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Abstract
The use of paired, opposing position-sensitive phototube

scintillation cameras (SCs) operating in coincidence for small
animal imaging with positron emitters is currently under
study.  Because of the low sensitivity of the system even in 3D
mode and the need to produce images with high resolution, it
was postulated that a 3D expectation maximization (EM)
reconstruction algorithm might be well suited for this appli-
cation.  We investigated six reconstruction algorithms for the
3D SC PET camera: 2D filtered back-projection (FBP), 3D
reprojection (3DRP), 2D EM, 3D EM, 2D ordered subset EM
(OSEM), and 3D OSEM.  Noise was assessed for all slices by
the coefficient of variation in a simulated uniform cylinder.
Resolution was assessed from a simulation of 15 point sources
in the warm background of the uniform cylinder.  At compa-
rable noise levels, the resolution achieved with EM and
OSEM (0.9-mm to 1.2-mm) is significantly better than that
obtained with FBP or 3DRP (1.5-mm to 2.0-mm.)  Images of
a rat skull labeled with 18F-fluoride suggest that 3D EM and
3D OSEM can improve image quality of a small animal PET
camera.

I. INTRODUCTION

Dedicated small animal PET systems are designed with a
goal of optimizing spatial resolution while maintaining de-
tection sensitivity [1,2].  Because spatial resolutions on the
order of 1 mm may be  required  in small animal PET studies,
the resolution of the reconstructed image generally limits the
quality and quantitative accuracy of these studies [3].  Reso-
lution can be improved using recovery methods at the cost of
potentially increased noise [4,5].  The counting statistics of
the study must therefore be reasonably high if resolution
recovery is to be attempted.  Higher tracer doses, however,
may cause biochemical saturation in the system under study,
e.g. receptor systems [6].  Thus it may be unreasonable to
assume that good statistics can be achieved by increasing the
dose.  By including axially oblique lines of response (LORs),
3D acquisition (and reconstruction) can dramatically improve
the sensitivity of the system.

In this paper, we consider a small animal PET scanner
consisting of opposed NaI(Tl) crystals optically coupled to
position-sensitive photomultipier tubes (PSPMT) [7].  The
low stopping power of the thin (4-mm) NaI(Tl) scintillator
crystals limits the sensitivity of the system.  The camera un-
der study can accept axial coincidence angles of up to 21.9o.
Fourier-based reconstruction methods require complete data
sets, but systems with large axial acceptance angles generate
increasingly incomplete data sets.  The 3D Reprojection re-
construction algorithm (3DRP) estimates the missing data by
forward-projecting a 2D filtered backprojection (FBP) recon-
struction [8,9].

Liow, Strother, and Rottenberg have reported that 3D ex-
pectation maximization (EM) reconstructions possess im-
proved resolution over 3DRP reconstructions in a clinical
PET system [10].  Through a maximum likelihood criterion,
the EM reconstruction algorithm models the Poisson nature of
the observations. We hypothesize that maximum likelihood
reconstructions may offer an advantage in a low count, finely
sampled situation such as that under study here.  EM can also
incorporate the resolution limitations of the detection system
into the reconstruction model and thereby remove the partial
volume effect inherent in FBP [4].  Liow and Strother have
reported moderately improved noise in EM reconstructions at
matched resolutions relative to FBP [11].

In this investigation we compare 2D FBP and 3DRP re-
constructions with 2D EM and 3D EM reconstructions for an
opposed-mode NaI(Tl) PET scanner with very fine sampling.
Hudson and Larkin have reported that ordered subset EM
(OSEM) with k subsets taken to n/k iterations can produce
reconstructions with similar image quality as EM taken to n
iterations [12].   Since the computational costs of performing
3D EM reconstructions on large data sets can be high, we also
compare the 2D FPB and 3DFP reconstructions with 2D
OSEM and 3D OSEM reconstructions, respectively.

II. METHODS

A. Scanner Geometry
Figure 1 provides a schematic illustration of the small



animal scanner used in this study.  The imaging system con-
sists of two opposing NaI(T1) PSPMT cameras [8], each 6-cm
horizontally × 5-cm vertically and separated by 12.8-cm cen-
ter-to-center.  The PSPMTs provide a continuous readout
which  is sampled onto 0.234-mm square detection bins.  The
object is rotated at least one full revolution in order to obtain
a complete data set.  At the center of the field of view, each
camera has a point spread function with full width at half
maximum (FWHM) 1.0-mm, and the coincidence point
spread function has a FWHM of 1.2-mm.

