Recommended Vapor–Liquid Equilibrium Data. Part 4. Binary Alkanol–Alkene/Alkyne Systems

Marian Góral^{a)} and Andrzej Bok

Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland

Teresa Kasprzycka–Gutman and Paweł Oracz

Department of Chemistry, University of Warsaw, Warsaw, Poland

(Received 20 February 2006; revised manuscript received 7 July 2006; accepted 14 July 2006; published online 19 October 2006)

The recommended vapor–liquid equilibrium (VLE) data for binary mixtures of alkanols with alkenes and alkynes have been selected after critical evaluation of all data reported in the open literature up to the end of 2003. The evaluation procedure consisted in combining the thermodynamic consistency tests, data correlation, comparison with enthalpy of mixing data, and comparison of VLE data for various mixtures. The data were correlated with Wilson equation as well as with equation of state appended with chemical term (EoSC) proposed by Góral. The recommended data for 18 systems are presented in the form of individual pages containing tables of data, figures, and auxiliary information. Each page corresponds to one system and contains three isotherms (spaced by at least 15 K) and one isobar (preferably at 101.32 kPa). Experimental gaps were completed with the predicted data. © 2006 American Institute of Physics. [DOI: 10.1063/1.2336783]

Key words: alkanols; alkenes; alkynes; binary systems; predicted data; recommended data; vapor-liquid equilibria.

CONTENTS

1.	Introduction	1577
2.	Correlation of VLE Data	1578
3.	Prediction of VLE Data.	1578
4.	Description of Tables Containing the	
	Recommended Data	1582
5.	Conclusions	1583
6.	References	1596

List of Tables

1.	Methanol–1-pentene	1579
2.	Methanol-cyclohexene	1580
3.	Methanol–1-heptene.	1581
4.	Ethanol–1-hexene	1582
5.	1-Propanol–1-heptene	1583
6.	2-Propanol–1-hexene	1584
7.	1-Butanol–3-ethylcyclopentene	1585
8.	1-Butanol–1-butylcyclopentene	1586
9.	1-Butanol–1-octene	1587
10.	1-Butanol-trans-2-octene	1588
11.	1-Butanol–cis-4-octene	1589
12.	1-Butanol-trans-4-octene.	1590

^{a)}Author to whom correspondence should be addressed; electronic mail: mgoral@ichf.edu.pl

- 13. 2-Butanol–1-hexene. 1591
- 14. 2-Methyl-2-propanol-2-methyl-2-butene..... 1592
- 15. Methanol–1-hexyne. 1593
- 16. 1-Propanol–1-octyne. 1594

List of Figures

- 1. Values of q for alkenes (q_{alkene}) and for
- alkanes (q_{alkane}) in the corresponding mixtures. 1578 2. Values of q for alkynes (q_{alkyne}) and for
 - alkanes (q_{alkane}) in the corresponding mixtures. 1578

1. Introduction

The objective of this paper is to provide selected and critically evaluated vapor–liquid equilibrium (VLE) data for binary mixtures of alkanols with alkenes and alkynes.

All available data (below 0.5 MPa) for considered systems, were taken from the open literature up to the end of 2003. They consist of 12 isothermal and 79 isobaric data sets taken from 26 references.

The data were critically evaluated using multistage procedure. The procedure was described in Part 1.¹ The critical evaluation of the data was difficult. Thermodynamic consistency tests can be performed only for 34 data sets because the remaining 57 sets do not contain concentrations of the vapor phase. Enthalpy of mixing, used as auxiliary data, is

^{© 2006} American Institute of Physics.

FIG. 1. Values of q for alkenes (q_{alkene}) and for alkanes (q_{alkane}) in the corresponding mixtures. The points correspond to the following mixtures: alkenes with methanol (1), with ethanol (2), with 1-propanol (3), with 2-propanol (4). Cykloalkenes with butanol (5). Izomers of oktene with butanol (6), with 2-butanol (7), with tert-butanol (8).

reported only for a few systems. Number of available VLE data sets was less than in systems investigated previously in papers.^{1–3} For many systems only data measured by one laboratory are reported.

2. Correlation of VLE Data

Correlation of the data was done with equation of state with chemical term (EoSC) method developed by Góral.^{1,4} It uses Redlich–Kwong equation of state (RK EoS) appended with association term. The physical part of EoSC has one adjustable binary parameter. The chemical part depends on association. The model of self association of the alkanols is the same as that used in the previous papers of this series.¹⁻³

It was found that a weak cross association between the alkanols and the π bonds of the unsaturated hydrocarbons must be taken into account. The model of the cross-association and the relevant equations were described by

FIG. 2. Values of q for alkynes (q_{alkyne}) and for alkanes (q_{alkane}) in the corresponding mixtures. The points correspond to the following mixtures: hexyne+metanol (1), octyne+1-propanol (2), nonyne+1-propanol (3), 2-octyne+1-butanol (4), 1-octyne+1-butanol (5).

Góral.⁴ In the first stage of this investigation the constant of the coassociation, K_{ij} , was treated as adjustable parameter in EoSC. Analysis of K_{ij} fitted individually to each VLE data set showed that it can be approximated with Eq. (1)

$$K_{ij} = (\alpha K_{ii})^{0.5},\tag{1a}$$

where K_{ii} is a constant of autoassociation of *i*th alkanol at given temperature. In further calculations the following values were used:

alkenes

$$\alpha = 0.06 \text{ GPa}^{-1},$$
 (1b)

alkynes

$$\alpha = 0.60 \text{ GPa}^{-1}$$
. (1c)

The same equation for K_{ij} but with $\alpha = 0.80$ GPa⁻¹ was used in the previous paper³ for coassociation of alkanols with alkylbenzenes.

Having K_{ij} defined by Eqs. (1a)–(1c) EoSC uses only one binary parameter (Θ) for correlation of VLE. This parameter Θ is used in the mixing rule for energetic parameter in RK equation of state. EoSC was successfully used in the previous papers¹⁻³ for correlation of VLE data in systems of alkanols with hydrocarbons. The results of the correlation were as good as in the case of the two-parameter equation for G^E proposed by Wilson. The same is true for mixtures investigated in this paper with the exception of the data reported by Kudryavtseva and co-workers. They measured azeotropic systems at isobaric conditions. Many of their data sets show systematic deviations from the approximating line calculated by EoSC, whereas the data for the same or similar system measured in another laboratory are well approximated by EoSC. Taking into account this fact and some other tests we assumed that the mentioned deviations are caused by systematic error of the data. The deviations occur near the limits of the concentration range. In this region the measurements are more vulnerable to systematic error of the concentration. This kind of error has negligible influence on the boiling temperature in the vicinity of the azeotropic point. Therefore, some of the mentioned data sets were used in Figs. 1 and 2 after removing one or two of the deviating points from the given data sets.

3. Prediction of VLE Data

Once the value of the binary parameter Θ in EoSC is known, the corresponding phase diagram of the system can be determined via EoSC. It is also possible to calculate auxiliary thermodynamic functions such as excess Gibbs energy of mixing and activity coefficients of the components. These thermodynamic quantities are related to Θ via equations for chemical potentials yielded by EoSC (see Goral *et al.*^{1,4}). These relations can be also used in the opposite direction e.g., if value of any of the thermodynamic functions at some concentration is known then the value of Θ for the corresponding mixture can be determined and after then VLE can

ıgrad) 3	im. (Lenir	h. Prikl. Kh	Vemtsov, Z	ı, M. S. N	V. B. Koga	rodnikov, ').	eferences S. K. Ogo 585 (1960	R 17 26	57-56-1] 109-67-1]	nts CH₄O; [6 ; C₅H₁₀; [1	Compone Methanol; 1-Pentene;
			a	rium dat:	uid equilib	e vapor-liq	Reference	ų			
erence	01.32, Ref	P/kPa = 1	cted	.15, predi	<i>T</i> /K = 353	cted	.15, predi	<i>T</i> /K = 333	cted	.15, predi	T/K = 313
Yi,cale	<i>x</i> ₁	T/K	Уı	xı	P/kPa	<i>y</i> 1	<i>x</i> ₁	P/kPa	<i>y</i> 1	xı	P/kPa
0.135	0.106	299.55	0.0000	0.00	441.17	0.0000	0.00	261.49	0.0000	0.00	143.85
0.135	0.109	299.58	0.1695	0.05	523.10	0.1593	0.05	304.96	0.1399	0.05	163.85
0.139	0.138	299.47	0.2241	0.10	549.80	0.1976	0.10	314.41	0.1640	0.10	166.48
0.143	0.176	299.45	0.2521	0.15	561.11	0.2159	0.15	317.62	0.1750	0.15	167.11
0.147	0.211	299.47	0.2695	0.20	566.20	0.2271	0.20	318.69	0.1817	0.20	167.15
0.154	0.326	299.54	0.2817	0.25	568.24	0.2348	0.25	318.80	0.1865	0.25	166.93
0.161	0.446	299.78	0.2907	0.30	568.59	0.2407	0.30	318.40	0.1903	0.30	166.57
0.170	0.618	300.35	0.2977	0.35	567.96	0.2452	0.35	317.72	0.1933	0.35	166.12
0.170	0.624	300.33	0.3031	0.40	566.75	0.2489	0.40	316.88	0.1959	0.40	165.62
0.389	0.972	321.68	0.3073	0.45	565.27	0.2518	0.45	315.98	0.1980	0.45	165.10
			0.3105	0.50	563.75	0.2541	0.50	315.10	0.1998	0.50	164.59
			0.3128	0.55	562.39	0.2557	0.55	314.33	0.2012	0.55	164.12
			0.3141	0.60	561.41	0.2568	0.60	313.75	0.2021	0.60	163.75
			0.3146	0.65	560.99	0.2573	0.65	313.45	0.2027	0.65	163.49
			0.3143	0.70	561.24	0.2573	0.70	313.45	0.2030	0.70	163.38
			0.3138	0.75	561.90	0.2571	0.75	313.59	0.2030	0.75	163.34
			0.3138	0.80	561.79	0.2576	0.80	313.17	0.2036	0.80	163.00
			0.3173	0.85	556.90	0.2610	0.85	309.92	0.2065	0.85	161.21
			0.3324	0.90	534.71	0.2746	0.90	296.66	0.2176	0.90	154.17
			0.3946	0.95	455.06	0.3310	0.95	249.82	0.2649	0.95	128.88
			1.0000	1.00	179.28	1.0000	1.00	83.94	1.0000	1.00	35.09

 $q_0 = 0.574$

 $q_0 = 0.611$

 $\sigma_0 = 1.28$

 $q_0 = 0.539$

be calculated with EoSC. It enables us to use the physically meaningful quantity for the VLE prediction instead of the empirical parameter Θ .

