
Physics H7C Fall 1999 Solutions to Problem Set 4 Derek Kimball

“Physicists are like 3% of rats.”
-Max Zolotorev, Lawrence Berkeley National Laboratory

If you have any questions, suggestions or corrections to the solutions, don’t hesitate
to e-mail me at dfk@uclink4.berkeley.edu!

Problem 1

(a)

As demonstrated in last week’s problem set (problem 8), an ideal quarter-wave
plate is described by a unitary Jones matrix. This means that the irradiance of
the light beam is unaffected by traversing the plate. Also, the mirror is a perfect
conductor, so 100% of the light is reflected. So the final wave’s irradiance must be
the same as the incident wave’s.

(b)

The wave, initially polarized along the x̂ direction, first passes through the quarter
wave plate, whose fast axis is oriented at -45o with respect to the initial light
polarization:
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Then the light bounces off a perfectly conducting mirror. This reverses the sign of
the Poynting vector, which in turn changes the sign of the B-field relative to the
E-field, since (as can be shown from Maxwell’s equations):

�E = E0η̂e
i(�k·�r−ωt)

�B =
1
v
k̂ × �E, (2)

where v = c/n is the phase velocity of light in a medium and η̂ is the direction of
the light’s electric field. The light electric field undergoes a phase shift of π upon
relection (as can be deduced from the boundary conditions), but for circularly
polarized light the direction of rotation (clockwise or counter-clockwise) of the
electric field with respect to a fixed coordinate system is preserved. However, we
are now viewing it from the opposite direction (since �k changed sign). Therefore
the handedness of polarization has changed upon reflection:
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This result can also be arrived at using Fowles’s reflection matrix (page 52).
The beam now passes back through the quarter waveplate, but now the wave sees
the fast-axis oriented at +45o. So we find that:
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In other words the resultant light is linearly polarized in the ŷ direction.

Problem 2

First let’s derive Fowles’ result regarding the acceptance angle α for a fiber-optic
cable (pages 46-47).
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At the first phase
transition as the light
enters the fiber-optic
cable, we have from
Snell’s law:

sinα = n1 sinβ. (5)

We want θ = π/2 −
β to be greater than
or equal to the crit-
ical angle, sin−1 n
for total internal re-
flectance, where n =
n2/n1. With a little
trigonometry it can be shown that for these conditions,

sinβ =

√
n2

1 − n2
2

n1
. (6)

Combining Eqs. (5) and (6) yields:

sinα =
√
n2

1 − n2
2, (7)

which proves Fowles’s assertion.
The next step is to compute the solid angle of light accepted by the fiber-optic
cable, given by:

∆Ω =
∫ 2π

0

∫ α

0

sin θdθdφ = 2π(1− cosα). (8)
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Divided by the total solid angle (4π), this yields the fraction T of the total light
transmitted by the core to the end of the cable:

T =
(1− cosα)

2
. (9)

Problem 3

A vector field F(�r) is equal to the curl of a vector potential A(�r), so we know that
the divergence of F(�r) is zero:

∇ · F(�r) = ∇ · (∇× A(�r)) = 0. (10)

Then we know that: ∫
∇ · F(�r)dV =

∮
F(�r) · d �A = 0 (11)

Choose a volume of vanishing thickness �δ about a surface of area A (where �δ is
always normal to the surface), then from Eq. (11) we have that:

F⊥
(
�r + �δ

)
A− F⊥(�r)A+O(δ) = 0 (12)

where O(δ) indicates a term of order δ, which arises from some finite amount of
“flux” of F(�r) out the sides of the volume.

The condition for continuity of F⊥(�r) is that for each ε > 0, there exists a δ > 0
such that |F⊥

(
�r + �δ

)
− F⊥(�r)| < ε. From Eq. (12) we know that:
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Given any ε > 0, clearly we can choose δ to make:

O(δ)
A

< ε. (14)

Therefore F⊥(�r) is continuous.