Data were converted from list-mode into 3D sinograms
(90 million LORs) and 2D sinograms (850,000 LORs).  Coin-
cidences corresponding to axial angles greater than 13.6o

were not included to reduce computation time.  The 3D re-
constructed object consists of 128×128×107 cubic voxels (.47-
mm)3. In 2D, the reconstructed object has 23 2.1-mm thick
slices of 128×128 pixels (.47-mm)2.  Corrections for redun-
dant sampling of LORs and radioactive decay were included
in the reconstructions; no other corrections were incorporated.

NaI(Tl) PSPMT

5 cm

12.8 cm

4 mm
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Figure 1:  Schematic illustration of opposed-mode NaI(Tl) scanner.

B. Reconstruction Algorithms
The ordered subset EM (OSEM) algorithm partitions the

projections into k subsets.  Each OSEM iteration performs
forward- and back-projections sequentially on the k subsets.
Hudson and Larkin have reported that this technique results
in convergence acceleration of approximately k over EM for
small k [12].

The EM and OSEM reconstructions were performed on
an IBM SP2 parallel computer.  The parallel implementation
decomposes projection space according to base-symmetry
angles and incorporates symmetries in the EM system matrix
to reduce the storage requirement [13].  Each processor thus
performs forward- and back-projections on its portion of base-
symmetry angles and their symmetry related angles.  In
OSEM, the projection space is also decomposed into OSEM
subsets.  The OSEM partitioning is in fact the primary de-
composition; the parallel partitioning is performed within
each subset.

We have discovered that in order to obtain a valid result
in 3D OSEM, each reconstructed axial slice must be repre-
sented in each OSEM sub-iteration.  If OSEM subsets are
assigned by partitioning the in-plane (azimuthal) angles

evenly amongst the subsets, this requirement is satisfied.
Every subset then covers the same group of in-plane angles
over all axial angles and axial offsets.   Each in-plane angle is
related by symmetry to 8 other in-plane angles.  Let L be the
number of in-plane angles and h=L/8 be the integer number
of base-symmetry in-plane angles.  The OSEM partitioning
strategy used here assigns the h base-symmetry in-plane an-
gles in a modulus fashion to the k subsets.  If h is an integer
muliple of k, the base-symmetry angles partition evenly as
required.  In this study we have used L=480 and k=5.

For each of the studies described below, we performed 6
reconstructions: 2D FBP, 3DRP, 2D EM, 3D EM, 2D OSEM,
and 3D OSEM. Although EM and OSEM can incorporate a
spatially-varying resolution model, for these studies a uniform
1.2-mm Gaussian model was used.  In EM and OSEM, for-
ward- and back-projections were only performed for those
LORs with at least one count in order to improve computa-
tional performance.

C. Noise/Resolution Study
A numerical phantom consisting of  15 ideal point

sources in a warm cylinder was used to quantify the noise and
resolution properties of the algorithms.  The data were gener-
ated by a Monte Carlo simulation of the scanner that realisti-
cally models the 18F positron range and non-colinearity as
well as depth of interaction effects and crystal scatter.  The
simulation ignores randoms, the effects of attenuation and
object scatter, and spatial nonuniformities in the scanner's
resolution.

The ideal point sources were placed in 3 axial planes,
z={-20, 0, 10}-mm.  In each plane the point sources were
located at radial positions r={0, 4, 8, 12, 16}-mm.  In the
simulation, 100K counts were used for all 15 points, while
5M counts were used for the cylinder.  A Gaussian curve fit
(including background) of the reconstructed point sources was
used to measure resolution, parameterized by the FWHM in
all 3 directions. The cylinder was 4 cm in diameter, centered
in the transverse plane and covering the entire axial field of
view (5-cm).  Noise was measured in each reconstructed slice
by calculating the coefficient of variation (COV) over 12
regions of interest (ROIs), each comprising 256 pixels.  The
COV of each ROI is defined as the standard deviation of the
ROI pixel intensities divided by the  mean of the ROI pixel
intensities.

D. Rat Skull Study
In this study, a 250-g rat was injected with 222 Mbq

(6 mCi) 18F-fluoride, a radiotracer preferentially taken up by
bone.  Imaging began 45 minutes post-injection.  The rat was
rotated 3 full revolutions over 3 hours while 1.5M counts
were collected.