 $q_0 = 0.600$

In this work the prediction of VLE is based on excess chemical potential of the hydrocarbon at an equimolar mixture with alkanol. This quantity $(\mu_{0.5}^E)$ divided by gas constant (R) and temperature (T) is denoted here by q

$$q = \mu_{0.5}^E / RT.$$
 (2)

The advantage of using q is that it is not confined to the equation used for the correlation of the VLE data provided that the equation is able to correlate adequately the data. Therefore the proposed values of q can be checked by investigators, which use another correlating equations.

Figures 1 and 2 show comparison between values of q in the corresponding binary mixtures, which are formed by pairs of the corresponding unsaturated and saturated hydrocarbons (for example cyclohexene and cyclohexane) with the same alcohol at the same temperature.

The values of q for alkenes and alkynes in mixtures with alkanols were obtained from correlation of VLE data with EoSC. The corresponding values for saturated hydrocarbons were calculated with method of VLE prediction for mixtures of alkanols with saturated hydrocarbons described in Part 1 (Goral *et al.*¹) and Part 2 (Goral *et al.*²) of this series.

Each point in Figs. 1 and 2 corresponds to experimental data set, which passed previous stages of verification. Shift of q from the approximating line equal to 0.01 corresponds to shift of the calculated equimolar vapor pressure equal to approximately 1%. With a few exceptions the points are well approximated with straight lines shown in the figures. Therefore it is assumed that the deviations result mainly from errors of the data.

The equations of the lines in Figs. 1 and 2 are as follows:

TABLE 2. Methanol-cyclohexene

Components

References

Methanol; CH₄O; [67-56-1] Cyclohexene; C₆H₁₀; [110-83-8] ⁸J. Juza, V. Svoboda, R. Holub, and J. Pick, Collect. Czech. Chem. Commun. 42, 1453 (1977).

Reference vapor-liquid equilibrium data T/K = 313.15, predicted T/K = 353.15, predicted T/K = 333.15, predicted P/kPa P/kPa P/kPa x_1 y_1 x_1 y_1 x_1 22.62 0.00 0.0000 48.11 0.00 0.0000 92.67 0.00 99.18 0.05 0.5219 185.96 46.84 0.05 0.5255 0.05 50.11 0.10 0.5604 109.33 0.10 0.5714 211.98 0.100.5726 0.15 0.5896 223.27 0.15

51.23 0.15 113.25 0.5980 336.94 0.0292 51.73 0.20 0.5784 115.12 0.20 0.5988 229.13 0.200.6116 334.77 0.0347 51.96 0.25 0.5815 0.25 0.6041 232.49 0.25 0.6200 333.12 0.0488 116.12 52.08 0.30 0.5833 0.30 0.6075 0.30 0.6256 0.0680 116.69 234.54 331.68 52.14 0.5843 0.35 117.02 0.35 0.6099 235.86 0.35 0.6297 330.82 0.0868 0.40 0.5850 0.400.6330 329.93 0.1248 52.17 117.23 0.6116 236.75 0.4052.19 0.5855 0.45 329.40 0.45 117.37 0.45 0.6131 237.38 0.6358 0.1658 52.20 0.50 0.5860 117.48 0.50 0.6146 237.86 0.500.6386 328.96 0.2344 52.21 0.55 0.5868 117.56 0.55 0.6164 238.23 0.55 0.6416 328.78 0.2859 52.22 0.60 0.5882117.61 0.60 0.6187 238.50 0.60 0.6452 328.70 0.3557 52.20 0.65 0.5905 117.60 0.65 0.6221 238.61 0.65 0.6499 328.67 0.4205 52.13 0.70 0.5944 117.46 0.70 0.6272 238.44 0.70 0.6564 328.62 0.4656 51.94 0.6010 117.07 0.75 0.6352 0.6658 328.54 0.75 237.76 0.75 0.5166 51.51 0.80 328.51 0.5782 0.80 0.6126 116.16 0.6482 236.09 0.80 0.6803 50.58 0.85 0.6333 114.22 0.85 0.6703 232.50 0.85 0.7036 328.50 0.6350 48.61 0.90 0.6731 110.20 0.90 0.7107 225.15 0.90 0.7440 328.50 0.6934 44.40 0.95 0.7591 101.81 0.95 0.7927 210.23 0.95 0.8215 328.51 0.7497 0.7916 35.09 1.00 1.0000 1.00 1.0000 179.44 1.00 1.0000 328.59 83.96 328.93 0.8342 329.51 0.8804 330.42 0.9137 0.9476 331.99 333.11 0.9656

$$q_{\text{alkene}} = 1.04 \cdot q_{\text{alkane}} - 0.048, \tag{3}$$

$$q_{\rm alkyne} = 0.91 \cdot q_{\rm alkane} - 0.059.$$
 (4)

One can be surprised that q_{alkene} and q_{alkyne} in Eqs. (3) and (4) behave differently in respect to q_{alkane} but other properties such as critical temperatures or free volumes in the series: alkane, alkene and alkyne also do not change monotously.

Equations (3) and (4) were used for VLE prediction in this paper. The prediction for a given mixture consists of the following steps:

(1) Calculation of q_{alkane} with the method of prediction described in Part 1¹ and Part 2². For example, if a mixture of 2-methyl–2-butene is considered then the

corresponding q_{alkane} is calculated for mixture of 2-methylbutane with the same alkanol at the same temperature;

 Calculation of q_{alkene} or q_{alkyne} in the considered mixture with Eq. (3) or Eq. (4);

P/kPa = 98.66, Reference 8

 x_1

0.0083

0.0130

0.0238

 y_1

0.2677

0.3247

0.4093

0.4488

0.4901

0.5215

0.5454

0.5604

0.5774

0.5868

0.5950

0.5992

0.6022

0.6064

0.6098

0.6127

0.6163

0.6188

0.6238

0.6318

0.6414

0.6554

0.6847

0.7216

0.7849

0.8364

T/K

345.29

342.95

338.99

 y_1

0.0000

0.5058

0.5721

- (3) Calculation of Θ for the considered mixture from the corresponding value of q; and
- (4) Calculation of VLE with EoSC using the determined value of Θ .

For all the investigated mixtures both the prediction and correlation were done with the same parameters of selfassociation as those used in previous parts.^{1–3} K_{ij} was calculated with Eqs (1a)–(1c). In the case of the correlation $\Theta_{i,j}$ was adjusted to each data set individually, in the case of the prediction $\Theta_{i,j}$ was calculated from the scheme described

TABLE 3. Methanol-1-heptene

Components

References

Methanol; CH4O; [67-56-1]

1-Heptene; C₇H₁₄; [592-76-7]

⁵L. S. Budantseva, T. M. Lesteva, and M. S. Nemtsov, Zh. Fiz. Khim. 49, 1844 (1975).

			J	Reference	e vapor-liq	uid equilit	rium dat	a			
T/K = 313	3.15, pred	icted	<i>T</i> /K = 333	.15, pred	icted	<i>T</i> /K = 353	3.15, pred	icted	P/kPa = 1	01.32, R	eference 5
P/kPa	x ₁	y_1	P/kPa	<i>x</i> ₁	<i>y</i> 1	P/kPa	xı	<i>y</i> 1	<i>T</i> /K	<i>x</i> 1	<i>y</i> 1
14.94	0.00	0.0000	33.26	0.00	0.0000	66.52	0.00	0.0000	366.75	0.00	0.000
40.35	0.05	0.6354	83.95	0.05	0.6079	154.24	0.05	0.5696	332.60	0.20	0.688
44.50	0.10	0.6726	96.33	0.10	0.6623	184.35	0.10	0.6440	332.15	0.30	0.702
46.01	0.15	0.6854	101.50	0.15	0.6825	198.76	0.15	0.6734	331.90	0.40	0.706
46.70	0.20	0.6915	104.15	0.20	0.6928	206.80	0.20	0.6892	331.85	0.50	0.710
47.04	0.25	0.6947	105.63	0.25	0.6989	211.71	0.25	0.6991	331.85	0.60	0.714
47.21	0.30	0.6964	106.52	0.30	0.7029	214.88	0.30	0.7058	331.75	0.70	0.719
47.28	0.35	0.6973	107.07	0.35	0.7056	217.02	0.35	0.7108	331.95	0.80	0.725
47.31	0.40	0.6976	107.42	0.40	0.7075	218.53	0.40	0.7147	332.45	0.90	0.756
47.30	0.45	0.6976	107.65	0.45	0.7090	219.62	0.45	0.7180	333.45	0.95	0.819
47.29	0.50	0.6973	107.80	0.50	0.7102	220.44	0.50	0.7209			
47.27	0.55	0.6968	107.91	0.55	0.7113	221.07	0.55	0.7236			
47.25	0.60	0.6961	107.99	0.60	0.7124	221.57	0.60	0.7265			
47.24	0.65	0.6954	108.04	0.65	0.7136	221.95	0.65	0.7296			
47.24	0.70	0.6949	108.08	0.70	0.7153	222.19	0.70	0.7333			
47.24	0.75	0.6948	108.06	0.75	0.7178	222.25	0.75	0.7382			
47.21	0.80	0.6961	107.92	0.80	0.7223	221.94	0.80	0.7453			
47.06	0.85	0 7012	107.43	0.85	0 7311	220.82	0.85	0.7572			
46.44	0.90	0.7171	105.87	0.90	0.7511	217.61	0.90	0.7800			
44.13	0.95	0.7686	100.93	0.95	0.8042	208.37	0.95	0.8329			
35.09	1.00	1.0000	83.96	1.00	1.0000	179.44	1.00	1.0000			
									$q_1 = 0.59$	98	$\sigma_1 = 0.45$
	$q_0 = 0.637$	7		$q_0 = 0.600$)		$q_0 = 0.557$	7	$q_0 = 0.60$)3	$\sigma_0 = 1.26$

above. The resulting standard deviation of pressure (σ) was calculated with Eq. (5)

$$\sigma = \left[\sum_{k=1}^{N-n} (P_{\text{exper.}} - P_{\text{calc.}})_{k}^{2} / (N - n - m)\right]^{0.5},$$
(5)

where $P_{\text{exper.}}$ is experimental pressure, $P_{\text{calc.}}$ is the calculated pressure, N is total number of the experimental points in the data set, *n* is the number of data points for pure substances, and m is the number of the adjustable parameters. In the case of correlation m=1, in the case of prediction m=0 was used.

