
Date: Wed, 24 May 2000 17:30:17 +0100 (BST)
From: Sean Murphy <sean@dcs.rhbnc.ac.uk>
X-Sender: sean@platon.cs.rhbnc.ac.uk
To: AESround2@nist.gov
Subject: NESSIE comments on AES

We wish to submit the attached postscript file as an AES Round 2
comment. It contains comments from the NESSIE project about the AES.

 Sean Murphy

Comments by the NESSIE Project

on the AES Finalists

B. Preneel1, A. Bosselaers1, V. Rijmen1, B. Van Rompay1

L. Granboulan2, J. Stern2,

S. Murphy3,

M. Dichtl4, P. Serf4

E. Biham5, O. Dunkelman5, V. Furman5

F. Koeune6, G. Piret6, J-J. Quisquater6,

L. Knudsen7, H. Raddum7.

24 May 2000

1K.U. Leuven, Dept. Elekrotechniek, Kardinaal Mercierlaan 94, B-3001 Heverlee, Belgium.
2�Ecole Normale Sup�erieure, D�epartement d'Informatique, 45 Rue d'Ulm, Paris 75230, France.
3Royal Holloway, Information Security Group, Egham, Surrey TW20 0EX, UK.
4Siemens AG, Otto-Hahn-Ring 6, M�unchen 81732, Germany.
5Technion, Computer Science Dept., Haifa 32000, Israel.
6U.C. Louvain, D�epartement ELEC, PO Box 3, Place du Levant, B-1348 Louvain-la-Neuve, Belgium
7U. Bergen, Dept. of Informatics, PO Box 7800 Thormoehlensgt. 55, Bergen 5020, Norway.

Contents

1 Introduction 2

2 General Comments on Security Evaluation 2
2.1 Extent of Security Evaluation : 2
2.2 Comparison of Algorithms with Di�erent Security Margins : : : : : : : : : 3
2.3 Security Margins and Known Attacks : 3
2.4 Statistical Methodology : 3
2.5 Examination of the Di�usion Properties of the AES Finalists : : : : : : : : 4

3 Security Evaluation of Selected AES Finalists 4
3.1 Two�sh : 4
3.2 MARS : 6

4 Performance Evaluation 8
4.1 Methodology : 8

4.1.1 Questions : 8
4.1.2 Suggested Answers : 12

4.2 A Survey of Performance Results for AES : : : : : : : : : : : : : : : : : : 16
4.2.1 C/Assembly on Workstations : 16
4.2.2 Java : 18
4.2.3 Smart Card or other Dedicated Processors : : : : : : : : : : : : : : 19
4.2.4 Recon�gurable : 21
4.2.5 Hardware : 21
4.2.6 Implementation Attacks : 22
4.2.7 Surveys : 23

4.3 Areas requiring Further Investigation : 24

A Dependence tests 24

1

1 Introduction

The NESSIE (New European Schemes for Signature, Integrity and Encryption) project
is funded by the European Union's �fth framework programme to assess, via an open
call, cryptographic primitives for possible future standardisation. The partners in the pro-
gramme are Katholieke Universiteit Leuven (Belgium), �Ecole Normale Sup�erieure (France),
Fondazione Ugo Bordoni (Italy), Royal Holloway (UK), Siemens AG (Germany), Technion
(Israel), Universit�e Catholique de Louvain (Belgium) and Universitetet i Bergen (Nor-
way). Further details concerning the NESSIE project can be found on the NESSIE website
http://www.cryptonessie.org.

The document contains comments about the AES process and AES �nalists that rep-
resent the consensus view of the NESSIE partners.

2 General Comments on Security Evaluation

2.1 Extent of Security Evaluation

We believe that the e�ort spent on evaluating the security of the �ve AES �nalists has been
very limited, certainly compared to the 17 man-years spent by IBM on DES in the 1970s.
It is noteworthy that the majority of papers at AES3 dealt with performance evaluation
rather than with security evaluation.

There are several reasons for this:

� the tight timing constraints;

� some of the �nalists are rather complex, which makes them hard and time-consuming
to approach.

Nevertheless we believe that it is unlikely that a practical attack (e.g., using 232 known
plaintexts and requiring 270 encryptions) will be found for any of the �ve �nalists within
a short timeframe (less than �ve years). However, it is likely that certi�cational attacks
against some of the �nalists will be found, whose complexities will be lower than the size
of the key space.

It is certainly true, though, that more cryptanalysis would have been very useful to
increase our con�dence in the long term security of these algorithms. Moreover, it might
have resulted in a meaningful comparison from a security point of view.

2

2.2 Comparison of Algorithms with Di�erent Security Margins

We agree that it is not easy to de�ne the `security margin' of a cryptographic algorithm.
One of the reasons is that it is a dynamic concept, that is, additional analysis will typically
lead to improved attacks and thus decreased security margins.

However, we believe that it is essential to try to de�ne such a margin to compare the
security/performance trade-o� for the AES �nalists.

We are aware that NIST has solicited inputs on this, but it seems that for the time
being, no consensus has been reached on the relative or absolute security margins. Some
of the reasons why this is so di�cult are discussed below.

2.3 Security Margins and Known Attacks

The best known attacks on a block cipher might not reect the true security level of the
candidate nor the state-of-art of cryptanalysis. There are several reasons for this.

1. Transparent designs invite straight-forward attacks on reduced-round versions.

2. The amount of time invested in the analysis of the individual candidates may vary.

3. The experience and capability of the individual cryptanalysts may vary.

Therefore we feel that one has to be careful when comparing the candidates with respect
to security margins and known attacks.

2.4 Statistical Methodology

Certain aspects of the statistical methodology employed by NIST (see Soto) are ques-
tionable in that they give statistical test results that are misleading or meaningless (see
Murphy). We give some examples below.

� The use of a data category that gives no information about the block cipher.

� The use of stream cipher tests to test block ciphers via the arbitrary concatenation
of data blocks.

� The highly inaccurate calculation of probabilities for certain types of error.

3

Statistical Methodology References

S. Murphy, The Power of NIST's Statistical Testing of AES Candidates, submitted as
comment on AES to NIST, 2000.
J. Soto, Randomness Testing of the AES Candidate Algorithms, NIST document, 1999.
N.B. Both the above documents are available on the NIST website.

