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Abstract 

This report summarizes centrifuge-related work performed at the Smart Systems Research Laboratory at NASA 
Ames Research Center’s Computational Sciences Division from 1995 through 2003. The goal is to develop an 
automated system that will sense an imbalance (both static and dynamic3) in a centrifuge and issue control 
commands to drive counterweights to eliminate the effects of the imbalance. This autobalancing development began 
when the ISS centrifuge design was not yet finalized, and was designed to work with the SSRL Centrifuge 
laboratory prototype, constructed in 1993-1995 and shown in Figure 1. Significant differences between that 
prototype and the current International Space Station (ISS) Centrifuge design are that: 

• The spin axis for the SSRL Centrifuge prototype can translate freely in x and y, but not wobble, whereas 
the ISS centrifuge spin axis has 3 translational and two rotational degrees of freedom, supported by a 
vibration isolation mechanism. 

• The imbalance sensors are strain gauges both in the rotor and the stator, measuring the imbalance forces, 
whereas the ISS centrifuge uses eddy current displacement sensors to measure the displacements resulting 
from imbalance. 

High fidelity autobalancing and FDIR systems (for both counterweights and strain gauges) are developed and tested 
in MATLAB simulation, for the SSRL Centrifuge configuration. Hardware implementation of the autobalancing 
technology begun in 1996, but was terminated due to lack of funding. The project lay dormant until 2001-2002 
when the FDIR capability was added. 

Now that the ISS centrifuge configuration is (close to) finalized, the logical extension of this research is to extend 
its application to the new configuration to evaluate the potential autobalancing performance improvements and 
FDIR capabilities. Following are the steps towards completing this task, as of 25 July 2003. 

1. Removing the constraint that the spin axis is fixed, allowing free or passively/actively constrained motion 
of the spin-axis. 

2. Represent imbalance differently, to account for 3-D model – e.g., mass center location and inertia matrix 

3. Update to use the present counterweight locations. 

4. Update to use the present bearing displacement sensors (BDSs) – this would seem to force me to undo the 
step where all sensors are first reduced to a net force and torque on the rotor. 

                                                           
1 Ed.Wilson@intellization.com, 454 Barkentine Lane, Redwood Shores, CA 94065-1126 
2 Robert.W.Mah@nasa.gov, SSRL group lead 
3 Here, in accordance with standard rotor-balancing terminology, a “static” imbalance is one that creates a net force 
or torque on the centrifuge rotor in the presence of gravity when the rotor is not spinning (i.e., the center of mass is 
not on the axis of rotation). This is the reason for the name “static”, although there will be no imbalance force 
created in zero g with the rotor stopped. A “dynamic” imbalance creates a net force or torque on the centrifuge rotor 
when the rotor has a non-zero angular velocity or angular acceleration (i.e., the cross-axis terms in the inertia matrix 
are non-zero). 
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5. Model the vibration isolation mechanism (VIM), including springs and active dampers 

6. Integrate with ADAMS for testing – thought is to have a simpler, possibly linearized model derived (by 
hand) for the autobalancer design, but then to test it on the ADAMS model that is fully nonlinear and 
models the rotor flexibility. 
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1 Introduction 

1.1 SSRL Centrifuge laboratory prototype 

The SSRL Centrifuge laboratory prototype is shown in Figure 1. It was developed in 1993-1995 by Robert Mah and 
Mike Guerrero at the SSRL, with Alessandro Galvagni assisting with the computer systems interfaces. It floats on 
four 8-inch diameter Fox Air Bearings with spherical air bearing pivots, allowing the vertical spin axis to translate 
in x and y in response to imbalances. There is slight axial motion permitted (see below), but it is a much stiffer 
suspension than the VIM of the ISS Centrifuge. 
 

 

Figure 1: The SSRL Centrifuge Autobalancing Hardware Simulator 

 

There are 12 counterweights (CWs) constructed of stepper motors (providing the counterbalance mass as well as 
actuation) and encoders that drive along lead screws (also known as ACME screws or trapezoidal screws – these are 
different from the ISS Centrifuge which uses ball screws). The CWs are located in upper and lower planes of 4 
radial CWs and 4 vertically moving CWs. The vertically moving ones are not used in this research, and the 8 
remaining CWs provide redundancy as only 4 are required.  

There are locations for 24 strain gauges (SGs) to measure imbalance forces. 8 do not rotate, and are for measuring 
the force between the stator and the air bearing platform. No SGs are installed at these locations. 8 SGs rotate with 
the rotor, near the upper CW plane. Of these 8 locations, 4 SGs are installed, equally spaced through one rotation. 
Same goes for a plane near the lower CW plane, meaning that the hardware presently has a total of 8 rotating SGs. 
The SG assemblies are visco-elastic, allowing for slight displacement (on the order of mm) and providing damping. 
The angular (tip-tilt) natural frequency of the rotor is on the order of 3 Hz, and the damping ratio is about 0.1. 
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Planned, but not yet installed, are displacement sensors that would measure the base translations in the horizontal 
dimensions. 

1.2 Brief summary of the autobalancing method presented in this report: 

1. Centrifuge rotor is modeled as a rigid body spinning about a fixed axis. 

2. Imbalance is represented in a compact, intuitive way as the x- and y-locations of a point mass in the central 
plane and a pair of asymmetrically located point masses in off-central planes. This four-parameter 
representation is sufficient to represent an arbitrary imbalance and can be intuitively related to 
counterweight motions. 

3. The rotor imbalance (not including counterweights) is estimated at each sample period as follows: 

a. Sensor signals (strain gauges, counterweight positions, velocities, and accelerations, rotor angle 
encoder and tachometer) are combined, using a least-squares fit, to calculate the estimated net 
force and torque in x and y (FxIB, FyIB, τxIB, τyIB) created by the imbalance. 

b. The four imbalance parameters (mentioned in (2) above) and their derivatives are estimated using 
these forces and torques. This uses a dynamic model of the rotor that calculates effects due to the 
position, velocity, and acceleration of the imbalance parameters. 

4. The counterweights are driven to exactly counteract the estimated rotor imbalance. 

 

This can be considered an indirect method (analogous to indirect vs. direct adaptive control) since the sensor signals 
are used to build a model of the imbalance, then corrective action is taken based on the identified model parameters. 
In a direct method, (filtered, and mathematically manipulated) sensor signals would be used to directly drive the 
counterweights. Hopefully, this feedback loop would drive the counterweights until the sensors read zero. The 
increased complexity of the indirect method presented here enables more accurate fitting of the sensor data to the 
dynamic model of the imbalance. Whether the increased accuracy of the indirect method produces results that are 
sufficiently better than those of the direct method will depend on the characteristics of the imbalance (how fast it is 
moving, etc.) and sensor noise. 

A prior approach was developed by the author, concluding in October 1995, that was very similar. The major 
improvement made in this updated version involves breaking up the identification so that all sensor signals are 
reduced (combined) to result in an intermediate estimation of the net forces and torques on the rotor. In the previous 
approach, all sensors were used directly to identify the imbalance parameters. In the present approach, all sensors 
(strain gauges, counterweight positions, velocities, and accelerations, rotor angle encoder and tachometer) are used 
at each sample period to calculate four variables: the estimated net force and torque in x and y (FxIB, FyIB, τxIB, τyIB) 
created by the imbalance. This process involves a least squares fit to the data, using a model of the sensor geometry 
and subtracting out known forces due to the counterweights. These four variables then pass to the imbalance 
identification algorithm. Benefits of segmenting the identification into these two parts are: 

1. Physically, the four imbalance parameters are directly related to these four intermediate variables (FxIB, 
FyIB, τxIB, τyIB). The relation between sensor values and these intermediate variables is more direct than that 
between sensor values and imbalance parameters. This logically separates estimation of forces and torques 
created by the imbalance from the estimation of imbalance parameters themselves. 

2. It is easier to identify failed sensors, since the analysis can be performed without regard to the imbalance 
dynamics – one can analyze the residuals in the estimation of the intermediate variables. 

3. If sensors change (e.g., on-line failure, design change, etc.), the second part of the identification (that finds 
imbalance parameters from estimated forces and torques) does not have to be changed. 

4. Overall complexity is reduced by breaking one large problem into two smaller ones. No accuracy is lost, 
due to the physical reasoning listed in (1) above. 
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2 Control System Architecture 
 

ID system:  use sensed variables
(ψ,ω,α , FxIB, FyIB, τxIB, τyIB)

and known parameters to estimate
imbalance parameters (xp, yp,

xc, yc), their derivatives,
and sensor biases (β1, ... , β8)
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Add, Subtract,
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causal filter),
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Calculate net
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torques on the
disk that are due
to counterweights

only

Simple servo
control loop to

move
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Calculate desired
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raw strain
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CW1
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CW4

CW - counterweight
IB - imbalance
FAx1 - strain gauge measurement
Fx - net force on disk in x-direction
τx - net torque on disk about x-axis
ψ, ω, α  - disk angle, angular rate, angular

acceleration
xp - x-location of imbalance point mass
xc - x-location of upper mass from

imbalance couple

FxIB
FyIB
τxIB

τyIB

FxCW
FyCW
τxCW

τyCW  

Figure 2: Control system block diagram 

3 Imbalance Identification 
The basic approach taken here to identify the imbalance is: 

1) Calculate (identify) the net forces and torques on the rotor at each sample period, based upon the strain gauge 
measurements. 

