CURATORIAL NEWSLETTER	DATE: July 17, 1979	NO. 24
	PATRICK BUTLER, JR., LUNAR SAMPLE CURATOR CURATORIAL BRANCH, SN2, NASA-JSC HOUSTON, TEXAS 77058 (713)483-3274	

CONTENTS

PAGE

1. LAPST Meetings and Requests for Samples
2. Lunar Highlands Newsletter
3. Cores
4. Lunar Sample Building
5. Samples with Restricted Access
6. Padded Bag Samples
7. Sieving of Soils

ATTACHMENTS

LAPST Membership and Advocate Lists
Core Synopses - 15010/15011 and 14220

LAPST AND REQUESTS FOR SAMPLES

The Lunar and Planetary Sample Team (LAPST) met May 17-20, and recommended allocation of 180 samples to 19 Principal Investigators. Their next meetings will be August 16-19 and November 16-19, 1979. Please submit requests for samples at least a week or two in advance of the meeting dates to allow time for assembly of background information. Also, remember to include your schedule for studying the samples so appropriate priorities can be set for their preparation.

LUNAR HIGHLANDS NEWSLETTER

Volume 1, number 3, was mailed July 16. Let us know if you want to receive a copy but have not as yet.

CORES

Attached are the post-dissection synopses for double drive tube 15010/15011 and single drive tube 14220. The core schedule as given in Newsletter 19 (April 1978), has been set back by the delay in completion of the Lunar Sample Building. Consequently, the dissection of Apollo 15 drive tubes 15007, 15008, and 15009, the first to be done in the new laboratory, will be 3 to 6 months behind schedule. It should be possible to regain some of this lost time in 1980, however.

LUNAR SAMPLE BUILDING

Work was completed by the construction contractor several weeks ago. The final cleanup and installation of plumbing and nitrogen cabinets (by curatorial technicians) are underway. Following checkout of all systems and approval of operating procedures, the samples will be moved to the new vault and processing operations will begin in the new laboratories. Transfer of samples should take place in the third or fourth week of August.

On July 20, the tenth anniversary of the Apollo 11 landing, the first floor display area and the second floor viewing room into the new laboratories were opened to the public. Exhibits in the display room describe the samples and their care and study. A recorded explanation of laboratory activities is played for visitors to the laboratory viewing area on the second floor. It is expected that the Lunar Sample Building will have several hundred thousand visitors every year.

SAMPLES WITH RESTRICTED ACCESS
It is the function of LAPST to advise not only on allocations of samples for scientific study, but also on protection of the overall integrity of the collection. Since the collection contains many samples with unique or special characteristics that could be degraded or lost through routine handling or allocation, both the Curatorial staff and LAPST must be alert to which samples these are. Various designations on inventory listings and other means have been used to flag these samples, but the flagging systems are not fully effective and inappropriate use of some of these samples has been prevented only by the alertness of individuals familiar with the particular sample.

Now to more fully assure protection of special samples, those samples will be physically separated from the rest of the collection and all stored together in cabinets with access restricted to the Curator. These samples will become a reserve or Restricted Access Material (PAM) collection. Comments in general and suggestions of specific candidate RAM samples are solicited from sample investigators.

Establishment of the RAM collection will require identification by sample number of each such sample and an inclusion document stating specific reasons for selection of this sample for the RAM collection. It is intended that only parts of rocks will be in this collection. Access to a RAM sample for sampling or removal will require a removal justification document that addresses the specific reasons of the inclusion document. Eventually, listings of the RAM materials, along with brief reasons for the inclusion of each, will be published. For the time being, the samples at the Brooks Storage Vault will be considered part of the RAM collection.

PADDED BAG SA:IPLES

Apollo 16 rocks 67215 and 67235 were collected in special padded bags in order to have samples for study of the outermost surface layer of materials exposed on the Moon. Although to date no studies of these surfaces have been proposed, the rocks have received careful and minimum handling and have not been subdivided or allocated for any other purpose. Now we are considering examination of the rocks as breccias in conjunction with the Highlands studies. Tentative plans are to saw or break the rocks in two, set one part aside for preservation of the surfaces, and study and allocate material from the other part. Since this procedure would entail some handling and would also provide an opportunity for getting a surface sample for study, we are inviting suggestions on handling the rocks and proposals for making surface studies. It should be noted that the rocks are probably dusty all over from the adhering soil collected with the rocks.

