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ABSTRACT

This paper reviews critical developments in instrumentation necessary to
achieve a resolution finer than 2 mm full-width at half-maximum (fwhm) in all
three dimensions, a maximum event rate limited by patient dose rather than
system dead time, and a detection sensitivity close to the theoretical limit.

INTRODUCTION

In the last 30 years, enormous advances have been made in the spatial reso-
lution, detection sensitivity, and count rate capability of PET detectors [1-62]. In
this paper we describe the critical instrumentation issues for future advances,
which are necessary to improve the ability to study flow, metabolism, and
neurochemistry in specific brain structures such as the sublayers of the cortex and
important nuclei.

SPATIAL RESOLUTION

Detector size.
Until recently, the largest contribution to spatial resolution has been the

detector size d . In the newer high resolution positron tomographs, where d  is
below 3 mm, other factors such as noncollinearity and light sharing statistics
become important. However, efficiently stopping 511 keV photons in small crys-
tals can be accomplished only by photoelectric absorption. Compton scattering,
useful in large crystals, causes energy depositions in two or more small crystals
typically 1-2 cm apart. High resolution PET needs detector materials with good
stopping power, not good scattering power. This concept is illustrated in Figure 1,
where the square of the ratio of photoelectric cross section to the sum of the
photoelectric and Compton cross sections is plotted as a function of atomic
number. This quantity is the coincident probability of photoelectric absorption of
both 511 keV annihilation photons on the first interaction. All high resolution
(<4 mm fwhm) positron tomographs use BGO (Bi4Ge3O12) as the detector
material [63-65].
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Figure 1.
Probability of coincident
photoelectric absorption
on the first interaction
for 511 keV photons in-
teracting with elements
of atomic number Z.

Noncollinearity.
Because the positrons do not come to a complete rest before annihilation, the

two 511 keV annihilation photons are not emitted in exactly opposite directions
[66]. The result is a Gaussian angular distribution with about 0.5° fwhm. At the
center of the tomograph, this translates to a contribution of 0.0022D, where D is
the detector ring diameter.

Positron range.
Measurements of positron range have shown that this distribution consists of

a central spike (fwhm < 0.5 mm) plus tails that can extend outward for several
mm [40, 67-70]. See Table 1 for values of the fwhm, the fw(0.1)m, and the effective
fwhm r for four important positron emitters. The fwhm and fw(0.1)m describe
the narrow central region of the distribution, but not the tails. The rms reflects
the statistical broadening of the entire range distribution. The quantity r is
defined as 2.35 × rms so that combining it in quadrature with other fwhm values
is equivalent to combining all the rms values in quadrature and then
multiplying by 2.35 to convert to an overall fwhm.

Table 1.
Positron range factors for four isotopes. From ref. [69].

Isotope 18F 11C 68Ga 82Rb

Max β+ energy (MeV) 0.64 0.96 1.90 3.35

fwhm (mm) 0.13 0.13 0.31 0.42

fw(0.1)m (mm) 0.38 0.39 1.6 1.9

r = 2.35 × rms (mm) 0.54 0.92 2.8 6.1
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Individual photodetectors vs. light sharing photodetectors.
We have analyzed [71] published resolution measurements from 7 tomo-

graphs using crystals individually coupled to photodetectors  [14, 24, 28, 29, 40, 49,
58] and 10 tomographs using light-sharing block detectors [41-43, 51-53, 56, 61, 62].
For the 7 individually coupled systems, the combined effects of detector crystal
width, annihilation photon non-collinearity, source size, and the reconstruction
process yield predictions that are slightly less than the reported resolutions
(Figure 2). The additional factors required for agreement have an average of only
0.3 mm. The 10 block detector systems require additional factors that have an
average of 2.0 mm fwhm, assumed to be due to a combination of Compton scatter
in the block, statistical fluctuations in the photomultiplier tube signals, and
imperfections in the block decoding scheme (Figure 3). Monte Carlo simulations
show that positioning errors caused by Compton scatter within the block only
account for only 0.9 mm of the degradation in resolution [71] .
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Figure 2.
In-plane resolution (fwhm mm) vs. crystal width for six positron tomographs
with individual crystal- phototube coupling. Annihilation noncollinearity and
source size contributions have been mathematically removed. Sherbrooke ref.
[58]; Donner 600 ref. [40]; Tomitani ref. [29]; Hamamatsu ref. [49]; Donner 280 ref.
[14]; PC-384 ref. [24]; PCTW-II ref. [28].