2) Subtract out the forces due to the counterweights, leaving the forces due only to the imbalances. 

3) Identify the “imbalance parameters” corresponding to these forces that define the state of imbalance in the 
rotor. 

An indirect, model-based approach like this should work well if the form of the model can be identified correctly 
and the sensors are not excessively noisy or biased. 

3.1 Description of a structure to model a general state of imbalance in the rotor (defined by a set of 
“model-imbalance parameters”). 

The first step here is to select a general form for the imbalance that is capable of representing any possible 
imbalance. The 3x3 inertia matrix describing the spun portion of the centrifuge (the “rotor”) could be used, but a 
more intuitive representation is presented here. This arbitrarily chosen imbalance model structure has been proven 
to be sufficiently general to model any possible imbalance.4 

The form chosen contains two specific perturbations to a perfectly balanced rotor. These “model imbalances” are: 

1) A “point-mass” imbalance (PMI) located on the plane equidistant from the two counterweight planes. 

                                                           
4See Appendix C. 
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2) A “mass-couple” imbalance (MCI) composed of two equal masses located symmetrically about the center of 
the coordinate system. Each mass is in one of the planes containing the counterweights. 

It is not possible to represent a general state of imbalance with only a single point mass located somewhere within 
the rotor.  This is most easily demonstrated by considering a perfect rotor that has two equal masses added to it 
symmetrically about the mass center (similar to the “mass-couple” imbalance above). This situation can not be 
represented by a single point mass imbalance, proving that it is not a general representation. 

The forces acting on each of these model imbalances (PMI, MCI) are due to gravity, rotor motion (centrifugal 
acceleration and angular acceleration), and imbalance motion (Coriolis effects, imbalance acceleration)5. The net 
forces and torques [Fx, Fy, τx, τy] on the rotor will be calculated as functions of the rotor motion (ψ, ω, α), fixed 
system parameters (g, rotor geometry), and imbalance parameters. Once measurements of actual net forces torques 
and rotor motions are available, it will be possible to estimate the imbalance parameters. 

x, y, z are fixed in the disk frame
X, Y, Z are fixed on the de-spun portion of the

centrifuge
ψ(t) is the angle of the disk - the only rotational

degree of freedom
A, B represent the upper and lower portions of

the disk
z = 0 at the midpoint between the

counterweight planes

A

B

X
x

y

z

ψ

Z

 

Figure 3: Coordinate system used to describe imbalances and their effects 

The coordinate system is shown in Figure 3, with the z-axis locations shown in detail in Figure 4. An xyz Cartesian 
coordinate system is used to describe imbalance locations fixed within the rotor. The rotor angle, ψ(t), describes the 
relative angular position of the rotor with respect to the non-spinning (i.e. “de-spun”) portion of the centrifuge6. The 
rotor angular velocity, ω(t), and angular acceleration, α(t), are the first and second derivatives of ψ(t) with respect to 
time. A complete list of variables is contained in Appendix A.  

                                                           
5The rotor angular acceleration force, Coriolis force, and force due to imbalance acceleration are expected to be 
minimal, but will be included for completeness. 
6Although the centrifuge base may actually rotate slightly, this will be a small effect, and it is neglected in this 
analysis. 
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A (B) refers to the upper (lower) part of the disk
mp, mc are the imbalance masses
m is the mass of the disk
CWA, CWB are the planes of the counterweights (z = +/- l  by
definition)

SAs is the plane of the upper (A) spinning (s) strain gauges (S)
SAf is the plane of the upper (A) fixed (f) strain gauges (S)
SBs is the plane of the lower (B) spinning (s) strain gauges (S)
SBf is the plane of the lower (B) fixed (f) strain gauges (S)
zm is the z-axis coordinate of the disk c.o.g.
zAs is the z-coordinate of SAs
zAf is the z-coordinate of SAf
zBs is the z-coordinate of SBs
zBf is the z-coordinate of SBf
z = 0 is chosen arbitrarily as the midpoint between CWA and CWB

A

B

z

l

l

SAs
CWA

SAf

zAsl
zAf

z = 0

mp

mc

mC

SBf
CWB
SBs

zBf
- l

zBs

zm
m

 

Figure 4: z-axis locations of strain gauges, counterweights, and imbalances 

 

The origin of the xyz coordinate system is fixed on the axis of rotation at the midpoint between the upper (A) and 
lower (B) counterweight planes. The “mass-couple” imbalances, shown in Figure 4, are defined arbitrarily to lie in 
the same planes as the counterweights. The “point-mass” imbalance is chosen arbitrarily to lie in the plane 
equidistant between these two planes. The z-axis coordinate of this plane is defined to be z = 0. The z-axis 
coordinates of the upper and lower counterweight planes are defined to be z = l and z = -l. 

Two types of strain gauges will be used on both the upper and lower parts of the rotor. “Fixed” gauges (SAf and SBf) 
will be attached to the non-spinning base, and “spinning” gauges (SAs and SBs) will be mounted on the spinning 
rotor. As their z-axis coordinates may not be symmetric, each of the four strain gauge locations has its own 
coordinate label, zAs, zAf, zBf, and zBs, as shown in Figure 4. 

To summarize, the physical locations of the counterweight planes define the locations of the z-axis and the model 
imbalances (PMI and MCI). 

Fa is the force on the point masses
due to angular acceleration (not
shown in the figures)

Fc is the force on the point masses
due to centrifugal acceleration

Fg is the force on the point masses
due to gravity

Fx is the net force on the disk in the
+x direction (Fy is not shown)

τy is the net torque about the y axis

of the disk (τx is not shown)
Forces due to imbalance motion

(coriolis and acceleration) are
not shown here.

A

B

Fg

Fc

Fg

Fc

A

B
Fg

Fc

ω

Fx
τy Fx (= 0)

τy

 

Figure 5: Model imbalances 

Point-mass imbalance (PMI), Mass-couple imbalance (MCI), and their effects on the rotor.  
 

Figure 5 shows the model imbalances used to describe the general state of imbalance in the rotor. These discrete 
point masses, if placed in the correct locations, can produce the same effects as any imbalance in the rotor. This is 
proven in Appendix C and summarized as follows. The proof assumes that any state of imbalance can be described 
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by a (possibly large) number of point masses of varying mass and location. The net forces and torques due to each 
of these many masses is calculated, summed, and shown to be equal to the net forces and torques due to the two 
model imbalances (PMI, MCI), provided the imbalance parameters are chosen correctly (for example, mp xp = Σi=1

n 
mi xi, where mi and xi represent the mass and x-coordinate of each of the many point masses). In Section 3.2, the 
effective net forces and torques on the rotor due to the model imbalances will be calculated. 

3.2 Derivation of equations relating model-imbalance parameters to the net forces and torques on the 
rotor. 

Even though the spin axis is not perfectly rigid, it is modeled as such in this analysis. 

The first model imbalance, the point-mass imbalance, has a mass equal to mp and is located in the x-y plane, with z 
= 0. The mass magnitude, x-y location, x-y velocity, and x-y-z acceleration all affect the net forces and torques on 
the rotor in the x and y directions (the effect due to acceleration in the z-direction is small, and will later be 
dropped). Therefore, [mp, xp, yp, vxp, vyp, axp, ayp] define the imbalance parameters for the PMI (the value of mp is 
arbitrary). 

Note that these forces and torques are computed in the rotor frame. For example, Fx is the net force on the rotor 
aligned with the +x axis of the rotor. Since forces and torques aligned with the z-axis will not be measured by the 
strain gauges, they are not included here. The point-mass imbalance results in the following net forces and torques: 

• Fg, the force due to gravity. This acts straight down at all times7 and is independent of rotor motion. Its effect 
on the rotor appears as a torque equal to mpgrp, where rp is the radial distance from the axis of rotation. 

Fx = 0 Fy = 0  τx = -mpgyp τy = mpgxp 

• Fc, the centrifugal force. This acts radially outwards whenever the rotor is rotating, and is proportional to the 
angular velocity squared. Its effect on the rotor appears as a force in the direction of the point mass location 
vector (xp, yp) and with a magnitude equal to mprpω2. 

Fx = mpω2xp Fy = mpω2yp τx = 0 τy = 0 

• Fα, the force due to rotor angular acceleration. This force acts perpendicular to the point mass location vector 
(xp, yp) whenever the rotor has an angular acceleration, and is proportional to the angular acceleration. Its effect 
on the rotor is a force in the direction perpendicular to the point mass location vector and with a magnitude 
equal to mprpα.  

Fx = mpαyp Fy = -mpαxp τx = 0 τy = 0 

• Fv, the Coriolis force due to the imbalance moving within the rotor. This force acts perpendicular to the 
imbalance velocity, (vxp, vyp) and is proportional to the imbalance velocity and the rotor angular velocity. 

Fx = 2mpωvyp Fy = -2mpωvxp τx = 0 τy = 0 

• Fa, the force due to the imbalance accelerating within the rotor. This acts in the opposite direction of the 
acceleration, (axp, ayp, azp). 