2.5 Examination of the Di�usion Properties of the AES Finalists

In order to check the di�usion properties of reduced round number versions of the AES
�nalists, NIST used stream cipher tests. The NESSIE project used well known cryptologic
measures for di�usion properties. The degrees of completeness, of avalanche e�ect and of
strict avalanche criterion were determined for full round and reduced round versions of the
AES �nalists.

As expected, the results for all AES �nalists were good. With respect to the quantities
measured, they are indistinguishable from random permutations after a very small numbers
of rounds. The detailed results are given in the appendix. It should be noted, that these
results cannot be interpreted to indicate cryptographic strength or to compare the AES
�nalists. Therefore the usefulness of these results is limited. However, bad results would
have been a strong indication of a problem.

3 Security Evaluation of Selected AES Finalists

The institutions within the NESSIE project have (direct and indirect) connections with
three of the AES �nalists, so we do not feel it appropriate to make a statement concerning
their security evaluation in this jointly{written document. The individuals involved have
made detailed personal statements concerning the security evaluations of their own sub-
missions. We thus restrict our comments about security evaluation to the remaining two
AES �nalists: Two�sh and MARS.

3.1 Two�sh

In this Section, we summarise some of the comments by NESSIE project members to NIST
that relate to the security of Two�sh.

An Observation on the Key Schedule of Two�sh and The Key Separation of Two�sh
are two papers concerned with a key separation property of Two�sh. This key separation
property is a division of the key into two separate parts that have completely di�erent

4

functionality. One part is used in S-Box generation (via XOR) and the other part is used
in additive subkey generation. This division of the key into two di�erent functional parts
is not a property shared with most other block ciphers, contrary to the claim in Two�sh
Technical Report No. 7. The �rst paper also demonstrates that the key schedule of Two�sh
with �xed S-Boxes has some properties that are non-standard for block ciphers with �xed
S-boxes. The second paper shows why the argument given in Two�sh Technical Report
No. 4 as to the irrelevance of key separation is erroneous.

In Trawling Two�sh (revisited) statistical properties of Two�sh are found. It is shown
that such statistical properties may have probability 2�256 to get 32 bits of nontrivial
information in each of the 16 rounds. This means that for any �xed key, one can expect
to �nd one pair of plaintexts which has the di�erences speci�ed in the property in each
round. For a similar cipher with truly random round functions such properties would have a
probability of 2�512. One possible application of these properties is in attacks distinguishing
Two�sh with a reduced number of rounds from a randomly chosen permutation. It has
been shown that such attacks are possible for scaled-down versions of Two�sh reduced to
four rounds, contrary to the claims of the designers. It is unknown how such attacks will
apply for real Two�sh and for how many rounds.

In Di�erential Cryptanalysis, Key-dependent S-Boxes, and Two�sh, some di�erentials
are derived for a proportion of the keys by exploiting Two�sh's variable S-Boxes. The
approach is to match the S-Box to the di�erential, rather than the di�erential to the S-
Box, which is the approach forced by �xed S-Boxes. The variable S-Boxes allow us to �nd
a number of them (corresponding to a fraction of keys) for which the required di�erential
holds with a reasonable probability. A preliminary analysis using this technique suggests
the existence of an 8-round attack on Two�sh.

A related paper Di�erential Probabilities for Two�sh S-Boxes gives a theoretical deriva-
tion of the distribution of XOR table that involve the simultaneous use of di�erent dif-
ferentials over the same S-Box. The paper also tabulates these distributions. This gives
a tool for the calculation of the proportions of keys giving a particular di�erential with a
given probability, a technique used in the previous paper.

Cryptanalysis of Two�sh is a thesis that explores various properties of Two�sh. Its
most important observation concerns the derivation of a 5-round di�erential given in the
original Two�sh paper. The number of plaintexts needed for this di�erential is reduced by
25.

Furthermore, the key-dependent S boxes of Two�sh are claimed to improve the security
of the cipher. However, the literature contains several examples where the replacement of
�xed S boxes with key-dependent S boxes reduce the strength of block ciphers (see, for
example, Biham and Biryukov).

5

Two�sh References

E. Biham and A. Biryukov, How to strengthen DES using existing hardware, Asiacrypt
1994.
K. Daemen, Cryptanalysis of Two�sh, Thesis, KU Leuven, 2000.
J. Kelsey, Two�sh Technical Report No. 7, submitted to NIST as AES comment, 2000.
L.R. Knudsen, Trawling Two�sh (revisited), submitted to NIST as AES comment, 2000.
F. Mirza and S. Murphy, An Observation on the Key Schedule of Two�sh, 2nd AES Con-
ference, Rome 1999.
S. Murphy, The Key Separation of Two�sh, submitted to NIST as AES comment, 2000.
S. Murphy, Di�erential Distributions for Two�sh S-Boxes, submitted to NIST as AES
comment, 2000.
S. Murphy and M. Robshaw, Di�erential Cryptanalysis, Key-Dependent S-Boxes, and
Two�sh, submitted to NIST as AES comment, 2000.
D. Whiting, Two�sh Technical Report No. 4, submitted to NIST as AES comment, 1999.
N.B. Most of these references are available from the NIST AES website.

3.2 MARS

The MARS design uses many di�erent components. According to the MARS designers,
all used components are easy to analyse (C. Burwick et al, MARS - a candidate cipher for
AES). We have a di�erent view on this. The analysis of the MARS design team contains
several errors with respect to the bounds for resistance against linear and di�erential crypt-
analysis (see Knudsen and Raddum). There are also some relations between the di�erent
outputs of the E-function (see Robshaw). Furthermore, the S-boxes of MARS do not ful�ll
all the design requirements that were put forward by the team (see Burnett et al). Whilst
the observations do not lead to an attack on MARS, they show that there is no clear view
on the security of the MARS structure and its security yet. It is expected that further
similar errors in the design team's analysis of MARS will be uncovered.

The added security of the unkeyed rounds is not clear. For instance, it has been shown
that a reduced version of MARS, with 16 unkeyed rounds and 5 keyed (core) rounds, can
be attacked (in the case of 256-bit keys) (see Kelsey and Schneier).

