Gene Expression Patterns in Respiratory Hypersensitivity

J.F. Regal, A.L. Greene, M.S. Rutherford, R.R. Regal, C. Giulivi, G.H. Flickinger, J.A. Hendrickson, M.E. Mohrman

Medical School Duluth

College of Veterinary Medicine

Department of Mathematics and Statistics

UNIVERSITY OF MINNESOTA

Hypothetical Effector Pathways for Asthma

Hypothesis

Different antigens evoke unique effector mechanisms leading to the asthma phenotype

Hypothetical Effector Pathways for Asthma

Trimellitic Anhydride and Ovalbumin

Mine & Rupa (2003)

Trimellitic Anhydride MW 192

Ovalbumin MW ~45,000

Why Ovalbumin and TMA?

Ovalbumin (OVA)

- Extensive information regarding effector mechanisms in murine asthma models using ovalbumin
- Occupational allergen and reference protein allergen in immunology
- Trimellitic anhydride (TMA)
 - Known respiratory occupational allergen

Specific Aim

Identify differentially expressed transcripts in the lungs of mice sensitized and challenged with either ovalbumin (OVA) or trimellitic anhydride (TMA)

Unique patterns of gene expression with different allergens suggest unique effector mechanisms or reflect heterogeneity of asthma symptoms.

Experimental Design

- Genetically inbred mouse, BALB/c
- Sensitized and challenged by the same experimental protocol for both OVA and TMA
- Measurement of the Asthma phenotype
 - Eosinophil infiltration into the lung
- Affymetrix Microarrays of whole lung
 MG_U74Av2 array (>12,000 probe sets) or MG_430 2.0 array (>45,000 probe sets)

Why Affymetrix Arrays?

- Commercially available
 - Affymetrix does GeneChip design, quality control and annotation
 - Murine Genome Chips
 - MG_U74A v2 + MG_U74Bv2 + MG_U74Cv2
 - MG_430 2.0
- University of Minnesota Core Facility supports Affymetrix products

Dose and Dosing Issues

- Sensitization and challenge regimen
 >Based on previous experience
 - Identical routes of exposure
 - To insure that any differences in the biological response were due to allergen rather than sensitization/challenge regimen.
 - Goal: Similar change in lung eosinophils in the effector phase

Experimental Design Sensitization and Challenge Regimen

Lung Eosinophils

Comparison of OVA/OVAc vs TMA/TMAc: No difference

Lung Tissue (RNAlater or flash frozen in liquid N₂)

RNeasy (Qiagen)

Total RNA (Quantitate by Spectrophotometer)

Superscript Choice (Invitrogen Life Technologies)

ds cDNA (Analyze by Gel Electrophoresis)

In vitro transcription with ENZO kit (Affymetrix)

Clean up with RNeasy (Qiagen)

Biotin-Labeled cRNA (Analyze by Gel Electrophoresis)

Fragmentation buffer (Affymetrix)

Fragmented cRNA (Analyze by Gel Electrophoresis)

Mouse Chip U74Av2 \longrightarrow Data Analysis

N=6-8 chips/treatment group; 1 animal per chip

How many chips?

- What is the optimal 'n'?
 - Power analysis in microarray experiments is complicated by the number of comparisons and the goal of detecting inter-related genes
 - Cui and Churchill (2003) recommend an 'n' of 6 or more to detect relevant biological changes
 - > \$\$\$\$
- To pool or not to pool
 - **> \$\$\$\$**
 - Quantity of tissue sample limits RNA yield
 - With pooling, other biological measures cannot be correlated with individual animal's genetic expression
 - Pooling may result in a larger SE than non-pooling i.e. you don't gain as much information as you might expect.
 - Still an area of active investigation

Getting good RNA

RNase

- > Abundant in eosinophils and the allergic lung
- Inflamed lungs are more susceptible to RNA degradation than control lungs

Tissue processing

- Lung lobes must be removed quickly (<1min) and immediately flash frozen or immersed in RNA*later*
- Lung is minced immediately in RNA*later*
 - Small pieces, tube rotation

Data Analysis

- Determination of Intensities of Probe Sets
- Quality Control of GeneChip
- Normalization
- Determination of Differentially Expressed Genes

Data Analysis

Determination of Intensities of Probe Sets

- Affymetrix Microarray Suite 5.0 software
- GCOS = Gene Chip Operating Software
 - To produce the .cel file

Quality Control of GeneChip

- > Affymetrix Microarray Suite 5.0 or GCOS
 - Inspect image for gross flaws and abnormalities
 - Compare 5'/3' ratios, % present calls, background level and presence of spike controls in ChipReport to Affx standards
- dChip software
 - Used to identify outliers
 - Newer statistical methods are superior
- Bioconductor
 - Box plots
 - Plots of residuals and weights from robust model fitting

Example of gross flaw or abnormality in AFFX images

Data Analysis

Determination of Intensities of Probe Sets

- Affymetrix Microarray Suite 5.0
- GCOS = Gene Chip Operating Software
 - To produce the .cel file

Quality Control of GeneChip

- > Affymetrix Microarray Suite 5.0 or GCOS
 - Inspect image for gross flaws and abnormalities
 - Compare 5'/3' ratios, % present calls, background level and presence of spike controls in ChipReport to Affx standards.

