Stability of MHD Effects on Surface Waves in Liquid Gallium

W. Fox¹, H. Ji², D. Pace³, H. Rappaport⁴

¹Physics Department, Princeton University ²Princeton Plasma Physics Laboratory, Princeton University ³University of Pacific ⁴University of Texas at Austin

> APS-DPP at Long Beach October 29-November 2, 2001

Outline

- Motivations
- Goals of Liquid Metal Experiment (LMX)
- Initial experimental results
 - Measurements of dispersion relations
 - Measurements of wave amplitudes
- Upgraded experimental device
 - Preliminary results
- Conclusions and future work

Motivations

- Fusion applications of liquid metal wall have raised interests in physics understanding of MHD effects on
 - Surface stability
 - Flow stability
 - Thermal convection
- Better understanding of free-surface MHD could provide more **controls** of liquid metals.
- MHD physics in liquid metals is also relevant to **basic plasma physics** and **astrophysics**.

Many Astrophysical Phenomena Controlled by Interfacial Mixing

- Mixing efficiency of fuels and ashes determines
 - Burning rate of nuclear runaways (novae, supernovae, x-ray burst...)
 - **Composition** of ejecta or material on star surfaces

• Possible physical mechanisms for efficient mixing

- Rayleigh-Taylor instability, when heavier unburned fuels sit on top of lighter nuclear ashes
- Kelvin-Helmholtz instability in shear flows, common in differentially rotating stars
- Thermal convection, driven by a temperature gradient created by internal heating via nuclear reactions
- Wave-breaking of interfacial gravity waves driven by shear motion between two fluids

Goals of Liquid Metal Experiment (LMX)

Small-scale experiments using easy-to-handle metals to study:

- When and how do MHD effects modify surface stability, either in linear or nonlinear regimes?
- When and how do MHD effects modify a freesurface flow?
- When and how do MHD effects modify thermal convection?

A Simple Theory of Dispersion Relation of Gallium Surface Waves

• Dispersion Relation:

$$\rho\omega^2 = \left(\rho g + Tk^2 + j_y B_x\right)k \tanh kh$$

(p: density, g: gravity, T: tension force coefficient)

Initial Experimental Setups

- The gallium is melted in a smaller Pyrex dish placed in water housed by another Pyrex dish, heated by a hot plate.
- A wave driver system (including a copper paddle, support tubing, amplifier, and speaker) is used to drive the wave.
- Two pairs of magnetic field coils are placed on either side of the gallium to provide up to 600G of magnetic field around the liquid metal.

Initial Experimental Apparatus

Side View

Front View

Hot plate

Magnetic field coils

Gallium Surface Waves are Generated by Wave Driver

- An ICCD camera is used to monitor the waves
- Magnetic field up to 600 Gauss can be imposed in the wave direction

Wave driver

Preliminary Measurements of Dispersion Relation and Comparison with a Theory

- Good agreement with theory at low frequency and long wavelength (gravity waves)
- Large discrepancy at high frequency and short wavelength (capillary waves) → Change in tension coefficient due to surface oxidization

Waves With And Without Magnetic Field

f=10Hz

With Magnetic Field

Without Magnetic Field

A Laser Reflection Scheme to Measure Wave Amplitudes

• Projection of reflected laser provides measurements of the wave amplitude, a:

$$ka \approx \frac{1}{2} \frac{r_{\text{max}}}{L} - \frac{1}{8} \left(\frac{r_{\text{max}}}{L}\right)^3$$

(when a,r << L)

Effects of Magnetic Field on Wave Amplitude

f = 10 Hz0.50 • Wave amplitude 0.40 decreases by a Amplitude (mm) 0.20 factor of 2 with ф ф magnetic field up to 600 gauss. 0.10 0.00 -0.02 0.00 0.02 0.06 0.08 0.10

0.04 B (T)

Inclusion of V×B Term Explains Wave Damping Due to Magnetic Field

$$\rho\omega^2 = \left(\rho g + Tk_x^2 + j_y B_x\right)k_x \tanh k_x h \left[1 + i\frac{B_x^2}{2\rho\eta\omega}\left(1 - \frac{2k_x h}{\sinh(2k_x h)}\right)\right]$$

- Shallow water waves (k_xh<<1): no damping
- Deep water waves (k_xh>>1) damping rate:

Major Upgrades Completed

- Robust and flexible wave driver system capable of large amplitude waves
- Larger containers to minimize boundary effects and also for 2D waves
- Surface diagnostics: multiple-point laser reflection system
- Experimental controls by a PC-based system including data acquisition
- Upgrade coils and power supplies for wave damping and growth (planned)

New Experimental Setups

Full Automation of Experimental Sequencing and Data Acquisition

• PC-based Labview

Multiple-point Laser Reflection Measurements

Shot 315: f=8Hz, B=0, gallium waves

• Wave amplitude and phase measured at 6 positions

Accurate Determinations of (f, λ, a)

Effects of Magnetic Field on Amplitudes

Near Future Work on Surface Waves

- Linear waves:
 - Dispersion
 - k \(\perb) B, j=0
 - $Bz \neq 0, j=0$
 - j≠0
 - Amplitude
 - Damping $(k // B \text{ or } k \perp B)$
 - Growth $(j \neq 0)$: <u>Rayleigh-Taylor instability</u>
 - 2D, circular waves
- Nonlinear waves
 - Nonlinear dispersion relations with B and j
 - Can we make an MHD solitary wave? (k ⊥ B, j=0, weakly nonlinear regime)
 - Can we make **breaking waves**? (strongly nonlinear regime)

A Rayleigh-Taylor Instability Experiment

- Equilibrium: j×B>ρg
- Choosing x in the j direction, the surface is always unstable: maximum growth rate at certain k → deforming like fingers

$$\rho\omega^{2} = \left(-\rho g + Tk_{x}^{2}\right)k_{x} \tanh k_{x}h\left[1 + i\frac{B_{x}^{2}}{2\rho\eta\omega}\left(1 - \frac{2k_{x}h}{\sinh(2k_{x}h)}\right)\right]$$

Indications Exist For Current To Introduce Turbulence

Without Current

With Current of 100A

Other Proposed Work in LMX

Rapid free-surface MHD flow

Turbulent thermal convection

Conclusions

- A new experiment, LMX (Liquid Metal Experiment) has been set up to study MHD physics of liquid metals.
- Surface oxidization modifies capillary waves at high frequency.
- Waves damped by parallel (but not perpendicular) magnetic field, consistent with linear theory.
- Wave generation sensitive to driving method, needs optimization (also wave reflections?)
- Experiments on 2D waves and nonlinear waves planned
- Experiments on Rayleigh-Taylor instability possible when jxB>ρg