Metrics for probabilities

Many ways to classify metrics

1. Tests for single-valued property (e.g. mean)
2. Tests of broader forecast distribution

- Both may involve reference forecasts ("skill")

Caveats in testing probabilities

- Observed probabilities require many events
- Big assumption 1: we can 'pool' events
- Big assumption 2: observations are 'good'

Continuous prob. forecasts

Discrete/categorical forecasts

- Many metrics rely on discrete forecasts
- e.g. will it rain? \{yes/no\} (rain >0.01)
- e.g. will it flood? \{yes/no\} (stage > flood level)

What about continuous forecasts?

- An infinite number of events
- Arbitrary event thresholds (i.e. 'bins')?
- Typically, yes (and choice will affect results)

Metrics vary by design

Observation-centered metrics (discrim.)

- "What do forecasts do when observed do X"?
- i.e. "binning" in terms of observed
- e.g. Relative Operating Characteristic

Forecast-centered metrics (reliability)

- "What do observed do when forecasts do Y "?
- i.e. "binning" in terms of forecasts
- e.g. Reliability Diagram

Metrics vary in detail

Detail varies with verification question

- e.g. inspection of 'blown’ forecasts (detailed)
- e.g. avg. reliability of flood forecast (< detail)
- e.g. rapid screening of forecasts (<< detail)

Most detailed (box plot)

Most detailed (box plot)

Cumulative Talagrand

GFS-EPP precipitation ensembles (w/o zero observed)

60\% of time, observation should fall in window $\pm 30 \%$

ROC at Flood Action Stage

Least detailed (a score)

Least detailed (a score)