> dChip

- Used to identify outliers
- Newer statistical methods are superior

Bioconductor

- Box plots
- Plots of residuals and weights from robust model fitting

Outliers Identified by Bioconductor but not by Affx

Weights

Residuals

Data Analysis

- Determination of Intensities of Probe Sets
- Quality Control of GeneChip
- Normalization
- Determination of Differentially Expressed Genes

Data Analysis

- Normalization by the RMA Method
 - Robust Multichip Analysis
 - Accomplishes background correction, normalization and calculation of expression levels from chip intensities.
 - Increases the power to detect effects for genes with low expression
 - Uses only Perfect Match values from Affymetrix chips, not Mismatches
 - Does not utilize present or absent calls from Affymetrix software
 - Programs
 - GeneTraffic
 - Bioconductor
 - Etc

RMA Normalization

GeneTraffic

Commercially available (Stratagene)

- > MIAME annotation
- Central backup at University of Minnesota
- User friendly

Bioconductor

- ≻ Free
- Frequently updated and flexible
- > Only a statistician can love this program

Data Analysis

- Determination of Intensities of Probe Sets
- Quality Control of GeneChip
- Normalization
- Determination of Differentially Expressed Genes

Lung Eosinophils

Comparison of OVA/OVAc vs TMA/TMAc: No difference

Statistical Analysis

- Question 1: For each gene, is there any difference detected across the 4 treatment groups (OVAc, OVA, TMAc, TMA)?
 - >Assuming unequal variances
 - F test using ANOVA in SAS to generate a p value

Statistical Analysis

- Question 2: How do we guard against false positives with the large number of comparisons?
 - R software to generate q values for each probe set
 - ANOVA p values used to compute q values by the method of Storey & Tibshirani, 2003
 - q value is a type of False Discovery Rate

Selection of differentially expressed candidate genes

Criteria

➤False Discovery Rate: q value < 0.1</p>

- Accepting that 1 of 10 selected genes could be a false positive
- Result: 855 probe sets
- Magnitude of the change
 - Ratio of gene expression for OVA/OVAc or TMA/TMAc is either > 1.2 or < 1/1.2
- >391 probe sets satisfy both criteria

Improved Statistical Analysis Using Empirical Bayes

- Question 1: For each gene, is there any difference detected across the 4 treatment groups (OVAc, OVA, TMAc, TMA)?
 - Moderated F statistic using a similar cutoff as in the previous analysis for purposes of comparison.
 - Moderated F statistic guards against small changes being significant because of misleadingly small variances

Confirmation by qRT-PCR

Genes increased with both allergens Gob5 and Chi3l3

Confirmation by qRT-PCR

Genes increased more with OVA than TMA

Confirmation by qRT PCR

Specific Aim

Identify differentially expressed transcripts in the lungs of mice sensitized and challenged with either ovalbumin (OVA) or trimellitic anhydride (TMA)

Unique patterns of gene expression with different allergens suggest unique effector mechanisms or reflect heterogeneity of asthma symptoms.

Lung Eosinophils

Comparison of OVA/OVAc vs TMA/TMAc: No difference

Arginase Activity in Lung

Arginine Metabolism

Hypothetical Model of Mechanistic Differences TMA AVC L-arginine L-arginine CAT2-CAT2-**Broncho-**Broncho-Gatm Gatm NOS dilation dilation NOS NO NO L-arginine-L-arginine Reactive Citrulline Citrulline Arg1 Arg1 Reactive nitrogen Arg2 Arg2 nitrogen **ADMA** ADMA Ornithine Ornithine Х Ddah2 Ddah2 Airway Airway remodeling remodeling

Summary of OVA/TMA differences

- Microarray analysis
 - Differences in Arginase 1, Gatm and Ddah2 gene expression
- qRT PCR analysis
 - Confirms relative changes seen on microarray analysis for Arginase and Gatm
- Measurement of Arginase enzyme activity
 - Greater increase in OVA than TMA induced asthma models, consistent with differences in message

Conclusion

- Pathways of arginine metabolism and the importance of nitric oxide in asthmatic inflammation may differ in OVA and TMA induced asthma.
- Differences in gene expression may reflect
 - different pathways to the asthma symptoms
 - different profile or subset of asthma symptoms *i.e.*, asthma heterogeneity

Hypothetical Effector Pathways for Asthma

<u>Asthma</u> Airway obstruction Eosinophil infiltration Airway hyperresponsiveness Mucus secretion Airway remodeling

Allergic Airway Inflammation Signature Genes 62 genes up-regulated in OVA-, TMA- and *Aspergillus-*Induced Allergic Airway Inflammation

Hypothetical Effector Pathways

Conclusion

- OVA and TMA evoke unique patterns of gene expression in the lung
- Signature genes for allergic airway inflammation may define the events common to multiple antigens in the effector phase of asthma

Is array technology useful for screening to predict respiratory hypersensitivity?

- Events common to the induction phase of asthma are more practical as screening techniques
- Techniques would need extensive validation with a variety of respiratory allergens and negative controls

General implications for Immunotoxicologists

- Microarray techniques
 - Well suited for looking for novel differences in mechanisms of effector pathways
 - Implications for differential therapy of asthma depending on allergen
 - Attention to experimental design and statistical analyses are critical