There are impossible di�erentials over 8 rounds of the MARS core, that may lead to
an attack (see Biham and Furman). 11-round attacks on the core of MARS were also
presented.

The key schedule is suboptimal in several ways. It is a quite complex algorithm. The
need to check for keys with long runs of consecutive ones or zeroes, implies that a timing

6

attack resistant implementation of the key scheduling is very slow, because for all values
of the key, the setup should last as long as in the slowest case. On the other hand, the
test for such long runs is necessary, as subkeys with long runs of ones or zeroes may lead
to e�cient attacks on MARS.

The two least signi�cant bits of the round keys that are used in the multiplication, are
always set to 11. This is done in order to avoid weak keys, as exist in IDEA (see Daemen).
However, setting these two key bits to 11 implies that there are always 2 inputs that go
unchanged through the multiplication regardless of the subkey (all multiples of 231), and
two others which have �xed output regardless of the subkey (odd multiples of 230).

We see that all components of MARS do not give the expected strength to the cipher,
and there are questions whether the combination of all these components protect against
all the weaknesses of the individual components.

Finally, we note that there are some interesting papers considering the pseudorandom-
ness of the MARS (and other AES �nalists). We do not believe that the pseudorandomness
analysis performed so far is su�cient to contribute signi�cantly to the selection of the AES.

In summary, the structure of MARS is too complex to evaluate in the short period of
time of the AES process, but its complexity might lead to some weaknesses that may be
uncovered at a later date.

MARS References

E. Biham and V. Furman, Impossible Di�erentials on 8 rounds of the MARS core, AES3,
New York, 2000.
L. Burnett et al, E�ecient Methods for Generating MARS-like S-Boxes, Fast Software
Encryption, New York, 2000.
C. Burwick et al, MARS { A Candidate Cipher for AES, 1998.
J. Daemen, Weak Keys for IDEA, Crypto 1993.
J. Kelsey and B. Schneier, MARS Attacks!, AES3, New York, 2000.
L. Knudsen and H. Raddum, Linear Approximations to MARS S-Box, submitted to NIST
as AES comment, 2000.
M. Robshaw and Y. Lin, Potential Flaws in the Conjectured Resistance of MARS to Linear
Cryptanalysis, submitted to NIST as AES comment, 2000.
N.B. Many of these references are available from the NIST AES website.

7

4 Performance Evaluation

Introduction

Whilst security is of course the main criterion for the future cryptographic standard, ef-
�ciency is also an important criterion. However, the wide range of target platforms, con-
ditions of use etc., make e�ciency very di�cult to measure. In this section, we give an
approach to this problem. We �rst propose a methodology for the performance evaluation
of cryptographic primitives. We then review the research on performance carried out so
far as part of the AES process and highlight the areas that have not received su�cient
attention in this (largely voluntary) performance evaluation process. As we are consid-
ering generic cryptographic primitives, the comments in this section have more general
applicability than those in the security evaluation section above.

4.1 Methodology

We now propose an evaluation process for the performance of a cryptographic algorithm.
The �rst subsection considers the most important questions in building an evaluation
framework. The second subsection then proposes some answers (or hints to answers) to
these questions. Although we try to be as open and objective as possible, the suggested
answers in this subsection inevitably partially reect the authors' opinion.

4.1.1 Questions

1. What are the performance requirements for a cryptographic primitive?

Depending on the platform (workstation, smart card, ASIC etc), di�erent limited
resources can have various importance.

For software implementations, the following resources are considered:

� time

� code size

� memory used

For hardware implementations, the following resources are considered:

� throughput

� latency

8

� chip area

� power consumption

Moreover, the role of di�erent aspects of the algorithm needs to be considered. The
main aspects are:

� setup: this is the part of the algorithm done independently of the key and the
data; it consists for example of constant tables (e.g. S-boxes) computation and
�lling;

� precomputations: this part can be done once for multiple encryptions with the
same key; a good example is the key schedule;

� the primitive: this is the part that must be done for every use, that is, the block
encryption itself.

Remark: it is worth noting that resource usage (computation time, memory , ...)
may be asymmetric (encryption vs. decryption).

Clearly, the relative importance of these parts varies very much depending on the
conditions of use. For example, the �rst two aspects are negligible if a large amount
of data is to be encrypted under the same key on a machine with su�cient RAM, so
di�erent applications can have very di�erent requirements. The relative importance
of di�erent applications is thus required to make an informed decision. Thus either
information is needed or assumptions have to be made concerning the situations in
which the algorithms are likely to be used.

2. What if the performance depends on the input data?

For some algorithms, speci�c input can lead to a very fast response, or a very slow,
especially for the algorithm setup and precomputations (MARS key schedule or RSA
modulus generation).

Are we interested in the average performance, or the worst case performance, or the
worst not-too-improbable case?

3. What precision can we hope for?

Execution time, code size, etc. depend highly on the platform (CPU type, clock fre-
quency, etc.). However, several other factors will also inuence results. For example:

� hardware \details": cache size, etc.

9

� environment: operating system, etc.

� load of the machine at the time tests were performed

� compiler

� many time/memory tradeo�s (e.g. loop unrolling) are also possible.

Several of these issues are addressed in following sections. However, these factors
imply that it is not possible to obtain exact �gures regarding performances, and
thus that small performance di�erences between candidates should be ignored. It is
however often possible to give:

� (approximate) mean performances in given conditions

� lower bound on some resources, given limitations on others (e.g. lower bound
on RAM usage, given some limitation on code size, including lookup tables)

4. Which test platforms should be used?

Some scenarios do not occur on all platforms. The information or assumptions about
the likely situations of use should indicate the relative importance of the di�erent
types of environments.

(a) Hardware Platforms

\Small" hardware di�erences (e.g. cache size) may have an important impact
on performance. Comparisons must therefore be performed using exactly the
same hardware. It is for example meaningless to make a precise comparison of
implementations tested independentently on Pentium II and Pentium Pro, even
if the results are scaled to eliminate di�erences in clock frequencies. It is (even
more) meaningless to compare 8051 and 6805 implementations.

Pure hardware implementations (e.g. ASIC) are very di�cult to evaluate, be-
cause the design and optimisation of such devices is a very long and di�cult
operation.