Fx = -mpaxp Fy = -mpayp τx = -mpazpyp τy = mpazpxp 

 

The second model imbalance, the mass-couple imbalance, consists of two point masses of mass mc. The z-axis 
location of the upper (lower) point mass is chosen arbitrarily to lie in the same plane as the upper (lower) 
counterweights. Since the masses are located symmetrically about the geometric center of the rotor by definition, the 
x-y location of the upper point mass (xc, yc) also determines the lower point mass location (-xc, -yc). There is no net 
force due to gravity, also due to symmetry. Positions (xc, yc), velocities (vxc, vyc), and accelerations (axc, ayc) of the 

                                                           
7Effects due to misalignment between the gravity vector and the axis of rotation are described in Section 3.2.1 
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imbalance masses are always equal and opposite by definition. Therefore, [mc, xc, yc, vxc, vyc, axc, ayc] define the 
imbalance parameters for the MCI. The MCI results in the following forces on the rotor in the rotor frame: 

• Fg, the force due to gravity, is zero by definition. This is because the masses are defined to be symmetrically 
located about the center of the rotor coordinate system. 

Fx = 0 Fy = 0 τx = 0 τy = 0 

• Fc, the centrifugal force. This acts radially outwards whenever the rotor is rotating, and is proportional to the 
angular velocity squared. 

Fx = 0 Fy = 0 τx = -2mcω2lyc τy = 2mcω2lxc 

• Fα, the force due to rotor angular acceleration. This force acts perpendicular to each point mass location vector 
whenever the rotor is accelerating, and is proportional to the angular acceleration. 

Fx = 0 Fy = 0 τx = 2mcαlxc τy = 2mcαlyc 

• Fv, the Coriolis force due to the imbalance moving within the rotor. This force acts perpendicular to the 
imbalance velocity, (vxc, vyc) and is proportional to the imbalance velocity and the rotor angular velocity. 

Fx = 0 Fy = 0 τx = 4mcωlvxc τy = 4mcωlvyc 

• Fa, the force due to the imbalance accelerating within the rotor. This acts in the opposite direction of the 
acceleration, (axc, ayc, azc). 

Fx = 0 Fy = 0 τx = 2mclayc - 2mcazcyc τy = -2mclaxc + 2mcazcxc 

 

Adding the net forces and torques on the rotor that are created by the two imbalances (forces are calculated in the 
rotor frame): 

Fx =  mpω2xp + mpαyp + 2mpωvyp - mpaxp 

Fy = mpω2yp - mpαxp - 2mpωvxp - mpayp 

τx =  -mpgyp - mpazpyp - 2mcω2lyc + 2mcαlxc + 4mcωlvxc + 2mclayc - 2mcazcyc 

τy =  mpgxp + mpazpxp + 2mcω2lxc + 2mcαlyc + 4mcωlvyc - 2mclaxc + 2mcazcxc 

 

Putting the equations in a linear form so that the linear regression can be applied later requires dropping the “cross-
product” terms. These are some of the terms due to acceleration of the imbalance within the rotor frame - likely to 
be small. 

Fx =  mpω2xp + mpαyp + 2mpωvyp - mpaxp 

Fy = mpω2yp - mpαxp - 2mpωvxp - mpayp 

τx =  -mpgyp - 2mcω2lyc + 2mcαlxc + 4mcωlvxc + 2mclayc 

τy =  mpgxp + 2mcω2lxc + 2mcαlyc + 4mcωlvyc - 2mclaxc 

3.2.1 Additional forces 

The misalignment between the rotor axis of rotation and the gravity vector will cause strain gauge measurements 
that are not due to the imbalances. These forces must be accounted for so that the model imbalance parameters may 
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be properly identified. The misalignment is quantified by the misalignment angle in the x and y directions, φx and φy. 
This misalignment causes a constant force on the fixed strain gauges and an oscillating forces on the spinning strain 
gauges. 

The misalignment causes forces due to the model imbalances as well, but as these are second order effects, they will 
not be considered. These terms will not apply for the space station centrifuge, as it is in a micro-gravity 
environment. 

ω

φx g

zm

 

Figure 6: Misalignment between the axis of rotation and the gravity vector results in additional forces that 
are not due to imbalances 

 

Fgφ, the force due to the axis misalignment, is affected by the total mass of the rotor, m, the z-axis location of the 
rotor center of gravity (c.o.g.), zm, and the misalignment angles, φx and φy. Angles are assumed to be small, so sin(φ) 
≈ φ. It results in the following net forces and torques on the rotor, measured in the base frame. 

FX = mgφx FY = mgφy τX = -mgφyzm τY = mgφxzm 

Unlike the forces due to imbalances, these forces do not rotate with the rotor. To calculate the forces in the rotor 
frame, they are rotated by an angle -ψ: 

Fx = FXcosψ + FYsinψ Fy = -FXsinψ + FYcosψ τx = τXcosψ + τYsinψ τy = -τXsinψ + τYcosψ 

Substituting: 

Fx = mgφx cosψ + mgφy sinψ Fy = -mgφx sinψ + mgφy cosψ 

τx = -mgφyzm cosψ + mgφxzm sinψ τy = mgφyzm sinψ + mgφxzm cosψ 

The parameters describing the imbalance must appear linearly in the equation if they are to be identified using a 
linear regression, so the torque terms containing zm φx and zm φy must be changed. New variables zmφx ( = zm φx) and 
zmφy ( = zm φy) are introduced to maintain linearity. 

Fx = mgφx cosψ + mgφy sinψ Fy = -mgφx sinψ + mgφy cosψ 

τx = -mg zmφy cosψ + mg zmφx sinψ τy = mg zmφy sinψ + mg zmφx cosψ 

Adding these forces and torques to the model-imbalance forces and torques, 

Fx =  mpω2xp + mpαyp + 2mpωvyp - mpaxp + mg cosψ φx + mg sinψ φy 
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Fy = mpω2yp - mpαxp - 2mpωvxp - mpayp - mg sinψ φx + mg cosψ φy 

τx =  -mpgyp - 2mcω2lyc + 2mcαlxc + 4mcωlvxc + 2mclayc + mg sinψ zmφx - mg cosψ zmφy 

τy =  mpgxp + 2mcω2lxc + 2mcαlyc + 4mcωlvyc - 2mclaxc + mg cosψ zmφx + mg sinψ zmφy 

Putting these equations in matrix form, 

FnetIB = Φ θ 

where θ is a 16x1 column vector of the model-imbalance parameters. m, mp, and mc may be chosen arbitrarily, since 
they simply scale the values of the other parameters. They are chosen to equal 1 (kilogram) so they drop out of the 
equations completely. Φ is a 4x16 matrix. (sψ ≡ sinψ, cψ ≡ cosψ). 

θ  =   

xp yp xc yc vxp vyp vxc vyc axp ayp axc ayc φx φy zmφx zmφy 

Φ  =   

ω2 α 0 0 0 2ω 0 0 -1 0 0 0 g cψ g sψ 0 0 

-α ω2 0 0 -2ω 0 0 0 0 -1 0 0 -g sψ g cψ 0 0 

0 -g 2αl -2ω2l 0 0 4ωl 0 0 0 0 2l 0 0 g sψ -g cψ 

g 0 2ω2l 2αl 0 0 0 4ωl 0 0 -2l 0 0 0 g cψ g sψ 

3.2.2 Summary 

The above linear matrix equation describes the net forces and torques on the rotor, FnetIB = [Fx, Fy, τx, τy]T that are 
due to the model-imbalance parameters, θ = [xp, yp, xc, yc, vxp, vyp, vxc, vyc, axp, ayp, axc, ayc, φx, φy, zmφx, zmφy]T, which 
represent the model imbalances as well as the axis misalignment [φx, φy, zmφx, zmφy]. Note that the MCI produces 
torques only - no forces, and the PMI produces no torques except for the gravity effects.  

Section 3.4 presents a linear regression method to estimate the model-imbalance parameters based upon force and 
torque measurements. However, sensors to measure [Fx, Fy, τx, τy] directly are not available, so before this method 
can be applied, these signals must first be estimated based upon the strain gauge measurements. 

3.3 Derivation of equations relating counterweight parameters to the net forces and torques on the rotor. 

If the forces and torques due to the counterweights can be calculated and subtracted from the measured forces and 
torques, the remaining signal can be used to identify the imbalance alone. The basic approach to deriving the effects 
of the counterweights is to calculate the equivalent set of model-imbalance parameters and then use the equations 
already derived in Section 2b. 

 

Problem definition: 

Counterweight parameters, mpCW, mcCW,  and θCW = [xpCW, ypCW, xcCW, ycCW, vxpCW, vypCW, vxcCW, vycCW, axpCW, aypCW, 
axcCW, aycCW] T, define the counterweight properties that result in net forces and torques on the rotor. These 
parameters are defined with the same structure as used for the model imbalances. 

Take measurements of counterweight positions, velocities, and accelerations, and calculate the above parameters. 
Then use these parameters to calculate the net forces and torques applied to the rotor by the counterweights. 