SIEVING OF SOILS

During the preliminary examination period after receipt of the samples from the Moon, most of the soils were sieved at $10 \mathrm{~mm}, 4 \mathrm{~mm}, 2 \mathrm{~mm}$, and 1 mm . In the past two months, to prepare samples for the Lunar Highlands studies, stocks of less than

1 mm size fractions haye been sieved for 11 Highlands soils. Eventually, we hope to haye stocks of these smaller size fractions for all of the plentiful soil samples, and for core material as well, for rapid filling of allocations. To build these stocks gradually, the curatorial laboratories will do a reasonable amount of sieving in the preparation of allocations. This will conserve sample material (iany studies use only certain size fractions), save effort (most time is spent in preparation and cleaning sieves and relatively little extra time is taken in sieving a larger sample), and produce a uniform product (the techniques and equipment used are those used by D. S. McKay).

The sieves are Buckby-Meares with nickel mesh and stainless steel frames. An epoxy cement is used to seal the mesh in the frame so grains cannot work their way into the inside of the frame. For one set of sieves, a flash coating of rhodium was applied over the nickel mesh. The sieve sizes in microns are 1000, 500, 250, 125, $90,75,45,20$, and 10 . Fractions with few subdivisions are made for some allocations, as for example 1000-90, $90-20,20-10$ and <10 microns. For making grain mount thin sections, however, the size spread should not be too great or the largest and smallest grains cannot both be given proper representation in a section at a particular thickness.

Dr. William V. Boynton	S. McKay
University of Arizona	NASA-Johnson Space Center
Lunar and Planetary Laboratory	SN6/Geology Branch
Department of Lunar Science	Houston, TX 77058
Tucson, AZ 85721	(713)483-5171 - FTS: 87-525-5171
Dr. Charles Hohenberg	Dr. Charles Meyer, Jr.
Laboratory for Space Physics	NASA-Johnson Space Center
Washington University	SN7/Geochemistry Branch
St. Louis, M0 63130	Houston, TX 77058
(314)889-6225 - FTS: (OPR 87-279-4110)	(713)483-4715-FTS: 87-525-4715
Dr. Robert N. Houstey	
Science Center, Rockwell Int'l	Dr. Carleton B. Moore
1049 Camino Dos Rios	Center for Meteorite Studies
Thousand Oaks, CA 91360 (809)498-4545 - FTS: 87-798-2000	Arizona State University Tempe, AZ 85281 (602)965-3576 - FTS: 87-766-3576
Mr. Richard S. Johnston, Chairman	
NASA-Johnson Space Center	Dr. James J. Papike, Vice-Chairman
SA/Space and Life Sciences Directorate	State University of New York
$\begin{aligned} & \text { Houston, Texas } 77058 \\ & \text { (713)483-2251 - FTS: } 87-525-2251 \end{aligned}$	Dept. of Earth \& Space Sciences Stony Brook, NY 11794
Dr. Michael E. Lipschutz	
Purdue University	Dr. Lawrence A. Taylor
Department of Chemistry	University of Tennessee
Lafayette, IN 47907	Department of Geology
(317)749-2724-FTS: 87-331-7000	Knoxville, TN 37916 (615)974-2366 - FTS: 87-855-2366
Dr. J. Douglas MacDougall	
University of California, San Diego	
Scripps Institution of Oceanography	
Geological Research Division	
P.0. Box 1529	
La Jolla, CA 92037	

