Novel Non-Precious Metals for PEMFC: Catalyst Selection Through Molecular Modeling and Durability Studies

Branko N. Popov, Swami Kumaraguru, Lingyun Liu, Vijayadurga Nallathambi, Xuguang Li, Gang Wu, Jong-Won Lee, Hector Colonmer and Nalini Subramanian

> **Center for Electrochemical Engineering University of South Carolina, Columbia, SC 29208**

2006 DOE Hydrogen Program Review, May 17, 2006

This presentation does not contain any proprietary or confidential information

Project ID: FC13

Overview

Timeline

- Project Start Date

 9/30/2003
- Project End Date
 - ✓ 9/30/2007
- Percent Complete
 - ✓ 64%

Budget

- Total Project Funding
 - ✓ DOE Share- \$ 1376.292 K
 - ✓ Contractor Share \$351.207K
- FY 05: \$400K
- FY 06: \$200K

Technical Barriers and Targets

- Electrode performance
 - ✓ Perform at least as good as the conventional Pt catalysts currently in use in MEAs
- Durability
 - ✓ 2000 hours operation with less than 10% power degradation
- Material Cost
 - ✓ Cost at least 50% less as compared to a target of 0.2 g (Pt loading)/peak kW

Partners / Collaborations

- Case Western University
 - ✓ Molecular Modeling
- Northeastern University
 - ✓ Structural Studies

OVERALL:

To develop (i) non-precious metal and (ii) metal-free catalysts for PEMFC with high <u>catalytic activity</u>, <u>selectivity</u> and <u>durability</u> which perform as good as conventional Pt catalysts with a cost at least 50% less than a target of 0.2 g (Pt loading)/peak kW

SPECIFIC FOCUS FOR 2005 & 2006:

- □ Non-precious metal chelate based catalysts
 - To develop <u>Co and Co-X catalysts</u> dispersed on high surface area carbon
- Metal free catalysts
 - > To develop carbon-supported metal free CN-X and C-X nano-catalysts

Approach

- Optimization of active reaction sites
 - as a function of:
 - (1) Surface oxygen groups
 - (2) Carbon support
 - (3) Co loading
 - (4) N content
 - (5) Surface modifier
 - (6) Pyrolysis temperature
 - (7) Non-metallic additive "X"
- Fuel cell testing and stability

Metal-free catalysts

- Optimization of active reaction sites as a function of:
 - (1) Surface oxygen groups
 - (2) Nitrogen precursor
 - (3) Non-metallic additive "X"
 - (4) Pyrolysis temperature
 - (5) Porosity and pore size distribution
- Fuel cell testing and stability

Technical Accomplishments

- Active Co/C catalysts were developed with the use of activated carbon, surface modifier and non-metallic additive "X".
 - Carbon activation methodology was developed to increase the concentration of active sites of the Co-based catalyst.
 - □ Surface modifiers were used to increase the activity of the Co-based catalyst.
 - □ Onset potential as high as 0.82 V vs. SHE was obtained for Co-based catalysts.
 - Non-metallic additive "X" significantly decreased the amount of H₂O₂ produced during oxygen reduction.
 - **FOUR** electron pathway for ORR (< 5 % H_2O_2)

□ Metal free catalysts (CN-X and C-X nano-catalysts) were developed.

- Onset potential for oxygen reduction 0.8 V vs. SHE.
- Peroxide generation less than 1 %.
- □ <u>FOUR</u> electron pathway for ORR.

Development of Co-based Catalysts for PEMFC Applications

Optimization – (1) Effect of Surface Oxygen Group

- HIGHLIGHT: Presence of quinone groups on carbon surface favors nitrogen adsorption.
- Developed chelate catalysts show lower onset potential by about 100 mV in comparison to ETEK 20% Pt/C.

Optimization – (2) Effect of Carbon Support

• HIGHLIGHT: Ketjen black has higher mesoporous area than Vulcan and Black Pearl.

• Ketjen black leads to smaller particle size of catalysts and hence higher catalytic activity.

Optimization – (3) Effect of Co Loading

- HIGHLIGHT: Increase in Co loading decreases the overpotential toward oxygen reduction reaction by nearly 50 mV.
- Co loading on carbon has a huge influence on %H₂O₂ produced. %H₂O₂ is lower than 7% for 30 wt% Co loading at 0.7 V vs. NHE.

Optimization – (4) Effect of N Content

• HIGHLIGHT: Increase in nitrogen concentration increases the activity of the catalyst.

• %H₂O₂ produced decreases from 36 to 11% with increasing the nitrogen content.