Both isothermal and isobaric data were treated in a uniform way in this respect that the vapor pressure and vapor composition were adjusted to liquid composition and temperature via EoSC. Hence accuracy of the VLE description for both types of data is characterized by σ calculated with Eq. (5).

In case of the correlation σ depends mainly on scattering

of the VLE data, whereas in the case of the prediction σ is additionally increased by systematic error of the data and error of the prediction. Thus the error of the prediction cannot be estimated from the corresponding σ alone. One should rather consider the difference between the standard deviations of the prediction and the correlation. The two values of σ corresponding to the prediction and the correlation are given below each data set. In order to compare accuracy for data sets measured at various conditions each σ was divided by average pressure in the data set (\overline{P}) . The mean value of σ/\bar{P} for the recommended VLE data is 0.80% in the case of prediction and 0.54% for the correlation. The small difference between these two values indicates excellent accuracy of the prediction as well as the absence of significant systematic errors in the recommended data.

Components

References

Ethanol; C₂H₆O; [64-17-5]

1-Hexene; C₆H₁₂; [592-41-6]

¹⁶G. W. Lindberg and D. Tassios, J. Chem. Eng. Data 16, 52 (1971).

			1	Reference	e vapor-lic	luid equilib	rium dat	a			
T/K = 313	3.15, predi	cted	<i>T</i> /K = 333	3.15, Refe	rence 16	<i>T</i> /K = 353	8.15, predi	cted	P/kPa = 1	01.32, pre	edicted
<i>P</i> /kPa	<i>x</i> 1	Уі	P/kPa	xı	yι	P/kPa	<i>x</i> 1	Уı	<i>T</i> /K	<i>x</i> ₁	Уı
45.06	0.00	0.0000	115.11	0.141	0.268	166.32	0.00	0.0000	336.63	0.00	0.0000
55.37	0.05	0.2076	116.42	0.247	0.287	193.45	0.05	0.1665	331.01	0.05	0.1900
57.48	0.10	0.2483	117.11	0.353	0.300	205.19	0.10	0.2347	329.51	0.10	0.2447
58.16	0.15	0.2645	117.04	0.576	0.326	211.16	0.15	0.2732	328.95	0.15	0.2697
58.39	0.20	0.2725	114.07	0.675	0.346	214.40	0.20	0.2989	328.72	0.20	0.2841
58.45	0.25	0.2766	108.48	0.779	0.387	216.14	0.25	0.3180	328.62	0.25	0.2936
58.46	0.30	0.2785	95.42	0.872	0.454	216.98	0.30	0.3334	328.60	0.30	0.3003
58.45	0.35	0.2791				217.19	0.35	0.3467	328.62	0.35	0.3055
58.46	0.40	0.2787				216.93	0.40	0.3587	328.66	0.40	0.3098
58.50	0.45	0.2778				216.24	0.45	0.3702	328.72	0.45	0.3136
58.58	0.50	0.2765				215.12	0.50	0.3817	328.80	0.50	0.3174
58.68	0.55	0.2752				213.54	0.55	0.3938	328.91	0.55	0.3215
58.79	0.60	0.2739				211.37	0.60	0.4071	329.07	0.60	0.3264
58.86	0.65	0.2733				208.44	0.65	0.4224	329.31	0.65	0.3329
58.78	0.70	0.2739				204.47	0.70	0.4408	329.69	0.70	0.3423
58.39	0.75	0.2768				199.06	0.75	0.4640	330.32	0.75	0.3568
57.32	0.80	0.2842				191.53	0.80	0.4951	331.41	0.80	0.3808
54.89	0.85	0.3007				180.89	0.85	0.5394	333.31	0.85	0.4232
49.79	0.90	0.3383				165.52	0.90	0.6084	336.67	0.90	0.5041
39 35	0.95	0 4406				142.80	0.95	0 7302	342.48	0.95	0.6677
18.00	1.00	1.0000				108.34	1.00	1.0000	351.45	1.00	1.0000
			q ₁ =0.52	37 d	σ _I =0.95						
	$q_0 = 0.626$		$q_0 = 0.53$	39 d	$\tau_0 = 0.99$		$q_0 = 0.454$			$q_0 = 0.509$)

4. Description of Tables Containing the Recommended Data

Each system is presented on a separate page, which includes a table of VLE data, the corresponding figures, and auxiliary information.

For the presented systems, there are not enough data to fill the corresponding table with the three isotherms and the isobaric data set. In such a case the table is completed with the predicted "artificial" data provided that at least one positively evaluated experimental data set is available for a given system. These artificial data sets are specified as "predicted." The value of q used for the prediction is denoted as q_0 and given below each artificial data set.

Each experimental data is acompanied by a q value and standard deviation of pressure resulting from the correlation of the data with EoSC. They are denoted by q_1 and σ_1 , respectively. For comparison values of q_0 and σ_0 resulting from the prediction are also given. In Tables 8, 10, and 17 one can notice that $\sigma_1 > \sigma_0$. It occurs when the sum of squares in Eq. (5) has a similar value both for correlation and prediction. In such a case the denominator of Eq. (5), which is lower for the correlation, can produce this effect.

It was found that during the correlation of the isobaric data the temperature dependence of the binary parameter, Θ , in EoSC can be ignored, which reduces the number of adjustable parameters. As a consequence isobaric data sets were correlated in a way similar to isothermal data using Θ independent of temperature. In this case q_0 and q_1 given below the isobaric data set correspond to temperature at equimolar concentration of the data set.

If experimental vapor concentration *y* is not reported for the selected data set then the experimental data are appended with the calculated values of *y*. These values are not shown in the figures to differentiate them from the

TABLE 5. 1-Propanol-1-heptene

Components

References

1-Propanol; C₃H₈O; [71-23-8]

1-Heptene; C7H14; [592-76-7]

¹⁸I. B. Pukinskii, G. G. Chernik, G. O. Chistyakova, and N. A. Smirnova, Khim. Termodin. Rastvorov (Leningrad) 5, 157 (1982).

			1	Reference	e vapor-liq	luid equilil	brium dat	a			
<i>T</i> /K = 313	3.15, pred	icted	T/K = 333	3.15, pred	icted	<i>T</i> /K = 35	3.15, pred	icted	<i>P</i> /kPa = 1	101.3, Rei	ference 18
P/kPa	<i>x</i> ₁	<i>y</i> 1	P/kPa	\boldsymbol{x}_1	у	P/kPa	<i>x</i> 1	Уı	T/K	x _l	$\mathcal{Y}_{1,calc}$
14.75	0.00	0.0000	32.89	0.00	0.0000	65.84	0.00	0.0000	367.1	0.000	0.0000
17.62	0.05	0.1875	39.53	0.05	0.1949	78.88	0.05	0.1936	359.5	0.081	0.2424
18.23	0.10	0.2283	41.63	0.10	0.2524	84.47	0.10	0.2671	357.7	0.160	0.3144
18.46	0.15	0.2477	42.55	0.15	0.2816	87.36	0.15	0.3074	356.9	0.232	0.3493
18.56	0.20	0.2598	43.01	0.20	0.3002	89.00	0.20	0.3339	356.5	0.292	0.3701
18.59	0.25	0.2688	43.25	0.25	0.3139	89.96	0.25	0.3535	356.4	0.350	0.3872
18.59	0.30	0.2763	43.35	0.30	0.3250	90.52	0.30	0.3693	356.6	0.424	0.4076
18.56	0.35	0.2830	43.36	0.35	0.3347	90.80	0.35	0.3830	356.8	0.521	0.4339
18.51	0.40	0.2893	43.30	0.40	0.3438	90.87	0.40	0.3954	356.7	0.629	0.4665
18.44	0.45	0.2957	43.16	0.45	0.3527	90.76	0.45	0.4073	358.2	0.708	0.5026
18.33	0.50	0.3024	42.96	0.50	0.3618	90.48	0.50	0.4193	359.6	0.790	0.5540
18.19	0.55	0.3097	42.66	0.55	0.3716	90.00	0.55	0.4319	361.2	0.871	0.6359
18.01	0.60	0.3182	42.26	0.60	0.3827	89.30	0.60	0.4457	366.2	0.944	0.7824
17.76	0.65	0.3283	41.71	0.65	0.3956	88.30	0.65	0.4614	370.4	1.000	1.0000
17.41	0.70	0.3410	40.96	0.70	0.4115	86.91	0.70	0.4802			
16.93	0.75	0.3579	39.91	0.75	0.4320	84.97	0.75	0.5037			
16.23	0.80	0.3818	38.43	0.80	0.4601	82.24	0.80	0.5346			
15.20	0.85	0.4185	36.27	0.85	0.5013	78.32	0.85	0.5783			
13.63	0.90	0.4813	33.06	0.90	0.5679	72.58	0.90	0.6449			
11.15	0.95	0.6100	28.13	0.95	0.6924	63.96	0.95	0.7595			
7.11	1.00	1.0000	20.34	1.00	1.0000	50.67	1.00	1.0000			
•									$q_1 = 0.4$	42	σ ₁ =0.96
	$q_0 = 0.549$)		$q_0 = 0.506$			$q_0 = 0.457$		$a_0 = 0.4$	45	$\sigma_0 = 1.19$

experimental points. The only points shown in the figures correspond to experimental values. The approximating lines result from correlation with EoSC. For the artificial data sets only the predicted curves are shown.