ADVOCATE LIST				
\llcorner		GROUP A		
HOUSLEY		MCKAY		TAYLOR
Adams		Albee		Bell
Brownlee		Bence		El Goresy
Burns		Drake		Goldstein
Buseck		Haggerty		Hays
Butier		Hollister		Huebner
Keil		James		Lovering
Lofgren		Papike		Roedder
Mckay		Ringwood		Rutherford
Phinney		Sclar		Smith, J.V.
Reid		Taylor, L.		Weiblen
Sato		Takeda		Weill
Stoffler		Wood		Winzer
		GROUP B		
MOORE	BOYNTON	LIPSCHUTZ	HOHENBERG	MEYER
Clayton	Arnold	Anders	Blanchard	Ahrens, L.
Des Marais	Kirsten	von Gunten	Geiss	Bhandari*
Epstein	Marti	Haskin	Nyquist	Blanford*
Gibson	Meyer	Laul	Pepin	Fireman
Heymann	Murthy	Morgan	Perkins	Lal*
Kaplan	Tatsumoto	Reed	Reynolds	Philpotts
Rhodes	Tilton	Schmitt	Schaeffer	Pillinger
Thode	Turner Wasserburg	Wanke Wasson	Signer Walker	Taylor, S.R. Tombrello
*Track requ	to Housley			

GROUP C
MACDOUGALL

```
Aronson
Banerjee-Hoffman
Burns
Bussey
Dollfus
Fuller
Gose
Hora!
Larsen
Runcorn
Spetzler
Strangway
```

Ahrens
Brownlee Coms tock Gold Hapke Hartung Hörz Housley Klein Simmons
Tittman Uhlmann

CORE SYNOPSIS

Sample No. 14220, a single, 2 cm diameter drive tube, taken to augment trench samples 14148 , 14149 and 14156. Field relationships: Core 14220 was taken at station $G, 6$ meters East from the trench, which sampled a surficial dark brown layer, then a thin layer of small, glassy-like pebbles, and a third layer, 18 inches below the surface, of some very light material. Station G was located 100 meters East from $100-\mathrm{m}$ North Triplet Crater, on the Fra Mauro Plains, and was 200 m Southwest from the Fra Mauro Ridge, 1 km Southwest from Cone Crater, and 500 m Southwest from the continuous ejecta blanket of Cone Crater.
Samnle history - possible contamination or disturbance: The core tube was driven to a depth of approximately 36 cm , but contained approximately 16 cm of soil, for a 45% sample recovery; the exact ouantity and location of missing material is unknown. After opening, soil was found on all sides of the plug, which was supposed to have been at the lunar surface, and there was 0.575 gm of soil above the plug. The jull ring hole at the top of the core was open, and the largest rock fragments in the soil above the plug could have fit through the hole. Hence, it is not certain that the 0.575 gm of soil came through the pull ring hole from outside the core tube, or from the top of the soil column within the core.

Core 14220 was collected on 5 February, 1971, and placed in the Apollo Lunar Sample Return Container (ALSRC) No. 1006, which was sealed on the moon, and maintained a pressure of 60 microns Hg until opened on 12 February, 1971, in the SNAP line of the Lunar Receiving Laboratory. The core was placed in bolt-top container 266-1004, and stored in dry N_{2} until 9 May, 1979. Dissection took place between 17 and 24 May, 1979.
Length: 16.0 cm , with sloping bottom, slope of $\pm 0.1 \mathrm{~cm}$. Total mass: 80.7 gm . Bulk density: $1.69 \mathrm{gm} / \mathrm{cm}^{3}$ Numbering of samples: Dissection took place in one pass, and dissection splits are numbered consecutively downward from the top of the core. About one-third of the diameter of the core was left in the core tube for impregnation with epoxy in order to provide a permanent stratigraphic record of the core, and to provide material for thin sections.
Summary of stratigraphic units identified during dissection:

Unit	Depth/samples	light/dark color	relative grain size	major petrographic components
6	$\begin{aligned} & 0.0-5+\mathrm{cm} \\ & 14220,7-. \overline{28} \end{aligned}$	dark	fine, with large clasts $9 \%>1 \mathrm{~mm}$	Unit 6 is unusually friabie. In the 1 mm fines, agglutinates, fragmented glass and soil breccia are abundant throughout the unit. and there are spot concentrations of light-colored annealed-matrix breccia. Rounded, tan to whitish granules and silvery droplets are common in the $<1 \mathrm{~mm}$ fines. Appears comparable to trench soil 14148.
5	$\begin{aligned} & 5.5+ \\ & 142 \overline{2} 0,29 \\ & \hline-2,36 \end{aligned}$	dark	$\begin{gathered} \text { moderately } \\ \text { fine } \\ 10 \%>1 \mathrm{~mm} \end{gathered}$	Fragmented mineral grains are noticeably commoner in unit 5 than 6, and the coarse fraction shows an abundance of lightmatrix breccia. Vesicular glass is concentrated at the bottom of the unit (as well as elsewhere in the core) but the soil is otherwise not comparable to the trench middle, sample 14156.
4	$\begin{aligned} & 7.5-9.0 \mathrm{~cm} \\ & 14220,37-.42 \end{aligned}$	```moderately dark, whitish clasts```	$\begin{gathered} \text { coarse } \\ 14 \%>1 \mathrm{~mm} \end{gathered}$	Large clasts of light-matrix breccia are very conspicuous in this unit, but a variety of annealed-matrix breccia fragments are also common. Fragmented mineral grains predominate in the <1 mm fines from here to the base of the core, with tiny whitish granules less conmon, glass and metallic droplets relatively rare.
3	$\begin{aligned} & 9.0-11.0 \mathrm{~cm} \\ & 14220,43-, 50 \end{aligned}$	moderately dark	$\begin{aligned} & \text { fine } \\ & 5 \%>1 \mathrm{~mm} \end{aligned}$	Agglutinates, basalt fragments and dark annealed-matrix breccia particles predominate in the coarse fraction; fines as above.
2	$\begin{aligned} & 11.0-12.5 \mathrm{~cm} \\ & 14220,51-, 56 \end{aligned}$	moderately dark	very coarse $26 \%>1 \mathrm{~mm}$	fragmented vesicular glass and soil breccia are the only common coarse components in this unit; fines as unit 4.
1	$\begin{aligned} & 12.5-16.0 \mathrm{~cm} \\ & 14220,57-, 68 \end{aligned}$	moderately dark	$\begin{aligned} & \text { moderately } \\ & \text { fine } \\ & 8 \%>1 \mathrm{~mm} \end{aligned}$	This unit contains a variety of particle types, including agglutinates, fragmented glass, soil breccla, basalt, and dark annealed-matrix breccia. It appears to be very similar to trench botton sample 14149.

DRIVE TJBE 14220: LOCATION OF DISSECTION SAMPLES
Fine (<imm) Fraction Coarse ($\boldsymbol{>}$ imm) Fraction Special Samples

Lithologic symbols in columnar section:
Agglutinates Fragmented vesicular glass Δ Soil Breccia Dark-matrix breccia Basalt

* The rind is a thin layer of soil immediately adjacent to the core tube wall; this soil has been smeared during the sampling process, and is removed to improve the purity and integrity of ma erial within the core.

14220, P. ${ }^{2}$
5 June, 1979

CORE SYNOPSIS

Sample Number: 15011 , top half of a double, 4 cm diameter drive tube(15010/15011)

Field Relationships: Core 15010/15011 was taken on a mare surface 20 m from the rim of Hadley Rille at station 9A. The tube was driven full depth, but the last $20-30 \mathrm{~cm}$ were more difficult to penetrate.

Sample History - possible disturbance or contamination: The core was collected August 2, 1971 and placed in an unsealed Sample Collection Bag. This bag, after being exposed to spacecraft cabin and terrestrial atmosphere on the return flight, was sealed in 2 teflon bags and a polyethylene bag on board the recovery ship as quickly as possible after splashdown on August 7, 1971. The sample bag was opened in the Lunar Receiving Laboratory in a nitrogen atmosphere cabinet August 20, 1971. During sampling the top of the tube was tipped downward about 50° from the horizontal before the keeper confined the upper surface of the soil. Loss of soil from the bottom of 15011 was possible as the two tubes were separated by unscrewing. The capacity of the tube was 34.9 cm length of soil. When the keeper was emplaced after separation and capping, the tube contained 29.2 cm of soil. Incomplete filling of tube and compaction of soil may account for some of this difference in length. About 8 g of soil was found inside the tube on top of the keeper (top end of core). In this configuration, this excess soil was not considered part of the core. Whether this soil, which was equivalent to 3-4 mm core depth, came from inside the core by leaking through small holes in the keeper or from outside the core through larger holes in the plug is not now known. Grain size data indicated that probably some of the 8 g , but definitely not all of it, came from inside the tube. Between 1971 and 1978 the core was stored horizontally and some settling of soil occurred, especially at the ends of the core. The only unit which was not affected was Unit 7 ($14.0-20.0 \mathrm{~cm}$). This unit was particularly dense and coherent. Problems arising from mixing of soil due to settling may be minimized by examining soil from the second or third dissection, since the void created by settling of soil was confined to the volume removed in the first dissection. Retention of stratification away from the ends of the core was evident from distinct unit boundaries observed in the 1977 x-radiographs.

