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A fundamental question in biology is whether the network of interactions that regulate

gene expression can be modeled by existing mathematical techniques. Studies of the

ability to predict a gene’s state based on the states of other genes suggest that it may
be possible to abstract sufficient information to build models of the system that retain

steady-state behavioral characteristics of the real system. This study tests this possi-

bility by: (i) constructing a finite state homogenous Markov chain model using a small
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set of interesting genes; (ii) estimating the model parameters based on the observed
experimental data; (iii) exploring the dynamics of this small genetic regulatory network

by analyzing its steady-state (long-run) behavior and comparing the resulting model be-
havior to the observed behavior of the original system. The data used in this study are
from a survey of melanoma where predictive relationships (coefficient of determination,

CoD) between 587 genes from 31 samples were examined. Ten genes with strong inter-
active connectivity were chosen to formulate a finite state Markov chain on the basis
of their role as drivers in the acquisition of an invasive phenotype in melanoma cells.

Simulations with different perturbation probabilities and different iteration times were
run. Following convergence of the chain to steady-state behavior, millions of samples of
the results of further transitions were collected to estimate the steady-state distribution
of network. In these samples, only a limited number of states possessed significant prob-
ability of occurrence. This behavior is nicely congruent with biological behavior, as cells

appear to occupy only a negligible portion of the state space available to them. The

model produced both some of the exact state vectors observed in the data, and also a
number of state vectors that were near neighbors of the state vectors from the original

data. By combining these similar states, a good representation of the observed states in
the original data could be achieved. From this study, we find that, in this limited con-
text, Markov chain simulation emulates well the dynamic behavior of a small regulatory

network.

Keywords: Gene selection; Gene regulatory network; Markov chain simulation; Steady-
state analysis; Melanoma.

1991 Mathematics Subject Classification: 22E46, 53C35, 57S20

1. Introduction

The use of Markov chains to enable estimation in complex models via simulation is
now a widespread statistical methodology, in particular, in the context of biological
systems [1,2,3]. For modeling gene regulatory networks, the most popular model is
the Boolean-network model originally introduced by Kauffman [4,5]. In this model,
gene expression is quantized to binary levels (on and off) and the expression level
(state) of each gene at step t+1 is functionally related to the expression level of some
other genes at step t, using logical functions. Supposing the logical function is not
changed through step t, the dynamics of a Boolean network can be represented as a
first-order homogenous Markov chain whose state-transition matrix is binary. The
Boolean model is a degenerate Markov model in the sense that it is not stochastic,
each state being deterministically dependant upon prior states. A new class of
stochastic models, called Probabilistic Boolean Networks (PBNs), has recently been
introduced [6]. Like Boolean networks, PBNs involve state-independent rule-based
dependencies among genes; however, unlike Boolean networks, the rules themselves
are random, so that PBNs are able to cope with uncertainty, both in data and
model parameter selection. The dynamics of PBNs can be studied using Markov
chains, with the state-transition matrix being completely specified by the many
possible Boolean functions and their selection probabilities [6,7].

In this study, we take a different approach by constructing a finite-state Markov
chain whose transitions depend on state-dependant multivariate conditional prob-
abilities between gene-expression levels, based on microarray data. Mathematical
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modeling tools that allow estimation of steady-state behavior in biological systems
would be useful for examining two ubiquitous forms of biological system behavior.
The first is homeostasis, the ability of cells to maintain their ongoing processes
within the narrow ranges compatible with survival, and the second is a switch-like
functionality that allows cells to rapidly transition within limited process segments
between metastable states.

All cells are faced with the dauntingly complex requirement of keeping the essen-
tial processes required for cell maintenance continuously operational. In addition,
they must balance the outputs of all of these processes relative to each other as
adjustments are made to account for varying levels of activity of the organism,
differential availability of nutrient sources, constantly variable environmental con-
ditions and sporadic stresses. In mature organisms, most of the cells present are
dedicated to performing specialized functions, and have acquired the components
and machinery necessary for this terminal state of differentiation. These cells typi-
cally modulate their repertoire of expressed genes only in the minor ways required
to maintain this state and carry out their specific functions.

The most detailed understanding of regulatory mechanics for a continually main-
tained central process is in the area of metabolism. In this domain, the ability to
achieve constancy appears to be mediated at the transcriptional level by dense lo-
cal regulatory connections among those elements of the system that collaborate to
carry out particular synthetic or catabolic functions, with less dense connections
between these local modules to adjust the outputs of each module relative to the
overall requirements of the system. Models for this form of system behavior would
thus be expected to rely on densely interwoven connections between collaborating
elements that produce mutually reinforcing behaviors, leading to self-stabilization
of a desirable target state. Since biological systems exhibit considerable stability, it
would be further expected that once the system is near a target state, the existing
interactions would efficiently guide the system to the target state and once there,
continuously restore it to the target state after mild perturbations.