5. Conclusions

The whole collection of data sets for the 18 systems given in the paper (Tables 1–18) is internally consistent, because separate data sets for various mixtures are approximated very well with the same equation, Eq. (3) or Eq. (4). This statement is supported by good agreement of q_1 and q_0 given below each experimental data set. The values of q_1 and q_0 describe the experimental data with similar accuracy as is shown by values of the corresponding standard deviations σ_1 and σ_0 . The good accuracy of the prediction demonstrated on the experimental data allows us to believe in good accuracy of the predicted data used to fill the experimental gaps in the tables.

TABLE 6	. 2-Pro	panol-1	-hexene
---------	---------	---------	---------

Components

References

2-Propanol; C₃H₈O; [67-63-0] 1-Hexene; C₆H₁₂; [592-41-6] ²⁰J. Wisniak and E. Gabai, J. Chem. Eng. Data 41, 143 (1996).

Reference vapor-liquid equilibrium data T/K = 313.15, predicted *T*/K = 333.15, predicted T/K = 353.15, predicted P/kPa = 101.3, Reference 20 P/kPa y_1 P/kPa P/kPa T/K x_1 \boldsymbol{x}_1 Уı x_1 y_1 Y1.calc x_1 45.00 0.00 0.0000 90.54 0.00 0.0000 166.15 0.00 0.0000 336.65 0.000 0.0000 49.16 0.05 0.1140 99.65 0.05 0.1232 183.20 0.05 0.1256 332.49 0.127 0.1838 50.06 0.1476 102.74 0.1716 191.16 0.1989 0.10 0.10 0.10 0.1876 332.44 0.161 50.29 103.95 0.15 0.1648 0.15 0.1987 195.19 0.15 0.2256 331.58 0.202 0.2112 50.27 0.20 0.1759 104.36 0.20 0.2168 197.20 0.20 0.2523 331.77 0.224 0.2178 50.15 0.25 0.1843 104.35 0.25 0.2304 198.06 0.25 0.2727 332.38 0.248 0.2254 0.30 0.30 0.30 0.2895 0.254 49.94 0.1914 104.10 0.2417 198.18 0.2272 332.51 49.67 0.1978 197.77 0.3042 0.35 103.64 0.35 0.2517 0.35 332.53 0.343 0.2465 49.33 0.40 0.2041 103.02 0.40 0.40 0.3179 0.347 0.2474 0.2612196.92 332.56 48.90 0.45 0.2106 102.20 0.45 195.65 0.45 0.3312 0.406 0.2595 0.2706 332.76 48.35 0.50 0.2177 101.15 0.50 0.2805 193.94 0.50 0.3447 333.28 0.494 0.2790 47.67 0.55 0.2257 99.82 0.55 0.2914 191.70 0.55 0.3591 333.96 0.555 0.2953 46.78 0.60 0.2351 98.12 0.60 0.3040 188.82 0.60 0.3750 334.41 0.590 0.3061 45.63 0.65 0.2467 95.93 0.65 0.3189 185.10 0.65 0.3935 335.00 0.639 0.3232 44.13 0.70 0.2616 93.08 0.70 0.3376 180.28 0.70 0.4158 335.71 0.690 0.3451 42.13 0.75 0.2815 89.32 0.75 0.3618 173.98 0.75 0.4438 337.09 0.739 0.3743 39.45 0.80 0.3096 84.32 0.80 0.3950 165.67 0.80 0.4808 338.32 0.791 0.4135 35.82 0.85 0.3522 77.60 0.85 0.4434 154.62 0.85 0.5325 339.71 0.818 0.4425 30.84 0.90 0.4240 68.48 0.90 0.5206 139.77 0.90 0.6101 343.92 0.895 0.5639 0.95 23.92 0.95 0.5686 55.97 0.6620 119.65 0.95 0.7400 344.39 0.908 0.5922 1.00 1.0000 1.00 1.0000 92.12 1.00 1.0000 345.70 0.923 0.6330 14.21 38.63 350.95 0.976 0.8450 355.51 1.0000 1.000 *q*₁=0.465 $\sigma_1 = 1.10$ q₀=0.518 q₀=0.416 q₀=0.466 $q_0 = 0.471$ σ₀=1.22

TABLE 7. 1-Butanol-3-ethylcyclopentene

Components

References

1-Butanol; C₄H₁₀O; [71-36-3] 3-Ethylcyclopentene; C₇H₁₂; [694-35-9]

¹²L. Kudryavtseva, H. Kirss, and G. Kuranov, Thermochim. Acta 157, 113 (1990).

			1	Reference	e vapor-liq	luid equilit	orium dat	a			
T/K = 313	15, pred	icted	<i>T</i> /K = 333	3.15, predi	icted	<i>T</i> /K = 353	3.15, pred	icted	P/kPa = 7	9.99, Ref	erence 12
P/kPa	<i>x</i> ₁	<i>y</i> 1	P/kPa	<i>x</i> ₁	<i>y</i> 1	P/kPa	x_1	<i>Y</i> 1	<i>T</i> /K	<i>x</i> ₁	Y1,calc
13.28	0.00	0.0000	29.43	0.00	0.0000	58.77	0.00	0.0000	363.01	0.000	0.0000
13.79	0.05	0.0655	30.90	0.05	0.0799	62.18	0.05	0.0901	360.75	0.073	0.1167
13.80	0.10	0.0825	31.12	0.10	0.1071	63.13	0.10	0.1286	360.61	0.100	0.1367
13.74	0.15	0.0920	31.08	0.15	0.1228	63.35	0.15	0.1521	360.29	0.140	0.1585
13.65	0.20	0.0990	30.93	0.20	0.1343	63.24	0.20	0.1695	360.23	0.207	0.1850
13.54	0.25	0.1051	30.72	0.25	0.1441	62.94	0.25	0.1839	360.63	0.300	0.2142
13.41	0.30	0.1107	30.44	0.30	0.1530	62.48	0.30	0.1969	360.72	0.354	0.2293
13.25	0.35	0.1163	30.11	0.35	0.1616	61.89	0.35	0.2094	361.49	0.475	0.2657
13.07	0.40	0.1221	29.70	0.40	0.1704	61.15	0.40	0.2218	362.96	0.570	0.3021
12.85	0.45	0.1282	29.22	0.45	0.1797	60.25	0.45	0.2347	363.61	0.608	0.3194
12.59	0.50	0.1349	28.65	0.50	0.1898	59.17	0.50	0.2486	365.16	0.669	0.3536
12.28	0.55	0.1426	27.97	0.55	0.2012	57.87	0.55	0.2640	371.40	0.834	0.5123
11.91	0.60	0.1516	27.15	0.60	0.2144	56.32	0.60	0.2815	384.22	1.000	1.0000
11.45	0.65	0.1625	26.15	0.65	0.2302	54.44	0.65	0.3021			
10.89	0.70	0.1764	24.94	0.70	0.2498	52.16	0.70	0.3271			
10.20	0.75	0.1947	23.46	0.75	0.2753	49.39	0.75	0.3586			
9.32	0.80	0.2206	21.61	0.80	0.3099	45.99	0.80	0.4002			
8.20	0.85	0.2602	19.31	0.85	0.3606	41.80	0.85	0.4583			
6.76	0.90	0.3283	16.40	0.90	0.4423	36.58	0.90	0.5457			
4.89	0.95	0.4740	12.70	0.95	0.5967	30.05	0.95	0.6937			
2.43	1.00	1.0000	7.93	1.00	1.0000	21.81	1.00	1.0000			
									q1=0.39	99	$\sigma_{i} = 0.44$
	$q_0 = 0.495$			$q_0 = 0.456$			$q_0 = 0.415$		$q_0 = 0.39$	93	$\sigma_0 = 0.51$

Components

References

1-Butanol; C₄H₁₀O; [71-36-3] 1-Butylcyclopentene; C₉H₁₆; [2423-01-0] ¹⁰H. Kirss and I. Vink, Eesti NSV Tead. Akad. Toim., Keem. Geol. 37, 118 (1988).

