

Human Response to Sonic Booms

FAA Workshop on Civil Supersonic Aircraft

Kevin P. Shepherd NASA Langley Research Center

Presented by Peter G. Coen 13 November, 2003

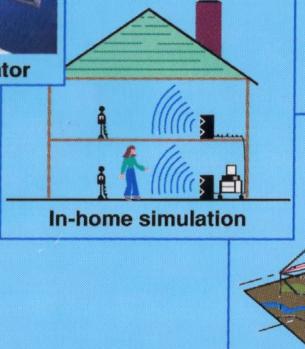
KNOWLEDGE GAINED FROM SST/CONCORDE/MILITAR

- Extensive measurements of far field booms
 - primary, secondary, focused
- Extensive measurements of building vibrations
 - including estimated probability of damage
- Subjective ratings of single events (indoors and outdoors)
- Community response to "staged" sonic boom exposures
- "Complaints" due to Concorde secondary booms (Dp< 0.5 psf)

- No overland commercial supersonic operations
- Military confined to restricted areas/corridors

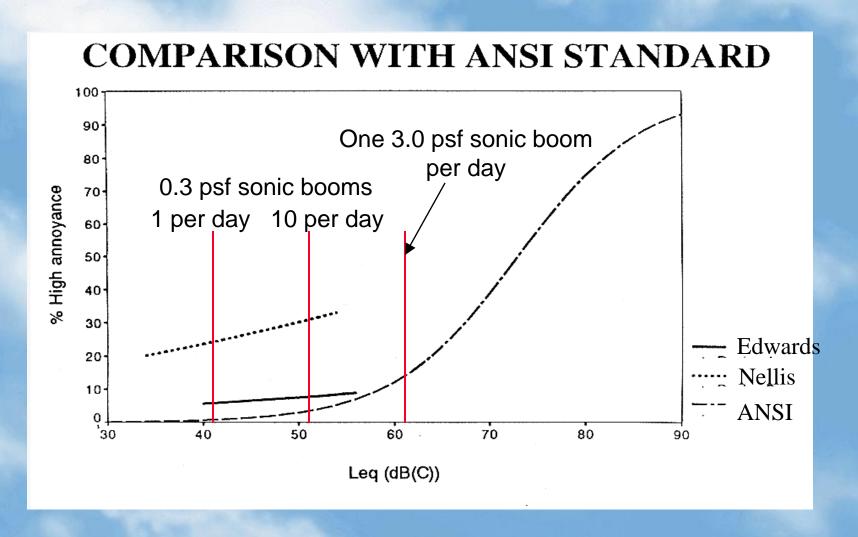
Previously Proposed Sonic Boom Loudness Criteria

Equivalent N-wave Exposure


EPA "Levels" Document	Dp, psf 0.26 0.52 1.04	N/day 8 4 0.5	8%annoyed
ANSI S12.4 (CDNL=54dB)	0.5 1.0	4.8 1.2	5% h. annoyed
(CDNL=64dB)	0.5 1.0	48 12	20% h.annoyed
Boeing (corridors, 72dBA)	0.6	?	Acceptable
McD. Douglas (90PLdB)	0.7	?	Acceptable
Rolls Royce	0.5	?	80% acceptance

SONIC BOOM ACCEPTABILITY CRITERIA

High Speed Research Program
Three Element Approach


Community response

Summary of HSR Program Findings

- Validated loudness prediction method
 - provide guidance to low-boom design efforts
- Energy addition theory (Leq) valid for booms and small #'s events
- Perceptible building vibration occurs at all boom amplitudes
- Acceptable level of sonic boom exposure not determined
 - large variation between individuals & communities
 - "attitudes" are of primary importance.