On the other hand, a complex, self-stabilizing system would not be expected
to reach a desired target state starting from an arbitrary state. This difficulty of
reaching a target state from a state fairly distant from the target provides a se-
rious challenge in terms of modeling system dynamics with Markov Chains. If a
model is constructed to examine what happens with rule sets abstracted from bio-
logical observations, the approach of examining the steady-state behavior achieved
after many initializations from random states is unlikely to produce behavior simi-
lar to the biological system being modeled. Complex biological end-states are only
reached through a very orderly progression from one highly ordered state to another.
In complex multicellular organisms, this progression from egg to mature individual
constitutes the process of development. At each step, the rules of interaction that
govern transcriptional regulation of a particular gene could be very different. Thus,
an accurate model could not be expected to use any single simple set of rules to
transition the system from the many unordered states produced by random initial-
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ization to the highly ordered target state from which the rules were abstracted. To
make steady-state analysis after random initialization sampling meaningful, suffi-
cient perturbation to bring the system from a random state to a state near enough
to the target state for self-guidance by end-state rules to become effective would
have to be utilized.

Another common system feature can be observed at the level of functional mod-
ules within biological systems. This behavior is observed as an ability to readily
switch from one relatively stable state to another in response to a simple stimulus.
Such an arrangement allows rapid induction and reduction of specialized activities
in response to sudden demands for functions that are not used continuously or for
which the extent of demand is highly variable. This ability suggests that some sim-
ple perturbations are capable of creating a cascade of regulatory interactions that
can rapidly permeate a segment of a system, invoking a different set of mutually
reinforcing behaviors that will drive the module toward a new target state, and then
maintain it in that state. An accurate model of a biological system that switches
between relatively stable states that is subjected to perturbations to allow it to
reach the stable steady state distributions favored by the transition rules derived
from biological observations would be expected to have a significant probability of
occupying steady states similar to each of the steady states from which the rules
were derived.

As a first attempt to determine whether the kinds of biological behavior de-
scribed above could be captured in a Markov Chain model, a small network based
on microarray data observations of a human cancer, melanoma, was built and sim-
ulated by a Markov Chain. This required developing criteria to select a small set
of genes from which to build a Markov chain and developing a method to con-
struct transition rules from microarray data. We then compared the model Markov
Chain’s steady-state behavior to the initial observations.

2. Methods

2.1. Data set

The gene-expression profiles used in this study result from a study of 31 melanoma
samples [8]. For that study, total messenger RNA was isolated directly from
melanoma biopsies, and fluorescent cDNA from the message was prepared and
hybridized to a microarray containing probes for 8,150 cDNAs (representing 6,971
unique genes). Several analytical methods were applied to the expression profiles
from well-measured genes to visualize the overall expression pattern relationships
among the 31 cutaneous melanoma tumor samples. The clustering results indicated
that the 31 melanomas could be partitioned into a major homogeneous group of
19 melanomas and a group of 12 melanomas with more varied expression behav-
ior, as shown in Table 1. In identifying genes that discriminate these groupings of
melanomas, a statistical measure was employed to generate a gene list weighted
according to the gene’s impact on minimizing the volume occupied by the groups
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Table 1. Case number used in this study.

Exp. No. Case No.

1 M93 007

2 M92 047

3 M91 054
4 UACC091

5 UACC502

6 UACC1097
7 UACC1256

8 UACC903
9 UACC1273
10 UACC930

11 UACC2837
12 UACC827 T
13 WM1791C

14 UACC647
15 UACC2534
16 M92 001

17 UACC457
18 HA A

19 UACC383
20 UACC3093

21 A 375

22 UACC1529
23 UACC1022

24 UACC1012

25 TC F027
26 TD1348
27 TC 1376 3

28 TD 1376 3
29 TD 1730

30 TD 1638

31 TD 1720

and maximizing center-to-center inter-group distance. A study of the most highly
weighted genes in this list identified a particular signaling molecule, WNT5A, and
a central signal transduction pathway that appear to invoke an invasive phenotype
in melanoma cells [9]. The effect of increasing or decreasing the activity of WNT5A
appears to initiate a large cascade of changes in the transcription and activation
states of other genes in a reversible fashion. As such shifts between metastable
states seem particularly suited to Markov Chain simulation, genes from this path-
way were chosen as a nucleus of the model system. Further genes for the model
were chosen from a set of 587 genes from the melanoma data set that have been
subjected to an analysis of their ability to cross-predict each other’s state in a mul-
tivariate setting [10,11]. For the purposes of this analysis, each gene’s expression
level was quantized to a ternary value that represents the abundance of messen-
ger RNA produced by that gene in a particular melanoma sample relative to the
abundance of messenger RNA produced by that gene in a reference cell. The val-
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ues are over-expressed, equivalently-expressed, and under-expressed, relative to the
reference.