T/K = 333	3.15, pred	icted	T/K = 353	3.15, predi	icted	T/K = 373	3.15, predi	icted	<i>P</i> /kPa = '	79.99, Re	ference 10
<i>P</i> /kPa	<i>x</i> ₁	<i>Y</i> 1	P/kPa	x_1	<i>y</i> 1	P/kPa	<i>x</i> 1	<i>y</i> 1	<i>T</i> /K	<i>x</i> ₁	Y1,calc
3.12	0.00	0.0000	7.83	0.00	0.0000	17.33	0.00	0.0000	421.48	0.000	0.0000
5.79	0.05	0.4788	13.51	0.05	0.4407	27.89	0.05	0.4008	395.84	0.172	0.5934
6.70	0.10	0.5599	16.01	0.10	0.5407	33.59	0.10	0.5175	391.33	0.268	0.6597
7.20	0.15	0.5980	17.49	0.15	0.5892	37.26	0.15	0.5768	388.06	0.407	0.7161
7.53	0.20	0.6227	18.51	0.20	0.6203	39.90	0.20	0.6151	386.02	0.549	0.7600
7.78	0.25	0.6414	19.29	0.25	0.6435	41.95	0.25	0.6434	384.78	0.700	0.8077
7.99	0.30	0.6569	19.91	0.30	0.6624	43.63	0.30	0.6662	384.20	0.799	0.8465
8.15	0.35	0.6705	20.44	0.35	0.6788	45.05	0.35	0.6858	383.89	0.898	0.9016
8.30	0.40	0.6830	20.89	0.40	0.6938	46.29	0.40	0.7034	383.89	0.947	0.9408
8.42	0.45	0.6948	21.29	0.45	0.7079	47.38	0.45	0.7198	384.22	1.000	1.0000
8.52	0.50	0.7064	21.64	0.50	0.7216	48.37	0.50	0.7356			
8.62	0.55	0.7180	21.94	0.55	0.7353	49.25	0.55	0.7511			
8.69	0.60	0.7300	22.22	0.60	0.7493	50.06	0.60	0.7669			
8.76	0.65	0.7429	22.46	0.65	0.7641	50.78	0.65	0.7833			
8.81	0.70	0.7572	22.66	0.70	0.7803	51.43	0.70	0.8009			
8.84	0.75	0.7738	22.82	0.75	0.7986	51.99	0.75	0.8202			
8.85	0.80	0.7943	22.93	0.80	0.8201	52.45	0.80	0.8422			
8.82	0.85	0.8207	22.96	0.85	0.8467	52.78	0.85	0.8682			
8.73	0.90	0.8573	22.87	0.90	0.8812	52.92	0.90	0.9004			
8.53	0.95	0.9115	22.59	0.95	0.9289	52.75	0.95	0.9422			
8.14	1.00	1.0000	21.98	1.00	1.0000	52.09	1.00	1.0000			

1587

TABLE 9. I-DUIMIOI-I-OCIC

Components

References

1-Butanol; C₄H₁₀O; [71-36-3] 1-Octene; C₈H₁₆; [111-66-0]

 $^{15}\mbox{M}.$ Kuus, L. Kudryavtseva, H. Kirss, and O. Eisen, Monatsh. Chem. 112, 415 (1981).

			1	Reference	e vapor-liq	luid equilib	orium dat	a			
<i>T</i> /K = 333	3.15, pred	icted	<i>T</i> /K = 353	3.15, pred	icted	T/K = 373	3.15, pred	icted	<i>P</i> /kPa = 1	01.32, Re	eference 15
P/kPa	<i>x</i> ₁	<i>Y</i> 1	P/kPa	<i>x</i> ₁	<i>y</i> 1	P/kPa	<i>x</i> ₁	y_1	T/K	x_1	$y_{1,calc}$
12.44	0.00	0.0000	27.18	0.00	0.0000	53.70	0.00	0.0000	394.44	0.000	0.0000
14.81	0.05	0.1890	32.18	0.05	0.1867	62.91	0.05	0.1787	385.00	0.153	0.3205
15.57	0.10	0.2468	34.34	0.10	0.2594	67.86	0.10	0.2632	382.43	0.311	0.4192
15.92	0.15	0.2775	35.48	0.15	0.3005	70.84	0.15	0.3147	381.97	0.503	0.4988
16.11	0.20	0.2981	36.15	0.20	0.3287	72.77	0.20	0.3509	382.61	0.700	0.5902
16.21	0.25	0.3141	36.57	0.25	0.3505	74.07	0.25	0.3790	390.83	1.000	1.0000
16.26	0.30	0.3276	36.82	0.30	0.3686	74.96	0.30	0.4025			
16.27	0.35	0.3398	36.95	0.35	0.3848	75.54	0.35	0.4231			
16.24	0.40	0.3513	36.99	0.40	0.3999	75.90	0.40	0.4422			
16.19	0.45	0.3626	36.95	0.45	0.4146	76.05	0.45	0.4605			
16.10	0.50	0.3740	36.83	0.50	0.4293	76.02	0.50	0.4786			
15.98	0.55	0.3861	36.63	0.55	0.4447	75.80	0.55	0.4972			
15.82	0.60	0.3993	36.32	0.60	0.4613	75.38	0.60	0.5169			
15.60	0.65	0.4143	35.90	0.65	0.4798	74.73	0.65	0.5385			
15.32	0.70	0.4320	35.33	0.70	0.5013	73.79	0.70	0.5630			
14.93	0.75	0.4543	34.54	0.75	0.5275	72,47	0.75	0.5918			
14.39	0.80	0.4838	33.47	0.80	0.5609	70.64	0.80	0.6274			
13.62	0.85	0.5262	31.96	0.85	0.6063	68.10	0.85	0.6736			
12.49	0.90	0.5930	29.80	0.90	0.6733	64.52	0.90	0.7377			
10.77	0.95	0.7146	26.63	0.95	0.7836	59.37	0.95	0.8345			
8.05	1.00	1.0000	21.82	1.00	1.0000	51.79	1.00	1.0000			
									$q_1 = 0.3$	52	$\sigma_1 = 0.55$
	$q_0 = 0.480$			$q_0 = 0.431$	l		$q_0 = 0.378$;	$q_0 = 0.3$	54	$\sigma_0 = 0.56$

TABLE 10.	1-Butanol-	trans-2-octene
-----------	------------	----------------

Components

References

1-Butanol; C₄H₁₀O; [71-36-3] trans-2-Octene; C₈H₁₆; [13389-42-9]

¹³L. Kudryavtseva, M. Kuus, E. Piotrovskaya, and H. Kirss, Eesti NSV Tead. Akad. Toim. Keem. 34, 186 (1985).

			1	Reference	e vapor-liq	uid equilik	rium dat	a			
<i>T</i> /K = 333	3.15, pred	icted	<i>T</i> /K = 353	3.15, pred	icted	<i>T</i> /K = 373	3.15, pred	icted	P/kPa = 1	01.3, Refe	erence 13
P/kPa	<i>x</i> ₁	<i>y</i> 1	P/kPa	x_1	<i>y</i> 1	P/kPa	x_1	<i>y</i> 1	<i>T</i> /K	<i>x</i> ₁	$y_{1,calc}$
10.61	0.00	0.0000	23.69	0.00	0.0000	47.63	0.00	0.0000	398 14	0.000	0.0000
13.07	0.00	0.0000	28.85	0.00	0.0000	57.00	0.00	0.0000	384.46	0.000	0.4482
13.07	0.05	0.2138	20.00	0.05	0.2009	62.10	0.05	0.1970	383 36	0.510	0.5281
14.26	0.10	0.2104	32.30	0.10	0.2000	65.31	0.10	0.2300	383.86	0.502	0.5201
14.20	0.15	0.3331	33.04	0.15	0.3290	67.37	0.15	0.3774	386.16	0.851	0.0127
14.60	0.20	0.3500	33.52	0.20	0.3817	68.80	0.20	0.4062	390.86	1.000	1.0000
14.60	0.20	0.3642	33.83	0.20	0.4005	69.81	0.20	0.4301	570.00	1.000	1.0000
14 71	0.35	0.3770	34.03	0.35	0.4172	70.53	0.35	0.4512			
14 72	0.40	0.3890	34.14	0.40	0.4327	71.02	0.40	0.4706			
14 70	0.45	0.4007	34.18	0.10	0.4478	71.32	0.45	0.4891			
14.65	0.50	0.4126	34.10	0.50	0.4629	71.32	0.50	0 5074			
14 57	0.55	0.4250	34.02	0.55	0.4785	71.40	0.55	0.5262			
14.45	0.55	0.4384	33.81	0.60	0.4953	71.10	0.60	0.5262			
14 29	0.65	0.4536	33.51	0.65	0.5139	70.73	0.65	0.5675			
14 08	0.00	0 4715	33.07	0.70	0.5353	70.04	0.70	0 5917			
13 77	0.75	0 4937	32.45	0.75	0 5612	69.03	0.75	0.6201			
13 34	0.80	0 5230	31 59	0.80	0 5939	67 57	0.80	0.6547			
12.72	0.85	0.5646	30.36	0.85	0.6380	65.50	0.85	0.6993			
11.79	0.90	0.6293	28.57	0.90	0.7021	62.53	0.90	0.7601			
10.36	0.95	0.7442	25.91	0.95	0.8053	58.20	0.95	0.8503			
8.06	1.00	1.0000	21.82	1.00	1.0000	51.75	1.00	1.0000			
									$q_1 = 0.3$	40 a	σ ₁ =1.15
	<i>q</i> ₀ =0.481			$q_0 = 0.431$	l		$q_0 = 0.378$	8	$q_0 = 0.3$	50 a	$\sigma_0 = 0.94$

1589

TABLE 11. 1-Butanol-cis-4-octene

Components

References

1-Butanol; C₄H₁₀O; [71-36-3] cis-4-Octene; C₈ H₁₆; [7642-15-1]

¹⁵M. Kuus, L. Kudryavtseva, H. Kirss, and O. Eisen, Monatsh. Chem. 112, 415 (1981).

