Virginia Aquifer Susceptibility

Dating of Ground Water for Source-Water Assessment Screening

Virginia Aquifer Susceptibility

Objective

- Identify the intrinsic natural susceptibility of regional aquifers in Virginia
- Apply susceptibility determinations in screening public ground-water supplies and identifying those that require detailed source-water assessments

Virginia Source Water Assessment Program

(http://www.vdh.state.va.us/owp/water_supply.htm)

Type of source water	Sensitive source	LUA present in source area	Susceptibility
Ground water	No	Νο	Very Low
Ground water	No	Yes	Low
Ground water	Yes	Νο	Moderate
Ground water	Yes	Yes	High

LUA -- Land-use Activity

Virginia Aquifer Susceptibility

Sampling Activities - Ground-Water Dating

CHLOROFLUOROCARBONS

- F-11, F-12, and F-113
- Young waters (<50 years)
- Susceptibility determinations

<u>TRITIUM</u>

- Nuclear weapons testing
- Political isotope
- Young waters (<50 years)

TRITIUM/HELIUM

- Radioactive decay of ³H
- Young waters (<30 years)

SULFUR HEXAFLUORIDE

- Experimental
- Young waters (<30 years)

CARBON-14

- Dissolved inorganic carbon
- Paleowaters (1,000 - 30,000 years)

HELIUM-4

Paleowaters

Atmospheric mixing ratios

CFCs Sampling

Physiographic Provinces of Virginia

Virginia Aquifer Susceptibility Sampling Sites (n=165)

CFC-12 vs. CFC-113 Mixing Models

Susceptibility Determinations

Based on CFC concentration greater than 5 pg/kg

Number of Sites with CFCs Contamination

Number of Sites

CFCs Occurrence with Depth

FG_age_final

Fontes-Garnier Model ¹⁴C Ages

Middle Potomac Aquifer

Top of screen intervals range from 62 to 1,020 feet below land surface

Relation between CFCs and Nitrate

Ideas for Future Investigation

- Temporal changes in groundwater age or binary mixtures
- Vertical distribution of ages
- Relation between helium concentrations and binary mixtures
- Relation between groundwater age and the occurrence of viruses and other emerging contaminants
- Relate ground-water dating results with dye tracer results in karst terranes

Radon in Ground Water