2.2. Gene selection for Markov Chain simulation

cDNA microarrays are capable of profiling gene expression patterns of tens of thou-
sands of genes in a single experiment. However, it would be unrealistic to investigate
all genes in one regulatory network for several reasons: (1) the size of network is so
large that no mathematical or computational tools can handle such a task, and (2)
in many cases there exists a regulatory sub-network in which only a small number
of genes are actively interactive with each other. Therefore, we set out to choose a
small set of genes for which both microarray data and some biological characteri-
zations are available to guide finite-state Markov-chain modeling. General criteria
to select important genes are: (1) their predictive relationships based on coefficient
of determination (CoD) analysis [10,11], (2) their roles in classifying malignant
melanoma [8], and (3) their biological functionalities.

The first set of genes was chosen based on the results of multivariate mea-
surement of gene expression relationships [12], which find associations between the
expression patterns of individual genes by determining whether knowledge of the
transcriptional levels of a small set of genes can be used to predict the transcrip-
tional state of another gene. For this study, from the microarray data, we estimated
coefficient of determinations of single-, two-, and three-gene predictors for a set of
587 well-measured target genes that show sufficient changes in expression values
over the set of 31 melanoma samples to be useful as state predictors. As close
interconnectivity between network components is desired, genes capable of both
predicting other genes well and being well predicted by other genes were chosen.

Since the demand for computational resources for CoD analysis is immense,
a high-performance parallel computing facility and parallel database system were
utilized. First, we identified a group of predictors that can simultaneously predict
multiple target genes. The more target genes a set of predictive genes can predict
well, the larger is its extent of prediction. Then, we also located genes that can be
well predicted by many genes. Strong inter-predictability, prediction of as well as
prediction by, members of a small set of genes is taken as an indicator that these
genes are highly coupled at the regulatory level and that the regulation acting on
these genes is directed at achieving the goals of a particular functional segment of
the network. Taking the intersection of these two gene sets both meets this require-
ment and reduces the number of candidates for the network. Further requirements
for this core group of genes (alone or in combination) are that they should (1)
show characterized biological functionalities; (2) control and regulate the activity
of other genes; (3) modulate the phenotype of a cell. Genes meeting these criteria
were selected to be modeled by Markov chain simulation.



June 14, 2002 15:21 WSPC/Instructions for Typesetting Manuscripts MC˙Modelling

Can Markov Chain Models Mimic Biological Regulation? 7

2.3. Formulation of Markov Chain model

The Markov chain model contains n nodes, of which each node represents one of
the n genes selected. Each gene has a ternary value, which is assigned from over-
expressed (1), equivalently-expressed (0), and under-expressed (-1). The state space
of the Markov chain has 3n states. For capturing the dynamics of the network, we
consider a “wiring rule” such that the expression state of each gene at step t + 1 is
predicted by the expression levels of genes at step t in the same network. For each
target gene, a set of three predictor genes is chosen with the highest CoD value.
Instead of using many possible Boolean functions that are independent of the state
of the system, as in the PBN model, we use the states of three predictor genes at
step t and the corresponding conditional probabilities, which are estimated from
observed data, to derive the state of target gene at step t + 1. Eq. 2 shows the
definition of the Markov chain between a state at step t and the state at step t+1,

S(t) =:
(
g
(t)
1 g

(t)
2 . . . g(t)

n

)
→ S(t+1) =:

(
g
(t+1)
1 g

(t+1)
2 . . . g(t+1)

n

)
. (1)

The transition rule is depicted in Figure 1 and characterized by
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where i, j, k, l ∈ {1, 2, . . . , n}, C−1
l + C0

l + C1
l = 0, and C−1

l , C0
l , and C1

l are
the conditional probabilities, which depend on the states of the predictor genes.
For three predictor genes for a target gene with a ternary value, there are 33 =
27 possible states observable. The conditional probabilities C−1

l , C0
l , and C1

l are
estimated from the data. Since the number of experiments (data) in microarray
studies is often limited, there may be some states not observed in the data. In
such case, we assign Pr (gl = −1), Pr (gl = 0), and Pr (gl = 1) for C−1

l , C0
l , and C1

l ,
respectively. Based on the transition rule, we can compute the transition probability
between any two arbitrary states of the Markov chain as follows:

Pr
{
S(t) → S(t+1)

}
=

n∏
l=1

C
g
(t+1)
l

l . (3)