			1	Reference	e vapor-liq	uid equilit	orium dat	a			
<i>T</i> /K = 333	3.15, pred	icted	<i>T</i> /K = 353	3.15, pred	icted	<i>T</i> /K = 37	3.15, pred	icted	P/kPa = 1	01.32, Re	ference 15
P/kPa	<i>x</i> 1	y_1	P/kPa	\boldsymbol{x}_1	y_1	P/kPa	<i>x</i> ₁	<i>y</i> 1	T/K	<i>x</i> ₁	$y_{1,calc}$
12.02	0.00	0.0000	26.16	0.00	0.0000	51.69	0.00	0.0000	395.76	0.000	0.0000
14.41	0.05	0.1947	31.21	0.05	0.1928	60.99	0.05	0.1845	387.67	0.103	0.2713
15.19	0.10	0.2542	33.42	0.10	0.2676	66.05	0.10	0.2714	383.30	0.296	0.4226
15.56	0.15	0.2858	34.60	0.15	0.3099	69.13	0.15	0.3241	382.41	0.497	0.5074
15.75	0.20	0.3069	35.31	0.20	0.3387	71.14	0.20	0.3611	383.05	0.698	0.5996
15.86	0.25	0.3232	35.75	0.25	0.3608	72.52	0.25	0.3896	385.25	0.849	0.7156
15.92	0.30	0.3369	36.03	0.30	0.3792	73.46	0.30	0.4133	390.83	1.000	1.0000
15.93	0.35	0.3492	36.19	0.35	0.3955	74.11	0.35	0.4341			
15.92	0.40	0.3608	36.25	0.40	0.4106	74.51	0.40	0.4532			
15.87	0.45	0.3721	36.24	0.45	0.4253	74.72	0.45	0.4713			
15.80	0.50	0.3836	36.14	0.50	0.4400	74.75	0.50	0.4893			
15.69	0.55	0.3956	35.97	0.55	0.4552	74.60	0.55	0.5077			
15.54	0.60	0.4086	35.70	0.60	0.4716	74.26	0.60	0.5270			
15.34	0.65	0.4234	35.32	0.65	0.4897	73.69	0.65	0.5481			
15.08	0.70	0.4408	34.80	0.70	0.5108	72.85	0.70	0.5720			
14.72	0.75	0.4626	34.07	0.75	0.5363	71.65	0.75	0.6000			
14.21	0.80	0.4914	33.07	0.80	0.5688	69.97	0.80	0.6346			
13.49	0.85	0.5328	31.66	0.85	0.6131	67.59	0.85	0.6795			
12.41	0.90	0.5982	29.61	0.90	0.6784	64.19	0.90	0.7419			
10.74	0.95	0.7176	26.55	0.95	0.7865	59.23	0.95	0.8366			
8.05	1.00	1.0000	21.83	1.00	1.0000	51.79	1.00	1.0000			
									$q_1 = 0.3$	49 .	$\sigma_1 = 0.56$
	$q_0 = 0.480$			$q_0 = 0.431$			$q_0 = 0.378$	3	q ₀ =0.3	53 .	$\sigma_0 = 0.77$

σ₀=0.77

TABLE 12. 1-Butanol-trans-4-octe

Components

References

1-Butanol; C₄H₁₀O; [71-36-3] trans-4-Octene ; C₈H₁₆; [14850-23-8]

¹⁴M. Kuus, R. H. Kamdron, and H. H. Kirss, Tr. Tallin. Politekhn. Inst. 509, 37 (1981).

]	Reference	e vapor-liq	uid equilib	orium dat	a			
<i>T</i> /K = 333	.15, predi	icted	<i>T</i> /K = 353	3.15, predi	icted	<i>T</i> /K = 373	3.15, pred	icted	<i>P</i> /kPa = 1	01.32, Re	eference 14
<i>P/</i> kPa	xı	y_1	P/kPa	x_1	y_1	P/kPa	<i>x</i> ₁	<i>y</i> 1	<i>T</i> /K	<i>x</i> ₁	Уı
11.88	0.00	0.0000	26.09	0.00	0.0000	51.80	0.00	0.0000	395.57	0.000	0.000
14.28	0.05	0.1966	31.15	0.05	0.1932	61.09	0.05	0.1841	387.72	0.102	0.278
15.05	0.10	0.2556	33.32	0.10	0.2670	66.06	0.10	0.2698	382.91	0.299	0.440
15.41	0.15	0.2867	34.48	0.15	0.3087	69.07	0.15	0.3217	382.17	0.499	0.518
15.61	0.20	0.3077	35.17	0.20	0.3371	71.03	0.20	0.3581	382.81	0.694	0.594
15.72	0.25	0.3239	35.60	0.25	0.3590	72.36	0.25	0.3864	384.91	0.849	0.702
15.77	0.30	0.3377	35.87	0.30	0.3774	73.28	0.30	0.4100	390.83	1.000	1.000
15.79	0.35	0.3500	36.02	0.35	0.3937	73.90	0.35	0.4308			
15.77	0.40	0.3616	36.08	0.40	0.4090	74.29	0.40	0.4500			
15.73	0.45	0.3731	36.06	0.45	0.4238	74.49	0.45	0.4684			
15.65	0.50	0.3847	35.97	0.50	0.4388	74.50	0.50	0.4867			
15.55	0.55	0.3969	35.79	0.55	0.4544	74.33	0.55	0.5055			
15.40	0.60	0.4102	35.51	0.60	0.4711	73.97	0.60	0.5254			
15.20	0.65	0.4254	35.12	0.65	0.4899	73.38	0.65	0.5472			
14.93	0.70	0.4433	34.59	0.70	0.5116	72.51	0.70	0.5718			
14.57	0.75	0.4657	33.85	0.75	0.5378	71.28	0.75	0.6008			
14.06	0.80	0.4955	32.83	0.80	0.5714	69.57	0.80	0.6364			
13.33	0.85	0.5380	31.41	0.85	0.6168	67.17	0.85	0.6824			
12.26	0.90	0.6046	29.37	0.90	0.6833	63,79	0.90	0.7458			
10.63	0.95	0.7246	26.37	0.95	0.7916	58.93	0.95	0.8406			
8.05	1.00	1.0000	21.83	1.00	1.0000	51.79	1.00	1.0000			
									$q_1 = 0.33$	59	$\sigma_1 = 0.34$
	$q_0 = 0.481$			q ₀ =0.431			q ₀ =0.378	i	$q_0 = 0.33$	53 .	$\sigma_0 = 0.74$

TABLE 13. 2-Butanol-1-hexene

Components

0

0.0

0.2

0.4

0.6

mole fraction

0.8

References

2-Butanol; C₄H₁₀O; [78-92-2] 1-Hexene; C₆H₁₂; [592-41-6]

⁷D. O. Hanson and M. Van Winkle, J. Chem. Eng. Data 12, 319 (1967).

				Referenc	e vapor-lic	quid equilib	rium dat	a				
<i>T</i> /K = 313	3.15, pred	icted	<i>T</i> /K = 33	3.15, Refe	rence 7	<i>T</i> /K = 353	8.15, pred	icted	P/kPa = 1	$7/k$ Pa = 101.32, predicte $7/K$ x_1 336.63 0.00 0. 336.13 0.05 0. 336.21 0.10 0. 336.44 0.15 0. 337.12 0.25 0. 337.54 0.30 0.338.03 0.35 338.03 0.35 0. 339.27 0.45 0. 340.08 0.50 0. 341.06 0.55 0. 342.26 0.60 0.		
P/kPa	<i>x</i> ₁	<i>y</i> 1	P/kPa	x_1	<i>y</i> 1	P/kPa	<i>x</i> 1	<i>Y</i> 1	<i>T</i> /K	<i>x</i> 1	Уı	
45.06	0.00	0.0000	90.62	0.000	0.000	166.32	0.00	0.0000	336.63	0.00	0.0000	
45.75	0.05	0.0484	91.67	0.062	0.058	168.78	0.05	0.0554	336.13	0.05	0.0538	
45.55	0.10	0.0644	91.39	0.099	0.075	168.66	0.10	0.0869	336.21	0.10	0.0790	
45.20	0.15	0.0732	91.38	0.103	0.076	167.53	0.15	0.1086	336.44	0.15	0.0950	
44.81	0.20	0.0793	89.57	0.201	0.101	165.88	0.20	0.1254	336.75	0.20	0.1072	
44.39	0.25	0.0842	87.13	0.304	0.121	163.89	0.25	0.1397	337.12	0.25	0.1175	
43.92	0.30	0.0886	83.58	0.416	0.142	161.59	0.30	0.1526	337.54	0.30	0.1272	
43.39	0.35	0.0928	79.37	0.518	0.161	158.97	0.35	0.1650	338.03	0.35	0.1368	
42,79	0.40	0.0970	74.59	0.605	0.183	156.00	0.40	0.1774	338.60	0.40	0.1468	
42.08	0.45	0.1015	63.65	0.747	0.239	152.62	0.45	0.1903	339.27	0.45	0.1577	
41.25	0.50	0.1064	49.18	0.861	0.332	148.74	0.50	0.2042	340.08	0.50	0.1702	
40.24	0.55	0.1120	36.57	0.930	0.476	144.26	0.55	0.2196	341.06	0.55	0.1848	
39.02	0.60	0.1188	36.45	0.930	0.478	139.08	0.60	0.2373	342.26	0.60	0.2027	
37.51	0.65	0.1272	18.15	1.000	1.000	133.04	0.65	0.2582	343.75	0.65	0.2251	
35.61	0.70	0.1379				125.96	0.70	0.2837	345.62	0.70	0.2543	
33.23	0.75	0.1525				117.63	0.75	0.3160	348.00	0.75	0.2937	
30.20	0.80	0.1735				107.79	0.80	0.3588	351.03	0.80	0.3486	
26.30	0.85	0.2065				96.11	0.85	0.4189	354.92	0.85	0.4282	
21.27	0.90	0.2653				82.20	0.90	0.5102	359.86	0.90	0.5468	
14.73	0.95	0.3994				65.55	0.95	0.6667	366.02	0.95	0.7270	
6.15	1.00	1.0000				45.56	1.00	1.0000	373.43	1.00	1.0000	
			<i>q</i> ₁ =0.4	18	$\sigma_1 = 0.53$							
	q ₀ =0.495		q ₀ =0.4	27	$\sigma_0 = 0.90$		$q_0 = 0.361$			q ₀ =0.359)	

1.0

330 L

0.2

0.4

mole fraction

0.6

0.8

1.0

TABLE 14. 2-Methyl-2-propanol-2-methyl-2-butene

Components

References

2-Methyl-2-propanol; C4H10O; [75-65-0] 2-Methyl-2-butene; C₅H₁₀; [513-35-9]

 $\sigma_0 = 0.66$

¹⁹W. V. Wilding, N. F. Giles, and L. C. Wilson, J. Chem. Eng. Data 41, 1239 (1996).

