11

A correlation is used to get Cetane Number 
from the ignition-delay time
● Outside limits, the ASTM correlation does not apply
● Second correlation developed outside of given range
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Preliminary results show good predictive 
capability for a range of fuels
● Comparison to experiment

– Same multi-component mechanism used for all cases
– Data averaged from Murphy et al. (2004), NREL Compendium of 

Experimental Cetane Number Data
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ON and CN Calculators will provide means of 
testing surrogate blend properties 

● Use to match real-fuel properties
● Based on simulation, can be used for arbitrary 

fuel mixture
● Additional test for detailed mechanisms of 

surrogate-fuel mixtures and components
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Mechanism reduction is very important for 
practical simulation of realistic fuels

● Skeletal mechanism
– Subset of species and elementary reactions from the 

original master mechanism
● Severely reduced mechanism

– Lumped species and/or reactions
– Assumptions:

Partial equilibrium
Quasi-steady-state
etc.
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We have tested several methods for 
automated reduction

● Two skeletal methods have been implemented
– Directed Relation Graph (DRG) *

Based on species rates of production
– Principal Component Analysis (PCA) **

Based on reaction-rate sensitivity analysis

* Lu and Law, 2005; 2006
** Vajda, Valko,Turanyi; 1985
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Mechanisms can be reduced to skeletal form 
for a particular range of conditions
● Automation of reduction process

– Iterate method’s error controls to determine smallest 
possible mechanism to achieve desired targets

Allow “derived” targets
– Example targets:

Crank angle for 10% heat release, within 1 degree
Emissions of NOx within 50 ppm

– Ranges of conditions set in CHEMKIN parameter study
Choice of reactor model
Parameter study varying equivalence ratio, pressure, temperature
Run first with full “master” mechanism
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The DRG method reduces paths based on 
species production and destruction rates
● Analyze a “baseline” solution  that 

uses the fully detailed mechanism
– Start with the Fuel & Oxidizer species
– Determine which production path is above 

tolerance setting for each species 
– Repeat as “tree” of species is descended
– Remove reactions that are below tolerance
– Remove species that no longer contribute

● Our implementation considers all 
points in the solution(s)
– Allows coverage of full transient analysis, 

as well as range of operating conditions

S1

S2 S3

S4

S5S6
S6

S7
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Test case for 5-component gasoline 
surrogate mechanism
● Wide range of operating conditions

– Equivalence ratio 0.1 to 2.0
– Temperature 600K to 1800K
– Pressure 0.5atm to 60atm

● 384 cases used in reduction
– For each case, 100 time points considered

Total of 38,400 sampling points operated on during reduction

● “Master” mechanism is gasoline surrogate blend 
Fuel Component (mole%)
n-heptane 8
iso-octane 60
Toluene 20
Methyl cyclohexane 8
1-pentene 4

RON=93.7
MON=90.6
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Gasoline Surrogate Base Kinetic Mechanism

● 1380 species, 6138 reactions
– Based on LLNL mechanism*
– Updated mechanism and added missing reaction 

pathways
– Includes low- and high-temperature pathways
– Includes NOx pathways from GRI mechanism**
– Includes PAH pathways from Appel et al.*** 

*C. V. Naik, W. J. Pitz, M. Sjoberg, J. E. Dec, J. Orme, H. J. Curran, J. M. Simmie, and C. K. Westbrook, 
SAE Fall Powertrain and Fluid Systems Conference & Exhibition, SAE2005-01-3742, 2005.

**G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. 
K. Hanson, S. Song, W. C. Gandiner, Jr., V. V. Lissianski, and Z. Qin, 
http://www.me.berkeley.edu/gri_mech/

***J. Appel, H. Bockhorn, and M. Frenklach, Combustion and Flame, vol. 121, pp. 122-136, 2000

http://www.me.berkeley.edu/gri_mech/
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Application of DRG to ignition-delay 
simulations shows good accuracy
● 384 Cases used in reduction

– Equivalence ratio 0.1 to 2.0
– Temperature 600K to 1800K
– Pressure 0.5atm to 60atm

● Results show good results for 
~60% reduction
– Start: 1328 species, 5835 reactions
– Finish: 560 species, 2818 reactions

