Searches for Standard Model Higgs and Techniparticles in the e- ν plus heavy flavours final state at DØ

Lorenzo Feligioni <u>Boston University</u> for the DØ collaboration

- Electroweak Symmetry Breaking Phenomenology:
 - Standard Model Higgs
 - Technicolor
- Experimental Signatures in W + heavy flavours:
 - $-W\pi_T \rightarrow e \nu b b/c$
 - $-WH \rightarrow e v b b$
- Cross Section Limits

Electroweak Symmetry Breaking

- Mechanism of electroweak symmetry breaking
 - Standard Model and Supersymmetry:
 - Higgs field \Rightarrow Higgs boson
 - Weakly coupled, light fundamental scalar
 - Technicolor:
 - New strong dynamics: $SU(N_{TC})$ gauge theory analog to QCD
 - $N_{TC}^2 1$ new gauge bosons: technigluons
 - In analogy with QCD breaking of the chiral symmetry produces Goldstone bosons (technipions):
 - 3 technipions are eaten to become W_L and Z_L
 - others could be observed at collider experiments

SM Higgs: Production and Decays

Production cross section \rightarrow in the 1.0-0.1 pb range for gg \rightarrow H \rightarrow in the 0.2-0.02 pb range for associated vector boson production

Dominant Decays

→ bb for M_{H}^{-} < 135 GeV → WW^{*} for M_{H}^{-} > 135 GeV

Search strategy:

 M_H <135 GeV WH and ZH with H→bb M_H >135 GeV gg →H WW^{*}

SM Higgs: direct and indirect limits

- Higgs seems to be relatively light
- Until about 2008, the Tevatron is the only place to search for Higgs, and with good chances
 - Mass range favorable to Tevatron's reach

Low Scale Technicolor Models

- Large numbers of technifermions are the natural choice for several Technicolor Models
 - Walking Technicolor
 - Evade large flavor changing neutral current
 - Topcolor-assisted Technicolor
 - Many technifermions are needed to generate hard masses for quarks and leptons

- Technicolor Straw Man Model (TCSM2): K. Lane, S. Mrenna hep-ph/02110299

- Set the scale for calculating lowest-lying bound state of lightest technifermion doublets
- color singlet vectors (200 400 GeV)
 - produced in pp collisions

» Decays:

- color-singlet scalars
 - lightest technihadrons $\pi_T^{0} \pi_T^{+/-}$

» Decays:

 $\pi_{T} \rightarrow \text{ff,gg} (\pi_{T}^{0} \rightarrow bb, \pi_{T}^{+/-} \rightarrow bc \text{ dominate})$

Previous Searches

- TCSM2 Parameters:
 - N_D: number of technifermion doublets
 - $Q_D = Q_U 1$: technifermion charge
 - $sin\chi$: mixing angle
 - M_v: mass parameter (it controls technifermions coupling and decay mode)
- Previous searches

CDF RunI

- $W \pi_T$ and $\omega_T \rightarrow \gamma \pi_T$
- $M_V = 100$

DØ RunI

- − $ρ_T/ω_T \rightarrow ee$
- M_T = M_V = 100 to 400
- $M(\rho_T / \omega_T) M(\pi_T) = 60, 100 \text{ GeV}$
 - $M_V = 100 \text{ GeV} \Rightarrow W \pi_T$ channel open

LEP

- $\rho_T \rightarrow WW, \rho_T \rightarrow \pi_T W \text{ (DELPHI)}$
- $M(\pi_T) = 105 \text{ GeV } M(\rho_T)=200 \text{ GeV is}$ excluded for some TCSM parameters

W+Heavy Flavours Events Selection

- One reconstructed Primary Vertex
- One isolated electron
 - veto on the presence of another electrons suppress Z contamination
- Missing $E_T > 20 \text{ GeV}$
 - eliminates multi-jets (QCD)
- Two calorimeter jets
 - Veto on a third jet, suppresses tt background
- B-tagging
 - At least one jet has to be associated with a Secondary Vertex (W π_T)
 - Two jets associated with high Impact Parameter tracks (WH)

Lorenzo Feligioni

$W\pi_T$ Searches: single b-tag

$M(\pi_T) = 105 \text{ GeV } M(\rho_T) = 200 \text{ GeV}$ Cross sections ($W \rightarrow e_v$), $M_v = 200$:

• $W\pi_{\rm T}^{+/-} \sim 3.7 \text{ pb}$ • $W\pi_{\rm T}^{0} \sim 2.9 \text{ pb}$

DØ Run II Preliminary Data Background Signal 100 200 300 2nd leading jet p_T (GeV) 300 Missing E_T (GeV)

Data

Sources of Background

Physics Background

tt	15	
Single top	4	
W+ Heavy Flavors	33	
WZ	1	
Z→ee	2	
total	55	

Instrumental Background

QCD	7		
W + light quarks	11		
Tot Backd	73 ± 19		
Expected Signal	9.1 ± 1.3		

150

100

50

$W\pi_T$ Optimization

- H_T^e (electron $p_T + \Sigma$ jet p_T)
- p_T(jj) (p_T of the dijet system)
- Δφ(jj)
- M(jj) (invariant mass of the dijet system)
- M(Wjj) (invariant mass of the W + dijet system)

Lorenzo Feligioni

 $\int \mathcal{L} dt = 238 \text{ pb}^{-1}$

$W\pi_T$ Cross Section Limit

Optimization cuts

- ∆φ(jj) > 2.2
- p_T(jj) > 75 GeV
- H_T^e < 200 GeV
- Mass Window

data background signal				
Baseline + $\Delta \phi$	28	28.3±7.1	7.5±1.1	
+ p _T (jj)	22	24.7±6.2	7.4±1.1	
+ H _T ^e	17	18.3±4.6	7.2±1.1	
+ mass window	4	6.6±1.6	6.2±0.9	

$$W_{π_T}$$
 M($ρ_T$) = 200 GeV M($π_T$) = 105 GeV
⇒ 95% C.L. upper limit 6.4 pb

Wbb and WH searches : Double Tag

Summary

- DØ has begun to search for new physics in the W+2 jets channel
 - W(ev) H : preliminary update to previous PRL result.
 - (result with 174 pb-1 published in PRL 94, 091802)
 - W(ev) π_T : approaching sensitivity for unexplored TCSM phase space
 - Full dataset is being analyzed
 - Fast Monte Carlo simulation will establish new exclusion region