Weight, Length, Density:

	Before opening tube	trus
Weight	660.7 or 651.5* g	647.8 g
Length	29.2 cm	26.4 cm
Density	1.70 or $1.68 \mathrm{~g} / \mathrm{cm}^{3}$	1.84

Cross-dissection: In order to characterize lunar surface processes, the uppermost 4 mm of core 15011 were dissected transversly before the core was extruded into the longitudinal dissection receptacle. For the crossdissection, the core was place upright, and four discs of soil each 1 mm thick, were removed. Normally five 1 mm discs are removed, but the extruder failed to push the sample completely into the 5 mm receptacle, so only the top 4 mm were dissected. For this core each disc of soil was removed in halves. The upward half during storage and the downward half were processed as separate
samples. This was done because settling during storage had caused a void space to form on the side upward, and, therefore, the side downward was believed more stratigraphically preserved. Samples were sieved at 1 mm , and the size fractions were numbered as shown below. Then the core was turned horizontally and extruded into the dissection receptacle, where it was dissected lengthwise in 5 mm increments. Three passes down through the diameter were required to complete the dissection.

Longitudinal Dissections: In a standard dissection, samples are sieved at 1 mm . under organically uncontaminated (CP-7) conditions. To produce samples with reduced contamination, the material in the second dissection was not sieved, was subject to minimal handling with specially acid washed tools, and should be suitable for Pb analyses. Each dissection is assigned a separate series of split numbers as shown in the diagram below.

Summary of Stratigraphic Units Identified During Dissection：The color of the core was $5 Y 3 / 1$ to $4 / 1$ on the Munsell Soil Color Scale，a medium to dark gray．No gradations were noted except a band containing 5 －10\％ lighter color mottles from 3－6 cm depth．Among rock fragments greater than 1 mm ，mare basalt was the dominant lithology in all units．The abundance of glass and anorthositic fragments was enriched in the upper units．Variance in weights of lithic components among units was much less in 15011 than 15010．Because the core appeared uniform in color， grain size，and lithic composition，unit boundaries were mainly determined from texture and densities observed in x－radiographs．Typically，core unit boundaries are not mainly determined by x－ray data．Lithic abundance numbers given below are directly comparable with those for 15010.

Unit	Septh	Sample Numbers			Masor Lithologic Components			
					E	E		E
						\underline{x}	$\frac{E}{\pi}=$	．${ }^{\text {x }}$
					合可	$\stackrel{\sim}{n}$	号品	¢
				－	－	号臨	的㕊	容唇
					㕺家	気感	踥竞	旡會
	0．4－6．0 cm		medium grain size	． 087	． 051	． 020	． 012	．005
8	6.0 － 14.0 cm		finer grain size	． 056	．031	． 013	．007	． 04
7	14．0－20．0 om		finer grain size， more dense	． 094	．063	． 220	．008	． 002
6	$20.0-26.4 \mathrm{~cm}$		medium gratn size	． 101	． 080	． 014	． 009	． 002

drive tube 15011
LOCATION OF SAHPLES, SECOND DISSECTIUN MINIMALPB)
Interval Samples Special Samples

LITHOLOGIC SYMBOLS

Basalt

Soil Breccia

Anorthositic

DPIVE TUBE 15011
LOCATION OF SAMPLES, FIRST DISSECTIOA (STANDARD)
Interval Samples Interval Samples Special Samples
Fine ($<1 \mathrm{~mm}$) Coarse ($s 1 \mathrm{~mm}$) fraction Fraction

Lithologic 5ymbols

Basalt

Soil Breccia

Glass

DRIVETUBE 15011

LOCATION OF SAMPLES, THIRDDISSECTIOH (STANDARD)

Lithologic Symbols

COPE SYNOPSIS

Sample Number: $1,501 \dot{0}$, bottom half of a double, 4 cm diameter drive tube (15010/15011)

Field Relationships: Core 15010/15011 was taken on a mare surface 20 m from the rim of Hadley Rille at station 9A. The tube was driven full depth, but the last $20-30 \mathrm{~cm}$ were more difficult to penetrate.