Center for Electrochemical Engineering

Optimization – (5) Effect of Surface Modifier

HIGHLIGHT: Surface modifier increases the catalytic activity due to uniform dispersion of the catalyst particles.

Optimization – (6) Pyrolysis Temperature

- HIGHLIGHT: Pyrolysis temperature was optimized to be 800 °C.
- <u>XPS</u>: Certain ratio of the pyridinic and pyrrolic N groups at 800 °C is associated with the enhanced catalytic activity.
- <u>EXAFS</u>: At 800 °C and beyond only Co-Co interaction is observed.

Optimization – (7) Non-Metallic Additive "X"

• **HIGHLIGHT**: Incorporation of non-metallic additive "X" with optimized concentration (Co:X = 2:1) increases both the catalytic activity and selectivity of the Co-catalyst.

• %H₂O₂ produced is lower than 5 % for the optimized Co-X catalyst below 0.5 V vs. NHE.

Progress in Co based Catalysts: Comparison with Pt/C

Potential (V vs. SHE)

□ Co based catalysts show comparable performance with Pt/C catalysts under RRDE test conditions.

□Onset potential for O_2 reduction – 0.82 V vs. SHE

□<u>FOUR</u> electron pathway for ORR.

 \Box Further research is aimed at decreasing the H₂O₂ production to 0 %.

University of South Carolina

- Center for Electrochemical Engineering

14

Fuel Cell Test – Effect of Post-Treatment

- HIGHLIGHT: Significant increase in activity is observed with post treatment.
- Surface area of the catalyst increases due to the dissolution of inactive Co in the structure of the catalyst

Fuel Cell Test - Stability

• HIGHLIGHT: Co-X catalyst shows better MEA performance and higher stability as compared with pure Co catalyst.

Development of Metal-Free Catalysts for PEMFC Applications

Molecular Modeling

Why is nitrogenated graphite active for oxygen reduction?

Substitutional N creates adjacent radical carbon adsorption sites that bond H weakly (2.24 eV) so that they are free at potentials >0.13 V. OOH bonds weakly (0.89 eV) to the radical carbon so that it forms from $O_2(aq)$ reduction at 0.84 V and below. OOH(ads) is then reduced to $H_2O_2(aq)$ at 0.55 V and below, matching the O_2 reduction current for nitrogenated Ketjen black.

H bonds to graphite edge sites more weakly, and is predicted to be removed at potentials > -0.08 V.

OOH also bonds to these sites more weakly, and is predicted to form from O_2 reduction at potentials < 0.31 V. This matches the reduction curve for pure Ketjenblack.

Research Progress

HIGHLIGHT: The USC methodology increased the onset potential for oxygen reduction by ca. 500 mV, as compared with the as-received carbon.

Supported CN & CN-X : *Catalytic Activity*

HIGHLIGHT: The USC-developed ²CN/²CN-X exhibited an onset potential as high as 0.8 V(NHE) and a well-developed limiting current.

Supported CN & CN-X : *Catalytic Selectivity*

HIGHLIGHT: The USC-developed ²CN4-X catalyzes oxygen reduction to water via four-electron transfer with no H_2O_2 production.

Catalytic Active Sites

HIGHLIGHT: High-temperature pyrolysis led to the formation of pyridine–type nitrogen which is believed to be active for oxygen reduction.

Porous Structure (BET) Analysis

Center for Electrochemical Engineering

Activity & Selectivity - Comparison with Metal Catalysts

HIGHLIGHT: The metal free catalysts show moderate catalytic activities, but they exhibit higher selectivity for oxygen reduction to water, when compared with the Pt- and Co-catalysts.

Future Work

NON-PRECIOUS Co-BASED CATALYST

□ To further increase the catalytic selectivity for oxygen reduction:

- i) Incorporation of non-metallic additive "X" in the Co/carbon nanocluster
- □ To perform the durability study on the optimized Co catalyst in RRDE and fuel cells and understand the degradation mechanism
- □ To increase the catalyst durability
 - *i)* Synthesis of Co catalysts doped with X and Cr using a procedure developed at USC
 - ii) Synthesis of Co and Co-X catalysts loaded on graphitized carbon

Future Work

METAL FREE CATALYST

□ Further to increase the catalytic activity and selectivity for oxygen reduction

- i) Optimization of metal free C-X nanocatalyst
- *ii)* Use of different carbon black supports

iii) Synthesis of "unsupported" catalyst with high mesoporous area by using template method

□ To perform the durability study on the optimized metal free catalyst in RRDE and fuel cells, and understand the degradation mechanism