This is to be performed at each sample. 
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δ1

Point mass location
for counterweights

Moving
Counterweight #2

(xpCW, ypCW, 0)

Counterweight #1
fixed dead weight

Counterweight #2
fixed dead weight

δ2

δ1, δ2 coordinates describing position
of upper moving counterweights

δ3, δ4 are in lower plane, not shown.
xpCW, etc. are based upon δ3 =
δ1 and δ4 = 0.

xpCW, ypCW effective counterweight point
mass location ( = (δ1,δ2/2) for
the coordinates given)

xcCW, ycCW effective counterweight mass
couple location ( = (0, δ2/2) for
the coordinates given)

Mass couple locations
for counterweights

(xcCW, ycCW, l)

(-xcCW, -ycCW, -l)

 

Figure 7: Counterweight coordinates 

The counterweights are arranged in the layout shown in Figure 7. The positions of each of the four counterweights 
is described by [δ1, δ2, δ3, δ4]. δ1 is the counterweight in the upper plane in the +x direction, δ2 is the counterweight 
in the upper plane in the +y direction, δ3 is the counterweight in the lower plane in the +x direction, δ4 is the 
counterweight in the lower plane, in the +y direction. mCW is the mass of the moving portion of the counterweight 
assembly. The origins of the axes for δ1, δ2, δ3, and δ4 are chosen so that with δ = 0, the net effect of the 
counterweight assembly is zero, regardless of where the counterweight actually is - this is the position where the 
counterweight is exactly counterbalanced by the dead weight. 

The velocities and accelerations are described by the first and second derivatives of the position signals, [δ1
’, δ2

’, δ3
’, 

δ4
’, δ1

’’, δ2
’’, δ3

’’, δ4
’’]. Sensors will not be used to measure these signals directly (i.e., no tachometer feedback), and 

since the velocity and acceleration effects are likely to be small, they will not be calculated in the autobalancing 
system. However, their effects are included here for completeness. For this analysis, the counterweight coordinate 
vector, [δ1, δ2, δ3, δ4, δ1

’, δ2
’, δ3

’, δ4
’, δ1

’’, δ2
’’, δ3

’’, δ4
’’], is assumed to be available at all times. 

The first step is to calculate the counterweight parameters θCW = [xpCW, ypCW, xcCW, ycCW, vxpCW, vypCW, vxcCW, vycCW, 
axpCW, aypCW, axcCW, aycCW] T, from the counterweight coordinates, [δ1, δ2, δ3, δ4, δ1

’, δ2
’, δ3

’, δ4
’, δ1

’’, δ2
’’, δ3

’’, δ4
’’]. The 

basic approach is similar to the proof shown in Appendix C - add the individual effects of each of the 
counterweights and select the counterweight parameters to yield the same effects. The equations are simplified if the 
counterweights all have mass, equal to mCW (this is the moving portion of the counterweights). 

mpCW =  4 mCW 

xpCW =  (δ1 + δ3) / 4 

ypCW =  (δ2 + δ4) / 4 

vxpCW =  d/dt(xpCW) = (δ1
’ + δ3

’) / 4 

vypCW =  d/dt(ypCW) = (δ2
’ + δ4

’) / 4 
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axpCW =  d/dt(vxpCW)  = (δ1
’’ + δ3

’’) / 4 

aypCW =  d/dt(vypCW)  = (δ2
’’ + δ4

’’) / 4 

mcCW =  2 mCW 

xcCW =  (δ1 − δ3) / 4 

ycCW =  (δ2 − δ4) / 4 

vxcCW =  d/dt(xcCW)  = (δ1
’ − δ3

’) / 4 

vycCW =  d/dt(ycCW)  = (δ2
’ − δ4

’) / 4 

axcCW =  d/dt(vxcCW)  = (δ1
’’ − δ3

’’) / 4 

aycCW =  d/dt(vycCW)  = (δ2
’’ − δ4

’’) / 4 

 

Substitute these counterweight parameters into the model-imbalance equations: 

FxCW =  mpCWω2xpCW + mpCWαypCW + 2mpCWωvypCW - mpCWaxpCW 

FyCW = -mpCWαxpCW + mpCWω2ypCW - 2mpCWωvxpCW - mpCWaypCW 

τxCW =  - mpCWgypCW + 2mcCWαlxcCW - 2mcCWω2lycCW + 4mcCWωlvxcCW + 2mcCWlaycCW 

τyCW =  mpCWgxpCW + 2mcCWω2lxcCW + 2mcCWαlycCW + 4mcCWωlvycCW - 2mcCWlaxcCW 

Dropping terms including counterweight velocity and acceleration: 

FxCW =  mpCWω2xpCW + mpCWαypCW 

FyCW = -mpCWαxpCW + mpCWω2ypCW 

τxCW =   - mpCWgypCW + 2mcCWαlxcCW - 2mcCWω2lycCW 

τyCW =  mpCWgxpCW   + 2mcCWω2lxcCW + 2mcCWαlycCW 

Putting these equations in matrix form, 

FnetCW = ΦCW θCW 

where θCW is a 4x1 column vector of the model-imbalance parameters. ΦCW is a 4x4 matrix. 

θCW  =   [xpCW ypCW xcCW ycCW]T 

ΦCW  =   mpCW ω2 mpCW α 0 0 

 - mpCW α mpCW ω2 0 0 

 0 - mpCW g 2 mcCW αl -2 mcCW ω2l 

 mpCW g 0 2 mcCW ω2l 2 mcCW αl 

3.4 Identification of the net forces and torques based upon the strain gauge signals.  

The goal in this section is to develop a procedure to produce net force and torque measurements, [Fx, Fy, τx, τy], at 
each sample period based upon strain gauge measurements. There will be between four and eight (and possibly 
more) strain gauge measurements used to produce the four net force and torque signals. Strain gauges may be 
spinning with the rotor or fixed in the base. Each strain gauge will have a bias, which must be accounted for. The 
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approach taken here is to solve a least-squares fit to get the net forces and torques, while keeping the bias terms 
separate so that they can be identified in the imbalance identification step. 

For now, assume the following strain gauge layout: 

16 strain gauges are used - 8 fixed, 8 spinning. 

They are arranged in sets of four. The upper set of fixed strain gauges is shown in the following sketch. “S” 
indicates “strain gauge.”  “A” or “B” (not shown here) indicates the upper or lower set. “x” or “y” indicate the axis 
of measurement. “f” or “s” (not shown here) indicate “fixed” or “spinning” gauges. “1” or “2” identify gauges on 
the same axis. “1” is on the positive side of the axis and “2” is on the negative side of the axis. When there is a force 
on the rotor in the positive direction, “1” will be in tension and “2” will be in compression. 

SAxf1SAxf2

SAyf1

SAyf2

 

Figure 8: Strain gauge layout 

The first step is to combine two strain gauges on the same axis, which should yield exactly opposite readings. To 
improve accuracy, these readings will combined by subtraction. For example, SAxf = (SAxf1 - SAxf2)/2. If a force of 
+10 Newtons is applied to the rotor in the +x direction, SAxf1 will be in tension, reading +10N and SAxf2 will be in 
compression, reading -10N. The combined value, SAxf, will be (10 - (-10))/2 = 10N. This combined value will also 
be filtered to reduce sensor noise and extraneous vibrations. For now, this operation is represented as “filter()”. 

SAxf = filter( (SAxf1 - SAxf2) / 2 ) 

SAyf = filter( (SAyf1 - SAyf2) / 2 ) 

SBxf = filter( (SBxf1 - SBxf2) / 2 ) 

SByf = filter( (SByf1 - SByf2) / 2 ) 

SAxs = filter( (SAxs1 - SAxs2) / 2 ) 

SAys = filter( (SAys1 - SAys2) / 2 ) 

SBxs = filter( (SBxs1 - SBxs2) / 2 ) 

SBys = filter( (SBys1 - SBys2) / 2 ) 

 

Assume that this force measurement is composed of three parts: 

S = Strue + β + ε 

1) Strue, the actual force transmitted by the combined pair of strain gauges (if the sensor were perfect, S = Strue). 
However, Strue may contain force disturbances that are not due to imbalances (such as structural vibrations). 

2) β, a bias term that represents the net bias of the combined pair of strain gauges (assumed to be non-time-
varying). With eight strain gauge pairs, there will be eight biases. 

3) ε, sensor noise - an unbiased white noise signal due to sensor error. 



SSRL Centrifuge Autobalancing and FDIR Edward Wilson 25 July 2003 page 15/28 

Putting this in vector form: 

S = Strue + Β + ΕSSN 

where, 

S is an 8x1 column vector: [SAxf, SAyf, SBxf, SByf, SAxs, SAys, SBxs, SBys]T 

Strue is an 8x1 column vector:  [SAxf true, SAyf true, SBxf true, SByf true, SAxs true, SAys true, SBxs true, SBys true]T 

Β is an 8x1 column vector: [β1, β2, β3, β4, β5, β6, β7, β8] T 

ΕSSN is an 8x1 column vector: [εSS1, εSS2, εSS3, εSS4, εSS5, εSS6, εSS7, εSS8] T  (“SSN” indicates Strain gauge Sensor 
Noise) 

 

Assume that Strue, the actual force at the strain gauge, can be directly calculated from the net forces and torques on 
the rotor, [Fx, Fy, τx, τy], accounting for the rotation transformation and assuming random force noise (actual forces 
at the strain gauges, such as vibrations, that do not result in a net force or torque on the rotor). Putting this in 
equation form: 

Strue = T G Fnet + ESFN 

where, 

T is an 8x8 transformation matrix that accounts for the angle of the rotor relative to the fixed gauges. It is a 
calculable direct function of ψ. The upper right and lower left quadrants are all zeros. The lower right quadrant 
is the identity matrix (since the spinning gauges do not require transformation). “T” is for “transformation.” 