2.4. Implementation and simulation of the Markov Chain model

After constructing the Markov chain based on multivariate relationships among
genes inferred from coefficient of determination analysis, conditional probabilities
of n three-predictor sets for each possible state are estimated from the data. An
important consideration is whether or not there exists a steady-state distribu-
tion for the chain. The Markov chain is said to have a steady-state distribution
if there exists a probability distribution p = (p1, p2, . . . , pM ) such that for all states
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g1 g2 g3 g4 g5 g6 g7 g8 g9 g10

g6

Transition Rules for g6

State at time t

State at time t+1

C
C

C +
0

-

Fig. 1. The structure of the Markov chain model

i, j ∈ {1, 2, . . . ,M}, lim
r→∞

P r
ij = πj , where P r

ij is the r-step transition probability.
If there exists a steady-state distribution, then regardless of the initial state, the
probability of the Markov chain being in state i in the long-run can be estimated
by sampling the observed states in the simulation. As with PBN, to guarantee col-
lecting useful information from the distribution of interest, gene perturbation is
added to make the chain become ergodic [7]. For a finite-state chain, ergodicity
implies it possess a steady-state distribution. For ternary gene expression, the ran-
dom gene perturbations can be formulated as follows. Define a perturbation flag
vector γ ∈ {0, 1}n, n = 10. For simplicity, we can assume the components of γ

to be independent and identically distributed (i.i.d). Thus, Pr{γl = 1} = p for all
l = 1, . . . , n, where p is the perturbation probability. Suppose that at every step of
the transition, we have a realization of γ. If γl = 1, then the state of gene gl needs
to be changed in the following way:

• If gl = −1, change to “0” with probability 0.5 or “1” with probability 0.5;
• If gl = 0, change to “-1” with probability 0.5 or “1” with probability 0.5;
• If gl = 1, change to “-1” with probability 0.5 or “0” with probability 0.5;

The expression values of other genes remain unchanged. Otherwise, the state
transition follows the transition rules given. Considering gene perturbation, we need
to generalize the computation of transition probability. Let us assume the pertur-
bation flag vector γ is i.i.d. and the gene gl which has q-nary expression values will
change to its new value with uniform probability p0. Then, Eq. 3 can be generalized
as:

Pr{S(t) → S(t+1)}

=

(
n∏

l=1

C
g
(t+1)
l

l

)
× (1− p)n + pn0 (1− p)n−n0 pn0

0 × 1[S(t) 6=S(t+1)] (4)
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where p is the perturbation probability for each gene, and n0 is the number of genes
to be perturbed as given below:

n0 =
n∑

l=1

1[
g
(t)
l 6=g

(t+1)
l

],
and p0 = 1/(q − 1). In ternary case, q = 3, so p0 = 0.5. The two terms in Eq. 4
correspond to the two cases of the next state either given by regular transition rule
or by perturbation rule. The event of γ = (0, . . . , 0) (i.e. no gene is perturbed)
occurs with probability (1− p)n, it gives the first term in Eq. 4. If at least one gene
is perturbed, then the transition probability depends on the number of perturbed
genes n0. Since we assume γ ∈ {0, 1}n is i.i.d., the probability that S(t) be changed
to S(t+1) is equal to pn0 (1− p)n−n0 pn0

0 × 1[S(t) 6=S(t+1)] which is a second term in
Eq. 4. Given any arbitrary state, we computed the transition probabilities to all
possible states in the chain. The summation of those probabilities is equal to 1a.
It verified that the matrix generated by Eq. 4 is a Markov transition matrix. The
simulation algorithm used in this study can be summarized as follows:

Step 1 randomly initialize S(0)

Step 2 start to run the Markov chain from S(t) to S(t+1) based
on the following transition rule:

if perturbation flag = true then
derive S(t+1) using perturbation rule

else
use known conditional probabilities to derive S(t+1)

Step 3 repeat Step 2 for T iterations.
Step 4 start to collect sample from S(T+1) to S(T+N).
Step 5 repeat Step 1 through Step 4 R times, randomly initializ-

ing S(0).
Step 6 analyze the averaged histogram distribution of R his-

tograms for all possible states.

In the simulation, we first use the Kolmogorov-Smirnov statistic [13,14,15]
to diagnose whether the chain converges after T iterations. Given Markov
chain samples S(T+1),S(T+2), . . . ,S(T+N), we want to compare the distribu-
tions of the two halves of these samples, S(T+1),S(T+2), . . . ,S(T+N/2) and
S(T+N/2+1),S(T+N/2+2), . . . ,S(T+N). Since the test is devised in terms of i.i.d.
samples, there needs to be a correction for the correlation between the S(t)’s.
This correction can be achieved by sub-sampling the data with the interval G. For
each of the two halves above, we select M sub-samples S(G)

1 ,S(2G)
1 , . . . ,S(MG)

1 and
S(G)

2 ,S(2G)
2 , . . . ,S(MG)

2 . The Kolmogorov-Smirnov statistic is defined as the maxi-
mum value of the absolute difference between two cumulative distributions and can

aThe proof is given in Appendix A
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be described as:

K = max
0≤x<3n

|F1(x)− F2(x)| = 1
M

max
0≤x<3n

∣∣∣∣∣
M∑

k=1

Ix
(
S(kG)

1

)
−

M∑
k=1

Ix
(
S(kG)

2

)∣∣∣∣∣ (5)

where Ix(·) is the indicator function. The distribution of K in the case of the
null hypothesis (two data samples are drawn from the same distribution) can be
calculated, thus giving the significance level probability for the null hypothesis.
For analyzing the steady-state (long-run) behavior of the chain, simulations with
different perturbation probabilities are run.

