
POPTEX: Interactive Ocean Model Visualization
Using Texture Mapping Hardware

Allen McPherson
Advanced Computing Laboratory

Mathew Maltrud
Theoretical Division

Los Alamos National Laboratory

Abstract

Global circulation models are used to gain an understanding of the
processes that affect the Earth’s climate and may ultimately be used
to assess the impact of humanity’s activities on it. The POP ocean
model developed at Los Alamos is an example of such a global cir-
culation model that is being used to investigate the role of the ocean
in the climate system. Data output from POP has traditionally been
visualized using video technology which precludes rapid modifi-
cation of visualization parameters and techniques. This paper de-
scribes a visualization system that leverages high speed graphics
hardware, specifically texture mapping hardware, to accelerate data
exploration to interactive rates. We describe the design of the sys-
tem, the specific hardware features used, and provide examples of
its use. The system is capable of viewing ocean circulation simu-
lation results at up to 60 frames per second while loading texture
memory at approximately 72 million texels per second.

1 Introduction to POP

The Earth’s climate is determined by a complicated interaction be-
tween the ocean, sea ice, atmosphere, and biosphere. Computer
models that simulate numerically the behavior of this system are
one of the best means we have for projecting future climate and
the impact of humanity’s activities on it. Present-day general circu-
lation models (GCMs) are able to simulate satisfactorily many as-
pects of the current climate, though a new generation of models is
needed that have finer spatial resolution and that more realistically
treat the physical processes that control our climate. To meet these
objectives, we need GCMs that run on massively parallel comput-
ers.

Scientists at Los Alamos have developed one such model: a
global ocean circulation model named the Parallel Ocean Program
(POP) [3]. POP is based on the widely used Bryan-Cox-Semtner
ocean model but was completely rewritten and reformulated for
efficient execution on Connection Machine (CM-5) and Silicon
Graphics (SGI) Origin 2000 supercomputers.

The global ocean simulation described here employs a grid con-
taining 1280 uniformly spaced points in longitude (0:28

� spacing)
and 896 variably spaced points from78�N to 78

�S (0:17� average
spacing), yielding a spatial resolution ranging from 31 km at the
Equator to 7 km at78� latitude. In the third dimension, the model
uses 20 non-uniformly spaced depth levels and realistic bottom to-
pography (bathymetry). This is one of the highest resolutions used
in any global ocean simulation performed to date. Observed surface
winds from the period 1985–1995 and realistic monthly mean heat
and salt fluxes are used to force the model.

2 Approach to New Visualization

As POP runs it periodically writes data files representing the
progress of the simulation. Although the simulation computes on a

30 minute time-step, these files are written every three days of sim-
ulated time. At each three day time-step, one file is written for each
variable being computed: salinity, temperature, sea-surface height,
flow vector, etc. These dump files represent the results of a simula-
tion.

Historically, we’ve visualized this sequential collection of data
files using video technology. Each file is converted to an image
and normalized to some pre-defined color map appropriate for that
particular variable. The images are then written to the video device,
such as a laser videodisc, one frame at a time.

These video visualizations, while useful for viewing the progress
of the simulation, have a serious drawback—they are static and
can’t be modified without creating a new video. Scientists can’t
experiment with new color mappings. They can’t zoom in on areas
of interest. They can’t easily specify a section to loop over, nor can
they run the video backwards or at variable rates, without scripting
the device. Because large simulations are run infrequently, these
video animations have long lifespans—their shortcomings become
increasingly apparent as time goes on.

Our goal in developing POPTEX was to build a tool for scientists
that provides the benefit of video visualizations (putting the results
of the simulation into motion) while adding capabilities that enable
dynamic, flexible, and interactive exploration of their data. To do
this we used the powerful combination of hardware features avail-
able on the Laboratory’s SGI Origin 2000. Specifically, we sought
to exploit the following hardware features:

� Large Texture Memory. Four Infinite Reality (iR) graphics
pipes [7] are attached to the Origin 2000. Each iR is equipped
with 64MB of dedicated texture memory. The images in tex-
ture memory can be any of a number of formats (RGBA, in-
tensity, etc.). The texture memory can be allocated to a few
large images or a large number of smaller images.