G is a constant 8x4 matrix that accounts for the strain gauge locations in the transformation from Fnet to Strue. It 
contains elements such as zBs / (zBs - zAs). “G” is for “geometry.” 

Fnet is the 4x1 vector of net forces and torques on the rotor, [Fx, Fy, τx, τy]. 

ΕSFN is an 8x1 column vector: [εSF1, εSF2, εSF3, εSF4, εSF5, εSF6, εSF7, εSF8] T  (“SFN” indicates Strain gauge Force 
Noise) 

To first derive G, assume the rotor angle, ψ, is zero so T is the identity matrix. In this case, 

Strue = G Fnet 

SAxf true = G11 G12 G13 G14 Fx 

SAyf true G21 G22 G23 G24 Fy 

SBxf true G31 G32 G33 G34 τx 

SByf true G41 G42 G43 G44 τy 

SAxs true G51 G52 G53 G54 

SAys true G61 G62 G63 G64 

SBxs true G71 G72 G73 G74 

SBys true G81 G82 G83 G84 

Each of the elements in G will now be identified by force and torque balance equations. 

Fx = SAxf true + SBxf true 

τy = SAxf true zAf + SBxf true zBf 

solving these two equations with two unknowns, 
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SAxf true = [-zBf / (zAf - zBf)] Fx + [1 / (zAf - zBf)] τy 

SBxf true = [zAf / (zAf - zBf)] Fx + [-1 / (zAf - zBf)] τy 

Repeating for y, 

Fy = SAyf true + SByf true 

τx = -SAyf true zAf + -SByf true zBf 

solving these two equations with two unknowns, 

SAyf true = [-zBf / (zAf - zBf)] Fy + [-1 / (zAf - zBf)] τx 

SByf true = [zAf / (zAf - zBf)] Fy + [1 / (zAf - zBf)] τx 

With ψ=0, the only difference for the spinning gauges is the different z-axis gauge locations, 

SAxs true = [-zBs / (zAs - zBs)] Fx + [1 / (zAs - zBs)] τy 

SBxs true = [zAs / (zAs - zBs)] Fx + [-1 / (zAs - zBs)] τy 

SAys true = [-zBs / (zAs - zBs)] Fy + [-1 / (zAs - zBs)] τx 

SBys true = [zAs / (zAs - zBs)] Fy + [1 / (zAs - zBs)] τx 

So the G matrix is: 

G =  -zBf / (zAf - zBf) 0 0 1 / (zAf - zBf) 

 0 -zBf / (zAf - zBf) -1 / (zAf - zBf) 0 

 zAf / (zAf - zBf) 0 0 -1 / (zAf - zBf) 

 0 zAf / (zAf - zBf) 1 / (zAf - zBf) 0 

 -zBs / (zAs - zBs) 0 0 1 / (zAs - zBs) 

 0 -zBs / (zAs - zBs) -1 / (zAs - zBs) 0 

 zAs / (zAs - zBs) 0 0 -1 / (zAs - zBs) 

 0 zAs / (zAs - zBs) 1 / (zAs - zBs) 0 

Now allowing for ψ ≠ 0, find the transformation matrix T that performs, 

Strue = T Strue|ψ =0 

The spinning gauge forces are independent of the rotor angle, so the lower right quadrant is a 4x4 identity matrix. 
There is no coupling between spinning and fixed gauge forces, so the upper right and lower left quadrants are all 
zeros. The upper left quadrant performs the following transformation, 

SAxf true = cosψ -sinψ 0 0 SAxf true|ψ =0 

SAyf true sinψ cosψ 0 0 SAyf true|ψ =0 

SBxf true 0 0 cosψ -sinψ SBxf true|ψ =0 

SByf true 0 0 sinψ cosψ SByf true|ψ =0 

So the T matrix is, 

T = cosψ -sinψ 0 0 0 0 0 0 

 sinψ cosψ 0 0 0 0 0 0 
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 0 0 cosψ -sinψ 0 0 0 0 

 0 0 sinψ cosψ 0 0 0 0 

 0 0 0 0 1 0 0 0 

 0 0 0 0 0 1 0 0 

 0 0 0 0 0 0 1 0 

 0 0 0 0 0 0 0 1 

T-1 will be needed at each sample, so rather than calculate it numerically at run-time it is calculated analytically 
here. At each sample cosψ and sinψ need to be calculated once only. 

T-1 = cosψ sinψ 0 0 0 0 0 0 

 -sinψ cosψ 0 0 0 0 0 0 

 0 0 cosψ sinψ 0 0 0 0 

 0 0 -sinψ cosψ 0 0 0 0 

 0 0 0 0 1 0 0 0 

 0 0 0 0 0 1 0 0 

 0 0 0 0 0 0 1 0 

 0 0 0 0 0 0 0 1 

It is simple to check that T-1T = I. 

 

Now that G and T have been derived, equations *** and *** are combined to yield, 

S = T G Fnet + Β + ESFN + ΕSSN 

Rearranging, 

S - Β = T G Fnet + (ESFN + ΕSSN) 

T-1 (S - Β) = G Fnet + T-1(ESFN + ΕSSN) 

This is now in the standard form for a least squares problem:  y = Ax + e, where T-1(S-Β) is y, G is A, Fnet is x, and 
T-1(ESFN + ΕSSN) is e (still white noise). The least-squares solution for this equation is x = (AT A)-1 AT y. The former 
representation, with (S-B) as y and TG as A, could have been used; however, by pre-multiplying by T-1, the A 
matrix remains constant, so it (and (AT A)-1 AT) does not need to be re-calculated at each update. The least-squares 
minimization will be derived here for this problem. 

Problem statement: 

Assume a system governed by the above equation. T -1 and G are known.8  S is measured, but is corrupted by the 
bias and noise terms as shown. Find Fnet

^ that can reproduce (T -1(S-Β))^ by the equation (T -1(S-Β))^ = G Fnet
^, where 

the error ((T -1(S-Β))^ - (T -1(S-Β)))2 is minimized. The idea is that by finding Fnet
^ that minimizes this cost function 

will be close to the actual Fnet, and this problem formulation is mathematically easy to solve. 

minimize over Fnet
^    J = ((T -1(S-Β))^ - (T -1(S-Β)))2 

J = (G Fnet
^ - (T -1(S-Β)))2 

                                                           
8T-1 is based on measurements of ψ, but this is highly accurate compared with other measurements. G is based upon 
measurement of the strain gauge locations, which is assumed to be highly accurate. Additionally, the assumption 
that the system is governed by the given equation is an important one. Every effort has been made to account for all 
effects in the model, such as axis misalignment and sensor biases, but there are sure to be some effects that remain 
unaccounted for. 
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the cost J is minimized when ∂J/∂Fnet^ = 0 

∂J/∂Fnet^ = 2 ∂/∂Fnet^(G Fnet
^ - (T -1(S-Β)))T (G Fnet

^ - (T -1(S-Β))) 

∂J/∂Fnet^ = 2 GT (G Fnet
^ - (T -1(S-Β))) 

setting the derivative, ∂J/∂Fnet^ = 0, 

0 = 2 GT (G Fnet
^ - (T-1(S-Β)) 

0 = GT G Fnet
^ - GT(T-1(S-Β)) 

GT G Fnet
^ = GT(T-1(S-Β)) 

(GT G)-1 (GT G) Fnet
^ = (GT G)-1 GT(T-1(S-Β)) 

Fnet
^ = ((GT G)-1 GT) (T -1(S-Β)) 

Summarizing, 

Fnet
^ = Γ T -1(S-Β) 

The term, ((GT G)-1 GT) is a fixed 4x8 matrix that is a function of the fixed system geometry only (strain gauge 
locations, etc.). It is calculated once only, and renamed Γ, where Γ ≡ ((GT G)-1 GT). Some of the elements of Γ are 
always zero, as indicated below. Also, 
Γ22 = Γ11, Γ24 = Γ13, Γ26 = Γ15, Γ28 = Γ17, Γ32 = −Γ41, Γ34 = −Γ43, Γ36 = −Γ45, Γ38 = −Γ47. 

T -1 is a function of ψ, and is calculated at each sample. This is an 8x8 matrix, but the inverse is performed 
analytically, so only eight terms need to be calculated at each sample. 

S is the 8x1 vector of measurements resulting from the filtering and combination of strain gauge pairs. 

Β is the 8x1 bias vector that will be calculated in the following identification. 

sψ ≡ sinψ, cψ ≡ cosψ in the equation below. 

