Introduction to Wireless Sensor Networks

Rick Stevens

Stevens@cs.uchicago.edu

Pete Beckman

Beckman@mcs.anl.gov

The Big Picture

- Change the practice of environmental sciences, civil engineering, historical preservation, ...
 - □ Ecosystem monitoring and world heritage sites surveillance
- Enable built environments that observe and respond to what is going on within them
 Active Spaces
- Fundamental enhancement to manufacturing processes
 Smart processes, smart spaces
- Enable information technology throughout the 3rd world
 Low cost self-deployable infrastructures
- Rethink the many levels of networked system design with a focus on constrained resources, uncertainty, and robustness despite noise and failure

Overview of this talk

- Trends and Applications
- Mote History and Evolution
- Design Principles
- Telos/Mica2/MicaZ

Course related stuff

- General plan for lectures and labs
- Readings and Discussion
- Field work and deployment plans
- Schedule
- Summer 05 program

Faster, Smaller, Numerous

Applications Density & Scale Sample Rate & Precision

- Environmental Monitoring
 - Habitat Monitoring
 - □ Integrated Biology
 - □ Structural Monitoring

- Disconnection & LitetIme Disconnection & LitetIme Mobility Low Latency Interactive and Control
 - □ Pursuer-Evader
 - □ Intrusion Detection
 - □ Automation

Monitoring Space

Building Comfort, Smart Alarms

Great Duck Island

Sentries, UVA, OSU

Monitoring Things

Earthquake Response, Glaser et al.

Interactions of Space and Things

The Systems Challenge

Monitoring & Managing Spaces and Things

Open Experimental Platforms

Telos 4/04

Mote Evolution

Mote Type	WeC	René	René 2	Dot	Mica	Mica2Dot	Mica 2	Telos
Year	1998	1999	2000	2000	2001	2002	2002	2004
	•							
Microcontroller								
Туре	AT90LS8535		ATmega163		ATmega128			TI MSP430
Program memory (KB)	8		16		128			60
RAM (KB)	0.5		1		4			2
Active Power (mW)	15		15		8		33	3
Sleep Power (μ W)	45		45		75		75	6
Wakeup Time (μ s)	1000		36		180		180	6
Nonvolatile storage								
Chip	24LC256				AT45DB041B			ST M24M01S
Connection type	I ² C				SPI			I ² C
Size (KB)	32				512			128
Communication								
Radio	TR1000				TR1000	CC1000		CC2420
Data rate (kbps)	10				40	38.4		250
Modulation type	OOK				ASK	FSK		O-QPSK
Receive Power (mW)	9				12	29		38
Transmit Power at 0dBm (mW)	36				36	42		35
Power Consumption								
Minimum Operation (V)	2.7		2.7		2.7		1.8	
Total Active Power (mW)		24			27	44	89	41
Programming and Sensor Interface								
Expansion	none	51-pin	51-pin	none	51-pin	19-pin	51-pin	10-pin
Communication	IEEE 1284 (programming) and RS232 (requires additional hardware)							USB
Integrated Sensors	no	no	no	yes	no	no	no	yes

Low Power Operation

Efficient Hardware

□ Integration and Isolation

- Complementary functionality (DMA, USART, etc)
- □ Selectable Power States (Off, Sleep, Standby)
- □ Operate at low voltages and low current
 - Run to cut-off voltage of power source

Efficient Software

- □ Fine grained control of hardware
- □ Utilize wireless broadcast medium
- □ Aggregate

Typical WSN Application

- Periodic
 - Data Collection
 - Network Maintenance
 - □ Majority of operation
- Triggered Events
 - Detection/Notification
 - □ Infrequently occurs
 - But... must be reported quickly and reliably
- Long Lifetime
 - Months to Years without changing batteries
 - Power management is the key to WSN success

Design Principles

Key to Low Duty Cycle Operation:
 Sleep – majority of the time
 Wakeup – quickly start processing
 Active – minimize work & return to sleep