� Fast Texturing Performance. Textures can be duplicated on
up to four RM7 Raster Manager boards. Each RM7 with its
own 64MB of memory contains a full copy of each texture.
The parallelism provided by multiple boards enables a near
linear speed-up in texturing performance. Equipped with four
RM7 boards, the iR can approach textured fill rates of 776M
pixels/sec.

� Texture Lookup Table. A large texture lookup table (TLUT)
provides a level of indirection between between the texture
image and the actual colors used to texture the geometry.
When using the TLUT, texture images are interpreted as in-
dices into a table of color and alpha values. It is these val-
ues that are used to texture the geometry. The TLUT can
be loaded much more quickly than texture memory enabling
rapid manipulation of texture image mappings.

� Large Main Memory. Given our Origin 2000’s 16GB of
main memory, we can easily pre-load multi-variate data for
an entire simulation.



� Fast Texture Loading. Once loaded into main memory, the
iR supports extremely fast (theoretically 320MB/sec) trans-
fers to its texture memory. This fast transfer allows us to
stream time-step images into the texture memory and render
them at interactive rates.

We leveraged these hardware features to build POPTEX—a
highly interactive tool used to explore the results of the POP ocean
simulation.

3 Implementation

A full run of the simulation, representing roughly ten years of
elapsed time, generates 1318 time-step dump files. Each dump file
contains a copy of the simulation grid with floating point values at
each cell location representing variables such as sea-surface height,
temperature, and salinity. This 3-D grid is a Mercator projection of
the globe, with 1280 cells in longitude and 896 cells in latitude, at
each of 20 depths. We preprocess these dump files to extract those
variables to be visualized at each depth layer. The dump files are
converted to a format more suited to our visualization by normal-
izing each variable to 8-bit values that will act as indices into the
256-entry texture lookup table. The result of this pre-processing
step is a collection of files for each time-step, one file for each vari-
able at every depth layer.

POPTEX itself is written in C++ and uses SGI’s version of the
OpenGL graphics API. Because OpenGL requires that texture di-
mensions be a power-of-two, POPTEX splits the1280 � 896 in-
put files into two textures that waste the least amount of texture
memory—one10242 and another256�1024. Once these OpenGL
textures have been created they can be loaded with images of any
size (usingglTexSubImage2DEXT) as long as they do not ex-
ceed the texture’s dimensions. In this case, we load them with por-
tions of the input data file—1024 � 896 into the larger texture and
256 � 896 into the smaller. An SGI-specific OpenGL extension,
GL CLAMP TO BORDER SGIS, is used to ensure that the borders
between the two textures are not visible.

These textures are mapped onto a sphere representing the globe.
We use a Mercator decomposition of the sphere to more closely rep-
resent the simulation grid. The decomposition of the sphere must
match the ratio of the two texture sizes so that texture coordinates
at the texture’s borders coincide with an edge of geometry in the
spherical decomposition. Since1280=256 = 5 we need only make
sure that our decomposition in longitude is divisible by 5. We typ-
ically use a decomposition of 40 in latitude and 80 in longitude
which produces a visually smooth horizon. From this decomposi-
tion we construct OpenGL quadrilateral meshes and compute the
texture coordinates at the corner of each quad. Once calculated,
the geometry and texture coordinates remain fixed and need not be
re-computed. Note that the simulation grid only extends to�78

�

latitude which accounts for the holes at the poles in this visualiza-
tion.

Finally, we create the TLUT that will be loaded with specialized
colormaps for each variable as we view it. The 8-bit texture values
are used as indices into this table and extract the RGBA colors to be
used for texture interpolation. This additional level of indirection
provides a convenience and a performance improvement—without
the TLUT we’d have to reload the entire texture when its colors
were changed. This is a much slower operation than reloading a
256 entry TLUT, which can be performed almost instantaneously.

4 Running POPTEX

When a user starts POPTEX it begins loading the time-step data
files into memory. This process currently takes about 15 minutes for

1318 time-steps at each of four variables and uses roughly 6GB of
main memory. Once all files have been loaded the user can explore
the results of the simulation using various facilities provided by the
tool.

Any variable may be selected for display by clicking on its corre-
sponding tab. The data for the current time-step is mapped onto the
sphere representing the globe. The globe can be rotated and zoomed
to any view of interest using a virtual trackball in the main win-
dow. Additionally, the current color map for the selected variable
is displayed in a panel below the globe. Figure 1 shows sea-surface
height selected with low values at the blue end of the spectrum and
high values at the red end.