III.  RESULTS



A.  Noise/Resolution Study
We observed that the noise/resolution properties of 2D

and 3D EM reconstructions after n iterations were nearly
identical to those of OSEM with 5 subsets after n/5 iterations.
The results in this section, presented as OSEM results, also
hold for EM at the equivalent iteration, to within 3 or 4 digits
of precision.

When comparing the resolution of different reconstruc-
tions, it is important that this be done at equivalent noise
levels.  This requires determining an appropriate stopping
point for OSEM and a corresponding filter for the Fourier
methods.  Figure 2 plots noise in the central slice of the re-
constructed cylinder background against radial resolution of
the point source located at 8-mm radial offset in the central
slice.  Based on the noise/resolution tradeoff and computa-
tional considerations, we chose a stopping point for 3D
OSEM of 10 iterations for these investigations; this is
matched in noise to the 3DRP (Hann) result with 0.7 Nyquist
cutoff frequency.  Subsequent results were obtained using
these parameters.

Transverse and coronal sections of the reconstruction of
point sources in a warm cylinder are shown in Figure 3 for
3DRP Hann 0.7 and 3D OSEM-10 reconstructions.  From the
figure one can discern the resolution improvement achieved
by 3D OSEM by the increased intensity of the point source.
Figure 4 plots noise/resolution curves obtained by smoothing
the result obtained from all four methods with a Gaussian
filter. Notice that the unsmoothed 3D OSEM result ('B') pos-
sesses substantially improved resolution compared to the
unsmoothed 3DRP Hann 0.7 result at matched noise ('A').
Alternatively, the smoothed 3D OSEM result ('C') achieves
40% lower noise at equivalent resolution compared to the
unsmoothed 3DRP result.
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Figure 2: 3D Noise vs. radial resolution.  The 3D OSEM plot is
marked according to stopping iteration; the 3DRP plot is marked by
filter and cutoff frequency relative to Nyquist.

In Figure 5A, axial noise profiles are plotted for the 4
methods (10 OSEM iterations and a Hann 0.7 filter).  This
result confirms that these parameters produce images with
matched noise characteristics across the entire axial field of
view of the algorithms over all slices for both 2D and 3D.  In

Figure 5B, the noise profiles for the 3D reconstructions were
normalized to their respective average COV in the central
slices.  The 3D OSEM profile agrees with the predicted sen-
sitiviy gain based on the relative axial acceptance angle for
each slice.  The deviations in the 3DRP profile from the pre-
dicted curve show the effect of smoothing in the edge slices
which results from the use of reprojected LORs [14].

 (a)           (b)

  (c)           (d)

Figure 3:  Reconstructed images of simulated point sources in a
warm cylinder.  (a) 3DRP central transverse section, (b) 3D OSEM
central transverse section, (c) 3DRP central coronal section, (d) 3D
OSEM central coronal section.  Images are displayed on a common
scale.
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Figure 4:  Noise vs. radial resolution for the 4 methods at various
levels of smoothing.

In Figure 6A, radial, tangential, and axial resolution is
plotted against radial position for the 3DRP Hann 0.7 and 3D
OSEM-10 reconstructions.  In Figure 6B, those same meas-
ures are plotted against axial position.  The most striking
observation in these plots is the significant improvement in
OSEM resolution over 3DRP at all radial and axial locations.
We have observed similar behavior in the resolution of the 2D
reconstructions (results not shown).  The resolution plots also
indicate that in OSEM, axial resolution is somewhat better



than radial or tangential resolution.  This could be due to the
limited range of axial LOR angles accepted into the recon-
struction.  The depth of interaction effect, which is not cor-
rected by the simple uniform resolution model used here, is
thus less severe in the axial direction than in-plane.
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Figure 5:  (A) - axial noise profiles for all methods.  (B) - Noise
profiles of 3D reconstructions, normalized against their average
central-slice COV.  Also plotted is the normalized predicted curve.