Fx
^   = Γ11 0 Γ13 0 Γ15 0 Γ17 0 cψ sψ 0 0 0 0 0 0 SAxf - β1 

Fy
^ 0 Γ22 0 Γ24 0 Γ26 0 Γ28 -sψ cψ 0 0 0 0 0 0 SAyf - β2 

τx
^ 0 Γ32 0 Γ34 0 Γ36 0 Γ38 0 0 cψ sψ 0 0 0 0 SBxf - β3 

τy
^ Γ41 0 Γ43 0 Γ45 0 Γ47 0 0 0 -sψ cψ 0 0 0 0 SByf - β4 

 0 0 0 0 1 0 0 0 SAxs - β5 

 0 0 0 0 0 1 0 0 SAys - β6 

 0 0 0 0 0 0 1 0 SBxs - β7 

 0 0 0 0 0 0 0 1 SBys - β8 

This concludes the identification of the net forces and torques on the rotor, Fnet
^ = [Fx

^, Fy
^, τx

^, τy
^], based on the 

strain gauge measurements. 

3.5 Calculation of forces due to imbalances alone by subtracting out the effects of the counterweights. 

The net forces and torques on the rotor are due to the sum of the imbalance forces and the counterweight forces: 

Fnet = FnetIB + FnetCW 

Fnet
^ has been estimated based upon the strain gauge measurements, and FnetCW has been calculated based upon the 

counterweight coordinates. Subtracting the two leaves FnetIB, the forces and torques due to the imbalances. 

FnetIB = Fnet
^ - FnetCW 
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expanding, 

FnetIB = Γ T -1(S-Β) - FnetCW 

where, 

Fx
^   = Γ11 0 Γ13 0 Γ15 0 Γ17 0 cψ sψ 0 0 0 0 0 0 SAxf - β1 

Fy
^ 0 Γ22 0 Γ24 0 Γ26 0 Γ28 -sψ cψ 0 0 0 0 0 0 SAyf - β2 

τx
^ 0 Γ32 0 Γ34 0 Γ36 0 Γ38 0 0 cψ sψ 0 0 0 0 SBxf - β3 

τy
^ Γ41 0 Γ43 0 Γ45 0 Γ47 0 0 0 -sψ cψ 0 0 0 0 SByf - β4 

 0 0 0 0 1 0 0 0 SAxs - β5 

 0 0 0 0 0 1 0 0 SAys - β6 

 0 0 0 0 0 0 1 0 SBxs - β7 

 0 0 0 0 0 0 0 1 SBys - β8 

 

FxCW =  mpCWω2xpCW + mpCWαypCW + 2mpCWωvypCW - mpCWaxpCW 

FyCW = mpCWω2ypCW - mpCWαxpCW - 2mpCWωvxpCW - mpCWaypCW 

τxCW =  -mpCWgypCW - 2mcCWω2lycCW + 2mcCWαlxcCW + 4mcCWωlvxcCW + 2mcCWlaycCW 

τyCW =  mpCWgxpCW + 2mcCWω2lxcCW + 2mcCWαlycCW + 4mcCWωlvycCW - 2mcCWlaxcCW 

 

3.6 Identification of the model-imbalance parameters based upon these net forces and torques. 

From the previous step,  

FnetIB = Γ T -1(S-Β) - FnetCW 

From Section 3.3, 

FnetIB = Φ θ 

Combining these equations, a least squares minimization problem can be solved to obtain the model-imbalance 
parameters, θ = [xp, yp, xc, yc, vxp, vyp, vxc, vyc, axp, ayp, axc, ayc, φx, φy, zmφx, zmφy]T. 

FnetIB will actually have a noise signal added to the forces and torques resulting from the imbalance parameters, so, 

FnetIB = Φ θ + ENFN 

ΕNFN is an 8x1 column vector: [εNF1, εNF2, εNF3, εNF4, εNF5, εNF6, εNF7, εNF8] T  (“NFN” indicates Net-Force Noise) 

where ENFN is the “Net-Force noise” signal. Earlier noise vectors ESFN and ESSN were for “Strain gauge Force Noise” 
(forces at the strain gauges that did not result in net forces) and “Strain gauge Sensor Noise” (sensor errors not 
resulting from actual forces). 

Combining equations *** and ***, 

Γ T -1(S-Β) - FnetCW = Φ θ + ENFN 

Γ T -1 S- Γ T -1 Β - FnetCW = Φ θ + ENFN 

Γ T -1 S - FnetCW = Φ θ + Γ T -1 Β + ENFN 

Γ T -1 S - FnetCW = [Φ, Γ T -1] [θ, Β] + ENFN 
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This is in the same form as the standard linear least squares minimization problem, where θ^ and Β^ will be 
estimated. The left side of the equation (the usual place for the vector of measurements) can be calculated directly, 
resulting in a 4x1 vector. 

The solution to this equation is: 

[θ^, Β^] = ([Φ, Γ T -1]T [Φ, Γ T -1])-1 [Φ, Γ T -1] T (Γ T -1 S - FnetCW) 
where (summarizing from throughout this document), 

θ^ is the estimated model-imbalance parameter vector, 

θ^ = [xp
^, yp

^, xc
^, yc

^, vxp
^, vyp

^, vxc
^, vyc

^, axp
^, ayp

^, axc
^, ayc

^, φx
^, φy

^, zmφx
^, zmφy

^]T 

Β^ is the estimated strain gauge bias vector, 

Β^ = [β1
^, β2

^, β3
^, β4

^, β5
^, β6

^, β7
^, β8

^] T 

Φ is the matrix defining the forces and torques resulting from the imbalance parameters, 

Φ =   

ω2 α 0 0 0 2ω 0 0 -1 0 0 0 g cψ g sψ 0 0 

-α ω2 0 0 -2ω 0 0 0 0 -1 0 0 -g sψ g cψ 0 0 

0 -g 2αl -2ω2l 0 0 4ωl 0 0 0 0 2l 0 0 g sψ -g cψ 

g 0 2ω2l 2αl 0 0 0 4ωl 0 0 -2l 0 0 0 g cψ g sψ 

Γ is a fixed 4x8 matrix that is a function of the fixed system geometry only (strain gauge locations, etc.). It is 
calculated once only. Some of the elements of Γ are always zero, as indicated below. Also, 
Γ22 = Γ11, Γ24 = Γ13, Γ26 = Γ15, Γ28 = Γ17, Γ32 = −Γ41, Γ34 = −Γ43, Γ36 = −Γ45, Γ38 = −Γ47. 

 

Γ  = Γ11 0 Γ13 0 Γ15 0 Γ17 0 

 0 Γ22 0 Γ24 0 Γ26 07 Γ28 

 0 Γ32 0 Γ34 0 Γ36 0 Γ38 

 Γ41 0 Γ43 0 Γ45 0 Γ47 0 

Γ ≡ ((GT G)-1 GT) 

where, 

 

G =  -zBf / (zAf - zBf) 0 0 1 / (zAf - zBf) 

 0 -zBf / (zAf - zBf) -1 / (zAf - zBf) 0 

 zAf / (zAf - zBf) 0 0 -1 / (zAf - zBf) 

 0 zAf / (zAf - zBf) 1 / (zAf - zBf) 0 

 -zBs / (zAs - zBs) 0 0 1 / (zAs - zBs) 

 0 -zBs / (zAs - zBs) -1 / (zAs - zBs) 0 

 zAs / (zAs - zBs) 0 0 -1 / (zAs - zBs) 

 0 zAs / (zAs - zBs) 1 / (zAs - zBs) 0 

T -1 is an 8x8 matrix with eight terms that change at each sample - all simple functions of ψ. 
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T-1 = cosψ sinψ 0 0 0 0 0 0 

 -sinψ cosψ 0 0 0 0 0 0 

 0 0 cosψ sinψ 0 0 0 0 

 0 0 -sinψ cosψ 0 0 0 0 

 0 0 0 0 1 0 0 0 

 0 0 0 0 0 1 0 0 

 0 0 0 0 0 0 1 0 

 0 0 0 0 0 0 0 1 

Γ T -1 is a 4x8 matrix with that can be analytically calculated to save run-time computation as follows. 

Γ T-1 =  Γ11 cosψ  Γ11 sinψ  Γ13 cosψ  Γ13 sinψ  Γ15 0  Γ17 0 

 -Γ11 sinψ  Γ11 cosψ  -Γ13 sinψ  Γ13 cosψ  0 Γ15 0  Γ17 

 Γ41 sinψ  -Γ41 cosψ  Γ43 sinψ  -Γ43 cosψ  0 -Γ45 0  -Γ47 

 Γ41 cosψ  Γ41 sinψ  Γ43 cosψ  Γ43 sinψ  Γ45 0  Γ47 0 

S is the 8x1 vector of measurements resulting from the filtering and combination of strain gauge pairs. 

S  = [SAxf, SAyf, SBxf, SByf, SAxs, SAys, SBxs, SBys]T 

SAxf = filter( (SAxf1 - SAxf2) / 2 ) 

SAyf = filter( (SAyf1 - SAyf2) / 2 ) 

SBxf = filter( (SBxf1 - SBxf2) / 2 ) 

SByf = filter( (SByf1 - SByf2) / 2 ) 

SAxs = filter( (SAxs1 - SAxs2) / 2 ) 

SAys = filter( (SAys1 - SAys2) / 2 ) 

SBxs = filter( (SBxs1 - SBxs2) / 2 ) 

SBys = filter( (SBys1 - SBys2) / 2 ) 

where SAxf1, etc. are the raw strain gauge signals, and the filter function has yet to be determined. 