On each run, the chain is restarted R times with different initial states and the
global relative entropy (GRE) between the histogram distributions of two restarting
times is computed to measure the closeness of the two distributions. The GRE is
given by

GRE(p1, p2) =
∑

x

p1(x) log
p1(x)
p2(x)

(6)

where p1(x) and p2(x) are two histogram distributions obtained from two restart-
ing times. After simulations, taking the average of the R histogram distributions
collected provides our estimate of the steady-state distribution.

3. Simulation Results and Discussion

3.1. Genes selected for the simulation and transition rules

Based on the coefficients of determination between each target gene and many
possible predictors, the first set of fifty genes was selected by considering them to
be part of both good predictors and good targets. These fifty genes were further
reduced to a set of ten genes on the basis of either their known or likely roles in
the WNT5A driven induction of an invasive phenotype in melanoma cells, or their
close predictive relationships with these genes, as shown in Tables 2 and 3. Note
that the gene pirin was not in the fifty-gene set. It was only included based on its
high discriminative weight in a previous analysis [8] and the fact that it was a very
good predictor for many targets. For these selected genes, we estimated CoDs of
single-, two-, and three-gene predictors from the data. The highest CoDs for each
target are shown in Table 4. Based on Table 4, we obtain the wiring diagram shown
conceptually in Figure 2. Each gene has three arcs coming in, but may have more
(or less) arcs going out. The thickness of an arc as well as the distance between
selected genes shows the strength of relationship, i.e., CoD. The thicker the line
or the closer the genes, the stronger the relationship. For example, WNT5A and
pirin have a strong relationship to each other. Between pirin and STC2 we see
strong predictability from STC2 to pirin, but not in the other direction. Also, note
that WNT5A and pirin have many arcs outbound while PHO-C only has only
one. This diagram is the result of a tremendous amount of abstraction, and is not
intended as an explicit mechanistic diagram of the relationships. The influences
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Table 2. Forty one of fifty mutually interactive genes selected from 587 genes.

IMAGE Gene Description
Clone ID

208718 annexin A1

760224 X-ray repair complementing defective repair in Chinese hamster cells 1
86017 intercellular adhesion molecule 1 (CD54), human rhinovirus receptor

364975 ESTs

52489 fibroblast growth factor 9 (glia-activating factor)
754479 Hypothetical protein, expressed in osteoblast

510130 cadherin 17, LI cadherin (liver-intestine)
357278 ESTs
814615 methylene tetrahydrofolate dehydrogenase (NAD+ dependent),

methenyltetrahydrofolate cyclohydrolase
512472 ferritin, light polypeptide

70692 plasminogen activator inhibitor, type II (arginine-serpin)

309864 jun B proto-oncogene
627114 Killer cell lectin-like receptor subfamily C, member 2

37796 secreted phosphoprotein 1 (osteopontin, bone sialoprotein I,

early T-lymphocyte activation 1)
810282 inositol 1,3,4-triphosphate 5/6 kinase

366971 topoisomerase (DNA) II alpha (170kD)

51432 RAD23 (S. cerevisiae) homolog A
897788 protein tyrosine phosphatase, receptor type, F

813673 Human mRNA for hepatoma-derived growth factor, complete cds
208001 CD59 antigen p18-20 (antigen identified by monoclonal antibodies 16.3A5,

EJ16, EJ30, EL32 and G344)

754358 ESTs
135454 ESTs
746321 ESTs

823696 interferon-induced protein 56
49950 flap structure-specific endonuclease 1

138936 erythrocyte membrane protein band 7.2 (stomatin)
322537 ESTs
293328 Homo sapiens clone 24859 mRNA sequence

68977 proteasome (prosome, macropain) subunit, beta type, 10

108837 small inducible cytokine A2
(monocyte chemotactic protein 1, homologous to mouse Sig-je)

36844 interleukin 1 receptor antagonist
471631 transcription factor 8 (represses interleukin 2 expression)

264576 ESTs

823590 Sialyltransferase
130895 ESTs

774036 glutathione-S-transferase like

44311 melanoma adhesion molecule
286249 heat shock 70kD protein 1

897806 Hypoxia-inducible factor 1, alpha subunit (basic helix-loop-helix transcription factor)

549146 stimulated trans-acting factor (50 kDa)
813841 plasminogen activator, tissue

diagrammed may be the result of many intervening steps that are not shown, and
influence in both directions may simply reflect such a tight coupling that no basis
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Table 3. pirin and nine of fifty mutually interactive genes selected from 587 genes used in

the simulation.