Sleep

- Majority of time, node is asleep >99%
- Minimize sleep current through
 Isolating and shutting down individual circuits
 Using low power hardware
 - Need RAM retention
- Run auxiliary hardware components from low speed oscillators (typically 32kHz)
 - Perform ADC conversions, DMA transfers, and bus operations while microcontroller core is stopped

Wakeup

Overhead of switching from Sleep to Active Mode
 Microcontroller
 Radio (FSK)

Active

- Microcontroller
 - Fast processing, low active power
 - □ Avoid external oscillators
- Radio
 - High data rate, low power tradeoffs
 - □ Narrowband radios
 - Low power, lower data rate, simple channel encoding, faster startup
 - Wideband radios
 - More robust to noise, higher power, high data rates

- External Flash (stable storage)
 - □ Data logging, network code reprogramming, aggregation
 - □ High power consumption
 - □ Long writes
- Radio vs. Flash
 - □ 250kbps radio sending 1 byte
 - Energy : 1.5µJ
 - Duration : 32µs
 - □ Atmel flash writing 1 byte
 - Energy : 3μJ
 - Duration : 78µs

Telos Platform

- A new platform for low power research
 - □ Monitoring applications:
 - Environmental
 - Building
 - Tracking
- Long lifetime, low power, low cost
- Built from application experiences and low duty
 cycle design principles
- Robustness
 - □ Integrated antenna
 - □ Integrated sensors
 - \Box Soldered connections

Open embedded platform with open source tools, operating system (TinyOS), and designs.

- Standards Based □ IEEE 802.15.4 □ USB
- IEEE 802.15.4
 - □ CC2420 radio
 - □ 250kbps
 - □ 2.4GHz ISM band
 - TI MSP430
 - □ Ultra low power
 - 1.6µA sleep
 - 460µA active
 - 1.8V operation

Low Power Operation

- TI MSP430 -- Advantages over previous motes
 - □ 16-bit core
 - □ 12-bit ADC
 - 16 conversion store registers
 - Sequence and repeat sequence programmable
 - \Box < 50nA port leakage (vs. 1µA for Atmels)
 - Double buffered data buses
 - □ Interrupt priorities
 - Calibrated DCO
- Buffers and Transistors
 - Switch on/off each sensor and component subsystem

Minimize Power Consumption

- Compare to MicaZ: a Mica2 mote with AVR mcu and 802.15.4 radio
- Sleep
 - □ Majority of the time
 - □ Telos: 2.4µA
 - □ MicaZ: 30µA
- Wakeup
 - □ As quickly as possible to process and return to sleep
 - □ Telos: 290ns typical, 6µs max
 - □ MicaZ: 60µs max internal oscillator, 4ms external
- Active
 - □ Get your work done and get back to sleep
 - □ Telos: 4-8MHz 16-bit
 - □ MicaZ: 8MHz 8-bit

CC2420 Radio IEEE 802.15.4 Compliant

CC2420

- □ Fast data rate, robust signal
 - 250kbps : 2Mchip/s : DSSS
 - 2.4GHz : Offset QPSK : 5MHz
 - 16 channels in 802.15.4
 - -94dBm sensitivity
- □ Low Voltage Operation
 - 1.8V minimum supply
- □ Software Assistance for Low Power Microcontrollers
 - 128byte TX/RX buffers for full packet support
 - Automatic address decoding and automatic acknowledgements
 - Hardware encryption/authentication
 - Link quality indicator (assist software link estimation)
 - □ samples error rate of first 8 chips of packet (8 chips/bit)

Power Calculation Comparison

Design for low power

- Mica2 (AVR)
 - □ 0.2 ms wakeup
 - \Box 30 μ W sleep
 - □ 33 mW active
 - □ 21 mW radio
 - □ 19 kbps
 - □ 2.5V min
 - 2/3 of AA capacity

- MicaZ (AVR)
 - □ 0.2 ms wakeup
 - \Box 30 μ W sleep
 - □ 33 mW active
 - □ 45 mW radio
 - □ 250 kbps
 - □ 2.5V min
 - 2/3 of AA capacity