□ To increase the catalyst durability

- *i)* Synthesis of metal free catalysts loaded on graphitized carbon
- ii) Encapsulation of metal free catalysts with ZrO₂

- Objective: Develop (i) non-precious metal and (ii) metal-free catalysts for PEMFC which perform as good as conventional Pt catalysts
- Approach: Optimize the active reaction sites to increase the catalytic activity and stability using USC-developed methodology
- □ Technological Accomplishments and Progress: Demonstrated high catalytic activity (0.8 0.85 V vs. SHE) and selectivity (0 5 % H₂O₂) for Co-based and metal free catalysts
- Collaborations: Active partnership with Case Western Reserve University and Northeastern University
- Proposed future research: (i) Optimize MEA performance with the Co-based metal and metal-free catalysts, and (ii) increase catalyst stability

Response to Reviewer's Comments

- Objectives appear to include everything on a wish list.
 - Current research focuses on increasing the number of catalytic active sites and selectivity for Co-based and metal free catalysts.
- It is unlikely the PI will be able to accomplish low cost catalyst through mass production methods at a university.
 - The objective is to develop the synthesis procedure for Co-based and metal free catalysts with low cost precursors which can be easily upgraded for mass production.
- Catalyst stability and durability should be addressed.
 - Preliminary results indicate that the incorporation of non-metallic additive "X" improved the catalyst stability under fuel cell test conditions.
 - Current research focuses on the catalyst stability under accelerated durability test (ADT) and fuel cell test conditions.

Publications and Presentations

Publications

- 1. H. Kim, B.N. Popov, "Development of Novel Method for Preparation of PEMFC Electrodes", *Electrochem. Solid-State Lett.*, 7 (2004) A71.
- 2. H. Kim, N.P. Subramanian and B.N. Popov, "Preparation of PEM Fuel Cell Electrodes Using Pulse Electrodeposition", *J. Power Sources*, 138 (2004) 14.
- 3. H.R. Colón-Mercado and B.N. Popov, "Stability of Platinum Based Alloy Cathode Catalysts in PEM Fuel Cells", *J. Power Sources*, 155 (2006) 253.
- 4. R. Sidik, A. Anderson, N.P. Subramanian, S.P. Kumaraguru and B.N. Popov, "O₂ Reduction on Graphite and Nitrogen-Doped Graphite: Experiment and Theory" *J. Phys. Chem. B*, 110 (2006) 1787.
- 5. R. Sidik and A. Anderson, " Co_9S_8 as a Catalyst for Electroreduction of O_2 : Quantum Chemistry Predictions", *J. Phys. Chem*, 110 (2006) 936.
- 6. N.P. Subramanian, S.P. Kumaraguru, H.R. Colón-Mercado, B.N. Popov, "Studies on Co Based Electrocatalysts on Modified Carbon Substrates for PEMFC Applications", *J. Power Sources*, in press.
- 7. L.Liu, H. Kim, J.-W.Lee and B.N. Popov "Development of Novel Ru-based Catalysts for Oxygen Reduction Reaction", *J. Electrochem. Soc.*, submitted.
- 8. S.P. Kumaraguru, N.P. Subramanian, H.R. Colón-Mercado, M. Curran and B.N. Popov "Fe-based catalysts for PEMFC Applications", under preparation.

Presentations

- 1. N.P. Subramanian, S.P. Kumaraguru and B.N. Popov, "Analysis of Carbon Substrates used in Non-Precious Metal Catalysts for Fuel Cell Applications", *206th meeting of the Electrochem Soc.*, Honolulu, HI, October, 2004.
- 2. B.N. Popov, "Novel Non Precious Metal Catalysts for PEMFC Applications", 206th meeting of the Electrochem Soc., Honolulu, HI, October, 2004.
- 3. N.P. Subramanian, S.P. Kumaraguru and B. N. Popov, "Analysis of Carbon Substrates used in Non-Precious Metal Catalysts for Fuel Cell Applications", *206th meeting of the Electrochem Soc.*, Honolulu, HI, October, 2004.
- 4. L. Liu and B.N. Popov, "Highly Active Ru-Chelate Catalysts for Oxygen Reduction Reaction", *1st Symposium on Manufacturing of MEAs for Hydrogen Applications*, Dayton, OH, August, 2005.
- 5. S.P.Kumaraguru, M.Curran and B.N.Popov, "Non Noble Metal Catalysts for Oxygen Reduction Reaction", 208th *meeting of the Electrochem Soc.*, Los Angeles, CA, October, 2005.

29