(b) Software Platforms

Regarding the programming language, the question is twofold:

i. Which programming languages should be considered (assembly language,
ANSI C, Java, ...)?

ii. Which speci�c compiler implementation should be used? Should the source
code be allowed to test which compiler is used?

10

As we discussed above, the operating system may also have some importance.
Other questions are :

� which extensions of ANSI C should be authorised?

� should assumptions on endianness be allowed?

� should the code be tuned for some platforms? For example the Mars C code
of Gladman is 3 times slower than OptCCode on Intel486DX2 and 2 times
faster on Pentium II.

5. What are the implementation hypotheses?

Several other implementation decisions must be made for a coherent comparison.

The �rst of these is related to \physical" attacks (timing attack, simple and di�er-
ential power analysis, memory probing,...). This decision is not easy to make, as the
state-of-the-art of this quite new branch of cryptanalysis is quickly evolving:

� resistance against timing attack is not too di�cult to specify: a strong, su�cient
condition is to ask for the implementation to be constant time;

� on the other hand, what has to be done to be DPA-resistant is not very clear
yet. Several countermeasures have been proposed, that make the attack more
di�cult, but no \de�nitive" solution is currently known.

However, for the comparison to be fair, one must precisely specify what attacks the
implementation must resist, and with which strength.

Another implementation question is whether self-modifying code is allowed or not.

6. Who performs the implementations?

We face a dilemma in answering this question.

� Relying on authors' implementations, risks favouring good implementors over
good cryptographers.

� Performing independent implementations, risks missing some useful \tricks",
that require a deep understanding of the algorithm.

7. How will the performances be measured?

In a multi-process environment, the running time of a cryptographic primitive de-
pends on the load of the machine. We might want to measure the performance when

11

no context switch nor cache miss occurs, but a primitive can be such that, for every
real-life usage, these situations cannot be avoided. There are also di�erent measures
for assessing the performance, such as the best performance or the mean performance.

8. How will the results be combined?

It is obvious that many di�erent tests have to be performed. The performance
evaluation will therefore not end up with a single �gure summarising each algo-
rithm's performance, but rather with an array of �gures depending on the platform,
time/memory trade- o�, etc. The results may be conicting, that is one algorithm
may have good performance in one environment, and bad performance in another.
However, for a decision to be made, these various results must somehow be combined.
An important question is thus: how will the di�erent test results be combined?

4.1.2 Suggested Answers

1. What are the performance requirements for a cryptographic primitive?

Limited resources are only a problem in very constrained environments (typically,
smart cards); on more powerful platforms, code size, memory size etc. are far less
important provided:

� they remain in reasonable limits (e.g. 32 GB table is clearly unrealistic, even
on a powerful machine)

� their impact on performance is taken into account (e.g. a big table will not �t
in the cache)

Regarding the relative importance of di�erent subparts, a few \typical" scenarios,
representative for practical applications, should be set up; we suggest

� frequent rekeying, where the key changes every block

� occasional rekeying, where the key changes every few blocks

� no rekeying, where the same key is used for large quantities of data

Besides these scenarios, exibility (that is, ability to adapt to other situations) should
be considered as an important factor.

2. What if the performance depends on the input data?

Two numbers should be computed:

12

� the performance in the mean case.

� with the exception of the most improbable worst cases (a proportion of 2�40 for
example), the performance for the bad input should be computed.

The �rst number corresponds to a generic implementation, the second to an imple-
mentation protected against timing attacks.

3. What precision can we hope for?

Precision must not be overestimated. Even if full precision were achievable, a 10%
speed di�erence is completely meaningless.

4. Which test platforms should be used?

(a) Hardware Platforms

For the tests to be representative, we suggest considering performances on at
least:

� smart cards: it is di�cult to decide exactly which ones, because di�erences
can have a big impact (e.g. the addressing mode on the 8051 is much more
powerful than on the 6805). We propose:

{ one low-cost smart card: the most common (6805, 8051) are probably
the best choices

{ one powerful smart card, equipped with a cryptoprocessor.

{ one powerful smart card, not equipped with a cryptoprocessor (for ex-
ample, some of the JAVA smart cards, which are likely to become pop-
ular, are not equipped with a cryptoprocessor);

� home PC (i.e. 32-bit): the o�cial AES test platform (Pentium Pro), or a
Pentium II, is probably a good choice

� a more powerful machine, based on a 64-bit architecture (representative of
the \machine of the future"). It may be more di�cult to choose a reference
machine here, because the ones that are currently on the market (Alpha,
UltraSparc, PA-RISC and MIPS) are quite di�erent, and it is di�cult to
predict which one will \win the market" in future years. In view of this,
exibility MUST be considered as a major advantage.

� hardware (ASIC), or semi-hardware (FPGA): this test is however much
more di�cult to conduct, because of the di�culty of design.

13

As discussed above, comparisons should be made using exactly the same hard-
ware for each algorithm.

(b) Software Platforms

For the comparison to be meaningful, the same OS should be used among can-
didates.

On the other hand, it is our belief that any speci�c compiler (i.e. the fastest
for each candidate on the particular hardware) should be used. The reason of
this is simple: if AES is faster with the XYZ compiler, everybody will use a
XYZ-compiled AES. This is not always true for hardware (few people will buy
a new computer just to speed-up AES) or OS, but changing compiler (or having
the code compiled on a machine on which XYZ is installed) is an easy process.

We also believe that the importance given to high-level languages (e.g. C)
implementations should not be overestimated: if speed is really important, as-
sembly will always be used. For high-level languages, we should just consider
the order of magnitude, reecting the speed that can be achieved with \small
programming investment".

For speed-critical applications, assembly language optimisations should be con-
sidered.

Some authors argued that Java implementations may help illustrate each candi-
date's \inherent" speed (that is, without exploiting \tricks" speci�c to a given
architecture). This comparison seems however very di�cult, as is illustrated
by the big di�erence between the conclusions of Dray and Sterbenz (AES3 pa-
pers), due to the fact that Sterbenz tried to put the same e�ort in optimising
each Java implementations. Moreover, Java performance is strongly dependent
on the platform (JIT compiler and underlying hardware). We do not believe
performance comparison of Java implementations to be more meaningful than
implementations in C.