Sample History - possible disturbance or contamination: The core was collected August 2, 1971 and placed in an unsealed Sample Collection Bag. This bag, after being exposed to spacecraft cabin and terrestrial atmosphere on the return flight, was sealed in 2 teflon bags and a polyethylene bag on board the recovery ship as quickly as possible after splashdown on August 7, 1971. The sample bag was opened in the Lunar Receiving Laboratory in a nitrogen atmosphere cabinet August 20.1971. After the keeper was emplaced by the astronaut, the tube contained only 32.9 cm of soil (it should have contained the maximum capacity of 34.9 cm). Compaction may account for some of the difference in length. Lunar soil may have been lost from the top of 15010 when the two tubes were separated by unscrewing and from the bottom of the tube before it was capped. Astronaut Scott had some difficulty with screwing the plug in the top end of the core. Some mixing of soil in the bottom 6 cm may have occurred when the large 5 cm -long rock entered the 4 cm diameter drive tube. 1977 x radiographs revealed that some settling of soil occurred near the ends of the core while the core was stored horizontally. Void areas created by settling were confined to the ends of the tube and to the volume of soil removed in the first dissection.

Weight, Length, Density:

Weight
Length Density

Before opening tube
740.4 g
32.9 cm
$1.69 \mathrm{~g} / \mathrm{cm}^{3}$
$\frac{\text { After extrusion }}{733.8 \mathrm{~g}}$
$28.9 \mathrm{~cm}^{*}$
$1.91 \mathrm{~g} / \mathrm{cm}^{3}$
*approximately 1 cm of soil was removed from the bottom of 15010 before extrusion (sample no. 3)

Longitudinal Dissections: In a standard dissection, samples are sieved at 1 mm under organically uncontaminated (CP-7) conditions. To produce samples with reduced contamination, the material in the third dissection was not sieved and was subject to minimal handling with specially acid washed tools. These samples should be suitable for Pb analyses. Each dissection was assigned a separate series of split numbers as shown below.

Summary of Stratigraphic Units Identified During Dissection: The color of the core was $5 \mathrm{Y} 2 / 7$ to $4 / 1$ on the Munsell Soil Color Scale, a medium to dark gray. Soil in 15010 appeared darker at the top than at the bottom. A diffuse lighter color band occurred at $36-38 \mathrm{~cm}$. Below a vague, marbled boundary at 46 cm , the core appeared lighter in color. Among rock fragments $>1 \mathrm{~mm}$, mare basalt was the dominant lithology in all units. The units in 15010 were more coarse and showed more variability in grain size and lithology of the $>1 \mathrm{~mm}$ fragments than units in 15011, the upper part of the core. Lithic abundance numbers given below are directly comparable with those for 15011. The term "relative abundance" used in the diagram means weight ratio of a component compared to basalt. A 40 g basalt rock was found in the bottom of the core. Because this rock completely dominates compositional data, figures are given both with and without the large rock included in the calculations.

DRIVETUBE1501G
LOCATIO: JF SAAPLES, FIRST DISSECTIUN (STANUARL)

DRIVETUBE15010
LOCATION OF SAMPLES, SECONDDISSECTIOA (STAADARD)

Ltthologic Symbols

LOCATIONOFSAMPLES.THIRDDISSECTION(MINIMALPB)

RL $=$ soil sample taken in red light
Lithologic Symbols

Basalt

Soil Breccia

Glass

Anorthositic Brectia

LOCATION OF SAMPLES, FOURTHDISSECTIOH (STAHDARD)

Lithologic Symbols

Easal:

Soil Breccia

Glass

Brescia
mase-sc