B.  Rat Skull Study
A transverse section from the rat skull reconstructions is

shown in Figure 7 for the 4 methods.   Figure 8 displays
coronal and sagittal sections for each of the 3D reconstruc-
tions.  The images are displayed on a common scale, nor-
malized to total activity.  The most prominent feature in these
images is the mandible.  Visual assessment of these images
suggests that the resolution of the OSEM result is higher.  For
example, certain small bones are resolvable only in the 3D
OSEM result.  Noise measured in a background ROI indicates
roughly equivalent COVs between 3DRP and 3D OSEM.
This observation is consistent with our finding of improved
resolution at matched noise levels.
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Figure 6:  Radial (r), tangential (t), and axial (a) resolution of 3D
reconstructions against radial position (A) and axial position (B).
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Figure 7:  Transverse section of the reconstructed rat skull.  (a) FBP
Hann 0.7, (b) 2D OSEM-10 , (c) 3DRP Hann 0.7, (d) 3D OSEM-10.
Images are displayed on a common scale,  normalized to total activ-
ity.
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Figure 8:  Coronal and sagittal sections of the rat skull reconstruc-
tion.  (a) 3DRP Hann 0.7 coronal, (b) 3D OSEM Hann 0.7 coronal,
(c) 3DRP-10 sagittal, (d)  3D OSEM-10 sagittal.

IV.  DISCUSSION

For count-limited studies, the ability of EM and OSEM to
neglect projection lines with zero counts (98% in the rat skull
study) improves the computational requirement considerably
and makes EM algorithms feasible for routine reconstructions
of data from this scanner.  In Table 1 we compare computa-
tional requirements of the various algorithms for the rat skull
reconstruction including conventional EM and OSEM using
23 thick (2.1-mm) slices as well as 107 thin (0.47-mm) slices.
Observe that the cost of performing a thin-slice 3D recon-
struction in OSEM is only 2.3 times the computational cost of
reconstructing thick slices.  Had all coincidence lines been
'occupied', the factor would have been greater than 16.  Using
16 IBM SP2 nodes, the total time required to reconstruct a
1.5M count rat skull with thin slices is 76 minutes.  OSEM
iterations require slightly more time than EM iterations.  This
discrepancy can be reduced by better load balancing in
OSEM, where the parallel partitioning is constrained within a
subset.

Table 1:  Computational requirements of the various algorithms to
reconstruct the [F-18] rat skull images.  Reconstructions were per-
formed on 66-MHz IBM SP2 CPUs.

method #
slices

CPUs iteration
time, min.

iters.
used

total time,
min.

3D EM 23   16 2.76 50 138

3D EM 107 16 6.8 50 340

2D OSEM 23 4 1.1 10 11

3D OSEM 23 16 3.28 10 33

3D OSEM 107 16 7.58 10 76

We have observed that EM reconstructions taken to n it-
erations have nearly identical noise/resolution properties as

OSEM reconstructions taken to n/5 iterations when 5 OSEM
subsets were used.  The OSEM algorithm, however, does not
converge to the maximum likelihood solution [15].  The
reconstructions being reported here are far from convergent.
We can only infer from our findings that, at early iterations,
EM and OSEM produce nearly equivalent iterates as defined
by certain image quality measures.

In this paper we consider the noise/resolution properties
of a class of low-count, finely sampled (in projection space)
reconstructions. The improvement in resolution between
EM/OSEM and Fourier-based methods on these data is
greater than we have observed with clinical PET data.  The
small animal scanning situation differs from clinical ma-
chines in that sampling is much finer and the number of
counts per bin is very low.  Thus, EM and OSEM reconstruc-
tions at relatively low iterations appear to provide a resolution
advantage at matched noise levels over Fourier-based recon-
structions for the scanner being considered here.

A caveat is in order.  EM and OSEM can incorporate a
spatially variant scanner resolution model into the algorithm
and, in effect, perform resolution recovery during the recon-
struction process.  No resolution recovery was attempted on
the Fourier-based results.  A well-designed Wiener filter
applied to the Fourier-based reconstructions may produce
better results for FBP and 3DRP than we are reporting.

Opposed-mode NaI(Tl) cameras with thin detectors have
high resolution but poor sensitivity.  Although the results
obtained from OSEM reconstructions in this paper are en-
couraging, the poor sensitivity of NaI(Tl) limits its applica-
bility.  A small field-of-view LSO camera can offer a sub-
stantial improvement in sensitivity at nearly the resolution of
the NaI(Tl) camera [16]. An LSO system allows for the pos-
sibility of biologically relevant scan durations and dynamic
studies with statistical noise comparable to that seen in the
NaI(Tl) system.  We therefore believe that the apparent bene-
fits of EM and OSEM seen here will again be realized for the
LSO system.
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