The user can select ranges of values to view, discarding those
that they are not interested in, by replacing the contents of the
TLUT. The TLUT is modified by manipulating a transfer function
which is depicted graphically as an overlay on the current colormap.
Iconic handles on the function are dragged to change the function’s
shape. As the function is being modified the TLUT is continuously
reloaded, providing interactive feedback to the user. This can be
very useful when certain model features need to be highlighted.
For example, Figure 2 shows a view of the salinity of the North
Atlantic with all values visible. One of the more interesting water
types in the ocean is the salty Mediterranean Sea water. This salty
water results from the excess of evaporation compared to precipi-
tation in that region and ends up circulating throughout the world’s
ocean basins. Figure 3 shows the result of manipulating the transfer
function towards the right, or high salinity, side of the colormap so
that the modified TLUT highlights areas where Mediterranean Sea
water is present.

Although most of the variables we visualize (sea-surface height,
temperature, and salinity) are mapped to colors, we have experi-
mented with some alternative mappings. For example, we’ve used
the hillshading technique [5] to display sea-surface height in shaded
relief. Figure 4 shows sea-surface height in the western Atlantic
using this technique. Visualizations of sea-surface height are of in-
terest in many areas of the world. For example, the strong eddies
seen in the Caribbean and Gulf of Mexico can affect the operations
of oil drilling platforms.

The main advantage of POPTEX is its animation capability. The
collection of sequential data files in main memory can be continu-
ously streamed into texture memory at an observed maximum rate
of 72 million texels per second. This results in a maximum frame
rate of slightly over 60Hz. At this rate, ten years of simulated time
pass in just 21 seconds. More useful than end-to-end animation
though, is the ability to choose a period of time and selectively an-
imate over only that range—at any speed, forward of backward,
pausing or changing the rate as desired. This technique is particu-
larly useful when studying time-varying phenomena like El Ni˜no.
During normal, non-El Ni˜no years, the prevailing winds at the equa-
tor tend to push warm water to the west where it collects. When the
winds periodically weaken and shift during an El Ni˜no event warm
water is allowed to flow back towards the east. Figure 5 shows the
warm water pooling in the tropical Pacific while Figure 6 shows
the tongue of warm water surging back towards the east only a few
months later due to El Ni˜no conditions.

5 Related Work

Nations, et.al. [8] describe a solution to a similar ocean model vi-
sualization problem. Unlike us, they specifically eschew any post-
processing. Their system runs along with the simulation, visual-
izing results and helping steer the computation. We reject steer-
ing solutions for two reasons. First, the computational scientists
are sometimes reluctant to share cycles with the visualization task.
Second, simulations often run for weeks to calculate ten years of



simulated data while POPTEX can visualize the same ten years of
data in just seconds.

The ParVox system at JPL [6] is a general purpose parallel vol-
ume rendering system based on the splatting algorithm. They have
applied their system to a640 � 624 � 37 volume of ocean data
and achieved rendering rates of one frame per second using 256
processing elements of a Cray T3D.

Vis5D [4] is a software system designed specifically for visu-
alizing numerical climate models like ours. This system performs
many of the functions of our system, though not at the rates we
achieve by using specific hardware features.

6 Conclusions and Future Work

We have created an interactive tool that allows ocean researchers
to interactively visualize their data without creating and viewing
video-based animations. In the future we intend to extend the appli-
cation, adding more features designed specifically to use additional
high performance hardware capabilities. Some of these future en-
hancements are described below:

� Disk Streaming – Our first task will be to implement data
streaming directly from disk. This will eliminate the tedious
process of pre-loading the data, allow the user to select differ-
ent starting points, and enable the use of data sets that are
larger than main memory. In recent experiments we have
achieved disk transfer rates of 200MB per second using a
striped SCSI file system. We’re confident that we can achieve
320MB per second (which matches the theoretical texture
load speed of the iR) by striping over more disks and con-
trollers.

� Volume Rendering – While visualization of individual depth
layers is useful, there are phenomena that may be better under-
stood by viewing all depth layers at once. One example is the
Mediterranean outflow. Salty water from the Mediterranean
Sea flows through the Strait of Gibraltar, sinking because it’s
heavier than the less salty water of the Atlantic, and forms a
distinct water mass containing numerous eddies at a depth of
1 km. We plan to use the iR’s 3-D texture memory for volume
rendering [1] on these types of visualizations.