 $\sigma_0 = 4.04$

Reference vapor-liquid equilibrium data *T*/K = 303.15, Ref. 1 *T*/K = 338.15, predicted *T*/K = 373.15, Reference 19 P/kPa = 101.32, predicted P/kPa P/kPa P/kPa *T/*K x_1 YL.cale x_1 y_1 x_1 y1.calc y_1 x_1 74.888 0.0000 0.0000 231.14 0.00 0.0000 566.85 0.0000 0.0000 311.72 0.00 0.0000 75.085 0.0238 0.0189 231.19 0.05 0.0415 569.39 0.0292 0.0320 311.81 0.05 0.0330 74.787 0.0448 0.0273 228.98 0.0644 0.0494 0.0503 312.14 0.0462 0.10 569.84 0.10 73.866 0.0975 0.0804 0.0549 0.0385 226.00 0.15 568.58 0.1034 0.0893 312.53 0.15 71.448 0.2063 0.0505 222.58 0.20 0.0933 556.99 0.2156 0.1462 312.95 0.20 0.0621 68.309 0.3161 0.0603 218.75 0.25 0.1048 537.80 0.3253 0.1898 313.44 0.25 0.0688 64.528 0.0702 313.99 0.30 0.4175 0.30 0.1158 0.4093 0.2219 0.0756 214.49 515.35 0.4399 64.600 0.4225 0.0708 209.71 0.35 0.1269 511.28 0.2340 314.64 0.35 0.0829 0.1384 0.2641 60.328 0.5150 0.0822 204.34 0.40 0.5109 315.41 0.40 0.0912 486.20 59.809 0.0840 198.28 0.45 0.45 0.1007 0.5272 0.1509 480.13 0.5447 0.2798 316.32 53.265 0.6401 0.1049 191.42 0.50 0.1647 443.87 0.6268 0.3239 317.41 0.50 0.1120 53.129 0.6404 0.1050 183.68 0.55 0.1805 439.33 0.6515 0.3393 318.71 0.55 0.1259 46.048 0.7322 0.1328 174.91 0.60 0.1989 393.87 0.7259 0.3948 320.29 0.60 0.1433 36.447 0.8270 0.1864 164.99 0.65 0.2210 341.11 0.8206 0.4968 322.20 0.65 0.1658 24.115 0.9160 0.3129 153.79 0.70 0.2482 269.74 0.9163 0.6755 324.54 0.70 0.1957 16.037 0.9606 0.4878 141.13 0.75 0.2829 235.91 0.9560 0.7970 327.42 0.75 0.2366 12.619 0.9781 0.6297 0.80 0.3290 214.59 0.9795 0.8934 330.98 0.2945 126.86 0.80 7.723 1.0000 1.0000 110.78 0.85 0.3936 195.05 1.0000 1.0000 335.37 0.85 0.3789 92.68 0.90 0.4913 340.80 0.90 0.5059 72.34 0.95 0.6568 347.41 0.95 0.7007 1.00 1.0000 49.52 355.24 1.00 1.0000 q₁=0.423 $\sigma_1 = 0.64$ $q_1 = 0.271$ $\sigma_1 = 2.41$ q₀=0.427 q₀=0.362 q₀=0.338 q₀=0.264

TABLE	15.	Methanol-1	-hexyne
-------	-----	------------	---------

Components

References

Methanol; CH₄O; [67-56-1] 1-Hexyne; C₆H₁₀; [693-02-7]

⁶M. Yu. Toome and L. S. Kudryavtseva, Tr. Tallin. Politekh. Inst. 509, 27 (1981).

			1	Reference	e vapor-liq	uid equilib	rium dat	a			
<i>T</i> /K = 313	3.15, pred	icted	<i>T</i> /K = 333	8.15, pred	icted	<i>T</i> /K = 353	8.15, pred	icted	P/kPa = 1	$P/kPa = 101.3, Refer$ $\overline{T/K} \qquad x_1$ $344.51 \qquad 0.000$ $328.04 \qquad 0.503$ $327.92 \qquad 0.537$ $328.01 \qquad 0.608$ $328.67 \qquad 0.753$ $337.85 \qquad 1.000$ $\overline{q_1 = 0.505} \qquad \sigma_1$ $q_0 = 0.504 \qquad \sigma_0$	
P/kPa	<i>x</i> ₁	Уı	P/kPa	<i>x</i> 1	<i>y</i> 1	P/kPa	x_1	<i>y</i> 1	<i>T</i> /K	<i>x</i> 1	Y1,calc
33.75	0.00	0.0000	69.99	0.00	0.0000	131.79	0.00	0.0000	344.51	0.000	0.0000
47.79	0.05	0.3132	99.04	0.05	0.3121	184.52	0.05	0.3023	328.04	0.503	0.5164
51.53	0.10	0.3746	109.16	0.10	0.3889	207.61	0.10	0.3937	327.92	0.537	0.5238
53.23	0.15	0.4032	114.17	0.15	0.4259	220.24	0.15	0.4398	328.01	0.608	0.5414
54.20	0.20	0.4212	117.14	0.20	0.4491	228.08	0.20	0.4690	328.67	0.753	0.5922
54.81	0.25	0.4347	119.07	0.25	0.4660	233.36	0.25	0.4901	337.85	1.000	1.0000
55.24	0.30	0.4459	120.42	0.30	0.4797	237.10	0.30	0.5069			
55.53	0.35	0.4561	121.38	0.35	0.4917	239.84	0.35	0.5213			
55.72	0.40	0.4658	122.06	0.40	0.5029	241.87	0.40	0.5343			
55.82	0.45	0.4756	122.52	0.45	0.5138	243.33	0.45	0.5467			
55.83	0.50	0.4858	122.77	0.50	0.5249	244.32	0.50	0.5589			
55.74	0.55	0.4968	122.80	0.55	0.5366	244.85	0.55	0.5716			
55.55	0.60	0.5089	122.59	0.60	0.5493	244.89	0.60	0.5851			
55.21	0.65	0.5226	122.09	0.65	0.5636	244.37	0.65	0.6001			
54.69	0.70	0.5388	121.21	0.70	0.5803	243.14	0.70	0.6172			
53.91	0.75	0.5587	119.82	0.75	0.6005	240.96	0.75	0.6378			
52.76	0.80	0.5843	117.67	0.80	0.6263	237.41	0.80	0.6637			
51.03	0.85	0.6197	114.35	0.85	0.6616	231.73	0.85	0.6985			
48.29	0.90	0.6739	109.05	0.90	0.7144	222.55	0.90	0.7492			
43.67	0.95	0.7710	100.15	0.95	0.8049	207.10	0.95	0.8329			
35.10	1.00	1.0000	83.97	1.00	1.0000	179.47	1.00	1.0000			
									<i>q</i> ₁ =0.5	05 a	$\sigma_1 = 0.21$
	$q_0 = 0.525$	i		q ₀ =0.496	i i		q ₀ =0.461		$q_0 = 0.5$	04 d	$\sigma_0 = 0.28$

TABLE	16.	1-Prop	oanol-	1-octy	/ne
-------	-----	--------	--------	--------	-----

Components

References

1-Propanol; C₃H₈O; [71-23-8] 1-Octyne; C₈H₁₄; [629-05-0]

¹¹L. Kudryavtseva, M. Grinchak, E. Kiryanen, I. Balashova, and E. Siimer, Eesti NSV Tead. Akad. Toim., Keem. 38, 34 (1989).

]	Reference	e vapor-liq	uid equilib	rium dat	a			
<i>T</i> /K = 333	.15, predi	cted	<i>T</i> /K = 353	8.15, pred	icted	<i>T</i> /K = 373	3.15, pred	icted	P/kPa = 1	01.32, Re	ference 11
P/kPa	xı	y_1	P/kPa	\boldsymbol{x}_1	y_1	P/kPa	<i>x</i> ₁	<i>y</i> 1	<i>T</i> /K	<i>x</i> 1	$y_{1,calc}$
9.86	0.00	0.0000	22.27	0.00	0.0000	45.31	0.00	0.0000	399.39	0.0000	0.0000
15.25	0.05	0.3767	32.83	0.05	0.3466	63.79	0.05	0.3150	373.35	0.3491	0.6429
17.73	0.10	0.4791	38.70	0.10	0.4631	75.71	0.10	0.4420	372.13	0.4411	0.6793
19.17	0.15	0.5297	42.45	0.15	0.5242	84.05	0.15	0.5129	370.33	0.5854	0.7301
20.13	0.20	0.5617	45.08	0.20	0.5635	90.23	0.20	0.5598	369.29	0.7435	0.7926
20.82	0.25	0.5852	47.04	0.25	0.5923	95.04	0.25	0.5943	369.27	0.7937	0.8174
21.35	0.30	0.6040	48.58	0.30	0.6152	98.91	0.30	0.6218	368.96	0.8766	0.8686
21.78	0.35	0.6202	49.84	0.35	0.6347	102.13	0.35	0.6450	370.10	1.0000	1.0000
22.13	0.40	0.6349	50.89	0.40	0.6522	104.88	0.40	0.6655			
22.43	0.45	0.6488	51.79	0.45	0.6685	107.25	0.45	0.6844			
22.68	0.50	0.6625	52.56	0.50	0.6843	109.33	0.50	0.7024			
22.88	0.55	0.6763	53.22	0.55	0.7000	111.16	0.55	0.7201			
23.05	0.60	0.6907	53.79	0.60	0.7162	112.78	0.60	0.7380			
23.18	0.65	0.7063	54.26	0.65	0.7333	114.19	0.65	0.7566			
23.25	0.70	0.7236	54.62	0.70	0.7519	115.39	0.70	0.7764			
23.27	0.75	0.7436	54.86	0.75	0.7730	116.35	0.75	0.7981			
23.21	0.80	0.7678	54.94	0.80	0.7977	117.03	0.80	0.8229			
23.03	0.85	0.7986	54.79	0.85	0.8278	117.32	0.85	0.8521			
22.66	0.90	0.8403	54.30	0.90	0.8667	117.08	0.90	0.8880			
21.97	0.95	0.9012	53.27	0.95	0.9201	116.02	0.95	0.9348			
20.72	1.00	1.0000	51.32	1.00	1.0000	113.62	1.00	1.0000			
,									<i>q</i> ₁ =0.3	34 6	σ ₁ =0.86
	$q_0 = 0.432$			q ₀ =0.384	Ļ		q ₀ =0.334		$q_0 = 0.3$	39 d	$\sigma_0 = 0.93$

1595

TABLE 17. 1-Propanol-1-nonyne

Components

References

1-Propanol; C₃H₈O; [71-23-8] 1-Nonyne; C₉H₁₆; [3452-09-3]

²¹E. Siimer, M. Grintchak, M. Kuus, and L. Kudryavtseva, Thermochim. Acta, 140, 49 (1989).