5. What are the implementation hypotheses?

Resistance against timing attacks should not slow down the implementation too
much.

Resistance against power analysis and related attacks is still an open research prob-
lem. We do not have precise suggestions regarding strength against SPA and DPA.
Maybe an interesting starting point can be [Daemen, Peters and Van Assche] and

14

[Messerges], presented at FSE2000: the �rst one proposes some techniques to pro-
tect a bitslice cipher against these attacks and sketches a formal de�nition of DPA-
resistance; the second proposes countermeasures, not limited to the bitslice case.
Moreover, such attacks depend on the platform: they are much more likely against
smart cards than against servers, and future smart cards might be protected against
them.

Due to its di�cult and non-standard character, we believe the use of self-modifying
code in making AES candidate comparisons is not appropriate.

6. Who performs the implementations?

The best solution is probably to use a mixed approach, in which independent im-
plementations are performed by a single person (or by a small group with strong
interaction). This should ensure that di�erence in performance are not caused by a
di�erence in programming skills.

Note that the di�culty of realising a fast and accurate implementation should also
be considered: a speed improvement that is so complicated that it can only be
programmed by the algorithm's authors is of dubious value. Di�cult tricks for the
implementation should be fully explained.

7. How will the performances be measured?

Except for a server environment with many context switches, the measurements
should avoid taking the inuence of multitasking (interruptions, context switches,
cache misses) into account.

8. How will the results be combined?

In our belief, the winner should be:

� at least acceptable on each platform;

� perform above the average on most platforms where there is a signi�cant di�er-
ence;

� exible, because test platforms only reect current architectures, and it is di�-
cult to predict what future machines will look like.

We do not have a precise combination rule to propose, but it seems obvious that
some weighting should be used when combining. This should reect the relative
importance of di�erent platforms (e.g. what is the importance of speed on a smart
card with respect to speed on a PC?).

15

4.2 A Survey of Performance Results for AES

There have been many C implementations of AES candidates, mainly optimised for Pen-
tium processors. These have been tested on other CPUs. There are also some assembly
implementations, FPGA and ASIC simulations of VDHL implementations and some smart
card implementations.

We now list papers and web pages that give AES performance results. We summarise
the scenario considered in the paper, rather than their results. (The results can be found
in the paper.) Most papers are available online.

References

AES3 http://csrc.nist.gov/encryption/aes/round2/conf3/aes3agenda.html

AES2 http://csrc.nist.gov/encryption/aes/round1/conf2/aes2conf.htm

AES R1 http://csrc.nist.gov/encryption/aes/round1/pubcmnts.htm

FSE2000 http://www.counterpane.com/fse-papers.html

4.2.1 C/Assembly on Workstations

1. Worley, Worley, Christian, Worley (AES3)
\AES Finalists on PA-RISC and IA-64: Implementation & Performance"
128 bit keys, hand optimised assembly
eliminates cache and system e�ects (best running time)
simulators for IA-64
source code not available

2. Schneier, Whiting (AES3)
\A Performance Comparison of the Five AES Finalists"
128/192/256 bits key
key setup, encryption
compilation of other's results, some implementation done, fastest chosen various ar-
chitectures (Pentium, PPro, PA8200, IA64, etc.)
performance/security tradeo� (number of rounds)
performance for maximal insecure variant
smart cards RAM requirement

3. Bassham, NIST (AES3)
\E�ciency Testing of ANSI C Implementations of Round 2 Candidate Algorithms"

16

for the AES
128/192/256 bits key
key setup, encryption, decryption (ECB)
OptCCode from submitters
various architectures (Pentium Pro/II/III, UltraSparc, R12000)
timing/cycle count; median, standard deviations

4. NIST (AES2)
\Timing and cycle count measurements of implementations in ANSI C, for multiple
platforms and compilers"
Statistics are done for key setup, encryption, and decryption, based on the median
value for a serie of 1000 measurements.
Treats also speed and memory measurements for Java implementations.

5. Schneier, Kelsey, Whiting, Wagner, Hall, Ferguson (AES2)
\Performance Comparison of the AES Submissions"
Concerns all the 15 initial candidates.
Platforms used: 8-bit Smartcard CPU, 32-bit CPU (Pentium/Pentium Pro), 64-bit
CPU.
128 bits key
Measurements for: Key Setup, encryption, encryption for di�erent plaintext sizes
(1Ko,2ko,4Ko,...), algorithm used as an hash function.
Count the number of clock cycles. Results summarised by retaining average number.
Compare RAM requirements.

6. Aoki, Lipmaa (AES3)
\Fast Implementations of AES Candidates"
Comparison on a Pentium II, with special attention paid to MMX advantages
Refuse implementation \tricks" (self-modifying code, key-speci�c static variables,
etc.).
Assembly-language implementations.
Does not consider decryption, nor key schedule.
Measures speed by running the test 500 times and taking the minimum result.

7. Lipmaa (AES2)
\AES Candidates: A Survey of Implementations"

17

Mainly a synthesis of performances for implementations already done (concerns all
initial candidates, except Loki97 and Magenta).
Only independent implementation: Rijndael, on Pentium II and UltraSPARC II (Sun
C).
Count the number of cycles per 128-bit block.

8. Gladman (AES2)
http:www.btinternet.com/~brian.gladman/cryptography technology/aes/

\Implementation Experience with AES Candidate Algorithms"
One implementor, C optimised for VC++ on Pentium Pro
key setup, encryption and decryption
source code available

9. Weiss, Binkert (AES3)
\A comparison of AES candidates on the Alpha 21264"
Gladman's implementation for Pentium Pro, tested on another machine.
assembly implementation for Rijndael.
encryption of multiple independent blocks simultaneously.
measures done using cycle count register.

10. Osvik (AES3)
\Speeding up Serpent"
Implementation of Serpent on various x86-type platforms (486, Pentium, etc.).
Special attention paid on optimisation of the s-boxes implementation.
Implementation made in C except for critical routines, which are directly imple-
mented in assembly language.