IMAGE Gene Card Gene Description
Clone ID Symbol

234237 pirin pirin*
324901 WNT5A wingless-type MMTV integration site family, member 5A

759948 S100 S100 calcium-binding protein, beta (neural)

25485 RET-1 reticulon 1
324700 MMP-3 matrix metalloproteinase 3 (stromelysin 1, progelatinase)

43129 PHO-C phospholipase C, gamma 1 (formerly subtype 148)

266361 MART-1 melan-A
108208 HADHB hydroxyacyl-Coenzyme A dehydrogenase/3-ketoacyl-Coenzyme A

thiolase/enoyl-Coenzyme A hydratase (trifunctional protein),

beta subunit
40764 synuclein synuclein, alpha (non A4 component of amyloid precursor)

130057 STC2 stanniocalcin 2

Table 4. The CoD values of the highest 3-gene predictor for 10 target genes

Predictor 1 Predictor 2 Predictor 3 Target Coefficient

of Determination

WNT5A STC2 HADHB pirin 0.709

pirin S100P RET-1 WNT5A 0.683
WNT5A RET-1 Synuclein S100P 0.795

pirin WNT5A S100P RET-1 0.625

S100P RET-1 HADHB MMP-3 0.700
MART-1 synuclein STC2 PHO-C 0.920

pirin WNT5A MMP-3 MART-1 0.793

pirin WNT5A MMP-3 HADHB 0.772
pirin S100P MART-1 synuclein 0.559

pirin WNT5A PHO-C STC2 0.479

for estimating directionality is available. Some generalizations that emerge from the
diagrams, such as the wide influence of the state of WNT5A on the states of other
genes are expected to be true.

Based on the selected predictors for each target, we infer transitional rules be-
tween states using conditional probabilities to determine state transitions.

3.2. Steady-state behavior

This study focused on the steady-state behavior of the Markov chain constructed
from the multivariate relationships and the transitional rules, both estimated from
the data. After constructing a Markov chain, it is run on simulation with the pa-
rameters, T = 2, 000, 000, N = 6, 000, 000, and R = 500. Computing time for each
run is about 3 hours on a 1.4GHz PC. To guarantee a steady-state distribution,
different perturbation probabilities, p = 0.001, 0.005, 0.01, 0.05, and 0.1 are used.
First, we present the Kolmogorov-Smirov (KS) test and the global relative entropy
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pirin
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synucleinSTC2

Fig. 2. Multivariate relationship between genes

(GRE) for each perturbation probability to verify the convergence of Markov chain
after T transitions. In the Kolmogorov-Smirov test, we chose the sampling interval,
G = 10. Figure 3(a) shows the means and the standard deviations of the significance
probability in the KS hypothesis test. As we can see from Fig. 3(a), all means are
larger than the significance level 0.05, which implies that we can always accept the
null hypothesis. Fig. 3(b) shows the means and the standard deviations of GRE.
We can see that the value of means and the standard deviations of GRE are very
small, which tells us that the distance between the two distributions is very close.
We also observe that the value of the means of GRE decreased when the perturba-
tion probability becomes stronger. It indicates that a more accurate steady-state
distribution can be obtained with stronger perturbation. However, if perturbation
is too strong, the model structure will be destroyed. We illustrate the results with
stronger perturbation in Figure 5. Based on the above results, we conclude that af-
ter T transitions, the Markov chain reaches a steady-state. Hence, the distributions
sampled during another N iterations estimate the steady-state distribution.

We should notice that there exist, in the steady-state distributions, only a small
number of states have significant probabilities and most of those states with high
probability are observed in the data. In Table 5, the ranks of each observation in
terms of steady-state probability are shown, for different perturbation probabilities,
p. All the observations stayed within the top 6.7%, 6.1% and 7.7% of ranks for each
p. In the table, even those states with higher ranks but not observed in the data are
in fact very close to the observed data. We computed the ternary-valued Hamming
distance, which is simply a sum of bit-wise differences between states, and we found
more than 85% of those states with high steady-state probability but not observed
are within 4 Hamming distance from the observed data, which means two to four
genes are at different states. While perturbation of state is necessary to guarantee
the existence of a steady-state distribution, its use should be with care. Figs. 4
and 5 show steady-state distributions (part a) and the state distribution of each
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Fig. 3. The mean and deviation of the significance probability for KS test (a) and the global
relative entropy (GRE) (b) under different perturbation probabilities. The chain was restarted
500 times with different initial state and the significance probability of KS hypothesis test and

GRE was calculated each time.