Combined formula for reconstructed image resolution.
Combining these factors, we describe the combined reconstructed image

resolution Γ, as influenced by detector size d , noncollinearity (through the
detector array diameter D), the effective positron range r, and an additional factor
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b (such as that contributed by a block decoding scheme).  Table 2 shows that it is
possible to achieve <2 mm resolution for 18F, assuming that b is zero.

    Γ = 1.25 (d /2)2 + (0.0022D)2 + r2 + b2
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Figure 3.
In-plane resolution (fwhm mm) vs. crystal width for seven positron tomographs
with block ratio crystal- phototube coupling. Annihilation noncollinearity and
source size contributions have been mathematically removed. Hamamstsu ref.
[52]; Headtome IV ref. [43]; ECAT EXACT HR ref. [61]; RAT PET ref. ???; Advance
ref. [62]; ECAT 931 ref. [41]; PC-4096 ref. [42]; PCT 3600 ref. [53]; ECAT EXACT ref.
[56]; Posicam 6.5 [51].

Table 2.

Reconstructed image resolution Γ (fwhm mm) for several values of detector ring
diameter D and detector size d , assuming 18F (r = 0.54 mm) and individual
coupling (b = 0).

d  (mm) =   6   4   3   2 1.5   1

D = 60 cm 4.15 3.07 2.59 2.18 2.01 1.89

D = 45 cm 4.01 2.87 2.35 1.88 1.69 1.54

D = 30 cm 3.90 2.72 2.16 1.64 1.42 1.24

D = 20 cm 3.85 2.65 2.07 1.52 1.28 1.07
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Improved scintillators.
The availability of a scintillator with a higher light output than BGO, such as

LSO (Lu2(SiO4)O:Ce) [72-75] would improve the resolution of the light sharing
block detector and may reduce the value of b in the spatial resolution equation
above.

Depth of interaction measurement.
An additional issue in high resolution PET is detector penetration, which

causes radial blurring at points distant from the central axis of the tomograph.
This effect is eliminated most efficiently by measuring of the depth of interaction
in the detector for determination of the true line of position [76-81]. In some
cases, this would allow a reduction in the detector diameter, reducing the effect of
noncollinearity on spatial resolution, and reduce the number of detectors, which
would reduce the cost of the tomograph.

SENSITIVITY FACTORS

Detector stopping power.
As described earlier, high detection sensitivity is enhanced by using dense

detectors with high atomic number, particularly in high resolution tomographs
employing small crystals.

Axial field of view and optimal inter-plane septa.
Detection sensitivity is also enhanced by using a large number of detector

rings. Ideally, events should be accepted from the entire volume of interest.
Removing or retracting the inter-plane septa can increase the angular acceptance,
but also increases prompt scatter and random backgrounds. The tradeoffs,
advantages, and disadvantages of retracting the septa have been the subject of
work by a number of research groups [82-85]. While full inter-place shielding is
sub-optimal due to the low solid angle acceptance, the complete removal of the
shielding may be sub-optimal due to the errors and statistical fluctuations caused
by the prompt scatter and random backgrounds. In that case, additional work will
be required to determine the optimum shielding configuration. Use of a
luminous, dense scintillator such as LSO would permit scatter rejection on an
event-by-event basis, as has been demonstrated for NaI(Tl) [38].

Maximum event rate capability.
The maximum event rate is limited fundamentially by the area and dead time

of the individual detector modules but also can be limited by the speed of the
coincidence and address logic electronics. There is a critical need in PET for a
scintillator with a decay time significantly shorter than the 300 ns of BGO, such as
LSO or PbSO4 [86, 87]

Increased effective sensitivity using time-of-flight information
Using time-of-flight information to localize the annihilation along the line

between the two coincident detectors has several advantages [12, 15, 18, 23, 88-91]:

• The image can be reconstructed with less statistical noise

• Each annihilation can be placed near the image plane where it occurred
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• Angles can be grouped, which reduces the task of data storage and tomo-
graphic  reconstruction

The sensitivity advantage of time-of-flight information is described by the
formula f = L/(15 ∆T), where L is the size of the emission region and ∆T is the
time-of-flight resolution fwhm [92, 93]. For a typical head image, L = 15 cm, and a
timing resolution ∆T = 0.2 ns, the sensitivity advantage is 5.