� Terrain and Bathymetry – We do not currently display ter-
rain or bathymetry relief. To do so using geometry would
quickly surpass even the iR’s geometric processing capabili-
ties. We intend to use the aforementioned hillshading tech-
nique to produce shaded relief images of global terrain and
bathymetry that can then be used as textures and mapped to
the sphere along with the simulation data. This should result
in a more realistic visualization.

� Flow Visualization – POP computes and dumps flow infor-
mation, in the form of floating point vectors at each grid cell,
which we currently do not visualize. We plan to experiment
with global flow visualization techniques such as line integral
convolution (LIC) [2] to visualize the ocean currents. Sequen-
tial LIC images can be pre-computed and streamed onto the
globe resulting in a dynamic animation of the flow.

� Higher Resolution POP Runs – POP will soon be run at
much higher resolution—up to3500 � 2500 � 50. We plan
to apply POPTEX to this high resolution data as soon as it
becomes available.

7 Acknowledgments

We would like to thank the other members of the ACL Visualization
Team for their support and advice: Jim Ahrens, Pat McCormick and
Jamie Painter. We would also like to thank additional members of
the ocean team, Bob Malone and Rick Smith, for their feedback
on early versions of this software. We acknowledge the Advanced
Computing Laboratory of Los Alamos National Laboratory, Los
Alamos, NM 87545. This work was performed on computing re-
sources located at this facility.

References

[1] Brian Cabral, Nancy Cam, and Jim Foran. Accelerated volume
rendering and tomographic reconstruction using texture map-
ping hardware. In Arie Kaufman and Wolfgang Krueger, ed-
itors, 1994 Symposium on Volume Visualization, pages 91–98.
ACM SIGGRAPH, October 1994. ISBN 0-89791-741-3.

[2] Brian Cabral and Leith (Casey) Leedom. Imaging vector
fields using line integral convolution. In James T. Kajiya, ed-
itor, Computer Graphics (SIGGRAPH ’93 Proceedings), vol-
ume 27, pages 263–272, August 1993.

[3] J. K. Dukowicz, R. D. Smith, and R. C. Malone. A reformu-
lation and implementation of the Bryan-Cox-Semtner ocean
model on the Connection Machine.J. Atmos. Ocean. Tech.,
10:195–208, 1993.

[4] W. Hibbard and D. Santek. The Vis5D system for easy inter-
active visualization. InIEEE Visualization ’90, pages 28–35.
IEEE, 1990.

[5] B. K. P. Horn. Hillshading and the reflectance map.Proceed-
ings of the IEEE, 169(1):14–47, 1981.

[6] P. Peggy Li, Scott Whitman, Roberto Mendoza, and James
Tsiao. ParVox—A parallel splatting volume rendering system
for distributed visualization. In James Painter, Gordon Stoll,
and Kwan-Liu Ma, editors,IEEE Parallel Rendering Sympo-
sium, pages 7–14, November 1997. ISBN 1-58113-010-4.

[7] John S. Montrym, Daniel R. Baum, David L. Dignam, and
Christopher J. Migdal. InfiniteReality: A real-time graphics
system. In Turner Whitted, editor,SIGGRAPH 97 Conference
Proceedings, Annual Conference Series, pages 293–302. ACM
SIGGRAPH, Addison Wesley, August 1997. ISBN 0-89791-
896-7.

[8] Scott Nations, Robert Moorhead, Kelly Gaither, Steve Auk-
stakalnis, Rhonda Vickery, Warren C. Couvillion, Jr., Daniel N.
Fox, Peter Flynn, Alan Wallcraft, Patrick Hogan, and Ole Mar-
tin Smedstad. Interactive visualization of ocean circulation
models. InIEEE Visualization ’96. IEEE, October 1996. ISBN
0-89791-864-9.



Figure 1: Sea-surface height.

Figure 2: High surface salinity of the Atlantic Ocean.

Figure 3: TLUT modified to show areas of high surface salinity.

Figure 4: Sea-surface height shown in hillshaded relief.

Figure 5: Temperature at surface with no El Ni˜no.


	Abstract
	1 Introduction to POP
	2 Approach to New Visualization
	3 Implementation
	4 Running POPTEX
	5 Related Work
	6 Conclusions and Future Work
	7 Acknowledgments
	References