11. Biham (AES2)
Comparison of speeds on well-known laptop.

4.2.2 Java

1. Dray, NIST (AES3, update of round 1 comments)
\NIST Performance Analysis of the Final Round Java AES Candidates"
JDK1.3beta compiler on Pentium Pro
submitter's Java code
key setup, encryption, decryption time
implementation di�culty ratings

18

2. Sterbenz, Lipp (AES3)
\Performance of the AES Candidate Algorithms in Java"
Symantec Visual Cafe 2.5a JIT compiler on Pentium Pro
one implementor (Sterbenz)
key setup, encryption, decryption

3. Folmsbee (AES2)
\AES Java Technology Comparisons"
Despite his title, this paper essentially deals with the security criterion of avalanche.
It's not very clear whether they perform independent implementations.
Concerns all the 15 initial candidates
Speed measurements in kbit/s. Platform used: Sun's Ultra Enterprise 2 (UltraSparc
processor at 200 MHz, 256 Mb of RAM). Java Technology Interpreter, JIT compiler.
Ram usage estimations by examining the source code and counting the number of
variable declarations.

4. Aoki (AES round 1 comments)
\Java performance of AES Candidates"
Measurement of the speed of the Java Implementations of the 15 initial candidates
on a (very!) wide range of computers and of JVM. Results reported on 50 pages of
tables...
Measurements performed: 1-block Encryption/Decryption, Key Setup, Large block
Encryption/Decryption.

4.2.3 Smart Card or other Dedicated Processors

1. Hachez, Koeune, Quisquater (AES2)
\cAESar results: Implementation of Four AES Candidates on Two Smartcards"
Smart Cards (8 bit and 32 bit)
Independent implementation (except for Rijndael on 8051)
No physical attacks taken into account
Assembly language
Key schedule and encryption simultaneously

2. Chari, Jutla, Rao, Rohatgi (AES2)
\A Cautionary Note Regarding Evaluation of AES Candidates on Smart Cards"

19

Presents a DPA against a naive implementation of Two�sh on 6805, and overviews
how similar attacks could be performed against the other candidates.

3. Keating (AES2, updated for round 1 comments)
\Performance Analysis of AES candidates on the 6805 CPU core"
Implementation of Crypton, RC6, Rijndael and Two�sh on a Motorola 6805 series
8-bit architecture (independent implementation, except for Two�sh).
Evaluation in a simulation environment, so the number of rounds executed can easily
be counted.
Measures done for single 128-bit block encryption and key scheduling (128-bit key).
ROM and RAM requirements evaluated ; the algorithms were implemented to �t
within 64/128 bytes RAM (depending on whether key is scheduled into ROM or not)
and 1024 bytes ROM (exibility was allowed where this would cause a large speed
penalty).

4. Sano, Koike, Kawamura, Shiba (AES3)
\Performance Evaluation of AES Finalists on the High-End Smartcard"
High-End Smart Card (8 bit with crypto coprocessor)
Protected against timing attacks
Assembly language
Key schedule + encryption simultaneously

5. Gladman (AES3 Rump)
ARM

6. Wollinger, Wang, Guajardo, Paar (AES3)
\How Well Are High-End DSPs Suited for the AES Algorithms?"
High-End DSP : TMS320C6x
Independent implementation, based on either o�cial code or Gladman's code.
C, plus some assembly optimisations and \Intrinsic functions" (allow C code to access
hardware capabilities, see paper for more details).
Considers sequential and parallel implementation.
Also considers memory usage, but implementation was not aimed at keeping it low.

7. Clapp (AES3 Rump)
TriMedia VLIW Media-processor

20

4.2.4 Recon�gurable

1. Elbirt, Yip, Chetwynd, Paar (AES3)
\An FPGA Implementation and Performance Evaluation of the AES Block Cipher
Candidate Algorithm Finalists"
Language based (VHDL). Simulation (?)
High-end FPGA (XCV1999BG560-4). 128 bit data stream, 12288 CLB.
Simulation/Xilinx : best throughput (for each pipelining and unrolling: highest fre-
quency).
Encryption.

2. Weaver, Wawrzynek (AES3)
\A Comparison of the AES Candidates Amenability to FPGA Implementation"
Language based (VHDL). Estimation.
Modern mid-sized FPGA (XC2S50 to XCV200), 1500 to 5000 CLB.
Estimation of maximal pipeline to run at 50 MHz. Cryptographic core.

3. Gaj, Chodowiec (AES3)
\Comparison of the hardware performance of the AES candidates using recon�g-
urable hardware"
FPGA Implementation
Language based (VHDL). Simulation.
High-end FPGA (XCV1999BG560-6) + mid-sized FPGA (XC4028/4036 and XC4085).
Simulation/Xilinx report : best throughput.
Encryption/Decryption. Resource sharing.

4. Dandalis, Prasanna, Rolim (AES3 Rump)
FPGA Implementation

4.2.5 Hardware

1. Ichikawa, Kasuya, Matsui (AES3)
\Hardware Evaluation of the AES Finalists"
VHDL, on Mitsubishi Electric's 0.35 micron CMOS ASIC design library.
128-bit key version.
Simulation only; authors themselves acknowledge much better performances could
be achieved if true hardware was done.
Not intended to keep hardware size small (loops unrolled, ...).

21

No pipeline.
Results summarised by retaining worst case.

2. Weeks, Bean, Rozylowicz, Ficke (AES3)
\Hardware Performance Simulations of Round 2 AES Algorithms"
ASIC, but simulation only
Considers 2 scenarios: iterative (medium speed, small transistor count) and pipelined
(high speed, much resource used).
Non optimal implementation, but fair comparison (same e�ort on each candidate,
cross-validation.
Gives estimates for area + transistor count, speed for each subpart of algo, consid-
ering each key size.
Sources are made available.
Uses some \unfair" hypotheses: for example, placement of some registers was uni-
formised among candidates rather than optimised.

3. Satoh, Ooba, Takano, D'Avignon (AES3)
\High-Speed MARS Hardware"
Simulation only, up to the chip level
Using CMOS technology, but not up-to-date
Performance measurements: Nominal case and Worst case

4.2.6 Implementation Attacks

1. Daemen, Rijmen (AES2)
\Resistance Against Implementation Attacks: A Comparative Study of the AES Pro-
posals"
Quite vague: reviews, for the 15 candidates, the basic operations they are based
on, and estimates, based on this information, how di�cult it would be to make the
candidate immune to power attacks.