- Telos (TI MSP)
 - □ 0.006 ms wakeup
 - \Box 2 μ W sleep
 - □ 3 mW active
 - □ 45 mW radio
 - □ 250 kbps
 - □ 1.8V min
 - 8/8 of AA capacity

Supporting mesh networking with a pair of AA batteries reporting data once every 3 minutes using synchronization (<1% duty cycle)

453 days

328 days

945 days

Integrated Antenna

Inverted-F Microstrip Antenna and SMA Connector

Inverted-F

- □ Psuedo Omnidirectional
- □ 50m range indoors
- □ 125m range outdoors
- □ Optimum at 2400-2460MHz

SMA Connector

- Enabled by moving a capacitor
- □ > 125m range
- □ Optimum at 2430-2483MHz

Sensors

- Integrated Sensors
 - □ Sensirion SHT11
 - Humidity (3.5%)
 - Temperature (0.5°C)
 - Digital sensor
 - □ Hamamatsu S1087
 - Photosynthetically active light
 - Silicon diode
 - □ Hamamatsu S1337-BQ
 - Total solar light
 - Silicon diode

- Expansion
 - □ 6 ADC channels
 - □ 4 digital I/O
 - □ Existing sensor boards
 - Magnetometer
 - Ultrasound
 - Accelerometer
 - 4 PIR sensors
 - Microphone
 - Buzzer

Conclusions

- New design approach derived from experience with resource constrained wireless sensor networks
 - □ Active mode needs to run quickly to completion
 - □ Wakeup time is crucial for low power operation
 - Wakeup time and sleep current set the minimal energy consumption for an application
 - $\hfill\square$ Sleep most of the time
- Tradeoffs between complexity/robustness and low power radios
- Careful integration of hardware and peripherals

Mote Kits

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

> QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

- The Professional Kit, MOTE-KIT5040, is a combination 8 node kit for Mote Development. It features Crossbow's latest generation MICA2 and MICA2DOT Motes. Both Motes are compatible with TinyOS. The Kit includes:
- 4 MICA2 Processor/Radio Boards
- 4 MICA2DOT Quarter-Sized Processor Radio Boards
- 3 MTS310 Sensor Boards (Acceleration, Magnetic, Light, Temperature, Acoustic, and Sounder)
- 2 MTS510 Sensor Boards (Acceleration, Light, Microphone)
- 2 MDA500, MICA2DOT Prototype and Data Acquisition Boards
- 1 MIB510 Programming and Serial Interface Board
- Mote-Test Software
- Hardware User's Manuals
- TinyOS Getting Started Guide
 Available in 315MHz, 433MHz and 868/916MHz options
- NEW!Indoor Injection Molded Housing is available for MICA2 and MTS300/MTS310 Combination. View <u>Picture</u> and <u>Flash Animation</u> of Housing

Processor Radio Modules

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

Crossbow ships three Mote Processor/Radio module families – MICAz (MPR2400), MICA2 (MPR400), and MICA2DOT (MPR500). The MICAz radio works on the global 2.4GHz ISM band and supports IEEE802.15.4 and ZigBee. The MICA2 and **MICA2DOT** family is available in 315,433,868/900MHz configurations and support frequency agile operation.

MCS Cricket Series

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

- MICA2 location system
- Ultrasound transmitter and receiver for time of flight ranging
- Centimeter level accuracy

Sensor and Data Acquisition Boards MTS101 - precision thermistor

QuickTime[™] and a QuickTime[™] and a Incompressed) decompressc^{TIFF} (Uncompressed) decompressor are needed to see this picture.

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTime[™] and a FF (Uncompressed) decompressor are needed to see this picture. MTS101 - precision thermistor, light sensor, and general prototyping area.

- MTS300/MTS310 supports a variety of sensor modalities for the MICA and MICA2
- MDA500 sensor and data acquisition board provides a flexible user-interface for connecting external signals to the MICA2DOT mote
- MTS400/420 supports environmental monitoring for the MICA2 with built-in sensors and an optional GPS
- MDA300 supports data acquisition and environmental monitoring for the MICA2
- MTS510 Light/Accel/Microphone Sensor Board for MICA2DOT