FnetCW is a 4x1 vector of the counterweight forces and torques that is directly calculated at each sample, 

FnetCW  =  mpCWω2xpCW + mpCWαypCW + 2mpCWωvypCW - mpCWaxpCW 

 mpCWω2ypCW - mpCWαxpCW - 2mpCWωvxpCW - mpCWaypCW 

 -mpCWgypCW - 2mcCWω2lycCW + 2mcCWαlxcCW + 4mcCWωlvxcCW + 2mcCWlaycCW 

 mpCWgxpCW + 2mcCWω2lxcCW + 2mcCWαlycCW + 4mcCWωlvycCW - 2mcCWlaxcCW 

This is programmed as a recursive least squares algorithm, so the estimates for θ and Β are updated at each sample. 
B is not used for anything. The last four terms in θ are not used either. It is only the first 12 terms in  that are used. 
The extra parameters identified are important since they prevent the useful parameters from being corrupted by the 
extra forces that they represent. 

So, the useful 12 parameters that are identified are, 

θ^ = [xp
^, yp

^, xc
^, yc

^, vxp
^, vyp

^, vxc
^, vyc

^, axp
^, ayp

^, axc
^, ayc

^]T 

These parameters define the position, velocity, and acceleration of the PMI and MCI. 



SSRL Centrifuge Autobalancing and FDIR Edward Wilson 25 July 2003 page 22/28 

3.7 SG fault detection isolation and reconfiguration (FDIR) 

If a SG is lost, Fnet can still be identified, but not as efficiently as before. The governing equation is repeated here, 
ignoring B. 

S = T G Fnet + (ESFN + ΕSSN) 

When a SG is lost (assuming that when it fails it reads zero plus noise – not really the case here, since we’re 
assuming each SG is in a pair reading the exact opposite force), it is as if the corresponding row in the T matrix 
becomes all zeros. Alternatively, the row can be removed from the T matrix and the S vector, giving them each 7 
rows. The choice here is to keep 8 rows. T in this case is not invertible, so the equation cannot be multiplied by T-1 
as was done before for computational efficiency. So for the least squares solution of Fnet, A = T, G, y = S, and 

Fnet
^ = ((GT TT T G)-1 GT TT) S 

The FDI approach taken here is analogous to the commonly applied bank of Kalman filters. Fnet
^ is estimated for 9 

different conditions: the case of no failures, and then once for each situation where a strain gauge would have failed. 
The residual from each estimate is then calculated as 

residuali = S - Ti G Fnet,i
^  

where i goes from 0 to 8, 0 indicating the case of no failures. Ti is the T matrix corresponding to failure i, and Fnet,i
^ 

is the net force estimated assuming failure i is present. 

3.8 A MATLAB simulation to validate the identification scheme, including sensitivity to noise in the strain 
gauge readings 

See Appendix B for the MATLAB files. Basic results confirm that noise should not be a significant problem - 1 
Newton noise in the strain gauges can be tolerated easily. Gravity imbalance forces dominate - these are affected by 
the distance between the strain gauge clusters, as well as the rotation speed. Also, a higher speed will reduce the 
effect of sensor noise, as the centrifugal forces are increased by the square of the angular rate. 

The recursive least squares algorithm runs at 120 Hz on a 90 MHz Pentium in MATLAB, which includes simulation 
as well as the autobalancing calculations. This will slow down if more equations are added (more strain gauges), 
digital filtering is required, or a slower processor is used. However, the code could be sped up if programmed in C. 

Sample screen outputs from the graphical user interface shown in the following figures, which were taken from a 
simulation in which the centrifuge was generating 1.0 g (setpoint), the counterweight motion was not enabled 
(resulting in much higher imbalance forces), and strain gauge pair #4 (non-rotating, measuring y-axis force in the 
lower plane) has failed. 

 

upper force
lower force
rotor angle

rotor speed = 0.454 rps
artificial gravity = 0.995 g

16

 

Figure 9: Software simulation GUI – bearing forces 
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This view shows the measured bearing forces, including sensor noise, vibrations, and imbalances. 
The blue line indicates the zero-degree angle of the rotor. The red and green lines are vectors 
indicating the measured forces in the upper and lower planes. Since SG #4 has failed, the green 
vector has very little y-component (only noise). The scale factor (16) indicates that the radius of 
the blue circle is 16 Newtons, very large because the counterweight motion has been disabled in 
this simulation. 

 

upper plane - imbalance, counterweights

lower plane - imbalance, counterweights

actual point-mass imbalance
actual mass-couple imbalance
ID'ed point-mass imbalance
ID'ed mass-couple imbalance
residual point-mass imbalance
residual mass-couple imbalance
counterweights

SG 1 

SG 2 

SG 3 

SG 4 
SG 5 

SG 6 

SG 7 

SG 8 

no SG faults 

sensor FDI

intellization.jpgintellization.jpg

 

Figure 10: Software simulation GUI – imbalance tracking, Strain gauge FDIR 

The state of imbalance, imbalance-identification, and imbalance-cancellation are shown in the 
left figure for upper and lower counterweight planes. The results of the strain gauge FDI are 
shown in the upper right, indicating correctly that SG #4 has failed. Automatic reconfiguration 
following the fault isolation enables the identification to remain very accurate, as shown. 
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Figure 11: Software simulation GUI – simulation control panel 

This control panel is used to control the simulation, starting/stopping the rotor spin, 
counterweights, and simulated random imbalance motion. Sensor and counterweight failures are 
also controlled. The imbalance may be “driven” manually (rather than the pseudo-random walk) 
by using the mouse to drag the blue circle joystick emulator on the right. 
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Figure 12: Software simulation GUI – strain gauge outputs 

The 8 strain gauge signals are shown, plotted against the rotor angle. The vertical red line shows 
the beginning/end of the most recent revolution. If the imbalance were not moving, there was no 
vibration or sensor noise, and no failures were present, the 4 rotating gauges would read constant 
values and the 4 fixed gauges would have sinusoidal values (2 pairs 90 degrees in phase apart). 
“Stator lower y” has failed, resulting in a reading of zero + noise. 

3.9 Filters to produce ψ, ω, and α from the tachometer and encoder signals 

How these signals affect the identification: 

ψ - determines the angular position of the imbalance through the calculation of sinψ and cosψ 

ω - determines the magnitude of the centrifugal forces calculated. It is especially important since these will be the 
dominant forces in the absence of gravity, and ω is squared in these calculations. 
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α - determines the magnitude of forces due to angular acceleration. These do not appear to be significant in 
comparison to the other forces. 

If significant angular accelerations were expected, it would make sense to measure the motor current for the rotor 
motor. Then an estimator could be built that used motor current, angular, and angular-rate sensors along with a 
model of the rotor drive system to estimate ψ, ω, and α.  

However, angular accelerations are expected to be small or steady (during spin-up, for example). The first attempt 
will be to use simple, independent filters to produce each signal. Analog pre-filters will be used on the encoder and 
tachometer signals to prevent aliasing. Digital filters will then be used to further condition the signal, and a 
difference of the filtered tachometer signal will be used for the angular acceleration signal. 

3.10 Filters to produce F(A+B)x, F(A+B)y, F(A-B)x, and F(A-B)y from the strain gauge signals 

Due to the presence of significant noise, filtering the force signals will be more difficult than filtering the rotor 
angle, rate, and acceleration signals. The noise in the force signals comes from two major sources:  noise due to the 
sensor itself, and noise due to extraneous vibrations in the centrifuge structure. 

It may be useful to look for correlations between the sensors and subtract out the vibration signals using adaptive 
noise cancellation. This should be an excellent research project, and may be difficult. This should be pursued only if 
more standard methods do not work. 

Since these signals are used for identification, and not directly for control, it is possible to use an acausal filter to 
achieve better performance. Taking this idea to its limit, the data could be collected for the full run (for example, 
several seconds, resulting in thousands of data points), then it could be filtered forwards and backwards in time (for 
example, smoothing the data using the filtfilt() function in MATLAB). A modification of this method would be to 
take data in batches, for example, 2 seconds at a time, smooth the data, and update the ID process once every 2 
seconds. To run the ID continuously, avoiding the delay that comes with batch processing, acausal filters could be 
designed that use 10 samples ahead in time to calculate the measured force. It may be desirable to design these 
filters adaptively based upon the actual force data. 

A possible sequence for this would be: 

1) Fix the counterweights and do not move them during this sequence. 

2) Directly design reasonably good filters, probably causal ones, to filter the force signals. 

3) Run the identification to determine the imbalance parameters and sensor biases. 

4) Assume these to be exact and calculate the “actual forces” that would result if they were indeed correct, and 
there was no noise. 

5) Adapt the filters (adding acausal taps if they’re not already there) to make the filtered force signals most closely 
match the “actual forces”. 

6) Go to step 3) and repeat until the filter weights and identification parameters converge. 

The stability of this approach is not known. It’s certainly easier to try it out than to try to prove it. During the 
iterations over steps 3) to 6), the same set of raw data could be used, but this could lead to over-filling -- adaptation 
to account for the particular data set but failure to generalize. As a final step, allowing the counterweights to move 
may produce better results. If the effects of the counterweights are found to be significant relative to other noise 
levels, the effects of their motion could be calculated and subtracted out as part of the force filtering system. 