2. Biham, Shamir (AES2)
\Power Analysis of the Key Scheduling of the AES Candidates"
Proposes a power analysis aimed at the key schedule part of the algorithm.
Quite vague (sketch of) attack, based on the discovering of hamming weight of key-
related parts. Presents general issues on how the key schedule can be isolated and
then reviews the 15 candidates, briey discussing how hamming weight can be found

22

and the consequences this would have for the algorithm.

3. Daemen, Peeters, Van Assche (FSE2000)
\Bitslice ciphers and Power Analysis Attacks"
Bitslice ciphers and Power Analysis techniques for protection, applicability to Ser-
pent.
Proposes some techniques to protect a bitslice cipher (only Serpent is thus concerned)
against DPA, and sketches a formal de�nition of DPA-resistance.
The technique is only briey sketched in the Serpent case.

4. Messerges (FSE2000)
\Securing the AES Finalists Against Power Analysis Attacks"
Proposes implementations of AES candidates that are (claimed to be) DPA-safe,
based on the masking of immediate values, and evaluates the speed, RAM and ROM
usage of the secured implementations (for encryption only) for an ARM-based pro-
cessor.

4.2.7 Surveys

1. Clapp (AES2)
\Instruction-level Parallelism in AES Candidates"
The aim of this paper is to evaluate how the speed of algorithms varies as a function
of the resources available in the CPU.
For this purpose, the author considers a real-life CPU: the Philips Trimedia TM-1100,
and parameterise it by the number of instruction-issue slots. Using a parameterised
C-compiler, he can therefore explore the performances of candidate algorithms on
hypothetical machines. A Critical-path analysis is also performed, allowing to com-
pute a theoretical upper-limit on performance. The algorithms studied are Crypton,
E2, Mars, RC6, Rijndael, Serpent, and Two�sh.

2. Graunke (AES round 1 comments)
\Yet Another Performance Analysis of the AES Candidates"
Aim: To get an idea of how candidates might perform on future microprocessors.
Platform: Idealised, general purpose architecture.
Two metrics of performance used: Critical path of encrypting one block, and total

23

number of micro-operations required.

3. http://www.di.ens.fr/~granboul/recherche/AES/timings.html
Cycle count, best reported implementation for each cpu.
Only the internal ciphering routine.

4. http://www.tcm.hut.fi/~helger/aes/
Survey of the speed of the best known implementation of 13 candidates (measured
in number of cycles / block), on various cpus and compilers.
Treats only the internal ciphering routine.

4.3 Areas requiring Further Investigation

� No protocol for testing the e�ciency.

� Most of the code is unpublished.

� No way to combine conclusions.

A Dependence tests

Introduction

In this appendix, we examine the properties of the �ve 128-bit block ciphers MARS, RC6,
Rijndael, Serpent, and Two�sh with respect to the following four dependence criteria:

1. the average number of output bits changed when changing 1 input bit;

2. the degree of completeness;

3. the degree of avalanche e�ect;

4. the degree of strict avalanche criterion.

This examination is carried out for varying numbers of rounds, from 1 round to the full
number of rounds. We consider a key size of 128 bits; the results for 196- and 256-bit-keys
should be similar. For all 5 algorithms, the values of (1){(4) are stable unless the number
of rounds is very small.

24

De�nitions

In this section, we will state the de�nitions of (2), (3) and (4), as given in J.-P. Boly,
\Dependence Test", RIPE document Tools{P10{7, 1990.

For a vector x = (x1; : : : ; xn) 2 (GF(2))n, the vector x(i) 2 (GF(2))n denotes the vector
obtained by complementing the i-th bit of x (for i = 1; : : : ; n). The Hamming weight w(x)
of x is de�ned as the number of nonzero components of x. A function f : (GF(2))n !
(GF(2))m of n input bits into m output bits is said to be complete, if each output bit
depends on each input bit, i.e.

8 i = 1; : : : ; n 8 j = 1; : : : ;m 9x 2 (GF(2))n with (f(x(i)))j 6= (f(x))j:

A function f : (GF(2))n ! (GF(2))m has the avalanche e�ect, if an average of 1
2
of the

output bits change whenever a single input bit is complemented, i.e.

1

2n
X

x2(GF (2))n

w(f(x(i))� f(x)) =
m

2
for all i = 1; : : : ; n.

A function f : (GF(2))n ! (GF(2))m satis�es the strict avalanche criterion, if each output
bit changes with a probability of 1

2 whenever a single input bit is complemented, i.e.

8 i = 1; : : : ; n 8 j = 1; : : : ;m Pr((f(x(i)))j 6= (f(x))j) =
1

2
:

The dependence matrix of a function f : (GF(2))n ! (GF(2))m is an n �m-matrix A

whose (i; j)-th element aij denotes the number of inputs for which complementing the i-th
input bit results in a change of the j-th output bit, i.e.

aij = #fx 2 (GF(2))n j (f(x(i)))j 6= (f(x))jg

for i = 1; : : : ; n and j = 1; : : : ;m.
The distance matrix of a function f : (GF(2))n ! (GF(2))m is an n � (m+ 1)-matrix

B whose (i; j)-th element bij denotes the number of inputs for which complementing the
i-th input bit results in a change of j output bits, i.e.

bij = #fx 2 (GF(2))n jw(f(x(i))� f(x)) = jg

for i = 1; : : : ; n and j = 0; : : : ;m.
Of course, unless the number of input bits is small, it is impossible to compute the

dependence and distance matrices for all possible inputs. Therefore, one usually considers

25

a \suitable" number of randomly chosen inputs. The dependence and distance matrices
are then de�ned as follows:

aij = #fx 2 X j (f(x(i)))j 6= (f(x))jg

for i = 1; : : : ; n and j = 1; : : : ;m and

bij = #fx 2 X jw(f(x(i))� f(x)) = jg

for i = 1; : : : ; n and j = 0; : : : ;m, where X is a \suitable" randomly chosen subset of
(GF(2))n.