			1	Reference	e vapor-liq	uid equilib	rium dat	a			
<i>T</i> /K = 333	8.15, pred	icted	<i>T</i> /K = 353	3.15, pred	icted	<i>T</i> /K = 373	3.15, pred	icted	<i>P</i> /kPa = 1	01.32, Re	eference 21
P/kPa	<i>x</i> ₁	<i>y</i> 1	P/kPa	x_1	<i>y</i> 1	P/kPa	<i>x</i> ₁	y_1	<i>T</i> /K	x_1	$\mathcal{Y}_{1, calc}$
5.03	0.00	0.0000	11.58	0.00	0.0000	23.68	0.00	0.0000	424.21	0.000	0.0000
10.68	0.05	0.5462	22.66	0.05	0.5071	43.01	0.05	0.4681	375.20	0.511	0.8220
13.37	0.10	0.6476	28.99	0.10	0.6266	55.77	0.10	0.6029	372.29	0.703	0.8683
14.97	0.15	0.6927	33.11	0.15	0.6821	64.86	0.15	0.6689	371.16	0.873	0.9225
16.05	0.20	0.7197	36.07	0.20	0.7157	71.74	0.20	0.7094	370.19	1.000	1.0000
16.86	0.25	0.7386	38.32	0.25	0.7391	77.20	0.25	0.7377			
17.49	0.30	0.7533	40.14	0.30	0.7571	81.70	0.30	0.7594			
18.02	0.35	0.7657	41.65	0.35	0.7720	85.53	0.35	0.7771			
18.47	0.40	0.7766	42.96	0.40	0.7850	88.87	0.40	0.7923			
18.87	0.45	0.7867	44.12	0.45	0.7968	91.86	0.45	0.8060			
19.23	0.50	0.7963	45.17	0.50	0.8079	94.58	0.50	0.8187			
19.55	0.55	0.8059	46.13	0.55	0.8187	97.09	0.55	0.8309			
19.84	0.60	0.8155	47.01	0.60	0.8296	99.43	0.60	0.8429			
20.11	0.65	0.8256	47.84	0.65	0.8408	101.64	0.65	0.8550			
20.36	0.70	0.8366	48.60	0.70	0.8526	103.73	0.70	0.8670			
20.59	0.75	0.8488	49.32	0.75	0.8657	105.72	0.75	0.8810			
20.78	0.80	0.8633	49.98	0.80	0.8806	107.61	0.80	0.8960			
20.94	0.85	0.8814	50.57	0.85	0.8984	109.39	0.85	0.9130			
21.03	0.90	0.9056	51.05	0.90	0.9212	111.02	0.90	0.9340			
20.99	0.95	0.9413	51.32	0.95	0.9525	112.39	0.95	0.9610			
20.66	1.00	1.0000	51.15	1.00	1.0000	113.24	1.00	1.0000			
									$q_1 = 0.32$	23	$\sigma_1 = 0.96$
	q ₀ =0.433	5		$q_0 = 0.384$	ļ		$q_0 = 0.333$;	$q_0 = 0.32$	26	$\sigma_0 = 0.85$

TABLE	18.	1-Butanol	l-2-octyne
-------	-----	-----------	------------

Components

References

 $q_0 = 0.363$

1-Butanol; C₄H₁₀O; [71-36-3]

2-Octyne; C₈H₁₄; [2809-67-8]

⁹H. Kirss, E. Siimer, and L. Kudryavtseva, Thermochim. Acta, 228, 283 (1993).

q₀=0.315

Reference vapor-liquid equilibrium data												
<i>T</i> /K = 333.15, predicted		<i>T</i> /K = 353.15, predicted		<i>T</i> /K = 373.15, predicted			<i>P</i> /kPa = 79.99, Reference 9					
P/kPa	<i>x</i> ₁	<i>y</i> 1	P/kPa	x_1	<i>y</i> 1	P/kPa	<i>x</i> 1	\mathcal{Y}_1	<i>T/</i> K	<i>x</i> ₁	$y_{1,calc}$	
6.37	0.00	0.0000	14.84	0.00	0.0000	31.13	0.00	0.0000	402.84	0.000	0.0000	
8.21	0.05	0.2539	18.76	0.05	0.2407	38.50	0.05	0.2242	384.30	0.430	0.5921	
9.04	0.10	0.3424	20.88	0.10	0.3407	43.12	0.10	0.3324	383.19	0.565	0.6559	
9.52	0.15	0.3914	22.23	0.15	0,3990	46.32	0.15	0.3993	382.56	0.696	0.7216	
9.84	0.20	0.4250	23.17	0.20	0.4397	48.68	0.20	0.4468	382.55	0.799	0.7849	
10.07	0.25	0.4509	23.87	0.25	0.4712	50,50	0.25	0.4839	382.98	0.888	0.8577	
10.23	0.30	0.4727	24,41	0.30	0.4974	51.96	0.30	0.5148	384.32	1.000	1.0000	
10.36	0.35	0.4919	24.84	0.35	0.5205	53.15	0.35	0.5419				
10.45	0.40	0.5096	25.17	0.40	0.5417	54.13	0.40	0.5666				
10.52	0.45	0.5265	25.44	0.45	0.5619	54.94	0.45	0.5898				
10.56	0.50	0.5432	25.64	0.50	0.5816	55.61	0.50	0.6123				
10.58	0.55	0.5602	25.78	0.55	0.6015	56.15	0.55	0.6348				
10.58	0.60	0.5780	25.86	0.60	0.6222	56.56	0.60	0.6577				
10.55	0.65	0.5974	25.88	0.65	0.6442	56.84	0.65	0.6817				
10.48	0.70	0.6194	25.83	0.70	0.6685	56.98	0.70	0.7075				
10.37	0.75	0.6452	25.69	0.75	0.6961	56.94	0.75	0.7362				
10.20	0.80	0.6770	25.42	0.80	0.7288	56,71	0.80	0.7689				
9.95	0.85	0.7183	25.00	0.85	0.7692	56.20	0.85	0.8076				
9.56	0.90	0.7753	24.35	0.90	0.8216	55.34	0.90	0.8552				
8.98	0.95	0.8601	23.37	0.95	0.8935	53.96	0.95	0.9165				
8.09	1.00	1.0000	21.88	1.00	1.0000	51.85	1.00	1.0000				
								q ₁ =0.287		$\sigma_1 = 0.20$		

q₀=0.290

 $\sigma_0 = 0.23$

6. References

q₀=0.413

- ¹M. Góral, P. Oracz, A. Skrzecz, A. Bok, and A. Mączynski, J. Phys. Chem. Ref. Data **31**, 701 (2002).
- ²M. Góral, P. Oracz, A. Skrzecz, A. Bok, and A. Mączynski, J. Phys. Chem. Ref. Data **32**, 1429 (2003).
- ³M. Góral, A. Skrzecz, A. Bok, A. Mączynski, and P. Oracz, J. Phys. Chem. Ref. Data **33**, 959 (2004).
- ⁴M. Góral, Fluid Phase Equilib. **118**, 27 (1996).
- ⁵L. S. Budantseva, T. M. Lesteva, and M. S. Nemtsov, Zh. Fiz. Khim. **49**, 1844 (1975).
- ⁶M. Yu. Toome and L. S. Kudryavtseva, Tr. Tallin. Politekh. Inst. 509, 27 (1981).
- ⁷D. O. Hanson and M. J. Van Winkle, J. Chem. Eng. Data **12**, 319 (1967).
- ⁸J. Juza, V. Svoboda, R. Holub, and J. Pick, Collect. Czech. Chem. Commun. **42**, 1453 (1977).
- ⁹H. Kirss, E. Siimer, and L. Kudryavtseva, Thermochim. Acta **228**, 283 (1993).
- ¹⁰ H. Kirss and I. Vink, Eesti NSV Tead. Akad. Toim., Keem., Geol. 37, 118 (1988).

- ¹¹L. Kudryavtseva, M. Grinchak, E. Kiryanen, I. Balashova, and E. Siimer, Eesti NSV Tead. Akad. Toim., Keem. 38, 34 (1989).
- ¹²L. Kudryavtseva, H. Kirss, and G. Kuranov, Thermochim. Acta 157, 113 (1990).
- ¹³L. Kudryavtseva, M. Kuus, E. Piotrovskaya, and H. Kirss, Eesti NSV Tead. Akad. Toim. Keem. 34, 186 (1985).
- ¹⁴ M. Kuus, R. H. Kamdron, and H. H. Kirss, Tr. Tallin. Politekhn. Inst. 509, 37 (1981).
- ¹⁵ M. Kuus, L. Kudryavtseva, H. Kirss, and O. Eisen, Monatsh. Chem. 112, 415 (1981).
- ¹⁶G. W. Lindberg and D. J. Tassios, J. Chem. Eng. Data 16, 52 (1971).
- ¹⁷S. K. Ogorodnikov, V. B. Kogan, and M. S. Nemtsov, Zh. Prikl. Khim. (Leningrad) 33, 2685 (1960).
- ¹⁸ I. B. Pukinskii, G. G. Chernik, G. O. Chistyakova, and N. A. Smirnova, Khim. Termodin. Rastvorov (Leningrad) 5, 157 (1982).
- ¹⁹W. V. Wilding, N. F. Giles, and L. C. Wilson, J. Chem. Eng. Data **41**, 1239 (1996).
- ²⁰J. Wisniak and E. Gabai, J. Chem. Eng. Data **41**, 143 (1996).
- ²¹E. Siimer, M. Grintchak, M. Kuus, and L. Kudryavtseva, Thermochim. Acta **140**, 49 (1989).