During implementation of the force filtering in general, this is the procedure: 

1) Choose a sample rate that is fast enough to detect the signals of interest. The point mass and couple will 
produce two superimposed sinusoids at the rotation frequency (0.5 to 1.0 Hz). A sample rate of 20 Hz or higher 
should do well to capture the form of each of these sinusoids. A sample rate of 50 or 100 Hz would be a safe 
bet. 

2) Implement analog pre-filters with break frequencies below the Nyquist frequency, equal to half the sampling 
frequency. So for a 100 Hz sample rate, use 2-pole or better analog pre-filters with break frequencies at 25 Hz. 
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3) Collect some real data without the counterweights moving. 

4) Design causal digital filters (for example, 2-pole Butterworth at 10 Hz), but run them using the MATLAB 
filtfilt() function (resulting in double the magnitude reduction, but with zero net phase loss - the benefit of 
acausal filtering). 

5) Look at how the data is changed by the filter, and tweak the filter parameters until it looks good. If this is not 
possible, look into ways to tweak other aspects of the force measurement system. 

6) Run the identification in batch mode on the filtered data (involving several revolutions of the centrifuge). 
Tweak it until the ID looks good. Tweak the filters if necessary. At this point, if the imbalance can be identified 
well, this means that the information is there, and all that remains are (possibly significant) implementation 
details. 

7) Run the identification with 1-2 second updates (perhaps one update per revolution) to see how quickly the ID 
parameters converge. If it is much slower than 2 seconds, it probably does not make sense to go through the 
trouble of developing the continuously-updated identification system. 

8) If convergence is quick, and development of the continuously updated ID system is warranted, the procedure 
above for acausal filter design should be followed. In addition to this design issues, communications issues may 
arise. 

Once a structure has been chosen (for example, 2-second batches or acausal filtering with 10-tap leads), it probably 
makes sense to make the filtering of the rotor angle etc., fit the same structure. 

4 Calculation of the desired counterweight positions based upon the identified imbalance 
The 12 parameters defining the position, velocity, and acceleration of the PMI and MCI are updated at each sample, 
based upon the calculations summarized in Section 3.6. 

θ^ = [xp
^, yp

^, vxp
^, vyp

^, axp
^, ayp

^, xc
^, yc

^, vxc
^, vyc

^, axc
^, ayc

^]T 

Assuming that imbalance motions (if any) are basically random and likely to be faster than the control bandwidth of 
the counterweights, the goal here will be to move the counterweights to counteract the imbalance positions, [xp

^, yp
^, 

xc
^, yc

^]. If this were accomplished exactly, the velocities and accelerations would match as well. 

The counterweight parameters to counteract the imbalance positions are, 

xpCW =  - (mp/mpCW) xp
^ 

ypCW =  - (mp/mpCW) yp
^ 

xcCW =  - (mc/mcCW) xc
^ 

ycCW =  - (mc/mcCW) yc
^ 

The equations defining the counterweight parameters are (from Section 3.3), 

xpCW =  (δ1 + δ3) / 4 

ypCW =  (δ2 + δ4) / 4 

xcCW =  (δ1 − δ3) / 4 

ycCW =  (δ2 − δ4) / 4 

Setting mp and mc to 1 kg and combining, 

(δ1 + δ3) / 4 = - (1/mpCW) xp
^ 

(δ2 + δ4) / 4 = - (1/mpCW) yp
^ 

(δ1 − δ3) / 4 = - (1/mcCW) xc
^ 

(δ2 − δ4) / 4 = - (1/mcCW) yc
^ 
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Solving for [δ1, δ2, δ3, δ4], 

δ1  =  -2 ( (xp
^/ mpCW) + (xc

^/ mcCW) ) 

δ2  =  -2 ( (yp
^/ mpCW) + (yc

^/ mcCW) ) 

δ3  =  -2 ( (xp
^/ mpCW) - (xc

^/ mcCW) ) 

δ4  =  -2 ( (yp
^/ mpCW) - (yc

^/ mcCW) ) 

These are the desired counterweight coordinates to be sent to the servo control loop. 

5 Servo control loop to move the counterweights to their desired locations. 
This appears to be handled already by the motor drivers, so unless they are found to be inadequate, they will be used 
directly. 

The desired CW1, etc. positions will be given directly to the control card. If excessive jitter results from rapidly 
changing commands, a digital low-pass filter may be added immediately before the command is sent to the motor 
control card. 

6 Development approach / Work plan 
 
Unlike prior work, which involved hardware development, technology development, and software simulation, the 
proposed work will focus on technology development and software simulation/testing.  
 
The previous work modeled the centrifuge as having a fixed spin axis, representing a hard-mounted design, and 
matching the SSRL hardware prototype (the SSRL hardware is air-bearing supported, so two axes of translational 
motion are present, and there is also slight angular motion of the spin axis – but this any deflection is opposed by a 
stiff spring and angular motion is neglected in the existing model). This simplifies the dynamics by eliminating 
cross-axis “gyroscopic” coupling, so one of the first steps will be to extend our simulation to involve motion of the 
spin axis. 
 
The counterweight configuration in the present NASDA design is different from that on our hardware prototype, so 
our simulation will also be updated to account for the new configuration. The use of displacement sensors, different 
from the strain gauge sensors used in our hardware, will also be incorporated into the simulation. 
 
Fortunately, the architecture of our autobalancing control system will allow the sensor and counterweight changes 
to be made fairly easily. The extension of the dynamic modeling to allow spin-axis wobble and translation will be 
complex, but the control system will be updated to reflect the new equations of motion. 
 
The spin-axis suspension system (the VIM in the NASDA design) will be modeled to represent the VIM as closely 
as we have accurate information for (e.g., if they release detailed drawings we’ll use those, otherwise, the published 
schematics will allow us to come close). Similarly with the displacement sensor modeling – we will match the 
NASDA design as closely as possible. The active damping in the VIM is presently designed to act like a viscous 
damper, so for simplicity, we will model these dampers as passive elements (so the VIM control system does not 
need to be analyzed). 
 
The NASDA automatic balancing system will be modeled as accurately as possible based on published reports and 
design review materials. 
 
With the existing NASDA (direct autobalancing control) design and the updated SSRL (indirect autobalancing 
control) designs integrated into the simulation, we will be able to perform the following specific tests: 

1. Experimentally evaluate the robustness of each of these methods to vibrations from the ISS. The results of 
these tests will address the first proposed research area. 

2. Monitor range of travel for the VIM under various imbalance configurations. 
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3. Determine the balancing fidelity possible using both methods with the sensors present in the existing 
design. If the SSRL approach shows better results, we can quantify that, and this will address the second 
proposed research area. We can also evaluate what may be possible with different sensors. 

 
Sensor fault detection 
Failures in sensors, either displacement- or force-, will impact the autobalancing control, probably resulting in 
excessive vibration forces. The imbalance should still be observable even with multiple sensor failures, as long as 
the failed sensors are identified and the autobalancing system is fault tolerant. This work will leverage off other 
Fault Detection Identification and Recovery (FDIR) research by the SSRL. 
 
Direct vs. indirect autobalancing 
The work so far at the SSRL has used an indirect control architecture, whereas the published NASDA approach 
uses a direct architecture. The indirect approach should be able to provide better ID, and therefore, better 
cancellation, in the presence of noisy sensors. A simulation-based study would investigate and quantify the 
differences between the two approaches. This will be more involved than the analysis proposed above, since the 
control systems will be tested more thoroughly, rather than in a few specific areas. 
 
Active VIM control 
The present design uses the voice coil actuators to implement viscous damping. Active control of these actuators 
may enable better vibration isolation through feed-forward control to null the spring forces (as desired) and by 
directly dealing with the gyroscopic complexity by torquing about the correct axis (rather than the present, passive 
approach that provides a torque about the wrong axis, leading to a nutation that will subsequently be damped out). 
 
Hardware implementation 
Although initial technology development will be developed and validated using a software simulation, 
implementation in hardware would further validate the technology. The SSRL Centrifuge could be retrofitted to 
more closely approximate the ISS Centrifuge design as follows: 

• The rotating strain gauges could be replaced with soft springs/dampers to approximate the VIM 
stiffness/damping (except with the constraint that the translational and rotational stiffnesses are not 
individually selectable). This would enable the rotor to translate and wobble with respect to the bearing 
axis – again, not a perfect approximation of the VIM, but this would introduce the gyroscopic physics. 

• With the strain gauges removed, non-rotating, non-contact eddy current displacement sensors could be 
used on a ring attached to the bottom of the rotor. These sensors would emulate the VIM BDSs. 

• The counterweights could be reconfigured to more closely approximate the ISS Centrifuge design. 
 

 

Appendix A. List of variables 

 

Appendix B. MATLAB files 

 

Appendix C. Proof that model structure is general 

The imbalance model structure has been proven to be sufficiently general to model any possible imbalance, for a 
rigid body rotating about a fixed axis. 

(hand-written notes) 

Basic approach of the proof is to state that any rigid body can be represented by an infinite collection of point 
masses. Then it is shown that the resulting net forces (centrifugal, accelerative, Coriolis) summed up from these 
infinite masses are equal to the resulting forces from the four imbalance parameters when those parameters are 
chosen correctly. 

 