Problem 4

From Strovink’s treatment of reflection/refraction at a plane interface between
insulators, we have for normal incidence:
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where Er, Ei, Et are the reflected, incident and transmitted electric field ampli-
tudes, respectively, and

Z1,2 =
√
µ1,2

ε1,2
. (16)

In particular, for the ferromagnetic material described, Z2 → ∞ while Z1 is finite,
so:

Et

Ei
=

2Z2

Z1 + Z2
→ 2. (17)

Problem 5

(a)

Plane waves propagating in the ±z directions must satisfy Eqs. (15) at the inter-
faces (z = 0 and z = L). At either interface we have, since Z2 → 0,

Et

Ei
=

2Z2

Z1 + Z2
→ 0. (18)

Therefore E vanishes in the material, i.e. E=0 for z < 0 and z > L. So at the
interfaces, E=0.

The magnetic fields of the plane waves propagating in the ±z directions between
the materials must satisfy E+×H+ = -E−×H− (i.e. the Poynting vectors of
right- and left-traveling waves must be oriented in opposite directions). So while
the electric fields cancel (E+ = -E−) at the interfaces the magnetic fields must
add (H+ = H−)! Also we have the boundary condition H� = H′

�
, so that if H is

finite on one side of the interface, it must also exist on the other side. So there
can be components of H everywhere.

(b)

Our requirements from part (a) set up a standing wave, where the components of
E and H are π out of phase. The wave is time independent in order to assure that
E=0 at the interfaces for all times t, so we can postulate:

E = �E0 sin kz, (19)

which works so long as k = Nπ/L where N is an integer. So we get the condition
on angular frequency from k = ω/c, which implies

ω =
Nπc

L
. (20)
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Problem 6

We have two regions as shown in Figure 2, with k1 and k2 in each (defined as in
the problem, where they are dependent on the potential V and the particle’s total
energy U, which is conserved, U = T + V). In region 1 we have the wavefunctions:

Aei(k1x−ωt) +Be−i(k1x+ωt), (21)

and in region 2 we have a transmitted wavefunction:

Cei(k2x−ωt). (22)

V (x)

x

U = T + V

Region 1 Region 2∆V

Figure 2

Continuity of the wavefunc-
tions across the boundary
(x=0) demands:

A+B = C. (23)

Since ∂ψ
∂x is also continuous:

k1(A−B) = k2C. (24)

Substituting Eq. (23) into
(24), we get:

B

A
=
k1 − k2

k1 + k2
(25)

If we assume n ∝ k, then we
get the formula for normal re-
flection of an EM wave at a
dielectric interface with µ = µ0:

B

A
=
n1 − n2

n1 + n2
(26)

Problem 7

Fowles 3.1
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The sum of the amplitudes of the waves A coming from the slits at point P (see
Figure 3) are given by the proportionality:

A ∝ eikr + eik(r+a sin θ) + eik(r+2a sin θ) (27)

or,

A ∝ eikr
(
1 + eika sin θ + e2ika sin θ

)
(28)
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The interference pattern is given by the norm square of the amplitude:

I(θ) ∝ |A|2 ∝ (1 + cos(ka sin θ))2 (29)

The pattern that you get when you plot this function depends on what value you
choose for ka. Let’s take a = 1 mm and k = 12,000 mm−1, then our pattern is
shown in Figure 4 as a function of θ.

Problem 8

Fowles 3.6

Light passes through the gas cell twice, so the optical path difference dop is given
by:

dop = c∆t =
2l
c/n

− 2l
c
= 2l(n− 1) (30)

n changes as the gas fills the cell, and since I ∝ 1 + cos (2πdop/λ), a new fringe
appears every time dop = 1/2. Thus the total number of fringes N is given by:

N = 2
2l(n− 1)

λ
=
4l(n− 1)

λ
. (31)

Plugging in the suggested values gives us N = 203 fringes.
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