HSR Community Exposure Study Findings Agreement with Standard Depends on Public Attitude

AIRCRAFT & AIRPORT NOISE CRITERIA DEVELOPMENT A Brief History, and a Search for a Model

- Introduction of jet a/c led to numerous laboratory studies of aircraft noise annoyance and airport studies of noise and community impact.
- Aircraft noise certification (FAR 36) in 1969 (EPNL, dB)
 - Noise Level = F (Aircraft Weight, # engines)
 - Stage III in 1975
 - Stage II phase-out in '00, Stage IV in '06
- During 1970's criteria developed for community noise levels due to transportation sources.
 - Dose (Leq/Ldn) response (%highly annoyed) relationship
 - FAA select 65dB (Ldn) as boundary of significant impact
 - EPA proposed 55dB (Ldn) to protect health & welfare

Are SONIC BOOMS like AIRPORT NOISE?

- Impulsive noise
 - Energy concentrated in small DT
 - Peak energy at sub-audible frequencies
- Human response:
 - loud (high SPL)
 - startle

- Building Response
 - vibration/rattle
 - damage

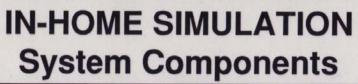
- Infrequent projected exposure
- Little public experience

Elements of an Approach to Public Acceptance

- Determine community response to "low boom" signatures
 - relative contributions of auditory and vibratory components
- Validate sonic boom mitigation technologies in flight
- Understand political considerations
 - Public recognition of need for supersonic flight
 - Modification of Rule barring Supersonic flight overland
- Maintain awareness of other potential environmental constraints
 - -Endangered Species Act,
 - -Marine Mammal Protection Act

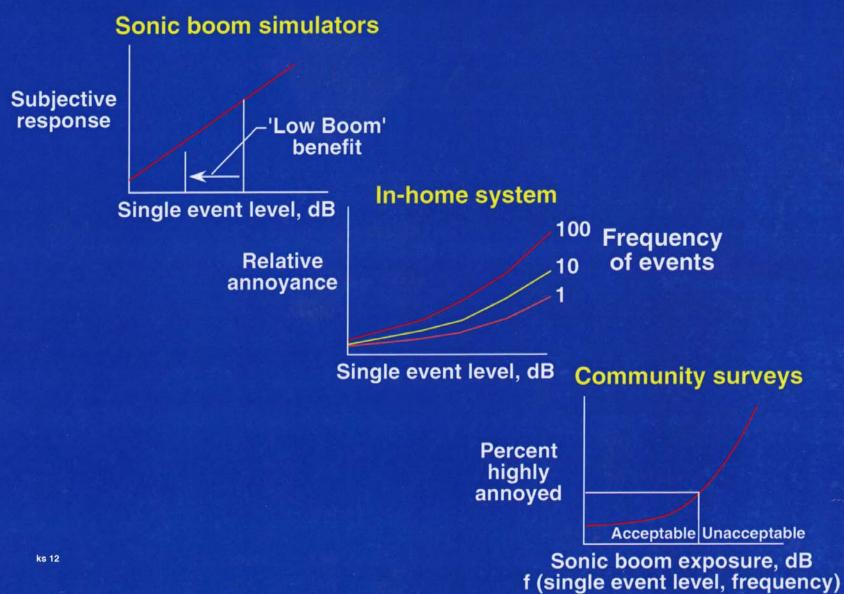
BACK-UP SLIDES

SONIC BOOM SIMULATOR



SONIC BOOM SIMULATOR STUDIES SUMMARY

- Loudness model validated for:
 - wide range of ideal N-waves and shaped booms
 - "indoor" N-waves and shaped booms
 - ground-reflected booms
 - "real" booms distorted by atmosphere
- Major findings:
 - substantial benefits of boom shaping (indoors and outdoors)
 - reflected booms equal to or better than ground-level booms


IN-HOME SIMULATION EXPERIMENT

Findings:

- Equal-energy theory validated (i.e Leq)
 - "Loudness" metrics are best annoyance predictors
 - Startle is highly correlated with high annoyance
 - "In-home" annoyance less than that found in field settings at same exposure.