0 1 2 3 4 5 6

x 10
4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1
3

4
5

7
9

15
16
17
19
20
21
23

26
27
28
29
30
31

2
6

8
10

11
12
13

14
18

22
24

25

−1 0 1
0

0.2

0.4

0.6

0.8

pirin    
−1 0 1

0

0.2

0.4

0.6

0.8

WNT5A    
−1 0 1

0

0.2

0.4

0.6

0.8

S100P    
−1 0 1

0

0.2

0.4

0.6

0.8

RET−1    
−1 0 1

0

0.1

0.2

0.3

0.4

0.5

MMP−3    

−1 0 1
0

0.2

0.4

0.6

0.8

PHO−C    
−1 0 1

0

0.2

0.4

0.6

0.8

MART−1   
−1 0 1

0

0.2

0.4

0.6

0.8

HADHB    
−1 0 1

0

0.2

0.4

0.6

0.8

synuclein
−1 0 1

0

0.2

0.4

0.6

0.8

ESTs     

(a) (b)

Fig. 4. The estimated histogram distribution after long run. (a) The steady-state distribution of all
possible states of the chain with perturbation probability p = 0.001. (b) The marginal histogram

distribution for each gene.

gene (part b), for p = 0.001 and p = 0.1, respectively. When the perturbation
probability is small but enough to guarantee a steady-state distribution, it still
keeps the structure of our observation from microarrays, but when the perturbation
probability becomes too large, it destroys the structure. In Fig. 5(a), we find with
significant probability many states that were not observed in the data, and the state
distributions of each gene tend to flatten out in Fig. 5(b), which is significantly
different from the data.

With small perturbation probability, but enough to obtain the steady-state dis-
tribution, we can appreciate the transitions of state space in the absence of per-
turbation. Figure 6 shows two such state-transition diagrams. In the diagram, the
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Table 5. Ranks of the observed states in 31 experiments p = 0.001, 0.01, and 0.1

Case No. p
ir

in

W
N

T
5
A

S
1
0
0
P

R
E

T
1

M
M

P
3

P
H

O
C

M
A

R
T

1

H
A

D
H

B

sy
n
u
cl

ei
n

S
T

C
2

Rank for p
0.001 0.01 0.1

UACC457 1 -1 1 -1 -1 -1 1 1 1 -1 1 1 5
UACC383

UACC1022

TC 1376 3
TD 1376 3

TD 1730
TD 1638

TD 1720

UACC3093 0 -1 1 -1 -1 -1 1 1 1 -1 11 14 30

M92 001 1 -1 1 0 0 -1 1 1 1 -1 12 16 35

UACC257

WM1791C 0 1 0 -1 1 -1 0 0 1 1 14 45 453

UACC1097 0 0 0 0 0 0 0 0 1 0 23 84 384

UACC903 0 0 0 0 0 0 1 1 0 0 32 100 539

UACC2534 1 -1 1 -1 0 -1 1 0 1 -1 35 38 50

M93 007 1 -1 0 0 0 0 1 1 0 0 46 30 59
UACC1273

UACC1265 1 -1 1 0 0 0 1 1 1 0 61 46 48

UACC091 1 -1 0 0 0 0 1 1 0 -1 74 47 34
UACC502

TD1348 0 -1 1 -1 -1 -1 1 0 1 -1 108 103 114

UACC1012 0 1 0 -1 1 0 0 0 1 0 117 143 440

M91 054 1 -1 1 -1 0 0 1 1 0 0 127 112 125

M92 047 1 1 -1 0 0 0 0 0 0 -1 136 193 453

HA A 0 -1 1 -1 0 0 0 0 0 -1 157 122 520

TC F027 0 -1 1 0 -1 0 1 0 1 -1 183 165 95

UACC647 0 1 0 -1 1 0 0 0 0 0 232 307 569

UACC930 0 1 -1 -1 0 0 0 0 -1 1 250 492 1275

UACC1529 -1 0 0 0 -1 0 0 0 1 -1 2625 1924 2032

UACC827T 0 0 1 -1 0 -1 0 0 1 1 2878 2383 1939

UACC2837 0 -1 -1 0 0 0 0 0 -1 0 3938 3620 4531

line thickness relatively represents the transition probability between states. The
diagrams do not show transitions during transient states but only at stationary
states. These can be seen as attractors for which, once have been arrived at, the
chain stay within only those states. In the diagrams, the names of genes that do not
change within cycles are italicized. In the first diagram, we find only one state, and
once this state is achieved, the chain remains at it (based on transition rules gov-
erning the process). This may represent a core group of genes and its state. Based
on current set of transition rules, there exist 395 transient states that lead to this
state at the end. In the second diagram, we find two different states constructing a
cycle that has 297 transient states leading to it. We also find interesting that only
one of ten genes are changing its state while all other nine stay.
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Fig. 5. The estimated histogram distribution after long run. (a) The steady-state distribution of
all possible states of the chain with perturbation probability p = 0.1. (b) The marginal histogram
distribution for each gene.
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Fig. 6. State transition diagram without perturbation