NEW DEVELOPMENTS IN INSTRUMENTATION

Phototube/silicon photodiode PET detector module.
The idea of using solid state photodetectors for reading out arrays of small

scintillation crystals has been under development for several years [48, 76, 94-102].
Figure 4 shows an expanded view of a proposed PET module [103]. Each optically
isolated 3 × 3 × 30 mm BGO crystal is attached to a 25 mm square photomultiplier
tube, which provides a timing pulse and energy discrimination, and to a pho-
todiode, which identifies the crystal of interaction. By making the surfaces of the
BGO crystals “lossy,” it is possible to use the ratio of light detected in the
photodiode and photomultiplier tube to determine the depth of interaction in
the crystal (Figure 5) [104]. Figure 5 shows the ratio of the photodiode pulse height
to the sum of the pulse heights. The detector module was cooled to –20° to reduce
electronic noise and increase the BGO signal. The phototube pulses were
normalized to minimize the depth dependence of the sum. The errors in the
pulse height ratio translate to an uncertainty in the depth coordinate ranging
from 5 mm to 8 mm fwhm, which is sufficient to nearly eliminate the radial
blurring in a head tomograph with a 60 cm diameter detector ring.

30 mm

25 mm

25 mm Square Photomultiplier Tube

BGO Crystals
3 mm square

25 mm

Array of 64 
photodiodes and 

VLSI charge amps

Figure 4.
A PET detector module
using an array of silicon
photodiodes for crystal
identification and a sin-
gle phototube for timing
information. See text for
details.

New scintillators.
We suggest that the ideal PET scintillator would have the following

properties:

1 High atomic number (such as Bi or Pb) and density >6 gm/cm3 for good
photoelectric stopping power.
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2 Ce activator luminescence having >20,000 photons per 511 keV (similar to
LSO), a decay time of about 30 ns, and a wavelength between 400 and 500 nm.
This luminescence is similar to that of Ce-doped LSO and would provide good
pulse height resolution and low deadtime.

3 Cross luminescence having >500 photons per 511 keV, decay time <0.5 ns, and
a convenient wavelength (250-500 nm) for photomultiplier tubes. This would
provide good time-of-flight information. For such rapid decay times the
phototube response has been be the limiting factor, but recent advances have
made photomultiplier tubes available with a single photoelectron transit time
jitter as low as 200 ps.
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Figure 5.
Centroid of the ratio PD / (PD+PMT) as a function of excitation position. The
error bars denote the width (fwhm) of this ratio. Also shown is the center of the
511 keV photopeak observed in the PD+PMT sum.

We have been searching for such scintillators for time-of-flight PET, using
both synchrotron x-radiation [105-107] and a newly developed pulsed x-ray system
[108, 109]. These techniques were developed for screening compounds in
powdered form and measuring their fluorescent decay properties  The light-
sensitive x-ray tube used in the pulsed x-ray system is shown in Figure 6. Figure 7
shows an impulse response, determined by coupling a laser diode (103 ps fwhm
pulse width) directly to a microchannel phototube (51 ps fwhm single photon
response) [110]. We are continuing to work on our pulse discrimination to
remove the satellite peak that occurs 350 ps after the main peak.

Figure 8 shows the fluorescent lifetime spectra from a powdered sample of
CuI [110], which was previously reported as an ultra-fast scintillator, along with
Yb2O3 and BaCl2 [105]. The luminosity of powdered CuI is about 7% that of BGO,
or about 300 photons per 511 keV. It’s fitted decay time of 163 ps would yield an
initial intensity of 1.8 photons/511 keV/ps. The comparable number for the fast
component of BaF2 is 1.2 photons/511 keV/ps. The fluorescence of CuI is domi-
nated by a single ultra-fast component, the emission wavelength is convenient
(430 nm), and the density is 5.62. This material may become important for the
detection of high energy gamma rays, and where high counting rate and excellent
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timing resolution are of paramount consideration. The photoelectric stopping
power is probably too low for time-of-flight PET, however. This compound is
neither an alkali halide nor an alkali-earth halide, which opens the possibility
that some lead or bismuth compounds might also have comparably fast
fluorescent emissions.

Photocathode    

+30 kV
Ground Tungsten Anode 

Laser Diode 

Beryllium Exit Window

X-Rays

Electrons

Laser Diode Controller

Figure 6.
Pulsed x-ray source. Brief
(100 ps) bursts of light from
the laser diode generate
pulses of photoelectrons.
These are accelerated
though 30 kV to strike an
anode and produce pulses
of x-rays.
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CONCLUSIONS

1 The ultimate spatial resolution requires small detectors with good photo-
electric stopping power, either individual readout or high luminosity, and the
ability to measure depth-of-interaction.

2 Maximum axial coverage requires a detector design that permits close packing
and an acceptable cost per unit area.

3 Maximum quantitative accuracy requires good detection efficiency, high
spatial resolution, optimum inter-plane shielding, high maximum event
rates, and time-of-flight information.

4 Improved scintillators, solid-state photodetector arrays, and photomultiplier
tubes will make all of the above goals possible.
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