Let us now assume that we have computed the dependence matrix A and the distance
matrix B of a function f : (GF(2))n ! (GF(2))m for a set X of inputs, where X is either
(GF(2))n or a random subset of (GF(2))n. The degree of completeness of f is de�ned as

dc = 1 �
#f(i; j) j aij = 0g

nm
:

The degree of avalanche e�ect of f is

da = 1 �

Pn
i=1

��� 1
#X

Pm
j=1 2jbij �m

���

nm
:

The degree of strict avalanche criterion of f is de�ned as

dsa = 1 �

Pn
i=1

Pm
j=1

���2aij#X � 1
���

nm
:

For the function f to have good degrees of completeness, avalanche e�ect, and strict
avalanche criterion, the numbers dc, da, and dsa must satisfy

dc = 1; da � 1; dsa � 1:

AES Finalists

We now assess the �ve AES �nalists MARS against the dependence criteria de�ned above.
For each �nalist, we consider 10000 randomly chosen inputs encrypted under a single
randomly chosen 128-bit key.

26

MARS

MARS encryption consists of

� key addition plus 8 rounds of unkeyed forward mixing, say fm0, : : :, fm7;

� 8 rounds of keyed forward transformation, say t0, : : :, t7, plus 8 rounds of keyed
backwards transformation, say t8, : : :, t15;

� 8 rounds of unkeyed backwards mixing, say bm7, : : :, bm0, plus key subtraction.

We obtained the following values for (1){(4):

Rounds (1) (2)=dc (3)=da (3)=dsa
fm0{fm7 t0{t15 bm7{bm0 64.003245 1.000000 0.999294 0.992034
fm0{fm7 t0{t11 bm7{bm0 63.999245 1.000000 0.999177 0.992050
fm0{fm7 t0{t7 bm7{bm0 63.997880 1.000000 0.999299 0.992045
fm0{fm7 t0{t3 bm7{bm0 63.996656 1.000000 0.999293 0.992078
fm0{fm7 ./. bm7{bm0 64.000670 1.000000 0.999240 0.992091
fm0{fm6 ./. bm6{bm0 64.004832 1.000000 0.999313 0.992081
fm0{fm5 ./. bm5{bm0 63.999882 1.000000 0.999325 0.991974
fm0{fm4 ./. bm4{bm0 63.998637 1.000000 0.999292 0.991990
fm0{fm3 ./. bm3{bm0 64.003864 1.000000 0.999347 0.991998
fm0{fm2 ./. bm2{bm0 53.338305 0.921082 0.832921 0.824234
fm0{fm1 ./. bm1{bm0 29.646600 0.683838 0.463090 0.448975
fm0 ./. bm0 9.990280 0.268372 0.156098 0.132855
./. ./. bm0 11.048362 0.322876 0.172631 0.149615
fm0 ./. ./. 8.099524 0.260193 0.126555 0.104392

For 3 rounds of forward mixing, no rounds of keyed transformation, and 3 rounds of
backwards mixing, the values of (1){(4) become worse; for 2 rounds of forward mixing, no
rounds of keyed transformation, and 2 rounds of backwards mixing, the values of (1){(4)
become signi�cantly worse.

27

RC6

RC6 is a block cipher with 20 rounds.

No. Rounds (1) (2)=dc (3)=da (4)=dsa
20 63.994746 1.000000 0.999304 0.992092
16 63.991403 1.000000 0.999280 0.992041
12 64.002503 1.000000 0.999375 0.992082
8 63.996466 1.000000 0.999249 0.992089
7 63.996148 1.000000 0.999247 0.992006
6 64.008165 1.000000 0.999282 0.992014
5 64.000126 1.000000 0.999342 0.992085
4 63.918859 1.000000 0.998433 0.991595
3 60.308607 1.000000 0.942272 0.937900
2 41.847271 0.875000 0.653864 0.652114
1 14.291377 0.419739 0.223303 0.213237

For 4 rounds, the values of (1){(4) become slightly worse; for 2 rounds, they decrease
signi�cantly.

Rijndael

Rijndael is an algorithm with 9 rounds plus a �nal round. We always performed the �nal
round (\+1").

No. Rounds (1) (2)=dc (3)=da (4)=dsa
9+1 63.994571 1.000000 0.999246 0.991925
8+1 63.998811 1.000000 0.999198 0.991974
7+1 64.003631 1.000000 0.999311 0.992072
6+1 64.003147 1.000000 0.999296 0.992019
5+1 64.001554 1.000000 0.999344 0.992030
4+1 64.005684 1.000000 0.999296 0.992065
3+1 64.001791 1.000000 0.999350 0.992043
2+1 64.247014 1.000000 0.996140 0.991466
1+1 16.064059 0.250000 0.251001 0.247672
0+1 4.040025 0.062500 0.063125 0.059129

For 2 rounds plus the �nal round, the values of (1)-(4) become slightly worse; for 1
round plus the �nal round, they deteriorate signi�cantly.

28

Serpent

Serpent is a cipher with 32 rounds.

No. Rounds (1) (2)=dc (3)=da (4)=dsa
32 63.995637 1.000000 0.999255 0.992080
24 63.991927 1.000000 0.999233 0.992003
16 63.994650 1.000000 0.999282 0.992051
8 64.000817 1.000000 0.999319 0.991991
7 64.006302 1.000000 0.999272 0.991986
6 63.999410 1.000000 0.999389 0.992065
5 64.002679 1.000000 0.999311 0.991946
4 63.987744 1.000000 0.999254 0.992032
3 63.998755 1.000000 0.999271 0.992002
2 57.368955 0.941406 0.896390 0.805473
1 12.131035 0.148926 0.189547 0.107760

For 2 rounds, the values of (1){(4) decrease; for just 1 round, they decrease signi�cantly.

Two�sh

Two�sh is an algorithm with 16 rounds.

No. Rounds (1) (2)=dc (3)=da (4)=dsa
16 63.996125 1.000000 0.999322 0.991944
12 63.997724 1.000000 0.999306 0.991966
8 63.995787 1.000000 0.999245 0.992022
4 63.994789 1.000000 0.999295 0.992041
3 63.948767 0.998047 0.996912 0.982727
2 48.357374 0.750000 0.754228 0.725825
1 16.929400 0.255859 0.264522 0.238981

For 3 rounds, the values of (1){(4) become slightly worse; for 2 rounds, they deteriorate
signi�cantly.

29