For given sets of transition rules without perturbation, we often are not able
to observe all possible states, thereby, missing some potentially important states.
Perturbation forces the chain out of a cycle to different states. Using perturbation
helps identify all non-transient states, however, after identifying these states, we
may want to identify states that lead to each with high probability (its basin of
attraction without perturbation), and group them, and study them as linked, but
alternative pathways.
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4. Conclusion

The rapidly increasing use of microarrays to develop more comprehensive views of
the consequences of transcriptional regulation in cells and tissues has created a need
for tools capable of producing useful inferences from this type of data. A variety
of traditional mathematical and engineering tools have been adapted to this end.
In this study, we examine the suitability of a mathematical tool popular in other
areas such as statistics and engineering, the Markov Chain model, to describe regu-
latory relationships between genes. For the test, a very small network containing ten
genes was built based on biological observations. The model produced steady-state
distributions approximating the initial observations and exhibited many properties
associated with biological systems.

The transition rules generated for the model produced localized stability. Initial
states near the target states from which the model was built tended to stay in or
near the target state, demonstrating that the rules were sufficient to achieve self-
stabilization and to guide the system to the target state. Initial states far from the
target state did not easily transition to the target state, and required assistance in
the form of random perturbation to get close enough to the target state to be self-
stabilizing. This requirement for close coordination of rules and contents to achieve
stable states mirrors the kind of strong contextual influence seen in biology, where
the rules of interaction and the state, as represented by the set of macromolecules
present in the cell, are coupled in limited and characteristic ways.

The model rule sets inferred from the observations reproduced the ability of bi-
ological systems facilities in rapidly and accurately transitioning batteries of genes
to very different states. The rules were sufficiently constraining to restrict the num-
ber of states seen in the steady-state, but sufficiently elastic to allow a collection of
different states to be seen in the steady-state.

While the size of the problem studied in this paper is relatively small, it suggests
that models incorporating rule-based transitions among states have a capacity to
mimic biology. The ability of such models to enhance our understanding of bio-
logical regulation should be further tested by systematically examining the charac-
teristics of the rules and interconnections that lead to stabilization and switch-like
transitions, and by building larger networks that incorporate more extensive prior
knowledge of regulatory relationships and more extensive experimental observations
of the different stable states the network can occupy.
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Appendix A. Proof related to Eq. 4

Proof. The following is to prove the sum of Eq. 4 over all possible states is 1.∑
∀S(t+1)

Pr
{
S(t) → S(t+1)

}
=

∑
∀S(t+1)

{(
n∏

l=1

C
g
(t+1)
l

l

)
× (1− p)n + pn0(1− p)n−n0pn0

0 × 1[S(t) 6=S(t+1)]
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∑
∀S(t+1)

{(
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g
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l

l
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× (1− p)n
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+

∑
∀S(t+1)
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pn0(1− p)n−n0pn0

0 × 1[S(t) 6=S(t+1)]
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= (1− p)n
∑
∀S(t+1)

(
n∏
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C
g
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l

l
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+
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g
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l

C
g
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l

l

+
∑

S(t) 6=S(t+1)

{
pn0(1− p)n−n0pn0

0

}

= (1− p)n
n∏

l=1

1 +
∑

S(t) 6=S(t+1)

{
pn0(1− p)n−n0pn0

0

}
= (1− p)n +

∑
S(t) 6=S(t+1)

{
pn0(1− p)n−n0pn0

0

}
. (A.1)

Since the summation in the second term is taken over all possible values of S(t+1)

except of S(t) = S(t+1), n0 can be taken from 1 to n. For a cetain n0 bits pertur-
bation of gene gl which has q-nary values with equal probability p0, there are total(
n
n0

)
(q − 1)n0 states of S(t+1). Now the second term can be rewritten as:∑

S(t) 6=S(t+1)

pn0(1− p)n−n0pn0
0 =

n∑
n0=1

(
n

n0

)
(q − 1)n0pn0(1− p)n−n0pn0

0

=
n∑

n0=1

(
n

n0
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(q − 1)n0pn0(1− p)n−n0

(
1

q − 1

)n0

=
n∑

n0=1

(
n

n0

)
pn0(1− p)n−n0 = 1− (1− p)n. (A.2)

Therefore, ∑
∀S(t+1)

Pr
{
S(t) → S(t+1)

}
= (1− p)n + 1− (1− p)n = 1. (A.3)
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