● Relative mean-square-root 
error is 3.9%
– Largest error is 24%
– 19 cases above 10% error
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Detailed temperature profiles agree well for 
single-zone engine model
● Skeletal mechanism predicts same temperature profile 

as master mechanism
● Wide range of conditions

– P=0.5-60 atm, phi=0.1-2, T=1000-1500 K
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More reduction can be achieved for high-
temperature conditions (flames)
● 55 Cases used in n-heptane 

mechanism reduction
– Equivalence ratio 0.7 to 1.7
– Temperature 300K to 700K
– Pressure 1atm

● Good results for ~80% reduction
– Start:  561 species, 2539 reactions
– Finish:  121 species, 538 reactions

● Relative mean-square-root error 
is 2.2%
– Largest error is 9.6%
– 3 cases over 5% error

Flame speed at 300K
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Timing comparisons show how mechanism 
size relates to CPU time

●Reduction of species 
results in significant 
reduction of CPU time

n-heptane flamespeed
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Operating conditions considered

● Gasoline HCCI Target conditions (8 multi-zone runs):
– Equivalence ratio=0.1, 0.2, 0.5, 1
– Initial temperature adjusted so that ignition occurs at TDC and at 

TDC-10CAD
– Mass distribution of 10 zones sames as that of Aceves et al., 

(SAE 2000-01-0327)

● Engine characteristics:
– Starting pressure = 1 bar
– Engine speed = 1200 rpm
– Displacement volume = 1600 cm3

– Engine compression ratio = 15.0
– Starting crank angle = 180
– EGR = 20%
– Engine connecting rod to crank radius ratio = 3.7

Zone # 1 2 3 4 5 6 7 8 9 10

Region Crevice
Bound

ary

Layer
Core

Mass % 2 1 1 1 2 5 10 18 25 35
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Results show that, for emissions, DRG 
works well only up to ~44% reduction
●Results are good for 44% 

skeletal reduction with DRG
– 1380 species → 774
– 6138 reactions → 3572
– 170 hours run-time → 52
– All results within 10% relative 

tolerance and 0.01 ppm 
absolute tolerance

658 species and 3182 reactions 
with 20% relative tolerance and 
1 ppm absolute tolerance

●Reduction size limited due 
to need for keeping more 
pathways to get NOx and 
CO right

Phi=0.5 and ignition at TDC

DRG Results
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There are limits to how small you can get 
with a skeletal approach

● Maximum reduction without compromising 
accuracy: 50-80%
– n-heptane ignition delay: 561 -> 256 species
– n-heptane flamespeed: 561 -> 121 species
– 5-component surrogate ignition delay: 1328 -> 560 

species
– 5-component surrogate emissions: 1380 -> 774

● Further reduction results in significant error
● Skeletal methods are usually a “first step”
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Several new capabilities are in progress, 
particularly for automotive applications
● Fuel analysis tools

– Octane Number Calculator
– Cetane Number Calculator

● Mechanism Reduction facility
– Skeletal vs. severe-reduction methods
– Reduction to target tolerances

● More performance improvements
– Sparse-matrix solver for large mechanisms



29

Complementary efforts have been placed on 
further improvements to solver speed

● Implementation of new sparse-matrix 
technology
– Important for large mechanisms

Species interaction matrix is sparse
– Important for complex problems

Large reactor clusters in reactor networks
Multi-zone Engine simulations

● Advanced methods of coupling kinetics to 
transport (CFD) simulations
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Initial results for multi-zone engine 
simulations are very promising

Benchmarks from a 64-bit Linux Blade server (Dual Core Xeon Processor, 
4MB Cache, 2.0GHz, 1333MHZ FSB forPowerEdge 1955, 16GB RAM)

● Speed-up is relative to CHEMKIN-PRO
● Hours a few minutes
● Days ½ hour

Problem 
Description

# 
Species

# 
Zones

CPU time (h:m:s) Speed
-up

Before After

Closed system 

– MFC gasoline

1440 1 0:11:36 0:02:03 5.7

Closed system 

– n-hexadecane

2116 1 0:20:15 0:01:00 20.3

Multi-zone Engine 

– GRI-mech

53 10 0:00:36 0:00:16 2.3

Multi-zone Engine

– n-heptane

561 10 1:26:01 0:03:03 28.2

Multi-zone Engine

– 5-component

1477 10 56:14:17 0:30:28 110.8
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Summary:  Stay tuned – more on the way

● More speed
● Usability of larger mechanisms
● Automated mechanism reduction
● Practical tools for fuels analysis
● More advanced connectivity to multi-

dimensional simulation
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