SONIC BOOM CRITERIA DEVELOPMENT

Design Summary

- Sites: Nellis (6 communities) Phase 1 Oct '92 May '93 Phase 2 May '93 - Dec '93 Edwards (8 communities) - April '95 - Nov '95
- Sonic Boom Exposure measured for 6 months prior to interviews.
 Highest exposure 2 booms/day; 1/week > 2 psf
 Lowest exposure 1 boom/20 days; 1/100 days > 2 psf
- Face-to-face questionnaire interviews 1573

NELLIS/EDWARDS COMMUNITY SURVEY

- Reported annoyance is not related to:
- Community characteristics (rural/ suburban, type of house construction)
- Respondent demographic characteristics (age, etc.; length of residence, commuting distance to work, employment by "noise maker")
- Reported annoyance is related to:
- Respondent attitudinal characteristics (importance of military, importance of supersonic ops. for defense, annoyance with other noises, importance of other environmental concerns, importance of developing supersonic commercial aircraft)
- Respondents' perception of other boom impact (startle, vibration, damage, fear of crashes)

SITE DIFFERENCES

- Are not due to:
 - Noise measurement and survey administration errors

- Are, in part, due to:
 - Respondents' attitudes toward aircraft operators (pilots and officials could do more to reduce booms)
 - Respondents' annoyance with low-flying jet aircraft

SUMMARY FINDINGS

"Boom Box" studies

- Loudness model validated for wide range of booms
- Substantial benefits of boom shaping

In-home studies

- Equal energy theory validated
- Loudness metrics are best annoyance predictor

Field studies

- Large variability between individuals and communities
- "Attitudes" are of primary importance

MARINE WILDLIFE AND SONIC BOOMS

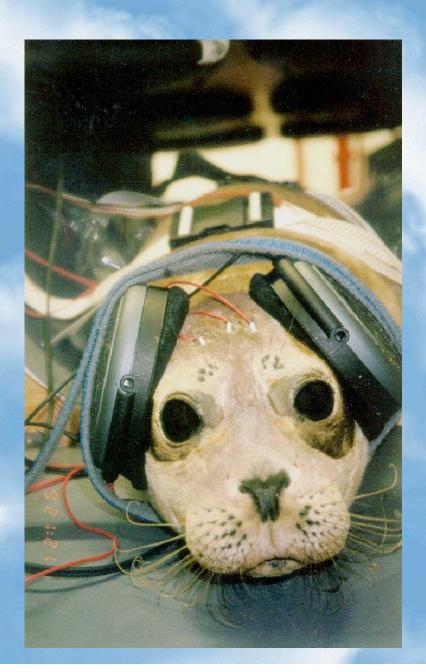
QuickTime[™] and a Photo - JPEG decompressor are needed to see this picture. QuickTime[™] and a Photo - JPEG decompressor are needed to see this picture.

Objectives: Determine behavioral effects of booms from Concorde on gray and

harbor seals

Accomplishments:

- 1. Behavioral data and boom data acquired from January '97 and June '98on Sable Island, Canada during gray and harbor seal breeding seasons
- 2. Three booms per day ranged from 0.1 to 2 p.s.f.
- 3. Based on extensive observational data (videotapes) and limited physiological data, sonic booms had no effect on gray seals: number of animals on beach, alertness, aggression, frequency of locomotion, nursing, and heart rate.


Minor effects for Harbor seals - increased vigilance, increased heartrate

Conclusions:

__Observed effects are unlikely to affect either individuals or populations

Potential Hearing Damage from Simulated Sonic Booms

Approach:

- Develop physiological method to measure hearing threshold
- Measure threshold before and after exposure to simulated sonic booms

Results:

- Testing conducted for harbor seal, elephant Seals, and Ca sea lion
- Physiologically-determined threshold comparable with behavioral data
- No evidence of hearing loss for HSCT cruise booms